US20200226581A1 - Systems and methods for touch screen interface interaction using a card overlay - Google Patents

Systems and methods for touch screen interface interaction using a card overlay Download PDF

Info

Publication number
US20200226581A1
US20200226581A1 US16/245,658 US201916245658A US2020226581A1 US 20200226581 A1 US20200226581 A1 US 20200226581A1 US 201916245658 A US201916245658 A US 201916245658A US 2020226581 A1 US2020226581 A1 US 2020226581A1
Authority
US
United States
Prior art keywords
main side
transaction card
transaction
touch screen
indicia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/245,658
Inventor
Jeffrey Rule
Kevin Osborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital One Services LLC
Original Assignee
Capital One Services LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital One Services LLC filed Critical Capital One Services LLC
Priority to US16/245,658 priority Critical patent/US20200226581A1/en
Priority to US16/245,796 priority patent/US11361302B2/en
Assigned to CAPITAL ONE SERVICES, LLC reassignment CAPITAL ONE SERVICES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OSBORN, KEVIN, RULE, JEFFREY
Priority to CA3067692A priority patent/CA3067692C/en
Priority to EP20151277.9A priority patent/EP3680796A1/en
Publication of US20200226581A1 publication Critical patent/US20200226581A1/en
Priority to US17/830,642 priority patent/US20220292486A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/322Aspects of commerce using mobile devices [M-devices]
    • G06Q20/3227Aspects of commerce using mobile devices [M-devices] using secure elements embedded in M-devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/34User authentication involving the use of external additional devices, e.g. dongles or smart cards
    • G06F21/35User authentication involving the use of external additional devices, e.g. dongles or smart cards communicating wirelessly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/36User authentication by graphic or iconic representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/341Active cards, i.e. cards including their own processing means, e.g. including an IC or chip
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/409Device specific authentication in transaction processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0853Network architectures or network communication protocols for network security for authentication of entities using an additional device, e.g. smartcard, SIM or a different communication terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/40Security arrangements using identity modules
    • H04W12/47Security arrangements using identity modules using near field communication [NFC] or radio frequency identification [RFID] modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2463/00Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
    • H04L2463/082Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00 applying multi-factor authentication

Definitions

  • the present disclosure relates to user and transaction card authentication, and more particularly, to user and transaction card authentication using a card overlay for touch screen interface interaction.
  • Email may be used as a tool to verify transactions, but email is susceptible to attack and vulnerable to hacking or other unauthorized access.
  • SMS Short message service
  • SMS Short message service
  • DES triple data encryption standard
  • log-in credentials e.g., username and password
  • Embodiments of the present disclosure provide a transaction card including a body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface.
  • the transaction card may further include indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.
  • Embodiments of the present disclosure provide a system including a touch screen interface a transaction card.
  • the transaction card may include a body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface.
  • the transaction card may further include indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.
  • Embodiments of the present disclosure provide a method including providing a transaction card having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface.
  • the method may further include providing indicia on the first main side, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.
  • FIG. 1 is a diagram of a system according to an example embodiment.
  • FIG. 2 is a diagram illustrating a sequence for providing authenticated access according to an example embodiment.
  • FIG. 3 is a diagram of a system using a transaction card according to an example embodiment.
  • FIG. 4A is an illustration of a first side of a transaction card according to an example embodiment.
  • FIG. 4B is an illustration of a second side of the transaction card of FIG. 4A according to an example embodiment.
  • FIG. 4C is an illustration of a side cross-sectional view of the transaction card of FIG. 4A along cut-line 4 C- 4 C according to an example embodiment.
  • FIGS. 5A-5B are illustrations of a transaction card and client device according to an example embodiment.
  • FIG. 6 is a flowchart illustrating a method for authenticating a transaction according to an example embodiment.
  • FIG. 7A is an illustration of a first side of a transaction card according to an example embodiment.
  • FIG. 7B is an illustration of a second side of the transaction card of FIG. 7A according to an example embodiment.
  • FIG. 7C is an illustration of a side cross-sectional view of the transaction card of FIG. 7A along cut-line 7 C- 7 C according to an example embodiment.
  • FIGS. 8A-8B are illustrations of a transaction card and client device according to an example embodiment.
  • FIG. 9 is an illustration of a transaction card according to an example embodiment.
  • FIG. 10 is a flowchart illustrating a method for authenticating a transaction according to an example embodiment.
  • An objective of some embodiments of the present disclosure is to verify/authenticate a transaction card and/or the customer in possession of the transaction card.
  • the transaction card includes indicia in unique or non-standard positions, wherein providing the authentication to a touch screen interface of a device requires pressing or otherwise actuating the positions on the transaction card.
  • the transaction card functions as a key to knowing where to press on the touch screen interface to authenticate the user and/or the transaction card.
  • the transaction card may include conductive pads on one or both sides of the card, wherein the conductive pads may be any component capable of recognizing and communicating a capacitive input from a user.
  • the transaction card may include one or more registration marks to allow the transaction card to be positioned with respect to one or more location indicators on the touch screen interface.
  • FIG. 1 illustrates a system 100 according to an example embodiment.
  • the system 100 may include a transaction card 105 , a client device 110 , a network 115 , and a server 120 .
  • FIG. 1 illustrates single instances of the components, the system 100 may include any number of components.
  • the system 100 may include one or more transaction cards 105 , which are further explained below with reference to FIGS. 4A-4C and FIGS. 7A-7C .
  • the transaction card 105 may be in wireless communication, utilizing NFC in an example, with the client device 110 .
  • the system 100 may include the client device 110 , which may be a network-enabled computer.
  • a network-enabled computer may include, but is not limited to, a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a thin client, a fat client, an Internet browser, or other device.
  • the client device 110 also may be a mobile device, for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
  • a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
  • the client device 110 can include a processor and a memory, and it is understood that the processing circuitry may contain additional components, including, memories, error and parity/CRC checkers, data encoders, anti-collision algorithms, controllers, command decoders, security primitives and tamper proofing hardware, as necessary to perform the functions described herein.
  • the client device 110 may further include a display and input devices.
  • the display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays.
  • the input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
  • the client device 110 of the system 100 may execute one or more applications, such as software applications, that enable, for example, network communications with one or more components of the system 100 and transmit and/or receive data.
  • the client device 110 may be in communication with one or more servers 120 via one or more networks 115 , and may operate as a respective front-end to back-end pair with the server 120 .
  • the client device 110 may transmit, for example, from a mobile device application executing on the client device 110 , one or more requests to the server 120 .
  • the one or more requests may be associated with retrieving data from the server 120 .
  • the server 120 may receive the one or more requests from the client device 110 .
  • the server 120 may be configured to retrieve the requested data from one or more databases (not shown). Based on receipt of the requested data from the one or more databases, the server 120 may be configured to transmit the received data to the client device 110 , the received data being responsive to one or more requests.
  • the system 100 may include one or more networks 115 .
  • the network 115 may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect client device 110 to server 120 .
  • the network 115 may include one or more of a fiber optics network, a passive optical network, a cable network, an Internet network, a satellite network, a wireless local area network (LAN), a Global System for Mobile Communication, a Personal Communication Service, a Personal Area Network, Wireless Application Protocol, Multimedia Messaging Service, Enhanced Messaging Service, Short Message Service, Time Division Multiplexing based systems, Code Division Multiple Access based systems, D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11n and 802.11g, Bluetooth, NFC, Radio Frequency Identification (RFID), Wi-Fi, and/or the like.
  • RFID Radio Frequency Identification
  • the network 115 may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a LAN, or a global network such as the Internet.
  • the network 115 may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof.
  • the network 115 may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other.
  • the network 115 may utilize one or more protocols of one or more network elements to which they are communicatively coupled.
  • the network 115 may translate to or from other protocols to one or more protocols of network devices.
  • the network 115 may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
  • the system 100 may include one or more servers 120 .
  • the server 120 may include one or more processors, which are coupled to memory.
  • the server 120 may be configured as a central system, server or platform to control and call various data at different times to execute a plurality of workflow actions.
  • the server 120 may be configured to connect to the one or more databases.
  • the server 120 may be connected to at least one client device 110 .
  • FIG. 2 is a timing diagram illustrating an example sequence for providing user/card authentication according to one or more embodiments of the present disclosure.
  • the system 100 may comprise the transaction card 105 and the client device 110 , which may include an application 122 and a processor 124 .
  • FIG. 2 may reference similar components as illustrated in FIG. 1 .
  • the application 122 communicates with the transaction card 105 .
  • Communication between the application 122 and the transaction card 105 may involve the transaction card 105 being sufficiently close to a card reader (not shown) of the client device 110 to enable NFC data transfer between the application 122 and the transaction card 105 .
  • communication between the application 122 and the transaction card 105 may involve the transaction card 105 being used during a transaction recognized by the application 122 .
  • the application 122 may receive a primary authentication from an identification chip and/or magnetic stripe containing cardholder data in accordance with standard protocols.
  • the application 122 may request secondary authentication for a transaction.
  • the transaction 105 may receive a user input, for example, to indicia along an exterior surface of the transaction card 105 , and communicate the user input to the application 122 .
  • the transaction card 105 is provided in direct physical contact with a touch screen interface of the client device 110 .
  • the application 122 communicates the user input to the processor 124 .
  • the processor 124 may execute instructions to determine whether to authenticate the transaction based on a comparison between the user input and predetermined identification data.
  • the user input indicates at least one of: a position of each of the corresponding touch locations on the touch screen interface actuated by the user input, and/or an actuation sequence of the corresponding touch locations on the touch screen interface actuated by the user input.
  • verifying the user input may be performed by a device other than the client device 110 , such as the server 120 (e.g., as shown in FIG. 1 ) in data communication with the client device 110 .
  • the processor 124 may output the position of each of the corresponding touch locations on the touch screen interface actuated by the user input and/or the actuation sequence of the corresponding touch locations on the touch screen interface as actuated by the user input, to the server 120 .
  • the server 120 may verify the user input to the transaction card 105 by retrieving an expected input configuration associated with the transaction card, and comparing the position of each of the corresponding touch locations actuated by the user input to the expected input configuration.
  • the server 120 may verify the user input to the transaction card 105 by retrieving an account passcode associated with the transaction card, and comparing the actuation sequence of the corresponding touch locations actuated by the user input to the account passcode.
  • FIG. 3 illustrates a system 200 using a transaction card 205 , one or more client devices 210 , a network 215 , servers 220 , 225 , one or more hardware security modules 230 , and a database 235 .
  • FIG. 3 illustrates single instances of the components, the system 200 may include any number of components.
  • the system 200 may include one or more transaction cards 205 , which are further explained below with respect to FIGS. 4A-4C .
  • the transaction card 205 may be in wireless communication, for example NFC communication, with the client device 210 .
  • the transaction card 205 may comprise one or more chips, such as a radio frequency identification chip, configured to communication via NFC or other short-range protocols.
  • the transaction card 205 may communicate with the client device 210 through other means including, but not limited to, Bluetooth, satellite, Wi-Fi, wired communications, and/or any combination of wireless and wired connections.
  • the transaction card 205 may be configured to communicate with the card reader 213 of the client device 210 through NFC when the transaction card 205 is within range of card reader 213 .
  • communications with the transaction card 205 may be accomplished through a physical interface, e.g., a universal serial bus interface or a card swipe interface.
  • the transaction card 205 may communicate with the client device 210 using capacitive conductance when the transaction card 205 is placed atop/over an interface of the client device 210 .
  • the system 200 may include the client device 210 , which may be a network-enabled computer.
  • a network-enabled computer may include, but is not limited to: e.g., a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a mobile device, a phone, a handheld PC, a personal digital assistant, a thin client, a fat client, an Internet browser, or other device.
  • client devices 210 also may be a mobile device.
  • a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone or like wearable mobile device.
  • the client device 210 may be the same as, or similar to, the client device 110 as described with reference to FIG. 1 and FIG. 2 .
  • the client device 210 may be in communication with one or more servers 220 and 225 via one or more networks 215 .
  • the client device 210 may transmit, for example from an application 211 executing on the client device 210 , one or more requests to one or more servers 220 and 225 .
  • the one or more requests may be associated with retrieving data from one or more servers 220 and 225 .
  • the servers 220 and 225 may receive the one or more requests from the client device 210 .
  • the one or more servers 220 and 225 may be configured to retrieve the requested data from one or more databases 235 .
  • one or more servers 220 and 225 may be configured to transmit the received data to client device 210 , the received data being responsive to one or more requests.
  • predetermined input location data 237 associated with the transaction card 205 and/or an account passcode 239 associated with the transaction card 205 may be retrieved from the one or more databases 235 in response to the requests from the servers 220 and 225 .
  • the system 200 may include one or more hardware security modules (HSM) 230 .
  • HSMs 230 may be configured to perform one or more cryptographic operations as disclosed herein.
  • one or more HSMs 230 may be configured as special purpose security devices that are configured to perform the one or more cryptographic operations.
  • the HSMs 230 may be configured such that keys are never revealed outside the HSM 230 , and instead are maintained within the HSM 230 .
  • one or more HSMs 230 may be configured to perform at least one of key derivations, decryption, and MAC operations.
  • the one or more HSMs 230 may be contained within, or may be in data communication with, the servers 220 and 225 .
  • the system 200 may include one or more networks 215 .
  • the network 215 may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect the client device 210 to the servers 220 , 225 .
  • the network 215 may include one or more of a fiber optics network, a passive optical network, a cable network, a cellular network, an Internet network, a satellite network, a wireless LAN, a Global System for Mobile Communication, a Personal Communication Service, a Personal Area Network, Wireless Application Protocol, Multimedia Messaging Service, Enhanced Messaging Service, Short Message Service, Time Division Multiplexing based systems, Code Division Multiple Access based systems, D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11n and 802.11g, Bluetooth, NFC, RFID, Wi-Fi, and/or any combination of networks thereof.
  • communications from the transaction card 205 and the client device 210 may comprise NFC communication, cellular network between the client device 210 and a carrier, and Internet between the carrier and a back-end.
  • the network 215 may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a local area network, or a global network such as the Internet.
  • the network 215 may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof.
  • the network 215 may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other.
  • the network 215 may utilize one or more protocols of one or more network elements to which they are communicatively coupled.
  • the network 215 may translate to or from other protocols to one or more protocols of network devices.
  • the network 215 may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
  • the client device 210 of the system 200 may execute one or more applications 211 , and include one or more processors 212 , and one or more card readers 213 .
  • one or more applications 211 such as software applications, may be configured to enable, for example, network communications with one or more components of system 200 and transmit and/or receive data. It is understood that although only single instances of the components of client device 210 are illustrated in FIG. 3 , any number of client devices 210 may be used.
  • the card reader 213 may be configured to read from and/or communicate with the transaction card 205 . In conjunction with the one or more applications 211 , the card reader 213 may communicate with the transaction card 205 .
  • the application 211 of any of the client devices 210 may communicate with the transaction card 205 using short-range wireless communication (e.g., NFC).
  • the application 211 may be configured to interface with the card reader 213 of the client device 210 , which is configured to communicate with the transaction card 205 .
  • NFC short-range wireless communication
  • the application 211 may be configured to interface with the card reader 213 of the client device 210 , which is configured to communicate with the transaction card 205 .
  • a distance of less than twenty centimeters is consistent with NFC range.
  • the server 220 may be a web server in communication with the database 235 .
  • the server 225 may include an account server.
  • the server 220 may be configured to validate one or more credentials from the transaction card 205 and/or client device 210 based on a comparison to one or more credentials in database 235 .
  • the server 220 may compare the user input received at the client device 210 with predetermined identification data, such as an expected input configuration associated with indicia of the transaction card 205 , and/or an account passcode associated with the transaction card 205 .
  • the server 225 may be configured to authorize one or more requests, such as a payment transaction, from the transaction card 205 and/or client device 210 based on this comparison.
  • FIGS. 4A-4C illustrate an example transaction card 305 , which may be a payment card, such as a credit card, debit card, or gift card, issued by a service provider.
  • the transaction card 305 is not related to a payment card, and may comprise, without limitation, an identification card.
  • the transaction card 305 may be a dual interface contactless payment card.
  • the transaction card 305 may include a body 302 , which may be a substrate including a single layer or one or more laminated layers composed of plastics, metals, and other materials.
  • the body 302 may be made from any material(s) capable of conveying a capacitive user touch through the transaction card 305 .
  • the body 302 may be wholly or partially capacitively conductive, or the body 302 may include passive materials. As shown, the body 302 has a first main side 304 (i.e., top/front side) and a second main side 306 (i.e., bottom/back side).
  • first main side 304 i.e., top/front side
  • second main side 306 i.e., bottom/back side
  • Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials.
  • the transaction card 305 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the contactless card may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the transaction card 305 according to the present disclosure may have different characteristics, and the present disclosure is not limited to any particular card design.
  • an identification chip 308 may be coupled (e.g., recessed or partially embedded) to the first main side 304 of the transaction card 305 .
  • the identification chip 308 may be any microprocessor device configured to exchange data electromagnetically, such as a RFID chip.
  • the RFID chip may include a radio frequency inductor, volatile or non-volatile memory storage, a microprocessor, circuitry logic, and/or an antenna. While in some embodiments electromagnetic data communications from the RFID chip will take place at radio frequencies, other embodiments may exchange electromagnetic data at different frequencies.
  • the transaction card 305 may further include a magnetic stripe 309 on the second main side 306 of the body 302 .
  • the transaction card 305 may also include identification information 315 displayed on the front and/or back of the card, and indicia 312 A- 312 D on the first main side 304 of the body 302 .
  • the indicia 312 A- 312 D identify touch locations on a touch screen interface for authenticating a transaction.
  • the indicia 312 A- 312 D are operable to communicate a user input to one or more capacitive sensing, or capacitively conductive, surfaces, such as conductive pads 320 A- 320 D disposed along the second main side 306 of the body 302 .
  • the indicia 312 A- 312 D are each capacitive sensing conductive pads.
  • the indicia 312 A- 312 D may be raised and/or colored features on the first main side 304 of the body 302 . In other embodiments, the indicia 312 A- 312 D may be printed markings, shapes, and/or numbers that are substantially planar with the first main side 304 of the body 302 .
  • the conductive pads 320 A- 320 D may be positioned directly beneath corresponding indicia 312 A- 312 D on opposite sides of the body 302 .
  • the conductive pads 320 A- 320 D may be separated from corresponding indicia 312 A- 312 D (e.g., along the x-direction and/or the y-direction), and connected respectively by one or more conductive pathways 322 A- 322 D.
  • the conductive pathways 322 A- 322 D are embedded within the body 302 of the transaction card 305 , between the first main side 304 and the second main side 306 .
  • the conductive pathways 322 A- 322 D are operable to deliver a capacitive input (e.g., user touch) from the first main side 304 of the body 302 to the second main side 306 of the body 302 .
  • a capacitive input e.g., user touch
  • the indicia 312 A- 312 D and/or the transaction card 305 may be non-conductive. That is, a capacitive input from a user's finger may be sensed directly through the material of the card, e.g., without delivery through conductive pads, circuits, openings, etc.
  • the conductive pads 320 A- 320 D may deliver the capacitive input to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer.
  • another communication device such as a user device, smart phone, laptop, desktop, or tablet computer.
  • each of the conductive pads 320 A- 320 D may be maintained in direct contact with a touch screen interface of the client device.
  • the capacitive input is delivered to the corresponding touch location(s) on the touch screen interface.
  • the conductive pads 320 A- 320 D may initially be separated from an outer surface of the touch screen interface when the transaction card 305 is positioned in place with the client device.
  • the first main side 304 and/or the second main side 306 may be mostly or entirely conductive. In other words, conductance is not limited only to the conductive pads 320 A- 320 D. As a result, user inputs may be effective virtually anywhere on the transaction card 305 .
  • the transaction card 305 may also include processing circuitry, an antenna, and other components. These components may be located behind the conductive pads 320 A- 320 D or elsewhere within the body 302 of the transaction card 305 .
  • the transaction card 305 may function as an overlay for a computing device having a flat surface for data entry.
  • the overlay includes the indicia 312 A- 312 D visible on the first main side 304 of the body 302 , and the corresponding conductive pads 320 A- 320 D disposed along the second main side 306 of the body 302 .
  • the shape and placement of the indicia 312 A- 312 D and/or the conductive pads 320 A- 320 D may be variable and unique to each transaction card 305 .
  • the indicia 312 A- 312 D may include raised features or buttons, such as a standard push-button switch, a contact-lens shape of a button, or other buttons to provide tactile feedback to a user.
  • indicium 312 B may be positioned around a raised feature 326 .
  • the raised feature 326 may have the same or different shape as the indicium 312 B.
  • one or more of the indicia 312 A- 312 D may be a button with an outer coating to protect an inner cavity.
  • a soft button cavity may be covered by a top surface coating, wherein the soft button cavity may be filled with air or liquid that is capable of detecting a change in the amount of pressure within the cavity.
  • the cavity can be filled with a conductive material such that contact with the top surface causes the material inside the cavity to detect a contact, and to register selection of the soft button to provide appropriate feedback as a selection of the underlying soft button.
  • the top surface of the button can be curved as a contact lens such that it pops up or down.
  • the top surface can be a capacitive plastic in some embodiments for detecting touch.
  • one or more of the indicia 312 A- 312 D may be implemented as a standard push-button switch to provide feedback.
  • the cavity may include a first lead and an opposing lead, which are not in contact with each other when the push-button is in its resting position.
  • the push-button switch is pushed downward so as to contact the leads. Once the push-button switch contacts the leads, the proper feedback is provided to the display as an input at the soft button underlying the overlay button surface.
  • the transaction card 305 may be built on a software platform operable on smart cards or other devices having limited memory, such as JavaCard, and one or more or more applications or applets may be securely executed. Applets may be added to contactless cards to provide a one-time password (OTP) for multifactor authentication (MFA) in various mobile application-based use cases. Applets may be configured to respond to one or more requests, such as near field data exchange requests, from a reader, such as a mobile NFC reader, and produce an NDEF message that comprises a cryptographically secure OTP encoded as an NDEF text tag.
  • OTP one-time password
  • MFA multifactor authentication
  • FIGS. 5A-5B illustrate an example transaction card 405 and client device 410 .
  • the client device 410 is a mobile device having a touch screen interface (hereinafter “interface”) 430 .
  • the interface 430 may be a display capable of monitoring changes in electrical current.
  • the interface 430 may be a capacitive touch screen having a layer of capacitive material to hold an electrical charge, wherein touching the screen changes the amount of charge at a specific point of contact.
  • the interface 430 may include a resistive screen, wherein pressure from a finger causes conductive and resistive layers of circuitry to touch each other, thus changing the circuits' resistance.
  • interfaces may monitor changes in the reflection of waves, such as sound waves or beams of near-infrared light.
  • the interface 430 may use transducers to measure changes in vibration caused when an object, such as a finger or stylus, hits the screen's surface, or may use one or more cameras to monitor changes in light and shadow.
  • the body 402 of the transaction card 405 is positionable with respect to the interface 430 of the client device 410 .
  • the transaction card 405 may be placed atop the client device 410 such that the second main side of the body 402 is in direct physical contact with an outer surface 433 of the interface 430 .
  • the indicia 412 A- 412 D on the first main side 404 of the transaction card 405 identify touch locations 435 of the interface 430 for authenticating a transaction, while the second main side of the body 402 is adapted to actuate the corresponding touch locations 435 when the transaction card 405 is placed over the interface 430 and the first main side 404 is actuated by a user.
  • the transaction card 405 may be transparent.
  • the indicia 412 A- 412 D may be provided along the second main side of the body 402 , or may be embedded within the body 402 .
  • the touch locations 435 are visible in FIGS. 5A-5B for the sake of explanation, during use the touch locations 435 may not be displayed via the interface 430 with any indicia or visible markings. Instead, the touch locations 435 may remain visibly hidden for enhanced security.
  • the touch locations 435 may alternatively be displayed by the interface 430 and seen by the user through the transaction card 405 , which may be at least partially transparent or translucent in this case.
  • the transaction card 405 may not necessarily include indicia 412 A- 412 D, as the user may be guided by the touch locations 435 visible to him/her.
  • an identification chip 408 may be coupled (e.g., recessed or partially embedded) to the first main side 404 of the body 402 of the transaction card 405 , and a magnetic stripe (not shown) may be provided on the second main side of the body 402 of the transaction card 405 .
  • the transaction card 405 includes one or more registration marks 440 to enable the transaction card 405 to be positioned with respect to one or more location indicators 444 on the interface 430 .
  • the registration marks 440 may be disposed along the first main side 404 of the body 402 , and the location indicators 444 may be displayed to the user via the interface 430 .
  • the user will align the registration marks 440 with the location indicators 444 .
  • the location indicators 444 may be displayed in a first location on the interface 430 for a first transaction, and displayed in a second location on the interface 430 for a second transaction.
  • the interface 430 may include a second set of location indicators 445 displayed to the user.
  • the location indicators 444 and the second set of location indicators 445 may be encoded, e.g., with different colors.
  • the user would know which color location indicator to use, thus adding another layer of user knowledge authentication on top of the user input communicated through the conductive pads 420 A- 420 D. If the user aligns with transaction card with the incorrect location indicators, the transaction will fail.
  • different messages may be communicated through the user input depending on which set of location indicators the user aligns the transaction card 405 with. For example, alignment with the location indicators 444 , which are displayed in green, could result in a valid transaction, whereas alignment with the set of set of location indicators 445 , which are displayed in yellow, could signal duress.
  • the client device 410 may include, or operate with, one or more processors, similar to the processor 124 of FIG. 2 and the processor 212 of FIG. 3 .
  • the processor of the client device 410 may be configured to execute instructions to determine whether to authenticate a transaction based on a comparison between the user input, received at the indicia and delivered to the interface 430 via the conductive pads 420 A- 420 D, and predetermined identification data.
  • the processor may be configured to receive the user input communicated through the conductive pads 420 A- 420 D, and to determine a position of each of the corresponding touch locations 435 of the interface 430 actuated by the user input.
  • the positions(s) may be an absolute position based on a distance from one or more boundaries 432 of the interface 430 , or an absolute position determined according to a predefined coordinate or grid layout (not shown) of the interface 430 .
  • the position(s) may be a relative position between one or more of the corresponding touch locations 435 .
  • the position(s) may be a relative position between one or more of the corresponding touch locations and the location indicator 444 .
  • the processor may execute instructions to retrieve predetermined input location data, similar to the predetermined input location data 237 shown in FIG. 3 , and to determine whether to authenticate the transaction based on a comparison between the detected position of each of the corresponding touch locations 435 on the touch screen interface 430 and the predetermined input location data. The processor may then generate an authentication result based on the comparison.
  • the processor may be configured to receive an actuation sequence corresponding to the user input to the indicia 412 A- 412 D.
  • the actuation sequence is a series or order of inputs provided to the indicia 412 A- 412 D, for example, in response to a challenge question displayed via the interface 430 (e.g. touch the star, rectangle, and then the triangle).
  • the actuation sequence may also be assigned or selected by the user, for example, when initially setting up his/her transaction card 405 .
  • the processor is configured to then compare the detected actuation sequence to an account passcode, such as the account passcode 239 shown in FIG. 3 , which is associated with the transaction card 405 .
  • the processor may then generate an authentication result based on the comparison.
  • FIG. 6 is a flowchart illustrating a method 500 according to an example embodiment.
  • the method 500 may include providing a transaction card having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface.
  • the touch screen interface is part of a client device, such as a mobile device.
  • the transaction card is provided in direct physical contact with the touch screen interface.
  • the body of the transaction card includes an identification chip and/or a magnetic stripe.
  • the touch screen interface is capable of recognizing a capacitive input.
  • the method 500 may include providing indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction.
  • the second main side of the body may be adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first side of the body is actuated by a user.
  • the second main side of the body includes a capacitively conductive surface corresponding to the touch locations for authenticating the transaction.
  • at least one indicium of the indicia is positioned adjacent a raised feature on the main side of the body of the transaction card.
  • At least one indicium of the indicia is positioned adjacent a conductive pad on the first main side of the body of the transaction card.
  • a plurality of conductive pads may be provided on the second main side of the body, wherein the plurality of conductive pads is disposed adjacent one or more indicia and the first main side of the transaction card.
  • the method 500 may include providing a location indicator on the touch screen interface.
  • the location indicator may be used for alignment with a registration mark provided on the first main side of the transaction card.
  • the registration mark may be provided on the second main side of the body, or embedded within the body.
  • the location indicator is randomly generated in a new location for each transaction. Accordingly, the corresponding touch locations on the touch screen interface for authenticating the transaction may be adjusted based on the newly established position of the location indicator.
  • the method 500 may include receiving a user input to the first main side of the transaction card in one or more areas corresponding to the indicia.
  • the indicia include any number of sensor types for capacitive sensing, including, but not limited to, sensors to detect and measure proximity, position and displacement, force, humidity, fluid level, and acceleration.
  • the indicia include one or more mechanical buttons capable of recognizing and communicating a user input.
  • the method 500 may include receiving the user input at the touch screen interface.
  • the user input actuates corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by the user.
  • the method 500 may include comparing the corresponding touch locations actuated on the touch screen interface to predetermined identification data.
  • the positions of the corresponding touch locations actuated by the user input are compared to an expected input configuration.
  • the detected sequence of the corresponding touch locations actuated by the user input is compared to an account passcode associated with the user and the transaction card. If the comparison results in a match at block 513 , then the transaction is authenticated at block 515 . If the comparison is not satisfied, then the transaction is denied at block 517 .
  • FIGS. 7A-7C illustrate an example transaction card 605 , which may be a payment card, such as a credit card, debit card, or gift card, issued by a service provider.
  • the transaction card 605 is not related to a payment card, and may comprise, without limitation, an identification card.
  • the transaction card may be a dual interface contactless payment card.
  • the transaction card 605 may function as an overlay for a computing device having a flat surface for data entry.
  • the overlay includes indicia 612 A- 612 D visible on a first main side 604 of a body 602 , wherein the shape and placement of the indicia 612 A- 612 D may be variable/unique to each transaction card 605 .
  • the transaction card 605 includes the body 602 , which may be a substrate including a single layer or one or more laminated layers composed of plastics, metals, and other materials.
  • the body 602 has a first main side 604 (i.e., top/front side) and a second main side 606 (i.e., bottom/back side).
  • an identification chip 608 may be coupled (e.g., recessed or partially embedded) to the first main side 604 of the transaction card 605 .
  • the transaction card 605 may further include a magnetic stripe 609 on the second main side 606 of the body 602 .
  • the transaction card 605 may also include identification information 615 displayed on the front and/or back of the card, and indicia 612 A- 612 D on the first main side 604 of the body 602 .
  • the indicia 612 A- 612 D identify touch locations on a user interface for authenticating a transaction.
  • each of the indicia 612 A- 612 D may visually and/or tactilely identify one or more corresponding apertures 614 A- 614 D formed through the transaction card 605 , wherein a user input through the apertures 614 A- 614 D may actuate corresponding touch location on the touch screen interface.
  • the indicia 612 A- 612 D are disposed around the apertures 614 A- 614 D, respectfully. In other embodiments, the indicia 612 A- 612 D may be disposed merely adjacent (e.g., offset in either the x-direction or the y-direction) to the apertures 614 A- 614 D.
  • the indicia 612 A- 612 D may be printed markings, shapes, and/or numbers that are substantially planar with the first main side 604 of the body 602 . In other embodiments, the indicia 612 A- 612 D may be raised above a surface of the first main side 604 of the body 602 .
  • apertures 614 A- 614 D are shown as circular cut-out openings, one or more of apertures 614 A- 614 D can also be square-shaped, rectangular shaped, oval shaped, or virtually any other shape.
  • the shape and placement of the openings 614 A- 614 D is variable depending upon the particular computing device onto which the overlay is overlaid, as well as the particular application executing on the computing device.
  • one or more of apertures 614 A- 614 D may have a depressed edge or a raised edge that provides sensory feedback to the user.
  • the apertures 614 A- 614 D may deliver the capacitive input to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer.
  • the transaction card 605 may be in direct contact with a touch screen interface of the client device.
  • the capacitive input from the user's finger is delivered to the corresponding touch location(s) on the touch screen interface.
  • the one or more of apertures 614 A- 614 D may be covered along the second main side 606 of the body 602 by a conductive pad. The capacitive input from the user may be delivered through the opening to the conductive pad, and then to the touch screen interface.
  • FIGS. 8A-8B illustrate an example transaction card 705 and client device 710 .
  • the client device 710 is a mobile device having a touch screen interface (hereinafter “interface”) 730 .
  • the interface 730 may be a display capable of monitoring changes in electrical current.
  • the interface 730 may be a capacitive touch screen having a layer of capacitive material to hold an electrical charge, wherein touching the screen changes the amount of charge at a specific point of contact.
  • the interface 730 may include a resistive screen, wherein pressure from a finger causes conductive and resistive layers of circuitry to touch each other, thus changing the circuits' resistance.
  • interfaces may monitor changes in the reflection of waves, such as sound waves or beams of near-infrared light.
  • the interface 430 may use transducers to measure changes in vibration caused when an object, such as a finger or stylus, hits the screen's surface, or may use one or more cameras to monitor changes in light and shadow.
  • the body 702 of the transaction card 705 is positionable with respect to the interface 730 of the client device 710 .
  • the transaction card 705 may be placed atop the client device 710 such that the second main side of the body 702 is in direct physical contact with an outer surface 733 of the interface 730 .
  • an identification chip 708 may be coupled (e.g., recessed or partially embedded) to the first main side 704 of the body 702 of the transaction card 705 , and a magnetic stripe (not shown) may be provided on the second main side of the body 702 of the transaction card 705 .
  • the indicia 712 A- 712 D identify a plurality of openings 714 A- 714 D formed through the body. During use, a user input provided through the plurality of apertures 714 A- 714 D actuates corresponding touch locations 735 on interface 730 to authenticate a transaction.
  • the transaction card 705 may be transparent.
  • the indicia 712 A- 712 D may be provided along the first main side 704 of the body 702 , the second main side of the body 702 , or embedded within the body 702 .
  • the touch locations are visible in FIGS. 8A-8B for the sake of explanation, during use the touch locations 735 may not be displayed via the interface 730 , e.g., using graphically generated indicia or visible markings. Instead, the touch locations 735 may remain visibly hidden for enhanced security.
  • the touch locations 735 may alternatively be displayed by the interface 730 and seen by the user through the transaction card 705 , which may be at least partially transparent or translucent.
  • the transaction card 705 may not necessarily include indicia 712 A- 712 D.
  • the transaction card 705 includes one or more registration marks 740 to enable the transaction card 705 to be positioned with respect to one or more location indicators 744 on the interface 730 .
  • the registration marks 740 may be disposed along the first main side 704 of the body 702 , and the location indicators 744 may be displayed to the user via the interface 730 .
  • the user may align the registration marks 740 with the location indicators 744 .
  • the location indicators 744 may be displayed in a first location on the interface 730 for a first transaction, and displayed in a second location on the interface 730 for a second transaction.
  • the interface 730 may include a second set of location indicators 745 displayed to the user.
  • the location indicators 744 and the second set of location indicators 745 may be encoded, e.g., with different colors. During use, the user would know which color location indicator to use, thus adding another layer of user knowledge authentication on top of the user input communicated through the plurality of apertures 714 A- 714 D.
  • the client device 710 may include, or operate with, one or more processors, similar to the processor 124 of FIG. 2 and the processor 212 of FIG. 3 .
  • the processor of the client device 710 may be configured to execute instructions to determine whether to authenticate a transaction based on a comparison between predetermined identification data stored within memory, such as the database 235 of FIG. 3 , and the user input, which is received at the indicia 712 A- 712 D and delivered to the interface 730 via the plurality of apertures 714 A- 714 D.
  • the processor may be configured to receive the capacitive user input transmitted through the plurality of apertures 714 A- 714 D, and to determine a position of each of the corresponding touch locations 735 of the interface 730 actuated by the user input.
  • the positions(s) may be an absolute position based on a distance from one or more boundaries 732 of the interface 730 , or an absolute position determined according to a predefined coordinate or grid layout (not shown) of the interface 730 .
  • the position(s) may be a relative position between one or more of the corresponding touch locations 735 .
  • the position(s) may be a relative position between one or more of the corresponding touch locations and the location indicator 744 .
  • the processor may execute instructions to retrieve predetermined input location data, similar to the predetermined input location data 237 shown in FIG. 3 , and to determine whether to authenticate the transaction based on a comparison between the detected position of each of the corresponding touch locations 735 on the touch screen interface 730 and the predetermined input location data. The processor may then generate an authentication result based on the comparison.
  • the processor may be configured to receive an actuation sequence corresponding to the user input to the plurality of apertures 714 A- 714 D.
  • the actuation sequence is a series or order of inputs provided to the touch locations 735 via the plurality of apertures 714 A- 714 D, for example, in response to a challenge question displayed via the interface 730 (e.g. touch the star, rectangle, and then the triangle).
  • the actuation sequence may also be assigned or selected by the user, for example, when initially setting up his/her transaction card 705 .
  • the processor is configured to then compare the detected actuation sequence to an account passcode, such as the account passcode 239 shown in FIG. 3 , which is associated with the transaction card 705 .
  • the account passcode may be an expected actuation sequence to the touch locations 735 .
  • the processor may then generate an authentication result based on the comparison.
  • FIG. 9 illustrates another example transaction card 805 , which may be a payment card, such as a credit card, debit card, or gift card, issued by a service provider.
  • the transaction card 805 may include a body 802 , which may be a substrate including a single layer or one or more laminated layers composed of plastics, metals, and other materials.
  • the body 802 has a first main side 804 (i.e., top/front side) and a second main side opposite the first main side 804 .
  • an identification chip 808 may be coupled (e.g., recessed or partially embedded) to the first main side 804 of the transaction card 805 .
  • the identification chip 808 may be any microprocessor device configured to exchange data electromagnetically, such as a RFID chip.
  • the transaction card 805 may further include a magnetic stripe (not shown) on the second main side of the body 802 .
  • the transaction card 805 may also include identification information 815 displayed on the front and/or back of the card, and indicia 812 A- 812 F on the first main side 804 of the body 802 .
  • the indicia 812 A- 812 F correspond to touch locations on a touch screen interface for authenticating a transaction.
  • the indicia 812 A- 812 F are operable to communicate a user input to one or more conductive surfaces, such as conductive pads disposed along the second main side of the body 802 .
  • the indicia 812 A- 812 F are each conductive pads provided as a set of numbers, such as the keypad shown.
  • the indicia 812 A- 812 F and the transaction card 805 are non-conductive.
  • a capacitive input from a user's finger may be sensed directly through the material of the card, e.g., without delivery through circuits, openings, etc.
  • the transaction card 805 may function as an overlay for a computing device having a flat surface for data entry.
  • a processor of the computing device may be configured to receive an actuation sequence via the indicia 812 A- 812 F.
  • the actuation sequence is a series or order of inputs, such as a numerical passcode, provided to the indicia 812 A- 812 F.
  • the processor is configured to then compare the detected actuation sequence to an account passcode, such as the account passcode 239 shown in FIG. 3 , which is associated with the transaction card 805 .
  • the processor may then generate an authentication result based on the comparison.
  • FIG. 9 is a flowchart illustrating a method 900 according to an example embodiment.
  • the method 900 may include providing a body of a transaction card, the body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface.
  • the touch screen interface is part of a client device, such as a mobile device.
  • the transaction card is provided in direct physical contact with the touch screen interface.
  • the body of the transaction card includes an identification chip and/or a magnetic stripe.
  • the touch screen interface is capable of recognizing a capacitive input.
  • the method 900 may include providing indicia on the body of the transaction card, wherein the indicia identify a plurality of apertures through the body, and wherein a user input provided through the plurality of apertures actuates corresponding touch locations on the touch screen interface to authenticate a transaction.
  • the indicia may be provided on the first main side of the body. In some embodiments, the indicia may be provided along the second main side of the body or embedded within the body.
  • the method 900 may include providing one or more location indicators on the touch screen interface.
  • the location indicators may be used for alignment with one or more registration marks provided on the first main side of the transaction card.
  • the registration mark may be provided on the second main side of the body or may be embedded within the body.
  • the location indicator(s) is randomly generated in a new location for each transaction. Accordingly, the corresponding touch locations on the touch screen interface for authenticating the transaction may be adjusted based on the newly established position of the location indicator.
  • the method 900 may include receiving a user input through the plurality of apertures.
  • the user input is a capacitive input provided by the finger of a user.
  • the method 900 may include receiving the user input at the touch screen interface.
  • the user input actuates corresponding touch locations on the touch screen interface when the plurality of apertures is actuated by the user.
  • the method 900 may include comparing the corresponding touch locations actuated on the touch screen interface to predetermined identification data.
  • the positions of the corresponding touch locations actuated by the user input are compared to an expected input configuration.
  • the detected sequence of the corresponding touch locations actuated by the user input is compared to an account passcode associated with the user and the transaction card. If the comparison results in a match at block 913 , then the transaction is authenticated at block 915 . If the comparison is not satisfied, then the transaction is denied at block 917 .
  • Example embodiments of systems and methods described herein may be configured to provide security factor authentication.
  • the security factor authentication may comprise a plurality of processes.
  • a first process may comprise logging in and validating a user via one or more applications executing on a device.
  • the user may, responsive to successful login and validation of the first process via the one or more applications, engage in one or more behaviors associated with one or more contactless cards.
  • the security factor authentication may include both securely proving identity of the user and engaging in one or more types of behaviors, including, but not limited to, an input to indicia on an exterior surface of a transaction card operable with the device, as described herein.
  • the transaction card described herein may be overlaid on a device, such as one or more computer kiosks or terminals, to verify identity so as to receive a transactional item responsive to a purchase, such as a coffee.
  • a secure method of proving identity may be established. Securely proving the identity, for example, to obtain a reward, coupon, offer, or the like or receipt of a benefit is established in a manner that is different than merely scanning a bar card.
  • an encrypted transaction may occur between the transaction card and the device, which may be configured to process one or more physical user inputs to the surface of the transaction card in one or more areas corresponding to the indicia.
  • the one or more applications may be configured to validate identity of the user and then cause the user to act or respond to it, for example, via one or more input gestures.
  • data such as bonus points, loyalty points, reward points, healthcare information, etc., may be written back to the transaction card.
  • the transaction card may be an overlay for a mobile device.
  • identity of the user may be verified by the one or more applications which would then grant the user a desired benefit based on verification of the identity.
  • the transaction card may be activated by overlaying the transaction card on a device, such as a mobile device.
  • the transaction card may communicate with an application of the device via a card reader of the device through NFC communication, as well as through the transaction card operating as an overlay.
  • the communication in which the user input to the indicia of the card proximate the card reader of the device may allow the application of the device to read data associated with the transaction card and activate the card.
  • the activation may authorize the card to be used to perform other functions, e.g., purchases, access account or restricted information, or other functions.
  • the user input may activate or launch the application of the device and then initiate one or more actions or communications with one or more servers to activate the transaction card.
  • a user input to the transaction card may activate or launch the application, and then initiate, for example, via the application or other back-end communication, activation of the transaction card.
  • the transaction card may be used in various activities, including, without limitation, commercial transactions.
  • a dedicated application may be configured to execute on a client device to perform the activation of the transaction card.
  • a web portal, a web-based app, an applet, and/or the like may perform the activation.
  • Activation may be performed on the client device, or the client device may merely act as a go between for the transaction card and an external device (e.g., account server).
  • the application in providing activation, may indicate, to the account server, the type of device performing the activation (e.g., personal computer, smartphone, tablet, or point-of-sale (POS) device).
  • the application may output, for transmission, different and/or additional data to the account server depending on the type of device involved.
  • data may comprise information associated with a merchant, such as merchant type, merchant ID, and information associated with the device type itself, such as POS data and POS ID.
  • the example authentication communication protocol may mimic an offline dynamic data authentication protocol of the EMV standard that is commonly performed between a transaction card and a point-of-sale device, with some modifications.
  • the example authentication protocol is not used to complete a payment transaction with a card issuer/payment processor per se, some data values are not needed, and authentication may be performed without involving real-time online connectivity to the card issuer/payment processor.
  • point of sale (POS) systems submit transactions including a transaction value to a card issuer. Whether the issuer approves or denies the transaction may be based on if the card issuer recognizes the transaction value.
  • a dummy transaction value i.e., a value recognizable to the card issuer and sufficient to allow activation to occur
  • POS based transactions may also decline transactions based on the number of transaction attempts (e.g., transaction counter). A number of attempts beyond a buffer value may result in a soft decline; the soft decline requiring further verification before accepting the transaction. Further verification may be provided by the above described user input to the indicia on the transaction card, which is then received and processed by the user interface in direct physical contact with the transaction card.
  • the transaction card can selectively communicate information depending upon the recipient device. Once the user input is received, the transaction card can recognize the device to which the input is directed, and based on this recognition the transaction card can provide appropriate data for that device. This advantageously allows the transaction card to transmit only the information required to complete the instant action or transaction, such as a payment or card authentication. By limiting the transmission of data and avoiding the transmission of unnecessary data, both efficiency and data security can be improved.
  • the recognition and selective communication of information can be applied to various scenarios, including card activation, balance transfers, account access attempts, commercial transactions, etc., as a way to reduce fraud.
  • the transaction card input is directed to a device running Apple's iOS® operating system, e.g., an iPhone, iPod, or iPad
  • the transaction card can recognize the iOS® operating system and transmit data appropriate data to communicate with this device.
  • the transaction card can provide the encrypted identity information necessary to authenticate the card using NDEF tags via, e.g., NFC.
  • the transaction card input is directed to a device running the Android® operating system, e.g., an Android® smartphone or tablet, the transaction card can recognize the Android® operating system and transmit appropriate and data to communicate with this device (such as the encrypted identity information necessary for authentication by the methods described herein).
  • the transaction card input can be directed to a POS device, including without limitation a kiosk, a checkout register, a payment station, or other terminal.
  • a POS device including without limitation a kiosk, a checkout register, a payment station, or other terminal.
  • the transaction card can recognize the POS device and transmit only the information necessary for the action or transaction.
  • the transaction card can communicate payment information necessary to complete the transaction under the EMV standard.
  • the POS devices participating in the transaction can require or specify additional information, e.g., device-specific information, location-specific information, and transaction-specific information, that is to be provided by the transaction card. For example, once the POS device receives a data communication from the transaction card, the POS device can recognize the transaction card and request the additional information necessary to complete an action or transaction, such as a sequence input to the overlay via the indicia.
  • additional information e.g., device-specific information, location-specific information, and transaction-specific information
  • data may be collected on user input behaviors as biometric/gestural authentication.
  • a unique identifier that is cryptographically secure and not susceptible to interception may be transmitted to one or more backend services.
  • the unique identifier may be configured to look up secondary information about individual.
  • the secondary information may comprise personally identifiable information about the user.
  • the secondary information may be stored within the transaction card.
  • illustrative methods 500 and 800 are described as a series of acts or events, the present disclosure is not limited by the illustrated ordering of such acts or events unless specifically stated. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein, in accordance with the disclosure. In addition, not all illustrated acts or events may be necessary to implement a methodology in accordance with the present disclosure.

Abstract

Example embodiments of systems and methods for touch screen interface interaction using a card overlay are provided. In an embodiment, a transaction card may include a body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface. The transaction card may further include indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.

Description

    FIELD OF THE INVENTION
  • The present disclosure relates to user and transaction card authentication, and more particularly, to user and transaction card authentication using a card overlay for touch screen interface interaction.
  • BACKGROUND
  • Data security and transaction integrity are of critical importance to businesses and consumers. This need continues to grow as electronic transactions constitute an increasingly large share of commercial activity.
  • Email may be used as a tool to verify transactions, but email is susceptible to attack and vulnerable to hacking or other unauthorized access. Short message service (SMS) messages may also be used, but that is subject to compromise as well. Moreover, even data encryption algorithms, such as triple data encryption standard (DES) algorithms, have similar vulnerabilities.
  • While the growing use of chip-based financial/transaction cards provides more secure features over previous technology (e.g., magnetic strip cards) for in-person purchases, account access still may rely on log-in credentials (e.g., username and password) to confirm a cardholder's identity. However, if the log-in credentials are compromised, or the user's transaction card is stolen, another person could have access to the user's account.
  • These and other deficiencies exist. Accordingly, there is a need to provide users with an appropriate solution that overcomes these deficiencies to provide data security, authentication, and verification for transaction cards. Further, there is a need for an improved method of card/user authentication for account access.
  • SUMMARY
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
  • Embodiments of the present disclosure provide a transaction card including a body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface. The transaction card may further include indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.
  • Embodiments of the present disclosure provide a system including a touch screen interface a transaction card. The transaction card may include a body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface. The transaction card may further include indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.
  • Embodiments of the present disclosure provide a method including providing a transaction card having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface. The method may further include providing indicia on the first main side, the indicia identifying touch locations for authenticating a transaction, wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by a user.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings illustrate example approaches of the disclosure, including the practical application of the principles thereof, as follows:
  • FIG. 1 is a diagram of a system according to an example embodiment.
  • FIG. 2 is a diagram illustrating a sequence for providing authenticated access according to an example embodiment.
  • FIG. 3 is a diagram of a system using a transaction card according to an example embodiment.
  • FIG. 4A is an illustration of a first side of a transaction card according to an example embodiment.
  • FIG. 4B is an illustration of a second side of the transaction card of FIG. 4A according to an example embodiment.
  • FIG. 4C is an illustration of a side cross-sectional view of the transaction card of FIG. 4A along cut-line 4C-4C according to an example embodiment.
  • FIGS. 5A-5B are illustrations of a transaction card and client device according to an example embodiment.
  • FIG. 6 is a flowchart illustrating a method for authenticating a transaction according to an example embodiment.
  • FIG. 7A is an illustration of a first side of a transaction card according to an example embodiment.
  • FIG. 7B is an illustration of a second side of the transaction card of FIG. 7A according to an example embodiment.
  • FIG. 7C is an illustration of a side cross-sectional view of the transaction card of FIG. 7A along cut-line 7C-7C according to an example embodiment.
  • FIGS. 8A-8B are illustrations of a transaction card and client device according to an example embodiment.
  • FIG. 9 is an illustration of a transaction card according to an example embodiment.
  • FIG. 10 is a flowchart illustrating a method for authenticating a transaction according to an example embodiment.
  • The drawings are not necessarily to scale. The drawings are merely representations, not intended to portray specific parameters of the disclosure. The drawings are intended to depict example embodiments of the disclosure, and therefore are not be considered as limiting in scope. In the drawings, like numbering represents like elements.
  • Furthermore, certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines otherwise visible in a “true” cross-sectional view, for illustrative clarity. Furthermore, some reference numbers may be omitted in certain drawings.
  • DETAILED DESCRIPTION
  • The following detailed description provides non-limiting representative examples referencing numerals to particularly describe features and teachings of different aspects of the disclosure. The embodiments described should be recognized as capable of implementation separately, or in combination, with other embodiments from the detailed description. A person of ordinary skill in the art reviewing the detailed description should be able to learn and understand the different described aspects of the disclosure. The detailed description should facilitate understanding of the disclosure to such an extent that other implementations, not specifically covered but within the knowledge of a person of skill in the art having read the description of embodiments, would be understood to be consistent with an application of the disclosure.
  • An objective of some embodiments of the present disclosure is to verify/authenticate a transaction card and/or the customer in possession of the transaction card. In some embodiments, the transaction card includes indicia in unique or non-standard positions, wherein providing the authentication to a touch screen interface of a device requires pressing or otherwise actuating the positions on the transaction card. As such, the transaction card functions as a key to knowing where to press on the touch screen interface to authenticate the user and/or the transaction card. In some embodiments, the transaction card may include conductive pads on one or both sides of the card, wherein the conductive pads may be any component capable of recognizing and communicating a capacitive input from a user. During use, pressing the indicia on one side causes the conductive pads on the opposite side to impact the touch screen interface. Furthermore, in some embodiments, the transaction card may include one or more registration marks to allow the transaction card to be positioned with respect to one or more location indicators on the touch screen interface.
  • FIG. 1 illustrates a system 100 according to an example embodiment. As further discussed below, the system 100 may include a transaction card 105, a client device 110, a network 115, and a server 120. Although FIG. 1 illustrates single instances of the components, the system 100 may include any number of components.
  • The system 100 may include one or more transaction cards 105, which are further explained below with reference to FIGS. 4A-4C and FIGS. 7A-7C. In some embodiments, the transaction card 105 may be in wireless communication, utilizing NFC in an example, with the client device 110.
  • The system 100 may include the client device 110, which may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to, a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a phone, a handheld PC, a personal digital assistant, a thin client, a fat client, an Internet browser, or other device. The client device 110 also may be a mobile device, for example, a mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone, tablet, or like wearable mobile device.
  • The client device 110 can include a processor and a memory, and it is understood that the processing circuitry may contain additional components, including, memories, error and parity/CRC checkers, data encoders, anti-collision algorithms, controllers, command decoders, security primitives and tamper proofing hardware, as necessary to perform the functions described herein. The client device 110 may further include a display and input devices. The display may be any type of device for presenting visual information such as a computer monitor, a flat panel display, and a mobile device screen, including liquid crystal displays, light-emitting diode displays, plasma panels, and cathode ray tube displays. The input devices may include any device for entering information into the user's device that is available and supported by the user's device, such as a touch-screen, keyboard, mouse, cursor-control device, microphone, digital camera, video recorder or camcorder. These devices may be used to enter information and interact with the software and other devices described herein.
  • In some examples, the client device 110 of the system 100 may execute one or more applications, such as software applications, that enable, for example, network communications with one or more components of the system 100 and transmit and/or receive data. The client device 110 may be in communication with one or more servers 120 via one or more networks 115, and may operate as a respective front-end to back-end pair with the server 120. The client device 110 may transmit, for example, from a mobile device application executing on the client device 110, one or more requests to the server 120. The one or more requests may be associated with retrieving data from the server 120. The server 120 may receive the one or more requests from the client device 110. Based on the one or more requests from the client device 110, the server 120 may be configured to retrieve the requested data from one or more databases (not shown). Based on receipt of the requested data from the one or more databases, the server 120 may be configured to transmit the received data to the client device 110, the received data being responsive to one or more requests.
  • The system 100 may include one or more networks 115. In some examples, the network 115 may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect client device 110 to server 120. For example, the network 115 may include one or more of a fiber optics network, a passive optical network, a cable network, an Internet network, a satellite network, a wireless local area network (LAN), a Global System for Mobile Communication, a Personal Communication Service, a Personal Area Network, Wireless Application Protocol, Multimedia Messaging Service, Enhanced Messaging Service, Short Message Service, Time Division Multiplexing based systems, Code Division Multiple Access based systems, D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11n and 802.11g, Bluetooth, NFC, Radio Frequency Identification (RFID), Wi-Fi, and/or the like.
  • In addition, the network 115 may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a LAN, or a global network such as the Internet. In addition, the network 115 may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof. The network 115 may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other. The network 115 may utilize one or more protocols of one or more network elements to which they are communicatively coupled. The network 115 may translate to or from other protocols to one or more protocols of network devices. Although the network 115 is depicted as a single network, it should be appreciated that according to one or more examples, the network 115 may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
  • The system 100 may include one or more servers 120. In some examples, the server 120 may include one or more processors, which are coupled to memory. The server 120 may be configured as a central system, server or platform to control and call various data at different times to execute a plurality of workflow actions. The server 120 may be configured to connect to the one or more databases. The server 120 may be connected to at least one client device 110.
  • FIG. 2 is a timing diagram illustrating an example sequence for providing user/card authentication according to one or more embodiments of the present disclosure. The system 100 may comprise the transaction card 105 and the client device 110, which may include an application 122 and a processor 124. FIG. 2 may reference similar components as illustrated in FIG. 1.
  • At process 102, the application 122 communicates with the transaction card 105. Communication between the application 122 and the transaction card 105 may involve the transaction card 105 being sufficiently close to a card reader (not shown) of the client device 110 to enable NFC data transfer between the application 122 and the transaction card 105. In other embodiments, communication between the application 122 and the transaction card 105 may involve the transaction card 105 being used during a transaction recognized by the application 122. The application 122 may receive a primary authentication from an identification chip and/or magnetic stripe containing cardholder data in accordance with standard protocols.
  • At process 104, after communication has been established between the client device 110 and the transaction card 105, the application 122 may request secondary authentication for a transaction. At process 106, the transaction 105 may receive a user input, for example, to indicia along an exterior surface of the transaction card 105, and communicate the user input to the application 122. In some embodiments, the transaction card 105 is provided in direct physical contact with a touch screen interface of the client device 110.
  • At process 108, the application 122 communicates the user input to the processor 124. At process 112, the processor 124 may execute instructions to determine whether to authenticate the transaction based on a comparison between the user input and predetermined identification data. In some embodiments, the user input indicates at least one of: a position of each of the corresponding touch locations on the touch screen interface actuated by the user input, and/or an actuation sequence of the corresponding touch locations on the touch screen interface actuated by the user input.
  • In some examples, verifying the user input may be performed by a device other than the client device 110, such as the server 120 (e.g., as shown in FIG. 1) in data communication with the client device 110. For example, the processor 124 may output the position of each of the corresponding touch locations on the touch screen interface actuated by the user input and/or the actuation sequence of the corresponding touch locations on the touch screen interface as actuated by the user input, to the server 120. In some embodiments, the server 120 may verify the user input to the transaction card 105 by retrieving an expected input configuration associated with the transaction card, and comparing the position of each of the corresponding touch locations actuated by the user input to the expected input configuration. In other embodiments, the server 120 may verify the user input to the transaction card 105 by retrieving an account passcode associated with the transaction card, and comparing the actuation sequence of the corresponding touch locations actuated by the user input to the account passcode.
  • FIG. 3 illustrates a system 200 using a transaction card 205, one or more client devices 210, a network 215, servers 220, 225, one or more hardware security modules 230, and a database 235. Although FIG. 3 illustrates single instances of the components, the system 200 may include any number of components.
  • The system 200 may include one or more transaction cards 205, which are further explained below with respect to FIGS. 4A-4C. In some examples, the transaction card 205 may be in wireless communication, for example NFC communication, with the client device 210. The transaction card 205 may comprise one or more chips, such as a radio frequency identification chip, configured to communication via NFC or other short-range protocols. In other embodiments, the transaction card 205 may communicate with the client device 210 through other means including, but not limited to, Bluetooth, satellite, Wi-Fi, wired communications, and/or any combination of wireless and wired connections. According to some embodiments, the transaction card 205 may be configured to communicate with the card reader 213 of the client device 210 through NFC when the transaction card 205 is within range of card reader 213. In other examples, communications with the transaction card 205 may be accomplished through a physical interface, e.g., a universal serial bus interface or a card swipe interface. As will be described in greater detail below, the transaction card 205 may communicate with the client device 210 using capacitive conductance when the transaction card 205 is placed atop/over an interface of the client device 210.
  • The system 200 may include the client device 210, which may be a network-enabled computer. As referred to herein, a network-enabled computer may include, but is not limited to: e.g., a computer device, or communications device including, e.g., a server, a network appliance, a personal computer, a workstation, a mobile device, a phone, a handheld PC, a personal digital assistant, a thin client, a fat client, an Internet browser, or other device. One or more client devices 210 also may be a mobile device. A mobile device may include an iPhone, iPod, iPad from Apple® or any other mobile device running Apple's iOS® operating system, any device running Microsoft's Windows® Mobile operating system, any device running Google's Android® operating system, and/or any other smartphone or like wearable mobile device. In some examples, the client device 210 may be the same as, or similar to, the client device 110 as described with reference to FIG. 1 and FIG. 2.
  • The client device 210 may be in communication with one or more servers 220 and 225 via one or more networks 215. The client device 210 may transmit, for example from an application 211 executing on the client device 210, one or more requests to one or more servers 220 and 225. The one or more requests may be associated with retrieving data from one or more servers 220 and 225. The servers 220 and 225 may receive the one or more requests from the client device 210. Based on the one or more requests from the client device 210, the one or more servers 220 and 225 may be configured to retrieve the requested data from one or more databases 235. Based on receipt of the requested data from the one or more databases 235, one or more servers 220 and 225 may be configured to transmit the received data to client device 210, the received data being responsive to one or more requests. For example, in some non-limiting embodiments, predetermined input location data 237 associated with the transaction card 205 and/or an account passcode 239 associated with the transaction card 205 may be retrieved from the one or more databases 235 in response to the requests from the servers 220 and 225.
  • In some embodiments, the system 200 may include one or more hardware security modules (HSM) 230. For example, one or more HSMs 230 may be configured to perform one or more cryptographic operations as disclosed herein. In some examples, one or more HSMs 230 may be configured as special purpose security devices that are configured to perform the one or more cryptographic operations. The HSMs 230 may be configured such that keys are never revealed outside the HSM 230, and instead are maintained within the HSM 230. For example, one or more HSMs 230 may be configured to perform at least one of key derivations, decryption, and MAC operations. The one or more HSMs 230 may be contained within, or may be in data communication with, the servers 220 and 225.
  • The system 200 may include one or more networks 215. In some examples, the network 215 may be one or more of a wireless network, a wired network or any combination of wireless network and wired network, and may be configured to connect the client device 210 to the servers 220, 225. For example, the network 215 may include one or more of a fiber optics network, a passive optical network, a cable network, a cellular network, an Internet network, a satellite network, a wireless LAN, a Global System for Mobile Communication, a Personal Communication Service, a Personal Area Network, Wireless Application Protocol, Multimedia Messaging Service, Enhanced Messaging Service, Short Message Service, Time Division Multiplexing based systems, Code Division Multiple Access based systems, D-AMPS, Wi-Fi, Fixed Wireless Data, IEEE 802.11b, 802.15.1, 802.11n and 802.11g, Bluetooth, NFC, RFID, Wi-Fi, and/or any combination of networks thereof. As a non-limiting example, communications from the transaction card 205 and the client device 210 may comprise NFC communication, cellular network between the client device 210 and a carrier, and Internet between the carrier and a back-end.
  • In addition, the network 215 may include, without limitation, telephone lines, fiber optics, IEEE Ethernet 902.3, a wide area network, a wireless personal area network, a local area network, or a global network such as the Internet. In addition, the network 215 may support an Internet network, a wireless communication network, a cellular network, or the like, or any combination thereof. The network 215 may further include one network, or any number of the exemplary types of networks mentioned above, operating as a stand-alone network or in cooperation with each other. The network 215 may utilize one or more protocols of one or more network elements to which they are communicatively coupled. The network 215 may translate to or from other protocols to one or more protocols of network devices. Although the network 215 is depicted as a single network, it should be appreciated that according to one or more examples, the network 215 may comprise a plurality of interconnected networks, such as, for example, the Internet, a service provider's network, a cable television network, corporate networks, such as credit card association networks, and home networks.
  • In various examples according to the present disclosure, the client device 210 of the system 200 may execute one or more applications 211, and include one or more processors 212, and one or more card readers 213. For example, one or more applications 211, such as software applications, may be configured to enable, for example, network communications with one or more components of system 200 and transmit and/or receive data. It is understood that although only single instances of the components of client device 210 are illustrated in FIG. 3, any number of client devices 210 may be used. The card reader 213 may be configured to read from and/or communicate with the transaction card 205. In conjunction with the one or more applications 211, the card reader 213 may communicate with the transaction card 205.
  • The application 211 of any of the client devices 210 may communicate with the transaction card 205 using short-range wireless communication (e.g., NFC). The application 211 may be configured to interface with the card reader 213 of the client device 210, which is configured to communicate with the transaction card 205. As should be noted, those skilled in the art would understand that a distance of less than twenty centimeters is consistent with NFC range.
  • The server 220 may be a web server in communication with the database 235. The server 225 may include an account server. In some examples, the server 220 may be configured to validate one or more credentials from the transaction card 205 and/or client device 210 based on a comparison to one or more credentials in database 235. For example, the server 220 may compare the user input received at the client device 210 with predetermined identification data, such as an expected input configuration associated with indicia of the transaction card 205, and/or an account passcode associated with the transaction card 205. The server 225 may be configured to authorize one or more requests, such as a payment transaction, from the transaction card 205 and/or client device 210 based on this comparison.
  • FIGS. 4A-4C illustrate an example transaction card 305, which may be a payment card, such as a credit card, debit card, or gift card, issued by a service provider. In some examples, the transaction card 305 is not related to a payment card, and may comprise, without limitation, an identification card. In some examples, the transaction card 305 may be a dual interface contactless payment card. As shown, the transaction card 305 may include a body 302, which may be a substrate including a single layer or one or more laminated layers composed of plastics, metals, and other materials. In various embodiments, the body 302 may be made from any material(s) capable of conveying a capacitive user touch through the transaction card 305. The body 302 may be wholly or partially capacitively conductive, or the body 302 may include passive materials. As shown, the body 302 has a first main side 304 (i.e., top/front side) and a second main side 306 (i.e., bottom/back side).
  • Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials. In some examples, the transaction card 305 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the contactless card may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the transaction card 305 according to the present disclosure may have different characteristics, and the present disclosure is not limited to any particular card design.
  • In some embodiments, an identification chip 308 may be coupled (e.g., recessed or partially embedded) to the first main side 304 of the transaction card 305. As used herein, the identification chip 308 may be any microprocessor device configured to exchange data electromagnetically, such as a RFID chip. The RFID chip may include a radio frequency inductor, volatile or non-volatile memory storage, a microprocessor, circuitry logic, and/or an antenna. While in some embodiments electromagnetic data communications from the RFID chip will take place at radio frequencies, other embodiments may exchange electromagnetic data at different frequencies. The transaction card 305 may further include a magnetic stripe 309 on the second main side 306 of the body 302.
  • The transaction card 305 may also include identification information 315 displayed on the front and/or back of the card, and indicia 312A-312D on the first main side 304 of the body 302. As will be described in further detail below, the indicia 312A-312D identify touch locations on a touch screen interface for authenticating a transaction. The indicia 312A-312D are operable to communicate a user input to one or more capacitive sensing, or capacitively conductive, surfaces, such as conductive pads 320A-320D disposed along the second main side 306 of the body 302. In some embodiments, the indicia 312A-312D are each capacitive sensing conductive pads. In some embodiments, the indicia 312A-312D may be raised and/or colored features on the first main side 304 of the body 302. In other embodiments, the indicia 312A-312D may be printed markings, shapes, and/or numbers that are substantially planar with the first main side 304 of the body 302.
  • The conductive pads 320A-320D may be positioned directly beneath corresponding indicia 312A-312D on opposite sides of the body 302. Alternatively, as shown, the conductive pads 320A-320D may be separated from corresponding indicia 312A-312D (e.g., along the x-direction and/or the y-direction), and connected respectively by one or more conductive pathways 322A-322D. In non-limiting embodiments, the conductive pathways 322A-322D are embedded within the body 302 of the transaction card 305, between the first main side 304 and the second main side 306. The conductive pathways 322A-322D are operable to deliver a capacitive input (e.g., user touch) from the first main side 304 of the body 302 to the second main side 306 of the body 302. In alternative embodiments, the indicia 312A-312D and/or the transaction card 305 may be non-conductive. That is, a capacitive input from a user's finger may be sensed directly through the material of the card, e.g., without delivery through conductive pads, circuits, openings, etc.
  • In the embodiment shown, the conductive pads 320A-320D may deliver the capacitive input to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer. For example, each of the conductive pads 320A-320D may be maintained in direct contact with a touch screen interface of the client device. When the user touches one or more of indicia 312A-312D, the capacitive input is delivered to the corresponding touch location(s) on the touch screen interface. Alternatively, the conductive pads 320A-320D may initially be separated from an outer surface of the touch screen interface when the transaction card 305 is positioned in place with the client device. As the user provides an input to one or more of the indicia 312A-312D, only the corresponding conductive pad(s) is individually depressed to make contact with the touch screen interface. In other embodiments, the first main side 304 and/or the second main side 306 may be mostly or entirely conductive. In other words, conductance is not limited only to the conductive pads 320A-320D. As a result, user inputs may be effective virtually anywhere on the transaction card 305. Although not shown, the transaction card 305 may also include processing circuitry, an antenna, and other components. These components may be located behind the conductive pads 320A-320D or elsewhere within the body 302 of the transaction card 305.
  • The transaction card 305 may function as an overlay for a computing device having a flat surface for data entry. The overlay includes the indicia 312A-312D visible on the first main side 304 of the body 302, and the corresponding conductive pads 320A-320D disposed along the second main side 306 of the body 302. The shape and placement of the indicia 312A-312D and/or the conductive pads 320A-320D may be variable and unique to each transaction card 305. Although non-limiting, the indicia 312A-312D may include raised features or buttons, such as a standard push-button switch, a contact-lens shape of a button, or other buttons to provide tactile feedback to a user. For example, indicium 312B may be positioned around a raised feature 326. The raised feature 326 may have the same or different shape as the indicium 312B.
  • In some embodiments, one or more of the indicia 312A-312D may be a button with an outer coating to protect an inner cavity. For example, a soft button cavity may be covered by a top surface coating, wherein the soft button cavity may be filled with air or liquid that is capable of detecting a change in the amount of pressure within the cavity. The cavity can be filled with a conductive material such that contact with the top surface causes the material inside the cavity to detect a contact, and to register selection of the soft button to provide appropriate feedback as a selection of the underlying soft button. The top surface of the button can be curved as a contact lens such that it pops up or down. The top surface can be a capacitive plastic in some embodiments for detecting touch.
  • In some embodiments, one or more of the indicia 312A-312D may be implemented as a standard push-button switch to provide feedback. The cavity may include a first lead and an opposing lead, which are not in contact with each other when the push-button is in its resting position. When a user depresses on the outermost surface of the button, the push-button switch is pushed downward so as to contact the leads. Once the push-button switch contacts the leads, the proper feedback is provided to the display as an input at the soft button underlying the overlay button surface.
  • As explained above, the transaction card 305 may be built on a software platform operable on smart cards or other devices having limited memory, such as JavaCard, and one or more or more applications or applets may be securely executed. Applets may be added to contactless cards to provide a one-time password (OTP) for multifactor authentication (MFA) in various mobile application-based use cases. Applets may be configured to respond to one or more requests, such as near field data exchange requests, from a reader, such as a mobile NFC reader, and produce an NDEF message that comprises a cryptographically secure OTP encoded as an NDEF text tag.
  • FIGS. 5A-5B illustrate an example transaction card 405 and client device 410. In the non-limiting embodiment shown, the client device 410 is a mobile device having a touch screen interface (hereinafter “interface”) 430. The interface 430 may be a display capable of monitoring changes in electrical current. For example the interface 430 may be a capacitive touch screen having a layer of capacitive material to hold an electrical charge, wherein touching the screen changes the amount of charge at a specific point of contact. In other embodiments, the interface 430 may include a resistive screen, wherein pressure from a finger causes conductive and resistive layers of circuitry to touch each other, thus changing the circuits' resistance. Other interfaces may monitor changes in the reflection of waves, such as sound waves or beams of near-infrared light. In yet other embodiments, the interface 430 may use transducers to measure changes in vibration caused when an object, such as a finger or stylus, hits the screen's surface, or may use one or more cameras to monitor changes in light and shadow.
  • The body 402 of the transaction card 405 is positionable with respect to the interface 430 of the client device 410. As shown in FIG. 5B, the transaction card 405 may be placed atop the client device 410 such that the second main side of the body 402 is in direct physical contact with an outer surface 433 of the interface 430. The indicia 412A-412D on the first main side 404 of the transaction card 405 identify touch locations 435 of the interface 430 for authenticating a transaction, while the second main side of the body 402 is adapted to actuate the corresponding touch locations 435 when the transaction card 405 is placed over the interface 430 and the first main side 404 is actuated by a user. In non-limiting embodiments, the transaction card 405 may be transparent. As such, the indicia 412A-412D may be provided along the second main side of the body 402, or may be embedded within the body 402. Furthermore, although the touch locations 435 are visible in FIGS. 5A-5B for the sake of explanation, during use the touch locations 435 may not be displayed via the interface 430 with any indicia or visible markings. Instead, the touch locations 435 may remain visibly hidden for enhanced security.
  • The touch locations 435 may alternatively be displayed by the interface 430 and seen by the user through the transaction card 405, which may be at least partially transparent or translucent in this case. In this non-limiting example, the transaction card 405 may not necessarily include indicia 412A-412D, as the user may be guided by the touch locations 435 visible to him/her. In some embodiments, an identification chip 408 may be coupled (e.g., recessed or partially embedded) to the first main side 404 of the body 402 of the transaction card 405, and a magnetic stripe (not shown) may be provided on the second main side of the body 402 of the transaction card 405.
  • In some embodiments, the transaction card 405 includes one or more registration marks 440 to enable the transaction card 405 to be positioned with respect to one or more location indicators 444 on the interface 430. As shown, the registration marks 440 may be disposed along the first main side 404 of the body 402, and the location indicators 444 may be displayed to the user via the interface 430. To align the conductive pads 420A-420D with the touch locations 435, the user will align the registration marks 440 with the location indicators 444. In some embodiments, the location indicators 444 may be displayed in a first location on the interface 430 for a first transaction, and displayed in a second location on the interface 430 for a second transaction.
  • In some embodiments, the interface 430 may include a second set of location indicators 445 displayed to the user. For example, the location indicators 444 and the second set of location indicators 445 may be encoded, e.g., with different colors. During use, the user would know which color location indicator to use, thus adding another layer of user knowledge authentication on top of the user input communicated through the conductive pads 420A-420D. If the user aligns with transaction card with the incorrect location indicators, the transaction will fail. Furthermore, different messages may be communicated through the user input depending on which set of location indicators the user aligns the transaction card 405 with. For example, alignment with the location indicators 444, which are displayed in green, could result in a valid transaction, whereas alignment with the set of set of location indicators 445, which are displayed in yellow, could signal duress.
  • In some embodiments, the client device 410 may include, or operate with, one or more processors, similar to the processor 124 of FIG. 2 and the processor 212 of FIG. 3. The processor of the client device 410 may be configured to execute instructions to determine whether to authenticate a transaction based on a comparison between the user input, received at the indicia and delivered to the interface 430 via the conductive pads 420A-420D, and predetermined identification data. For example, the processor may be configured to receive the user input communicated through the conductive pads 420A-420D, and to determine a position of each of the corresponding touch locations 435 of the interface 430 actuated by the user input. The positions(s) may be an absolute position based on a distance from one or more boundaries 432 of the interface 430, or an absolute position determined according to a predefined coordinate or grid layout (not shown) of the interface 430. In other embodiments, the position(s) may be a relative position between one or more of the corresponding touch locations 435. In yet other embodiments, the position(s) may be a relative position between one or more of the corresponding touch locations and the location indicator 444. The processor may execute instructions to retrieve predetermined input location data, similar to the predetermined input location data 237 shown in FIG. 3, and to determine whether to authenticate the transaction based on a comparison between the detected position of each of the corresponding touch locations 435 on the touch screen interface 430 and the predetermined input location data. The processor may then generate an authentication result based on the comparison.
  • Alternatively, or additionally, the processor may be configured to receive an actuation sequence corresponding to the user input to the indicia 412A-412D. In some embodiments, the actuation sequence is a series or order of inputs provided to the indicia 412A-412D, for example, in response to a challenge question displayed via the interface 430 (e.g. touch the star, rectangle, and then the triangle). The actuation sequence may also be assigned or selected by the user, for example, when initially setting up his/her transaction card 405.
  • The processor is configured to then compare the detected actuation sequence to an account passcode, such as the account passcode 239 shown in FIG. 3, which is associated with the transaction card 405. The processor may then generate an authentication result based on the comparison.
  • FIG. 6 is a flowchart illustrating a method 500 according to an example embodiment. As shown, at block 501, the method 500 may include providing a transaction card having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface. In some embodiments, the touch screen interface is part of a client device, such as a mobile device. In some embodiments, the transaction card is provided in direct physical contact with the touch screen interface. In some embodiments, the body of the transaction card includes an identification chip and/or a magnetic stripe. In some embodiments, the touch screen interface is capable of recognizing a capacitive input.
  • At block 503, the method 500 may include providing indicia on the first main side of the body, the indicia identifying touch locations for authenticating a transaction. The second main side of the body may be adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first side of the body is actuated by a user. In some embodiments, the second main side of the body includes a capacitively conductive surface corresponding to the touch locations for authenticating the transaction. In some embodiments, at least one indicium of the indicia is positioned adjacent a raised feature on the main side of the body of the transaction card. In some embodiments, at least one indicium of the indicia is positioned adjacent a conductive pad on the first main side of the body of the transaction card. In some embodiments, a plurality of conductive pads may be provided on the second main side of the body, wherein the plurality of conductive pads is disposed adjacent one or more indicia and the first main side of the transaction card.
  • At block 505, the method 500 may include providing a location indicator on the touch screen interface. The location indicator may be used for alignment with a registration mark provided on the first main side of the transaction card. In the case the transaction card is transparent, the registration mark may be provided on the second main side of the body, or embedded within the body. In some embodiments, the location indicator is randomly generated in a new location for each transaction. Accordingly, the corresponding touch locations on the touch screen interface for authenticating the transaction may be adjusted based on the newly established position of the location indicator.
  • At block 507, the method 500 may include receiving a user input to the first main side of the transaction card in one or more areas corresponding to the indicia. In some embodiments, the indicia include any number of sensor types for capacitive sensing, including, but not limited to, sensors to detect and measure proximity, position and displacement, force, humidity, fluid level, and acceleration. In some embodiments, the indicia include one or more mechanical buttons capable of recognizing and communicating a user input.
  • At block 509, the method 500 may include receiving the user input at the touch screen interface. In some embodiments, the user input actuates corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by the user.
  • At block 511, the method 500 may include comparing the corresponding touch locations actuated on the touch screen interface to predetermined identification data. In some embodiments, the positions of the corresponding touch locations actuated by the user input are compared to an expected input configuration. In some embodiments, the detected sequence of the corresponding touch locations actuated by the user input is compared to an account passcode associated with the user and the transaction card. If the comparison results in a match at block 513, then the transaction is authenticated at block 515. If the comparison is not satisfied, then the transaction is denied at block 517.
  • FIGS. 7A-7C illustrate an example transaction card 605, which may be a payment card, such as a credit card, debit card, or gift card, issued by a service provider. In some examples, the transaction card 605 is not related to a payment card, and may comprise, without limitation, an identification card. In some examples, the transaction card may be a dual interface contactless payment card. The transaction card 605 may function as an overlay for a computing device having a flat surface for data entry. The overlay includes indicia 612A-612D visible on a first main side 604 of a body 602, wherein the shape and placement of the indicia 612A-612D may be variable/unique to each transaction card 605.
  • As shown, the transaction card 605 includes the body 602, which may be a substrate including a single layer or one or more laminated layers composed of plastics, metals, and other materials. The body 602 has a first main side 604 (i.e., top/front side) and a second main side 606 (i.e., bottom/back side). In some embodiments, an identification chip 608 may be coupled (e.g., recessed or partially embedded) to the first main side 604 of the transaction card 605. The transaction card 605 may further include a magnetic stripe 609 on the second main side 606 of the body 602.
  • The transaction card 605 may also include identification information 615 displayed on the front and/or back of the card, and indicia 612A-612D on the first main side 604 of the body 602. As will be described in further detail below, the indicia 612A-612D identify touch locations on a user interface for authenticating a transaction. In some embodiments, each of the indicia 612A-612D may visually and/or tactilely identify one or more corresponding apertures 614A-614D formed through the transaction card 605, wherein a user input through the apertures 614A-614D may actuate corresponding touch location on the touch screen interface. In the non-limiting embodiment shown, the indicia 612A-612D are disposed around the apertures 614A-614D, respectfully. In other embodiments, the indicia 612A-612D may be disposed merely adjacent (e.g., offset in either the x-direction or the y-direction) to the apertures 614A-614D. The indicia 612A-612D may be printed markings, shapes, and/or numbers that are substantially planar with the first main side 604 of the body 602. In other embodiments, the indicia 612A-612D may be raised above a surface of the first main side 604 of the body 602.
  • Although the apertures 614A-614D are shown as circular cut-out openings, one or more of apertures 614A-614D can also be square-shaped, rectangular shaped, oval shaped, or virtually any other shape. The shape and placement of the openings 614A-614D is variable depending upon the particular computing device onto which the overlay is overlaid, as well as the particular application executing on the computing device. In some embodiments, one or more of apertures 614A-614D may have a depressed edge or a raised edge that provides sensory feedback to the user.
  • In some embodiments, the apertures 614A-614D may deliver the capacitive input to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer. For example, the transaction card 605 may be in direct contact with a touch screen interface of the client device. When the user touches the one or more openings 614A-614D, the capacitive input from the user's finger is delivered to the corresponding touch location(s) on the touch screen interface. In other embodiments, the one or more of apertures 614A-614D may be covered along the second main side 606 of the body 602 by a conductive pad. The capacitive input from the user may be delivered through the opening to the conductive pad, and then to the touch screen interface.
  • FIGS. 8A-8B illustrate an example transaction card 705 and client device 710. In the non-limiting embodiment shown, the client device 710 is a mobile device having a touch screen interface (hereinafter “interface”) 730. The interface 730 may be a display capable of monitoring changes in electrical current. For example the interface 730 may be a capacitive touch screen having a layer of capacitive material to hold an electrical charge, wherein touching the screen changes the amount of charge at a specific point of contact. In other embodiments, the interface 730 may include a resistive screen, wherein pressure from a finger causes conductive and resistive layers of circuitry to touch each other, thus changing the circuits' resistance. Others interfaces may monitor changes in the reflection of waves, such as sound waves or beams of near-infrared light. In yet other embodiments, the interface 430 may use transducers to measure changes in vibration caused when an object, such as a finger or stylus, hits the screen's surface, or may use one or more cameras to monitor changes in light and shadow.
  • The body 702 of the transaction card 705 is positionable with respect to the interface 730 of the client device 710. As shown in FIG. 8B, the transaction card 705 may be placed atop the client device 710 such that the second main side of the body 702 is in direct physical contact with an outer surface 733 of the interface 730. In some embodiments, an identification chip 708 may be coupled (e.g., recessed or partially embedded) to the first main side 704 of the body 702 of the transaction card 705, and a magnetic stripe (not shown) may be provided on the second main side of the body 702 of the transaction card 705.
  • The indicia 712A-712D identify a plurality of openings 714A-714D formed through the body. During use, a user input provided through the plurality of apertures 714A-714D actuates corresponding touch locations 735 on interface 730 to authenticate a transaction. In non-limiting embodiments, the transaction card 705 may be transparent. As such, the indicia 712A-712D may be provided along the first main side 704 of the body 702, the second main side of the body 702, or embedded within the body 702. Furthermore, although the touch locations are visible in FIGS. 8A-8B for the sake of explanation, during use the touch locations 735 may not be displayed via the interface 730, e.g., using graphically generated indicia or visible markings. Instead, the touch locations 735 may remain visibly hidden for enhanced security.
  • The touch locations 735 may alternatively be displayed by the interface 730 and seen by the user through the transaction card 705, which may be at least partially transparent or translucent. In this non-limiting example, the transaction card 705 may not necessarily include indicia 712A-712D.
  • In some embodiments, the transaction card 705 includes one or more registration marks 740 to enable the transaction card 705 to be positioned with respect to one or more location indicators 744 on the interface 730. As shown, the registration marks 740 may be disposed along the first main side 704 of the body 702, and the location indicators 744 may be displayed to the user via the interface 730. To align the plurality of apertures 714A-714D with the touch locations 735, the user may align the registration marks 740 with the location indicators 744. In some embodiments, the location indicators 744 may be displayed in a first location on the interface 730 for a first transaction, and displayed in a second location on the interface 730 for a second transaction. Furthermore, in some embodiments, the interface 730 may include a second set of location indicators 745 displayed to the user. For example, the location indicators 744 and the second set of location indicators 745 may be encoded, e.g., with different colors. During use, the user would know which color location indicator to use, thus adding another layer of user knowledge authentication on top of the user input communicated through the plurality of apertures 714A-714D.
  • In some embodiments, the client device 710 may include, or operate with, one or more processors, similar to the processor 124 of FIG. 2 and the processor 212 of FIG. 3. The processor of the client device 710 may be configured to execute instructions to determine whether to authenticate a transaction based on a comparison between predetermined identification data stored within memory, such as the database 235 of FIG. 3, and the user input, which is received at the indicia 712A-712D and delivered to the interface 730 via the plurality of apertures 714A-714D. For example, the processor may be configured to receive the capacitive user input transmitted through the plurality of apertures 714A-714D, and to determine a position of each of the corresponding touch locations 735 of the interface 730 actuated by the user input. The positions(s) may be an absolute position based on a distance from one or more boundaries 732 of the interface 730, or an absolute position determined according to a predefined coordinate or grid layout (not shown) of the interface 730. In other embodiments, the position(s) may be a relative position between one or more of the corresponding touch locations 735. In yet other embodiments, the position(s) may be a relative position between one or more of the corresponding touch locations and the location indicator 744. The processor may execute instructions to retrieve predetermined input location data, similar to the predetermined input location data 237 shown in FIG. 3, and to determine whether to authenticate the transaction based on a comparison between the detected position of each of the corresponding touch locations 735 on the touch screen interface 730 and the predetermined input location data. The processor may then generate an authentication result based on the comparison.
  • Alternatively, or additionally, the processor may be configured to receive an actuation sequence corresponding to the user input to the plurality of apertures 714A-714D. In some embodiments, the actuation sequence is a series or order of inputs provided to the touch locations 735 via the plurality of apertures 714A-714D, for example, in response to a challenge question displayed via the interface 730 (e.g. touch the star, rectangle, and then the triangle). The actuation sequence may also be assigned or selected by the user, for example, when initially setting up his/her transaction card 705.
  • The processor is configured to then compare the detected actuation sequence to an account passcode, such as the account passcode 239 shown in FIG. 3, which is associated with the transaction card 705. The account passcode may be an expected actuation sequence to the touch locations 735. The processor may then generate an authentication result based on the comparison.
  • FIG. 9 illustrates another example transaction card 805, which may be a payment card, such as a credit card, debit card, or gift card, issued by a service provider. As shown, the transaction card 805 may include a body 802, which may be a substrate including a single layer or one or more laminated layers composed of plastics, metals, and other materials. The body 802 has a first main side 804 (i.e., top/front side) and a second main side opposite the first main side 804.
  • In some embodiments, an identification chip 808 may be coupled (e.g., recessed or partially embedded) to the first main side 804 of the transaction card 805. As used herein, the identification chip 808 may be any microprocessor device configured to exchange data electromagnetically, such as a RFID chip. The transaction card 805 may further include a magnetic stripe (not shown) on the second main side of the body 802.
  • The transaction card 805 may also include identification information 815 displayed on the front and/or back of the card, and indicia 812A-812F on the first main side 804 of the body 802. As will be described in further detail below, the indicia 812A-812F correspond to touch locations on a touch screen interface for authenticating a transaction. The indicia 812A-812F are operable to communicate a user input to one or more conductive surfaces, such as conductive pads disposed along the second main side of the body 802. In some embodiments, the indicia 812A-812F are each conductive pads provided as a set of numbers, such as the keypad shown. In alternative embodiments, the indicia 812A-812F and the transaction card 805 are non-conductive. A capacitive input from a user's finger may be sensed directly through the material of the card, e.g., without delivery through circuits, openings, etc.
  • As described above, the transaction card 805 may function as an overlay for a computing device having a flat surface for data entry. A processor of the computing device may be configured to receive an actuation sequence via the indicia 812A-812F. In some embodiments, the actuation sequence is a series or order of inputs, such as a numerical passcode, provided to the indicia 812A-812F. The processor is configured to then compare the detected actuation sequence to an account passcode, such as the account passcode 239 shown in FIG. 3, which is associated with the transaction card 805. The processor may then generate an authentication result based on the comparison.
  • FIG. 9 is a flowchart illustrating a method 900 according to an example embodiment. As shown, at block 901, the method 900 may include providing a body of a transaction card, the body having a first main side and a second main side opposite the first main side, wherein the body is positionable with respect to a touch screen interface. In some embodiments, the touch screen interface is part of a client device, such as a mobile device. In some embodiments, the transaction card is provided in direct physical contact with the touch screen interface. In some embodiments, the body of the transaction card includes an identification chip and/or a magnetic stripe. In some embodiments, the touch screen interface is capable of recognizing a capacitive input.
  • At block 903, the method 900 may include providing indicia on the body of the transaction card, wherein the indicia identify a plurality of apertures through the body, and wherein a user input provided through the plurality of apertures actuates corresponding touch locations on the touch screen interface to authenticate a transaction. In some embodiments, the indicia may be provided on the first main side of the body. In some embodiments, the indicia may be provided along the second main side of the body or embedded within the body.
  • At block 905, the method 900 may include providing one or more location indicators on the touch screen interface. The location indicators may be used for alignment with one or more registration marks provided on the first main side of the transaction card. In the case the transaction card is transparent, the registration mark may be provided on the second main side of the body or may be embedded within the body. In some embodiments, the location indicator(s) is randomly generated in a new location for each transaction. Accordingly, the corresponding touch locations on the touch screen interface for authenticating the transaction may be adjusted based on the newly established position of the location indicator.
  • At block 907, after the transaction card has been positioned atop/over the touch screen interface of the client device, the method 900 may include receiving a user input through the plurality of apertures. In some embodiments, the user input is a capacitive input provided by the finger of a user.
  • At block 909, the method 900 may include receiving the user input at the touch screen interface. In some embodiments, the user input actuates corresponding touch locations on the touch screen interface when the plurality of apertures is actuated by the user.
  • At block 911, the method 900 may include comparing the corresponding touch locations actuated on the touch screen interface to predetermined identification data. In some embodiments, the positions of the corresponding touch locations actuated by the user input are compared to an expected input configuration. In some embodiments, the detected sequence of the corresponding touch locations actuated by the user input is compared to an account passcode associated with the user and the transaction card. If the comparison results in a match at block 913, then the transaction is authenticated at block 915. If the comparison is not satisfied, then the transaction is denied at block 917.
  • Example embodiments of systems and methods described herein may be configured to provide security factor authentication. The security factor authentication may comprise a plurality of processes. As part of the security factor authentication, a first process may comprise logging in and validating a user via one or more applications executing on a device. As a second process, the user may, responsive to successful login and validation of the first process via the one or more applications, engage in one or more behaviors associated with one or more contactless cards. In effect, the security factor authentication may include both securely proving identity of the user and engaging in one or more types of behaviors, including, but not limited to, an input to indicia on an exterior surface of a transaction card operable with the device, as described herein.
  • In some examples, the transaction card described herein may be overlaid on a device, such as one or more computer kiosks or terminals, to verify identity so as to receive a transactional item responsive to a purchase, such as a coffee. By using the transaction card as an overlay, a secure method of proving identity may be established. Securely proving the identity, for example, to obtain a reward, coupon, offer, or the like or receipt of a benefit is established in a manner that is different than merely scanning a bar card. For example, an encrypted transaction may occur between the transaction card and the device, which may be configured to process one or more physical user inputs to the surface of the transaction card in one or more areas corresponding to the indicia. As explained above, the one or more applications may be configured to validate identity of the user and then cause the user to act or respond to it, for example, via one or more input gestures. In some examples, data such as bonus points, loyalty points, reward points, healthcare information, etc., may be written back to the transaction card.
  • In some examples, the transaction card may be an overlay for a mobile device. As explained above, identity of the user may be verified by the one or more applications which would then grant the user a desired benefit based on verification of the identity.
  • In some examples, the transaction card may be activated by overlaying the transaction card on a device, such as a mobile device. For example, the transaction card may communicate with an application of the device via a card reader of the device through NFC communication, as well as through the transaction card operating as an overlay. The communication, in which the user input to the indicia of the card proximate the card reader of the device may allow the application of the device to read data associated with the transaction card and activate the card. In some examples, the activation may authorize the card to be used to perform other functions, e.g., purchases, access account or restricted information, or other functions. In some examples, the user input may activate or launch the application of the device and then initiate one or more actions or communications with one or more servers to activate the transaction card. Subsequent to installation, a user input to the transaction card may activate or launch the application, and then initiate, for example, via the application or other back-end communication, activation of the transaction card. After activation, the transaction card may be used in various activities, including, without limitation, commercial transactions.
  • In some embodiments, a dedicated application may be configured to execute on a client device to perform the activation of the transaction card. In other embodiments, a web portal, a web-based app, an applet, and/or the like may perform the activation. Activation may be performed on the client device, or the client device may merely act as a go between for the transaction card and an external device (e.g., account server). According to some embodiments, in providing activation, the application may indicate, to the account server, the type of device performing the activation (e.g., personal computer, smartphone, tablet, or point-of-sale (POS) device). Further, the application may output, for transmission, different and/or additional data to the account server depending on the type of device involved. For example, such data may comprise information associated with a merchant, such as merchant type, merchant ID, and information associated with the device type itself, such as POS data and POS ID.
  • In some embodiments, the example authentication communication protocol may mimic an offline dynamic data authentication protocol of the EMV standard that is commonly performed between a transaction card and a point-of-sale device, with some modifications. For example, because the example authentication protocol is not used to complete a payment transaction with a card issuer/payment processor per se, some data values are not needed, and authentication may be performed without involving real-time online connectivity to the card issuer/payment processor. As is known in the art, point of sale (POS) systems submit transactions including a transaction value to a card issuer. Whether the issuer approves or denies the transaction may be based on if the card issuer recognizes the transaction value. Meanwhile, in certain embodiments of the present disclosure, transactions originating from a mobile device lack the transaction value associated with the POS systems. Therefore, in some embodiments, a dummy transaction value (i.e., a value recognizable to the card issuer and sufficient to allow activation to occur) may be passed as part of the example authentication communication protocol. POS based transactions may also decline transactions based on the number of transaction attempts (e.g., transaction counter). A number of attempts beyond a buffer value may result in a soft decline; the soft decline requiring further verification before accepting the transaction. Further verification may be provided by the above described user input to the indicia on the transaction card, which is then received and processed by the user interface in direct physical contact with the transaction card.
  • In some examples, the transaction card can selectively communicate information depending upon the recipient device. Once the user input is received, the transaction card can recognize the device to which the input is directed, and based on this recognition the transaction card can provide appropriate data for that device. This advantageously allows the transaction card to transmit only the information required to complete the instant action or transaction, such as a payment or card authentication. By limiting the transmission of data and avoiding the transmission of unnecessary data, both efficiency and data security can be improved. The recognition and selective communication of information can be applied to various scenarios, including card activation, balance transfers, account access attempts, commercial transactions, etc., as a way to reduce fraud.
  • If the transaction card input is directed to a device running Apple's iOS® operating system, e.g., an iPhone, iPod, or iPad, the transaction card can recognize the iOS® operating system and transmit data appropriate data to communicate with this device. For example, the transaction card can provide the encrypted identity information necessary to authenticate the card using NDEF tags via, e.g., NFC. Similarly, if the transaction card input is directed to a device running the Android® operating system, e.g., an Android® smartphone or tablet, the transaction card can recognize the Android® operating system and transmit appropriate and data to communicate with this device (such as the encrypted identity information necessary for authentication by the methods described herein).
  • As another example, the transaction card input can be directed to a POS device, including without limitation a kiosk, a checkout register, a payment station, or other terminal. Upon performance of the user input to the overlay, the transaction card can recognize the POS device and transmit only the information necessary for the action or transaction. For example, upon recognition of a POS device used to complete a commercial transaction, the transaction card can communicate payment information necessary to complete the transaction under the EMV standard.
  • In some examples, the POS devices participating in the transaction can require or specify additional information, e.g., device-specific information, location-specific information, and transaction-specific information, that is to be provided by the transaction card. For example, once the POS device receives a data communication from the transaction card, the POS device can recognize the transaction card and request the additional information necessary to complete an action or transaction, such as a sequence input to the overlay via the indicia.
  • In some examples, data may be collected on user input behaviors as biometric/gestural authentication. For example, a unique identifier that is cryptographically secure and not susceptible to interception may be transmitted to one or more backend services. The unique identifier may be configured to look up secondary information about individual. The secondary information may comprise personally identifiable information about the user. In some examples, the secondary information may be stored within the transaction card.
  • Although the illustrative methods 500 and 800 are described as a series of acts or events, the present disclosure is not limited by the illustrated ordering of such acts or events unless specifically stated. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein, in accordance with the disclosure. In addition, not all illustrated acts or events may be necessary to implement a methodology in accordance with the present disclosure.
  • Throughout the specification and the claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “or” is intended to mean an inclusive “or.” Further, the terms “a,” “an,” and “the” are intended to mean one or more unless specified otherwise or clear from the context to be directed to a singular form.
  • In this description, numerous specific details have been set forth. It is to be understood, however, that implementations of the disclosed technology may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description. References to “some examples,” “other examples,” “one example,” “an example,” “various examples,” “one embodiment,” “an embodiment,” “some embodiments,” “example embodiment,” “various embodiments,” “one implementation,” “an implementation,” “example implementation,” “various implementations,” “some implementations,” etc., indicate that the implementation(s) of the disclosed technology so described may include a particular feature, structure, or characteristic, but not every implementation necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrases “in one example,” “in one embodiment,” or “in one implementation” does not necessarily refer to the same example, embodiment, or implementation, although it may.
  • As used herein, unless otherwise specified the use of the ordinal adjectives “first,” “second,” “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
  • While certain implementations of the disclosed technology have been described in connection with what is presently considered to be the most practical and various implementations, it is to be understood that the disclosed technology is not to be limited to the disclosed implementations, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
  • This written description uses examples to disclose certain implementations of the disclosed technology, including the best mode, and also to enable any person skilled in the art to practice certain implementations of the disclosed technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of certain implementations of the disclosed technology is defined in the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims (20)

1. A transaction card, comprising:
a body having a first main side and a second main side opposite the first main side, wherein the second main side is positionable in direct physical contact with a touch screen interface; and
indicia each located at a different position on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein each indicium of the indicia is individually actuatable by contact from a user to the first main side of the body, and
wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by the user.
2. The transaction card of claim 1, further comprising a registration mark on the first main side, the registration mark allowing the transaction card to be positioned with respect to a location indicator on the touch screen interface.
3. The transaction card of claim 2, wherein the location indicator is displayed in a first location on the touch screen interface for a first transaction, and wherein the location indicator is displayed in a second location on the touch screen interface for a second transaction.
4. The transaction card of claim 1, wherein the second main side comprises a conductive surface corresponding to the touch locations for authenticating the transaction.
5. The transaction card of claim 1, wherein at least one indicium of the indicia is positioned adjacent a raised feature on the first main side of the transaction card.
6. The transaction card of claim 1, further comprising a plurality of capacitively conductive pads along the second main side of the body, wherein the plurality of capacitively conductive pads is disposed adjacent one or more indicia on the first main side of the transaction card.
7. The transaction card of claim 6, wherein at least one of the plurality of capacitively conductive pads is in direct contact with the touch screen interface to provide a capacitive input detectable by the touch screen interface.
8. The transaction card of claim 1, wherein the body includes at least one of: an identification chip, and a magnetic stripe.
9. A system, comprising:
a touch screen interface; and
a transaction card, comprising:
a body having a first main side and a second main side opposite the first main side, wherein the second main side is positionable in direct physical contact with the touch screen interface; and
indicia each located at a different position on the first main side of the body, the indicia identifying touch locations for authenticating a transaction, wherein each indicium of the indicia is individually actuatable by contact from a user to the first main side of the body, and wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by the user.
10. The system of claim 9, further comprising a registration mark on the first main side, the registration mark allowing the transaction card to be positioned with respect to a location indicator on the touch screen interface.
11. The system of claim 10, wherein the location indicator is displayed in a first location on the touch screen interface for a first transaction, and wherein the location indicator is displayed in a second location on the touch screen interface for a second transaction.
12. The system of claim 9, wherein the second main side comprises a capacitively conductive surface corresponding to the touch locations for authenticating the transaction.
13. The system of claim 9, wherein at least one indicium of the indicia is positioned adjacent a raised feature on the first main side of the transaction card.
14. The system of claim 9, further comprising a plurality of capacitively conductive pads along the second main side of the body, wherein the plurality of capacitively conductive pads is disposed adjacent one or more indicia on the first main side of the transaction card, and wherein at least one of the plurality of capacitively conductive pads is in direct contact with the touch screen interface to provide a capacitive input detectable by the touch screen interface.
15. The system of claim 9, wherein the body of the transaction card includes at least one of: an identification chip, and a magnetic stripe.
16. A method, comprising:
providing a transaction card including a body having a first main side and a second main side opposite the first main side, wherein the second main side is positionable in direct physical contact with a touch screen interface; and
providing indicia on the first main side, the indicia identifying touch locations for authenticating a transaction, wherein each indicium of the indicia is individually actuatable by contact from a user to the first main side of the body, and wherein the second main side of the body is adapted to actuate corresponding touch locations on the touch screen interface when the indicia on the first main side are actuated by the user.
17. The method of claim 16, further comprising generating a location indicator on the touch screen interface, wherein a registration mark on the first main side of the body is positionable with respect to the location indicator.
18. The method of claim 17, further comprising:
displaying the location indicator in a first position on the touch screen interface for a first transaction; and
displaying the location indicator in a second position on the touch screen for a second transaction, wherein the first position is different than the second position.
19. The method of claim 16, further comprising providing a capacitively conductive surface along the second main side of the body, wherein the capacitively conductive surface corresponds to the touch locations for authenticating the transaction.
20. The method of claim 16, further comprising:
detecting a position of each of the corresponding touch locations on the touch screen interface; and
determining whether to authenticate the transaction based on a comparison between the position of each of the corresponding touch locations on the touch screen interface and predetermined input location data.
US16/245,658 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay Abandoned US20200226581A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/245,658 US20200226581A1 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay
US16/245,796 US11361302B2 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay
CA3067692A CA3067692C (en) 2019-01-11 2020-01-10 Systems and methods for touch screen interface interaction using a card overlay
EP20151277.9A EP3680796A1 (en) 2019-01-11 2020-01-10 Systems and methods for touch screen interface interaction using a card overlay
US17/830,642 US20220292486A1 (en) 2019-01-11 2022-06-02 Systems and methods for touch screen interface interaction using a card overlay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/245,658 US20200226581A1 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,796 Continuation US11361302B2 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay

Publications (1)

Publication Number Publication Date
US20200226581A1 true US20200226581A1 (en) 2020-07-16

Family

ID=69159569

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/245,658 Abandoned US20200226581A1 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay
US16/245,796 Active 2039-01-28 US11361302B2 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay
US17/830,642 Pending US20220292486A1 (en) 2019-01-11 2022-06-02 Systems and methods for touch screen interface interaction using a card overlay

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/245,796 Active 2039-01-28 US11361302B2 (en) 2019-01-11 2019-01-11 Systems and methods for touch screen interface interaction using a card overlay
US17/830,642 Pending US20220292486A1 (en) 2019-01-11 2022-06-02 Systems and methods for touch screen interface interaction using a card overlay

Country Status (3)

Country Link
US (3) US20200226581A1 (en)
EP (1) EP3680796A1 (en)
CA (1) CA3067692C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190122140A1 (en) * 2017-10-20 2019-04-25 STATGRAF Research LLP. Data analysis and rendering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020108039A1 (en) * 1997-09-10 2002-08-08 Takeshi Kubo Authentication apparatus, user authentication method, user authentication card and storage medium
US20090200385A1 (en) * 2008-02-13 2009-08-13 John Richard Hachey Financial transaction card with non-embossed, raised indicia
US20110108625A1 (en) * 2008-07-01 2011-05-12 Byung Jin Lee Contact card recognition system and recognition method using a touch screen
US20150006376A1 (en) * 2013-06-27 2015-01-01 Ebay Inc. Conductive payment device
US20170038907A1 (en) * 2015-08-04 2017-02-09 International Business Machines Corporation Input device and method for capacitive touch screen
WO2018048851A1 (en) * 2016-09-08 2018-03-15 Trusona, Inc. Tactile stylus based authentication systems and methods
US20190050867A1 (en) * 2014-05-29 2019-02-14 Apple Inc. User interface for payments

Family Cites Families (542)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2523745B1 (en) 1982-03-18 1987-06-26 Bull Sa METHOD AND DEVICE FOR PROTECTING SOFTWARE DELIVERED BY A SUPPLIER TO A USER
JPS6198476A (en) 1984-10-19 1986-05-16 Casio Comput Co Ltd Card terminal and its certifying system
FR2613565B1 (en) 1987-04-03 1989-06-23 Bull Cps METHOD FOR ROUTING SECRET KEYS TO SECURITY MODULES AND USER CARDS, IN AN INFORMATION PROCESSING NETWORK
US5036461A (en) 1990-05-16 1991-07-30 Elliott John C Two-way authentication system between user's smart card and issuer-specific plug-in application modules in multi-issued transaction device
FR2704341B1 (en) 1993-04-22 1995-06-02 Bull Cp8 Device for protecting the keys of a smart card.
US5377270A (en) 1993-06-30 1994-12-27 United Technologies Automotive, Inc. Cryptographic authentication of transmitted messages using pseudorandom numbers
US5363448A (en) 1993-06-30 1994-11-08 United Technologies Automotive, Inc. Pseudorandom number generation and cryptographic authentication
JP3053527B2 (en) 1993-07-30 2000-06-19 インターナショナル・ビジネス・マシーンズ・コーポレイション Method and apparatus for validating a password, method and apparatus for generating and preliminary validating a password, method and apparatus for controlling access to resources using an authentication code
US5537314A (en) 1994-04-18 1996-07-16 First Marketrust Intl. Referral recognition system for an incentive award program
US7152045B2 (en) 1994-11-28 2006-12-19 Indivos Corporation Tokenless identification system for authorization of electronic transactions and electronic transmissions
US5764789A (en) 1994-11-28 1998-06-09 Smarttouch, Llc Tokenless biometric ATM access system
US5778072A (en) 1995-07-07 1998-07-07 Sun Microsystems, Inc. System and method to transparently integrate private key operations from a smart card with host-based encryption services
US5666415A (en) 1995-07-28 1997-09-09 Digital Equipment Corporation Method and apparatus for cryptographic authentication
US5832090A (en) 1995-08-10 1998-11-03 Hid Corporation Radio frequency transponder stored value system employing a secure encryption protocol
US5748740A (en) 1995-09-29 1998-05-05 Dallas Semiconductor Corporation Method, apparatus, system and firmware for secure transactions
US6049328A (en) 1995-10-20 2000-04-11 Wisconsin Alumni Research Foundation Flexible access system for touch screen devices
US5616901A (en) 1995-12-19 1997-04-01 Talking Signs, Inc. Accessible automatic teller machines for sight-impaired persons and print-disabled persons
EP0792044B1 (en) 1996-02-23 2001-05-02 Fuji Xerox Co., Ltd. Device and method for authenticating user's access rights to resources according to the Challenge-Response principle
US6226383B1 (en) 1996-04-17 2001-05-01 Integrity Sciences, Inc. Cryptographic methods for remote authentication
US5768373A (en) 1996-05-06 1998-06-16 Symantec Corporation Method for providing a secure non-reusable one-time password
US5901874A (en) 1996-05-07 1999-05-11 Breakthrough Marketing, Inc. Handicapped accessible dumpster
US5763373A (en) 1996-06-20 1998-06-09 High Point Chemical Corp. Method of preparing an alkaline earth metal tallate
US6058373A (en) 1996-10-16 2000-05-02 Microsoft Corporation System and method for processing electronic order forms
US6483920B2 (en) 1996-12-04 2002-11-19 Bull, S.A. Key recovery process used for strong encryption of messages
US5796827A (en) 1996-11-14 1998-08-18 International Business Machines Corporation System and method for near-field human-body coupling for encrypted communication with identification cards
US6021203A (en) 1996-12-11 2000-02-01 Microsoft Corporation Coercion resistant one-time-pad cryptosystem that facilitates transmission of messages having different levels of security
US6061666A (en) 1996-12-17 2000-05-09 Citicorp Development Center Automatic bank teller machine for the blind and visually impaired
GB9626196D0 (en) 1996-12-18 1997-02-05 Ncr Int Inc Self-service terminal (sst) and a method of oerating the sst to control movement of a card of the sst
US6282522B1 (en) 1997-04-30 2001-08-28 Visa International Service Association Internet payment system using smart card
US7290288B2 (en) 1997-06-11 2007-10-30 Prism Technologies, L.L.C. Method and system for controlling access, by an authentication server, to protected computer resources provided via an internet protocol network
US5960411A (en) 1997-09-12 1999-09-28 Amazon.Com, Inc. Method and system for placing a purchase order via a communications network
US5983273A (en) 1997-09-16 1999-11-09 Webtv Networks, Inc. Method and apparatus for providing physical security for a user account and providing access to the user's environment and preferences
US5883810A (en) 1997-09-24 1999-03-16 Microsoft Corporation Electronic online commerce card with transactionproxy number for online transactions
WO1999019846A2 (en) 1997-10-14 1999-04-22 Visa International Service Association Personalization of smart cards
IL122105A0 (en) 1997-11-04 1998-04-05 Rozin Alexander A two-way radio-based electronic toll collection method and system for highway
US6889198B2 (en) 1998-01-30 2005-05-03 Citicorp Development Center, Inc. Method and system for tracking smart card loyalty points
US7207477B1 (en) 2004-03-08 2007-04-24 Diebold, Incorporated Wireless transfer of account data and signature from hand-held device to electronic check generator
US6199762B1 (en) 1998-05-06 2001-03-13 American Express Travel Related Services Co., Inc. Methods and apparatus for dynamic smartcard synchronization and personalization
EP0956818B1 (en) 1998-05-11 2004-11-24 Citicorp Development Center, Inc. System and method of biometric smart card user authentication
JP3112076B2 (en) 1998-05-21 2000-11-27 豊 保倉 User authentication system
US6615189B1 (en) 1998-06-22 2003-09-02 Bank One, Delaware, National Association Debit purchasing of stored value card for use by and/or delivery to others
US6216227B1 (en) 1998-06-29 2001-04-10 Sun Microsystems, Inc. Multi-venue ticketing using smart cards
US6032136A (en) 1998-11-17 2000-02-29 First Usa Bank, N.A. Customer activated multi-value (CAM) card
US7660763B1 (en) 1998-11-17 2010-02-09 Jpmorgan Chase Bank, N.A. Customer activated multi-value (CAM) card
US6438550B1 (en) 1998-12-10 2002-08-20 International Business Machines Corporation Method and apparatus for client authentication and application configuration via smart cards
US6829711B1 (en) 1999-01-26 2004-12-07 International Business Machines Corporation Personal website for electronic commerce on a smart java card with multiple security check points
ES2191608T3 (en) 1999-02-18 2003-09-16 Orbis Patents Ltd SYSTEM AND METHOD OF CREDIT CARD.
US6731778B1 (en) 1999-03-31 2004-05-04 Oki Electric Industry Co, Ltd. Photographing apparatus and monitoring system using same
US6402028B1 (en) 1999-04-06 2002-06-11 Visa International Service Association Integrated production of smart cards
US7127605B1 (en) 1999-05-10 2006-10-24 Axalto, Inc. Secure sharing of application methods on a microcontroller
US6227447B1 (en) 1999-05-10 2001-05-08 First Usa Bank, Na Cardless payment system
US6845498B1 (en) 1999-05-11 2005-01-18 Microsoft Corporation Method and apparatus for sharing data files among run time environment applets in an integrated circuit card
US6504945B1 (en) 1999-07-13 2003-01-07 Hewlett-Packard Company System for promoting correct finger placement in a fingerprint reader
US7908216B1 (en) 1999-07-22 2011-03-15 Visa International Service Association Internet payment, authentication and loading system using virtual smart card
US6324271B1 (en) 1999-08-17 2001-11-27 Nortel Networks Limited System and method for authentication of caller identification
SE515327C2 (en) 1999-08-27 2001-07-16 Ericsson Telefon Ab L M Device for carrying out secure transactions in a communication device
US7085931B1 (en) 1999-09-03 2006-08-01 Secure Computing Corporation Virtual smart card system and method
US6834271B1 (en) 1999-09-24 2004-12-21 Kryptosima Apparatus for and method of secure ATM debit card and credit card payment transactions via the internet
US7319986B2 (en) 1999-09-28 2008-01-15 Bank Of America Corporation Dynamic payment cards and related management systems and associated methods
US6910627B1 (en) 1999-09-29 2005-06-28 Canon Kabushiki Kaisha Smart card systems and electronic ticketing methods
JP2001195368A (en) 1999-11-01 2001-07-19 Sony Corp Authentication information communication system, authentication information communication method, portable information processor and program provision medium
US8794509B2 (en) 1999-11-05 2014-08-05 Lead Core Fund, L.L.C. Systems and methods for processing a payment authorization request over disparate payment networks
US8814039B2 (en) 1999-11-05 2014-08-26 Lead Core Fund, L.L.C. Methods for processing a payment authorization request utilizing a network of point of sale devices
GB2372186B (en) 1999-11-22 2004-04-07 Intel Corp Integrity check values (icv) based on pseudorandom binary matrices
AU3086101A (en) 2000-01-05 2001-07-16 American Express Travel Related Services Company, Inc. Smartcard internet authorization system
WO2001052180A1 (en) 2000-01-10 2001-07-19 Tarian, Llc Device using histological and physiological biometric marker for authentication and activation
US20010034702A1 (en) 2000-02-04 2001-10-25 Mockett Gregory P. System and method for dynamically issuing and processing transaction specific digital credit or debit cards
WO2001061604A1 (en) 2000-02-16 2001-08-23 Zipcar, Inc Systems and methods for controlling vehicle access
AU2001238300A1 (en) 2000-02-16 2001-08-27 Mastercard International Incorporated System and method for conducting electronic commerce with a remote wallet server
US6779115B1 (en) 2000-02-18 2004-08-17 Digital5, Inc. Portable device using a smart card to receive and decrypt digital data
US20010029485A1 (en) 2000-02-29 2001-10-11 E-Scoring, Inc. Systems and methods enabling anonymous credit transactions
US6852031B1 (en) 2000-11-22 2005-02-08 Igt EZ pay smart card and tickets system
CA2406001A1 (en) 2000-04-14 2001-10-25 American Express Travel Related Services Company, Inc. A system and method for using loyalty points
US7827115B2 (en) 2000-04-24 2010-11-02 Visa International Service Association Online payer authentication service
US7933589B1 (en) 2000-07-13 2011-04-26 Aeritas, Llc Method and system for facilitation of wireless e-commerce transactions
US6631197B1 (en) 2000-07-24 2003-10-07 Gn Resound North America Corporation Wide audio bandwidth transduction method and device
AU2001286464A1 (en) 2000-08-14 2002-02-25 Peter H. Gien System and method for secure smartcard issuance
ES2259669T3 (en) 2000-08-17 2006-10-16 Dexrad (Proprietary) Limited TRANSFER OF VERIFICATION DATA.
AU2001288679A1 (en) 2000-09-11 2002-03-26 Sentrycom Ltd. A biometric-based system and method for enabling authentication of electronic messages sent over a network
US7006986B1 (en) 2000-09-25 2006-02-28 Ecardless Bancorp, Ltd. Order file processes for purchasing on the internet using verified order information
US6873260B2 (en) 2000-09-29 2005-03-29 Kenneth J. Lancos System and method for selectively allowing the passage of a guest through a region within a coverage area
US6877656B1 (en) 2000-10-24 2005-04-12 Capital One Financial Corporation Systems, methods, and apparatus for instant issuance of a credit card
US6721706B1 (en) 2000-10-30 2004-04-13 Koninklijke Philips Electronics N.V. Environment-responsive user interface/entertainment device that simulates personal interaction
US7069435B2 (en) 2000-12-19 2006-06-27 Tricipher, Inc. System and method for authentication in a crypto-system utilizing symmetric and asymmetric crypto-keys
US7606771B2 (en) 2001-01-11 2009-10-20 Cardinalcommerce Corporation Dynamic number authentication for credit/debit cards
EP1223565A1 (en) 2001-01-12 2002-07-17 Motorola, Inc. Transaction system, portable device, terminal and methods of transaction
US20020093530A1 (en) 2001-01-17 2002-07-18 Prasad Krothapalli Automatic filling and submission of completed forms
US20020158123A1 (en) 2001-01-30 2002-10-31 Allen Rodney F. Web-based smart card system and method for maintaining status information and verifying eligibility
US20020152116A1 (en) 2001-01-30 2002-10-17 Yan Kent J. Method and system for generating fixed and/or dynamic rebates in credit card type transactions
US7181017B1 (en) 2001-03-23 2007-02-20 David Felsher System and method for secure three-party communications
DE60128785T2 (en) 2001-04-02 2008-01-31 Motorola, Inc., Schaumburg Enable and disable software features
US7290709B2 (en) 2001-04-10 2007-11-06 Erica Tsai Information card system
US7044394B2 (en) 2003-12-17 2006-05-16 Kerry Dennis Brown Programmable magnetic data storage card
US20020153424A1 (en) 2001-04-19 2002-10-24 Chuan Li Method and apparatus of secure credit card transaction
US20040015958A1 (en) 2001-05-15 2004-01-22 Veil Leonard Scott Method and system for conditional installation and execution of services in a secure computing environment
US7206806B2 (en) 2001-05-30 2007-04-17 Pineau Richard A Method and system for remote utilizing a mobile device to share data objects
DE10127511A1 (en) 2001-06-06 2003-01-02 Wincor Nixdorf Gmbh & Co Kg Read / write device for an ID or credit card of the RFID type
US20030167350A1 (en) 2001-06-07 2003-09-04 Curl Corporation Safe I/O through use of opaque I/O objects
AUPR559201A0 (en) 2001-06-08 2001-07-12 Canon Kabushiki Kaisha Card reading device for service access
US6834795B1 (en) 2001-06-29 2004-12-28 Sun Microsystems, Inc. Secure user authentication to computing resource via smart card
US7762457B2 (en) 2001-07-10 2010-07-27 American Express Travel Related Services Company, Inc. System and method for dynamic fob synchronization and personalization
US7993197B2 (en) 2001-08-10 2011-08-09 Igt Flexible loyalty points programs
US8266451B2 (en) 2001-08-31 2012-09-11 Gemalto Sa Voice activated smart card
US20030055727A1 (en) 2001-09-18 2003-03-20 Walker Jay S. Method and apparatus for facilitating the provision of a benefit to a customer of a retailer
US7373515B2 (en) 2001-10-09 2008-05-13 Wireless Key Identification Systems, Inc. Multi-factor authentication system
JP3975720B2 (en) 2001-10-23 2007-09-12 株式会社日立製作所 IC card, customer information analysis system, and customer information analysis result providing method
US6641050B2 (en) 2001-11-06 2003-11-04 International Business Machines Corporation Secure credit card
US6934861B2 (en) 2001-11-06 2005-08-23 Crosscheck Identification Systems International, Inc. National identification card system and biometric identity verification method for negotiating transactions
US7243853B1 (en) 2001-12-04 2007-07-17 Visa U.S.A. Inc. Method and system for facilitating memory and application management on a secured token
US8108687B2 (en) 2001-12-12 2012-01-31 Valve Corporation Method and system for granting access to system and content
FR2834403B1 (en) 2001-12-27 2004-02-06 France Telecom CRYPTOGRAPHIC GROUP SIGNATURE SYSTEM
JP3820999B2 (en) 2002-01-25 2006-09-13 ソニー株式会社 Proximity communication system and proximity communication method, data management apparatus and data management method, storage medium, and computer program
SE524778C2 (en) 2002-02-19 2004-10-05 Douglas Lundholm Procedure and arrangements for protecting software for unauthorized use or copying
US6905411B2 (en) 2002-02-27 2005-06-14 Igt Player authentication for cashless gaming machine instruments
US20030208449A1 (en) 2002-05-06 2003-11-06 Yuanan Diao Credit card fraud prevention system and method using secure electronic credit card
US7900048B2 (en) 2002-05-07 2011-03-01 Sony Ericsson Mobile Communications Ab Method for loading an application in a device, device and smart card therefor
CN100440195C (en) 2002-05-10 2008-12-03 斯伦贝谢(北京)智能卡科技有限公司 Intelligent card replacing method and system
US20040127256A1 (en) 2002-07-30 2004-07-01 Scott Goldthwaite Mobile device equipped with a contactless smart card reader/writer
US8010405B1 (en) 2002-07-26 2011-08-30 Visa Usa Inc. Multi-application smart card device software solution for smart cardholder reward selection and redemption
US7697920B1 (en) 2006-05-05 2010-04-13 Boojum Mobile System and method for providing authentication and authorization utilizing a personal wireless communication device
AU2003258067A1 (en) 2002-08-06 2004-02-23 Privaris, Inc. Methods for secure enrollment and backup of personal identity credentials into electronic devices
JP4553565B2 (en) 2002-08-26 2010-09-29 パナソニック株式会社 Electronic value authentication method, authentication system and device
CZ2005209A3 (en) 2002-09-10 2005-12-14 Ivi Smart Technologies, Inc. Safe biometric verification of identity
US7306143B2 (en) 2002-09-20 2007-12-11 Cubic Corporation Dynamic smart card/media imaging
US9710804B2 (en) 2012-10-07 2017-07-18 Andrew H B Zhou Virtual payment cards issued by banks for mobile and wearable devices
US8985442B1 (en) 2011-07-18 2015-03-24 Tiger T G Zhou One-touch payment using haptic control via a messaging and calling multimedia system on mobile device and wearable device, currency token interface, point of sale device, and electronic payment card
US20060006230A1 (en) 2002-10-16 2006-01-12 Alon Bear Smart card network interface device
US9740988B1 (en) 2002-12-09 2017-08-22 Live Nation Entertainment, Inc. System and method for using unique device indentifiers to enhance security
US9251518B2 (en) 2013-03-15 2016-02-02 Live Nation Entertainment, Inc. Centralized and device-aware ticket-transfer system and methods
AU2003283760A1 (en) 2003-01-14 2004-08-10 Koninklijke Philips Electronics N.V. Method and terminal for detecting fake and/or modified smart card
US7453439B1 (en) 2003-01-16 2008-11-18 Forward Input Inc. System and method for continuous stroke word-based text input
US20050195975A1 (en) 2003-01-21 2005-09-08 Kevin Kawakita Digital media distribution cryptography using media ticket smart cards
US8589335B2 (en) 2003-04-21 2013-11-19 Visa International Service Association Smart card personalization assistance tool
EP1632091A4 (en) 2003-05-12 2006-07-26 Gtech Corp Method and system for authentication
US7949559B2 (en) 2003-05-27 2011-05-24 Citicorp Credit Services, Inc. Credit card rewards program system and method
US8200775B2 (en) 2005-02-01 2012-06-12 Newsilike Media Group, Inc Enhanced syndication
JP4744106B2 (en) 2003-08-06 2011-08-10 パナソニック株式会社 Secure device, information processing terminal, communication system, and communication method
US20050075985A1 (en) 2003-10-03 2005-04-07 Brian Cartmell Voice authenticated credit card purchase verification
FI20031482A (en) 2003-10-10 2005-04-11 Open Bit Oy Ltd processing   of   payment transaction data
US7597250B2 (en) 2003-11-17 2009-10-06 Dpd Patent Trust Ltd. RFID reader with multiple interfaces
US20050138387A1 (en) 2003-12-19 2005-06-23 Lam Wai T. System and method for authorizing software use
US7357309B2 (en) 2004-01-16 2008-04-15 Telefonaktiebolaget Lm Ericsson (Publ) EMV transactions in mobile terminals
US7374099B2 (en) 2004-02-24 2008-05-20 Sun Microsystems, Inc. Method and apparatus for processing an application identifier from a smart card
US7165727B2 (en) 2004-02-24 2007-01-23 Sun Microsystems, Inc. Method and apparatus for installing an application onto a smart card
US7472829B2 (en) 2004-12-10 2009-01-06 Qsecure, Inc. Payment card with internally generated virtual account numbers for its magnetic stripe encoder and user display
US7584153B2 (en) 2004-03-15 2009-09-01 Qsecure, Inc. Financial transactions with dynamic card verification values
WO2005091182A2 (en) 2004-03-19 2005-09-29 Roger Humbel Mobile telephone all in one remote key or software regulating card for radio bicycle locks, cars, houses, and rfid tags, with authorisation and payment function
US20140019352A1 (en) 2011-02-22 2014-01-16 Visa International Service Association Multi-purpose virtual card transaction apparatuses, methods and systems
US7748617B2 (en) 2004-04-12 2010-07-06 Gray R O'neal Electronic identification system
US7805755B2 (en) 2004-05-03 2010-09-28 Research In Motion Limited System and method for application authorization
US8762283B2 (en) 2004-05-03 2014-06-24 Visa International Service Association Multiple party benefit from an online authentication service
US7703142B1 (en) 2004-05-06 2010-04-20 Sprint Communications Company L.P. Software license authorization system
US7660779B2 (en) 2004-05-12 2010-02-09 Microsoft Corporation Intelligent autofill
GB0411777D0 (en) 2004-05-26 2004-06-30 Crypomathic Ltd Computationally asymmetric cryptographic systems
US7314165B2 (en) 2004-07-01 2008-01-01 American Express Travel Related Services Company, Inc. Method and system for smellprint recognition biometrics on a smartcard
US7175076B1 (en) 2004-07-07 2007-02-13 Diebold Self-Service Systems Division Of Diebold, Incorporated Cash dispensing automated banking machine user interface system and method
US8439271B2 (en) 2004-07-15 2013-05-14 Mastercard International Incorporated Method and system using a bitmap for passing contactless payment card transaction variables in standardized data formats
JP2008507047A (en) 2004-07-15 2008-03-06 マスターカード インターナシヨナル インコーポレーテツド Collision detection and prevention form of contactless card payment system
US20060031174A1 (en) 2004-07-20 2006-02-09 Scribocel, Inc. Method of authentication and indentification for computerized and networked systems
US7287692B1 (en) 2004-07-28 2007-10-30 Cisco Technology, Inc. System and method for securing transactions in a contact center environment
EP1630712A1 (en) 2004-08-24 2006-03-01 Sony Deutschland GmbH Method for operating a near field communication system
KR100851089B1 (en) 2004-08-27 2008-08-08 빅토리온 테크놀러지 씨오., 엘티디. The nasal bone conduction wireless communication transmission equipment
US20060047954A1 (en) 2004-08-30 2006-03-02 Axalto Inc. Data access security implementation using the public key mechanism
US7375616B2 (en) 2004-09-08 2008-05-20 Nokia Corporation Electronic near field communication enabled multifunctional device and method of its operation
US7270276B2 (en) 2004-09-29 2007-09-18 Sap Ag Multi-application smartcard
US20060085848A1 (en) 2004-10-19 2006-04-20 Intel Corporation Method and apparatus for securing communications between a smartcard and a terminal
US7748636B2 (en) 2004-11-16 2010-07-06 Dpd Patent Trust Ltd. Portable identity card reader system for physical and logical access
GB2410113A (en) 2004-11-29 2005-07-20 Morse Group Ltd A system and method of accessing banking services via a mobile telephone
TW200642408A (en) 2004-12-07 2006-12-01 Farsheed Atef System and method for identity verification and management
US7232073B1 (en) 2004-12-21 2007-06-19 Sun Microsystems, Inc. Smart card with multiple applications
GB0428543D0 (en) 2004-12-31 2005-02-09 British Telecomm Control of data exchange
US8200700B2 (en) 2005-02-01 2012-06-12 Newsilike Media Group, Inc Systems and methods for use of structured and unstructured distributed data
US8347088B2 (en) 2005-02-01 2013-01-01 Newsilike Media Group, Inc Security systems and methods for use with structured and unstructured data
US20130104251A1 (en) 2005-02-01 2013-04-25 Newsilike Media Group, Inc. Security systems and methods for use with structured and unstructured data
DE102005004902A1 (en) 2005-02-02 2006-08-10 Utimaco Safeware Ag Method for registering a user on a computer system
US7581678B2 (en) 2005-02-22 2009-09-01 Tyfone, Inc. Electronic transaction card
EP1856903B1 (en) 2005-03-07 2018-01-24 Nokia Technologies Oy Method and mobile terminal device including smartcard module and near field communications means
US7628322B2 (en) 2005-03-07 2009-12-08 Nokia Corporation Methods, system and mobile device capable of enabling credit card personalization using a wireless network
US7128274B2 (en) 2005-03-24 2006-10-31 International Business Machines Corporation Secure credit card with near field communications
US8266441B2 (en) 2005-04-22 2012-09-11 Bank Of America Corporation One-time password credit/debit card
WO2006119184A2 (en) 2005-05-04 2006-11-09 Tricipher, Inc. Protecting one-time-passwords against man-in-the-middle attacks
US20080035738A1 (en) 2005-05-09 2008-02-14 Mullen Jeffrey D Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
US7793851B2 (en) 2005-05-09 2010-09-14 Dynamics Inc. Dynamic credit card with magnetic stripe and embedded encoder and methods for using the same to provide a copy-proof credit card
EP1913545A4 (en) 2005-05-16 2010-07-28 Mastercard International Inc Method and system for using contactless payment cards in a transit system
US20060280338A1 (en) 2005-06-08 2006-12-14 Xerox Corporation Systems and methods for the visually impared
US8583454B2 (en) 2005-07-28 2013-11-12 Beraja Ip, Llc Medical claims fraud prevention system including photograph records identification and associated methods
US8762263B2 (en) 2005-09-06 2014-06-24 Visa U.S.A. Inc. System and method for secured account numbers in proximity devices
US20070067833A1 (en) 2005-09-20 2007-03-22 Colnot Vincent C Methods and Apparatus for Enabling Secure Network-Based Transactions
EP2024921A4 (en) 2005-10-06 2010-09-29 C Sam Inc Transactional services
US8245292B2 (en) 2005-11-16 2012-08-14 Broadcom Corporation Multi-factor authentication using a smartcard
JP4435076B2 (en) 2005-11-18 2010-03-17 フェリカネットワークス株式会社 Mobile terminal, data communication method, and computer program
US7568631B2 (en) 2005-11-21 2009-08-04 Sony Corporation System, apparatus and method for obtaining one-time credit card numbers using a smart card
WO2007076476A2 (en) 2005-12-22 2007-07-05 Mastercard International Incorporated Methods and systems for two-factor authentication using contactless chip cards or devices and mobile devices or dedicated personal readers
FR2895608B1 (en) 2005-12-23 2008-03-21 Trusted Logic Sa METHOD FOR MAKING A SECURED COUNTER ON AN ON-BOARD COMPUTER SYSTEM HAVING A CHIP CARD
US7775427B2 (en) 2005-12-31 2010-08-17 Broadcom Corporation System and method for binding a smartcard and a smartcard reader
US8559987B1 (en) 2005-12-31 2013-10-15 Blaze Mobile, Inc. Wireless bidirectional communications between a mobile device and associated secure element
US8352323B2 (en) 2007-11-30 2013-01-08 Blaze Mobile, Inc. Conducting an online payment transaction using an NFC enabled mobile communication device
US8224018B2 (en) 2006-01-23 2012-07-17 Digimarc Corporation Sensing data from physical objects
US9137012B2 (en) 2006-02-03 2015-09-15 Emc Corporation Wireless authentication methods and apparatus
US20070224969A1 (en) 2006-03-24 2007-09-27 Rao Bindu R Prepaid simcard for automatically enabling services
US7380710B2 (en) 2006-04-28 2008-06-03 Qsecure, Inc. Payment card preloaded with unique numbers
US7571471B2 (en) 2006-05-05 2009-08-04 Tricipher, Inc. Secure login using a multifactor split asymmetric crypto-key with persistent key security
DE602007008313D1 (en) 2006-05-10 2010-09-23 Inside Contactless Method for forwarding incoming and outgoing data to an NFC chipset
DE602006008600D1 (en) 2006-06-29 2009-10-01 Incard Sa Method for diversifying a key on a chip card
US9985950B2 (en) 2006-08-09 2018-05-29 Assa Abloy Ab Method and apparatus for making a decision on a card
GB0616331D0 (en) 2006-08-16 2006-09-27 Innovision Res & Tech Plc Near Field RF Communicators And Near Field Communications Enabled Devices
US20080072303A1 (en) 2006-09-14 2008-03-20 Schlumberger Technology Corporation Method and system for one time password based authentication and integrated remote access
US20080071681A1 (en) 2006-09-15 2008-03-20 Khalid Atm Shafiqul Dynamic Credit and Check Card
US8322624B2 (en) 2007-04-10 2012-12-04 Feinics Amatech Teoranta Smart card with switchable matching antenna
US8738485B2 (en) 2007-12-28 2014-05-27 Visa U.S.A. Inc. Contactless prepaid product for transit fare collection
WO2008042302A2 (en) 2006-09-29 2008-04-10 Narian Technologies Corp. Apparatus and method using near field communications
US8474028B2 (en) 2006-10-06 2013-06-25 Fmr Llc Multi-party, secure multi-channel authentication
GB2443234B8 (en) 2006-10-24 2009-01-28 Innovision Res & Tech Plc Near field RF communicators and near field RF communications enabled devices
JP5684475B2 (en) 2006-10-31 2015-03-11 ソリコア インコーポレイテッドSOLICORE,Incorporated Battery powered devices
US8267313B2 (en) 2006-10-31 2012-09-18 American Express Travel Related Services Company, Inc. System and method for providing a gift card which affords benefits beyond what is purchased
US8682791B2 (en) 2006-10-31 2014-03-25 Discover Financial Services Redemption of credit card rewards at a point of sale
US9251637B2 (en) 2006-11-15 2016-02-02 Bank Of America Corporation Method and apparatus for using at least a portion of a one-time password as a dynamic card verification value
US8365258B2 (en) 2006-11-16 2013-01-29 Phonefactor, Inc. Multi factor authentication
CN101192295A (en) 2006-11-30 2008-06-04 讯想科技股份有限公司 Chip credit card network transaction system and method
US8041954B2 (en) 2006-12-07 2011-10-18 Paul Plesman Method and system for providing a secure login solution using one-time passwords
US20080162312A1 (en) 2006-12-29 2008-07-03 Motorola, Inc. Method and system for monitoring secure applet events during contactless rfid/nfc communication
US7594605B2 (en) 2007-01-10 2009-09-29 At&T Intellectual Property I, L.P. Credit card transaction servers, methods and computer program products employing wireless terminal location and registered purchasing locations
GB2442249B (en) 2007-02-20 2008-09-10 Cryptomathic As Authentication device and method
US8095974B2 (en) 2007-02-23 2012-01-10 At&T Intellectual Property I, L.P. Methods, systems, and products for identity verification
US8463711B2 (en) 2007-02-27 2013-06-11 Igt Methods and architecture for cashless system security
US9081948B2 (en) 2007-03-13 2015-07-14 Red Hat, Inc. Configurable smartcard
US20080223918A1 (en) 2007-03-15 2008-09-18 Microsoft Corporation Payment tokens
WO2008114931A1 (en) 2007-03-16 2008-09-25 Lg Electronics Inc. Performing contactless applications in battery off mode
US8285329B1 (en) 2007-04-02 2012-10-09 Sprint Communications Company L.P. Mobile device-based control of smart card operation
US8667285B2 (en) 2007-05-31 2014-03-04 Vasco Data Security, Inc. Remote authentication and transaction signatures
US7739169B2 (en) 2007-06-25 2010-06-15 Visa U.S.A. Inc. Restricting access to compromised account information
US20120252350A1 (en) 2007-07-24 2012-10-04 Allan Steinmetz Vehicle safety device for reducing driver distractions
US20090037275A1 (en) 2007-08-03 2009-02-05 Pollio Michael J Consolidated membership/rewards card system
US8235825B2 (en) 2007-08-14 2012-08-07 John B. French Smart card holder for automated gaming system and gaming cards
US20110101093A1 (en) 2007-08-19 2011-05-05 Yubico Ab Device and method for generating dynamic credit card data
US7748609B2 (en) 2007-08-31 2010-07-06 Gemalto Inc. System and method for browser based access to smart cards
EP2201543A1 (en) 2007-09-21 2010-06-30 Wireless Dynamics, Inc. Wireless smart card and integrated personal area network, near field communication and contactless payment system
US8249654B1 (en) 2007-09-27 2012-08-21 Sprint Communications Company L.P. Dynamic smart card application loading
GB2457221A (en) 2007-10-17 2009-08-12 Vodafone Plc Smart Card Web Server (SCWS) administration within a plurality of security domains
US8095113B2 (en) 2007-10-17 2012-01-10 First Data Corporation Onetime passwords for smart chip cards
FR2922701B1 (en) 2007-10-23 2009-11-20 Inside Contacless SECURE CUSTOMIZATION METHOD OF AN NFC CHIPSET
US7652578B2 (en) 2007-10-29 2010-01-26 Motorola, Inc. Detection apparatus and method for near field communication devices
US8135648B2 (en) 2007-11-01 2012-03-13 Gtech Corporation Authentication of lottery tickets, game machine credit vouchers, and other items
US20090132405A1 (en) 2007-11-15 2009-05-21 German Scipioni System and method for auto-filling information
US9684861B2 (en) 2007-12-24 2017-06-20 Dynamics Inc. Payment cards and devices with displays, chips, RFIDs, magnetic emulators, magnetic decoders, and other components
US7922082B2 (en) 2008-01-04 2011-04-12 M2 International Ltd. Dynamic card validation value
GB0801225D0 (en) 2008-01-23 2008-02-27 Innovision Res & Tech Plc Near field RF communications
US9558485B2 (en) 2008-01-30 2017-01-31 Paypal, Inc. Two step near field communication transactions
US8369960B2 (en) 2008-02-12 2013-02-05 Cardiac Pacemakers, Inc. Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices
US9947002B2 (en) 2008-02-15 2018-04-17 First Data Corporation Secure authorization of contactless transaction
US8302167B2 (en) 2008-03-11 2012-10-30 Vasco Data Security, Inc. Strong authentication token generating one-time passwords and signatures upon server credential verification
ES2386164T3 (en) 2008-03-27 2012-08-10 Motorola Mobility, Inc. Method and apparatus for automatic selection of a near field communication application in an electronic device
ITMI20080536A1 (en) 2008-03-28 2009-09-29 Incard Sa METHOD TO PROTECT A CAP FILE FOR AN INTEGRATED CIRCUIT CARD.
US8024576B2 (en) 2008-03-31 2011-09-20 International Business Machines Corporation Method and system for authenticating users with a one time password using an image reader
US8365988B1 (en) 2008-04-11 2013-02-05 United Services Automobile Association (Usaa) Dynamic credit card security code via mobile device
US8347112B2 (en) 2008-05-08 2013-01-01 Texas Instruments Incorporated Encryption/decryption engine with secure modes for key decryption and key derivation
US9082117B2 (en) 2008-05-17 2015-07-14 David H. Chin Gesture based authentication for wireless payment by a mobile electronic device
US8099332B2 (en) 2008-06-06 2012-01-17 Apple Inc. User interface for application management for a mobile device
EP2139196A1 (en) 2008-06-26 2009-12-30 France Telecom Method and system for remotely blocking/unblocking NFC applications on a terminal
US8229853B2 (en) 2008-07-24 2012-07-24 International Business Machines Corporation Dynamic itinerary-driven profiling for preventing unauthorized card transactions
US8662401B2 (en) 2008-07-25 2014-03-04 First Data Corporation Mobile payment adoption by adding a dedicated payment button to mobile device form factors
US8740073B2 (en) 2008-08-01 2014-06-03 Mastercard International Incorporated Methods, systems and computer readable media for storing and redeeming electronic certificates using a wireless smart card
US8706622B2 (en) 2008-08-05 2014-04-22 Visa U.S.A. Inc. Account holder demand account update
US8438382B2 (en) 2008-08-06 2013-05-07 Symantec Corporation Credential management system and method
US20100033310A1 (en) 2008-08-08 2010-02-11 Narendra Siva G Power negotation for small rfid card
AU2009279402B2 (en) 2008-08-08 2015-08-27 Assa Abloy Ab Directional sensing mechanism and communications authentication
US8814052B2 (en) 2008-08-20 2014-08-26 X-Card Holdings, Llc Secure smart card system
US8103249B2 (en) 2008-08-23 2012-01-24 Visa U.S.A. Inc. Credit card imaging for mobile payment and other applications
US10970777B2 (en) 2008-09-15 2021-04-06 Mastercard International Incorporated Apparatus and method for bill payment card enrollment
US9037513B2 (en) 2008-09-30 2015-05-19 Apple Inc. System and method for providing electronic event tickets
US20100078471A1 (en) 2008-09-30 2010-04-01 Apple Inc. System and method for processing peer-to-peer financial transactions
US20100095130A1 (en) 2008-10-13 2010-04-15 Global Financial Passport, Llc Smartcards for secure transaction systems
US20100094754A1 (en) 2008-10-13 2010-04-15 Global Financial Passport, Llc Smartcard based secure transaction systems and methods
US8689013B2 (en) 2008-10-21 2014-04-01 G. Wouter Habraken Dual-interface key management
CN101729502B (en) 2008-10-23 2012-09-05 中兴通讯股份有限公司 Method and system for distributing key
US8371501B1 (en) 2008-10-27 2013-02-12 United Services Automobile Association (Usaa) Systems and methods for a wearable user authentication factor
EP2182439A1 (en) 2008-10-28 2010-05-05 Gemalto SA Method of managing data sent over the air to an applet having a restricted interface
US20100114731A1 (en) 2008-10-30 2010-05-06 Kingston Tamara S ELECTRONIC WALLET ("eWallet")
US9231928B2 (en) 2008-12-18 2016-01-05 Bce Inc. Validation method and system for use in securing nomadic electronic transactions
EP2199992A1 (en) 2008-12-19 2010-06-23 Gemalto SA Secure activation before contactless banking smart card transaction
US10354321B2 (en) 2009-01-22 2019-07-16 First Data Corporation Processing transactions with an extended application ID and dynamic cryptograms
US9065812B2 (en) 2009-01-23 2015-06-23 Microsoft Technology Licensing, Llc Protecting transactions
EP2211481B1 (en) 2009-01-26 2014-09-10 Motorola Mobility LLC Wireless communication device for providing at least one near field communication service
US9509436B2 (en) 2009-01-29 2016-11-29 Cubic Corporation Protection of near-field communication exchanges
EP2219374A1 (en) 2009-02-13 2010-08-18 Irdeto Access B.V. Securely providing a control word from a smartcard to a conditional access module
CN101820696B (en) 2009-02-26 2013-08-07 中兴通讯股份有限公司 Terminal supporting enhanced near field communication and processing method thereof
US20100240413A1 (en) 2009-03-21 2010-09-23 Microsoft Corporation Smart Card File System
US8567670B2 (en) 2009-03-27 2013-10-29 Intersections Inc. Dynamic card verification values and credit transactions
EP2199965A1 (en) 2009-04-22 2010-06-23 Euro-Wallet B.V. Payment transaction client, server and system
US8893967B2 (en) 2009-05-15 2014-11-25 Visa International Service Association Secure Communication of payment information to merchants using a verification token
US8417231B2 (en) 2009-05-17 2013-04-09 Qualcomm Incorporated Method and apparatus for programming a mobile device with multiple service accounts
US8391719B2 (en) 2009-05-22 2013-03-05 Motorola Mobility Llc Method and system for conducting communication between mobile devices
US20100312635A1 (en) 2009-06-08 2010-12-09 Cervenka Karen L Free sample coupon card
US20100312634A1 (en) 2009-06-08 2010-12-09 Cervenka Karen L Coupon card point of service terminal processing
US8489112B2 (en) 2009-07-29 2013-07-16 Shopkick, Inc. Method and system for location-triggered rewards
US8186602B2 (en) 2009-08-18 2012-05-29 On Track Innovations, Ltd. Multi-application contactless smart card
US20110060631A1 (en) 2009-09-04 2011-03-10 Bank Of America Redemption of customer benefit offers based on goods identification
US9373141B1 (en) 2009-09-23 2016-06-21 Verient, Inc. System and method for automatically filling webpage fields
US8317094B2 (en) 2009-09-23 2012-11-27 Mastercard International Incorporated Methods and systems for displaying loyalty program information on a payment card
US8830866B2 (en) 2009-09-30 2014-09-09 Apple Inc. Methods and apparatus for solicited activation for protected wireless networking
US20110084132A1 (en) 2009-10-08 2011-04-14 At&T Intellectual Property I, L.P. Devices, Systems and Methods for Secure Remote Medical Diagnostics
WO2011043072A1 (en) 2009-10-09 2011-04-14 パナソニック株式会社 Vehicle-mounted device
US8806592B2 (en) 2011-01-21 2014-08-12 Authentify, Inc. Method for secure user and transaction authentication and risk management
US8843757B2 (en) 2009-11-12 2014-09-23 Ca, Inc. One time PIN generation
US8799668B2 (en) 2009-11-23 2014-08-05 Fred Cheng Rubbing encryption algorithm and security attack safe OTP token
US9225526B2 (en) 2009-11-30 2015-12-29 Red Hat, Inc. Multifactor username based authentication
US9258715B2 (en) 2009-12-14 2016-02-09 Apple Inc. Proactive security for mobile devices
EP2336986A1 (en) 2009-12-17 2011-06-22 Gemalto SA Method of personalizing an application embedded in a secured electronic token
US10049356B2 (en) 2009-12-18 2018-08-14 First Data Corporation Authentication of card-not-present transactions
US9324066B2 (en) 2009-12-21 2016-04-26 Verizon Patent And Licensing Inc. Method and system for providing virtual credit card services
US8615468B2 (en) 2010-01-27 2013-12-24 Ca, Inc. System and method for generating a dynamic card value
CA2694500C (en) 2010-02-24 2015-07-07 Diversinet Corp. Method and system for secure communication
US10255601B2 (en) 2010-02-25 2019-04-09 Visa International Service Association Multifactor authentication using a directory server
US9317018B2 (en) 2010-03-02 2016-04-19 Gonow Technologies, Llc Portable e-wallet and universal card
US9129270B2 (en) 2010-03-02 2015-09-08 Gonow Technologies, Llc Portable E-wallet and universal card
SI23227A (en) 2010-03-10 2011-05-31 Margento R&D D.O.O. Wireless mobile transaction system and procedure of carrying out transaction with mobile telephone
WO2011119976A2 (en) 2010-03-26 2011-09-29 Visa International Service Association System and method for early detection of fraudulent transactions
US8811892B2 (en) 2010-04-05 2014-08-19 Mastercard International Incorporated Systems, methods, and computer readable media for performing multiple transactions through a single near field communication (NFC) tap
US10304051B2 (en) 2010-04-09 2019-05-28 Paypal, Inc. NFC mobile wallet processing systems and methods
US9122964B2 (en) 2010-05-14 2015-09-01 Mark Krawczewicz Batteryless stored value card with display
US20120109735A1 (en) 2010-05-14 2012-05-03 Mark Stanley Krawczewicz Mobile Payment System with Thin Film Display
US9047531B2 (en) 2010-05-21 2015-06-02 Hand Held Products, Inc. Interactive user interface for capturing a document in an image signal
TWI504229B (en) 2010-05-27 2015-10-11 Mstar Semiconductor Inc Mobile device with electronic wallet function
WO2011153505A1 (en) 2010-06-04 2011-12-08 Visa International Service Association Payment tokenization apparatuses, methods and systems
US20120079281A1 (en) 2010-06-28 2012-03-29 Lionstone Capital Corporation Systems and methods for diversification of encryption algorithms and obfuscation symbols, symbol spaces and/or schemas
US8723941B1 (en) 2010-06-29 2014-05-13 Bank Of America Corporation Handicap-accessible ATM
WO2012001624A1 (en) 2010-07-01 2012-01-05 Ishai Binenstock Location-aware mobile connectivity and information exchange system
US8500031B2 (en) 2010-07-29 2013-08-06 Bank Of America Corporation Wearable article having point of sale payment functionality
US9916572B2 (en) 2010-08-18 2018-03-13 International Business Machines Corporation Payment card processing system
US8312519B1 (en) 2010-09-30 2012-11-13 Daniel V Bailey Agile OTP generation
US8799087B2 (en) 2010-10-27 2014-08-05 Mastercard International Incorporated Systems, methods, and computer readable media for utilizing one or more preferred application lists in a wireless device reader
US9965756B2 (en) 2013-02-26 2018-05-08 Digimarc Corporation Methods and arrangements for smartphone payments
US9004365B2 (en) 2010-11-23 2015-04-14 X-Card Holdings, Llc One-time password card for secure transactions
US20120143754A1 (en) 2010-12-03 2012-06-07 Narendra Patel Enhanced credit card security apparatus and method
US8807440B1 (en) 2010-12-17 2014-08-19 Google Inc. Routing secure element payment requests to an alternate application
US8726405B1 (en) 2010-12-23 2014-05-13 Emc Corporation Techniques for providing security using a mobile wireless communications device having data loss prevention circuitry
US8977195B2 (en) 2011-01-06 2015-03-10 Texas Insruments Incorporated Multiple NFC card applications in multiple execution environments
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
US20140379361A1 (en) 2011-01-14 2014-12-25 Shilpak Mahadkar Healthcare Prepaid Payment Platform Apparatuses, Methods And Systems
JP5692244B2 (en) 2011-01-31 2015-04-01 富士通株式会社 Communication method, node, and network system
EP2487629B1 (en) 2011-02-10 2016-11-30 Nxp B.V. Secure smart poster
US10373160B2 (en) 2011-02-10 2019-08-06 Paypal, Inc. Fraud alerting using mobile phone location
US20130030828A1 (en) 2011-03-04 2013-01-31 Pourfallah Stacy S Healthcare incentive apparatuses, methods and systems
WO2012125655A1 (en) 2011-03-14 2012-09-20 Conner Investments, Llc Bluetooth enabled credit card with a large date storage volume
US20120238206A1 (en) 2011-03-14 2012-09-20 Research In Motion Limited Communications device providing near field communication (nfc) secure element disabling features related methods
US20120284194A1 (en) 2011-05-03 2012-11-08 Microsoft Corporation Secure card-based transactions using mobile phones or other mobile devices
CA2835508A1 (en) 2011-05-10 2012-11-15 Dynamics Inc. Systems, devices, and methods for mobile payment acceptance, mobile authorizations, mobile wallets, and contactless communication mechanisms
US20120296818A1 (en) 2011-05-17 2012-11-22 Ebay Inc. Method for authorizing the activation of a spending card
US8868902B1 (en) 2013-07-01 2014-10-21 Cryptite LLC Characteristically shaped colorgram tokens in mobile transactions
AU2012363110A1 (en) 2011-06-07 2013-12-12 Visa International Service Association Payment Privacy Tokenization apparatuses, methods and systems
US20120317628A1 (en) 2011-06-09 2012-12-13 Yeager C Douglas Systems and methods for authorizing a transaction
EP2541458B1 (en) 2011-06-27 2017-10-04 Nxp B.V. Resource management system and corresponding method
US9042814B2 (en) 2011-06-27 2015-05-26 Broadcom Corporation Measurement and reporting of received signal strength in NFC-enabled devices
US9209867B2 (en) 2011-06-28 2015-12-08 Broadcom Corporation Device for authenticating wanted NFC interactions
US9026047B2 (en) 2011-06-29 2015-05-05 Broadcom Corporation Systems and methods for providing NFC secure application support in battery-off mode when no nonvolatile memory write access is available
US8620218B2 (en) 2011-06-29 2013-12-31 Broadcom Corporation Power harvesting and use in a near field communications (NFC) device
US9390411B2 (en) 2011-07-27 2016-07-12 Murray Jarman System or method for storing credit on a value card or cellular phone rather than accepting coin change
US9075979B1 (en) 2011-08-11 2015-07-07 Google Inc. Authentication based on proximity to mobile device
CN102956068B (en) 2011-08-25 2017-02-15 富泰华工业(深圳)有限公司 Automatic teller machine and voice prompting method thereof
AU2012301897B2 (en) 2011-08-30 2017-04-13 Ov Loop Inc. Systems and methods for authorizing a transaction with an unexpected cryptogram
FR2980055B1 (en) 2011-09-12 2013-12-27 Valeo Systemes Thermiques INDUCTIVE POWER TRANSMISSION DEVICE
US10032036B2 (en) 2011-09-14 2018-07-24 Shahab Khan Systems and methods of multidimensional encrypted data transfer
WO2013039395A1 (en) 2011-09-14 2013-03-21 Ec Solution Group B.V. Active matrix display smart card
US8977569B2 (en) 2011-09-29 2015-03-10 Raj Rao System and method for providing smart electronic wallet and reconfigurable transaction card thereof
US8577810B1 (en) 2011-09-29 2013-11-05 Intuit Inc. Secure mobile payment authorization
US9152832B2 (en) 2011-09-30 2015-10-06 Broadcom Corporation Positioning guidance for increasing reliability of near-field communications
US20140279479A1 (en) 2011-10-12 2014-09-18 C-Sam, Inc. Nfc paired bluetooth e-commerce
US10332102B2 (en) 2011-10-17 2019-06-25 Capital One Services, Llc System, method, and apparatus for a dynamic transaction card
US10510070B2 (en) 2011-10-17 2019-12-17 Capital One Services, Llc System, method, and apparatus for a dynamic transaction card
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
EP4333554A3 (en) 2011-10-31 2024-03-13 CosmoKey Solutions GmbH & Co. KG Authentication method
US9000892B2 (en) 2011-10-31 2015-04-07 Eastman Kodak Company Detecting RFID tag and inhibiting skimming
MX2014005691A (en) 2011-11-14 2014-08-22 Vasco Data Security Inc A smart card reader with a secure logging feature.
US8818867B2 (en) 2011-11-14 2014-08-26 At&T Intellectual Property I, L.P. Security token for mobile near field communication transactions
US9064253B2 (en) 2011-12-01 2015-06-23 Broadcom Corporation Systems and methods for providing NFC secure application support in battery on and battery off modes
US20140040139A1 (en) 2011-12-19 2014-02-06 Sequent Software, Inc. System and method for dynamic temporary payment authorization in a portable communication device
US9740342B2 (en) 2011-12-23 2017-08-22 Cirque Corporation Method for preventing interference of contactless card reader and touch functions when they are physically and logically bound together for improved authentication security
US9154903B2 (en) 2011-12-28 2015-10-06 Blackberry Limited Mobile communications device providing near field communication (NFC) card issuance features and related methods
US8880027B1 (en) 2011-12-29 2014-11-04 Emc Corporation Authenticating to a computing device with a near-field communications card
US20130179351A1 (en) 2012-01-09 2013-07-11 George Wallner System and method for an authenticating and encrypting card reader
US20130185772A1 (en) 2012-01-12 2013-07-18 Aventura Hq, Inc. Dynamically updating a session based on location data from an authentication device
US20130191279A1 (en) 2012-01-20 2013-07-25 Bank Of America Corporation Mobile device with rewritable general purpose card
WO2013116726A1 (en) 2012-02-03 2013-08-08 Ebay Inc. Adding card to mobile wallet using nfc
KR101443960B1 (en) 2012-02-22 2014-11-03 주식회사 팬택 Electronic device and method for user identification
US8898088B2 (en) 2012-02-29 2014-11-25 Google Inc. In-card access control and monotonic counters for offline payment processing system
US9020858B2 (en) 2012-02-29 2015-04-28 Google Inc. Presence-of-card code for offline payment processing system
US20130232082A1 (en) 2012-03-05 2013-09-05 Mark Stanley Krawczewicz Method And Apparatus For Secure Medical ID Card
BR122016030280A2 (en) 2012-03-15 2019-08-27 Intel Corp portable electronic device, electronic device and system
AU2013248935A1 (en) 2012-04-17 2014-08-28 Secure Nfc Pty. Ltd. NFC card lock
US20130282360A1 (en) 2012-04-20 2013-10-24 James A. Shimota Method and Apparatus for Translating and Locating Services in Multiple Languages
US9953310B2 (en) 2012-05-10 2018-04-24 Mastercard International Incorporated Systems and method for providing multiple virtual secure elements in a single physical secure element of a mobile device
US20130303085A1 (en) 2012-05-11 2013-11-14 Research In Motion Limited Near field communication tag data management
US9306626B2 (en) 2012-05-16 2016-04-05 Broadcom Corporation NFC device context determination through proximity gestural movement detection
US8681268B2 (en) 2012-05-24 2014-03-25 Abisee, Inc. Vision assistive devices and user interfaces
US8862113B2 (en) 2012-06-20 2014-10-14 Qualcomm Incorporated Subscriber identity module activation during active data call
US9589399B2 (en) 2012-07-02 2017-03-07 Synaptics Incorporated Credential quality assessment engine systems and methods
US20140032410A1 (en) 2012-07-24 2014-01-30 Ipay International, S.A. Method and system for linking and controling of payment cards with a mobile
KR101421568B1 (en) 2012-07-27 2014-07-22 주식회사 케이티 Smart card, device and method for smart card service
US9530130B2 (en) 2012-07-30 2016-12-27 Mastercard International Incorporated Systems and methods for correction of information in card-not-present account-on-file transactions
KR101934293B1 (en) 2012-08-03 2019-01-02 엘지전자 주식회사 Mobile terminal and nfc payment method thereof
US9361619B2 (en) 2012-08-06 2016-06-07 Ca, Inc. Secure and convenient mobile authentication techniques
EP2698756B1 (en) 2012-08-13 2016-01-06 Nxp B.V. Local Trusted Service Manager
US9332587B2 (en) 2012-08-21 2016-05-03 Blackberry Limited Smart proximity priority pairing
US20140074655A1 (en) 2012-09-07 2014-03-13 David Lim System, apparatus and methods for online one-tap account addition and checkout
US10192216B2 (en) 2012-09-11 2019-01-29 Visa International Service Association Cloud-based virtual wallet NFC apparatuses, methods and systems
US9426132B1 (en) 2012-09-12 2016-08-23 Emc Corporation Methods and apparatus for rules-based multi-factor verification
US8888002B2 (en) 2012-09-18 2014-11-18 Sensormatic Electronics, LLC Access control reader enabling remote applications
US20140081720A1 (en) 2012-09-19 2014-03-20 Mastercard International Incorporated Method and system for processing coupons in a near field transaction
US9338622B2 (en) 2012-10-04 2016-05-10 Bernt Erik Bjontegard Contextually intelligent communication systems and processes
US9665858B1 (en) 2012-10-11 2017-05-30 Square, Inc. Cardless payment transactions with multiple users
EP2722739A1 (en) 2012-10-22 2014-04-23 Cartamundi Turnhout N.V. System comprising a card and a device comprising a touch sensor
US10075437B1 (en) 2012-11-06 2018-09-11 Behaviosec Secure authentication of a user of a device during a session with a connected server
US8584219B1 (en) 2012-11-07 2013-11-12 Fmr Llc Risk adjusted, multifactor authentication
US20150302409A1 (en) 2012-11-15 2015-10-22 Behzad Malek System and method for location-based financial transaction authentication
EP3429250A1 (en) 2012-11-19 2019-01-16 Avery Dennison Corporation Nfc security system and method for disabling unauthorized tags
US9038894B2 (en) 2012-11-20 2015-05-26 Cellco Partnership Payment or other transaction through mobile device using NFC to access a contactless transaction card
CN103023643A (en) 2012-11-22 2013-04-03 天地融科技股份有限公司 Dynamic password card and dynamic password generating method
US9224013B2 (en) 2012-12-05 2015-12-29 Broadcom Corporation Secure processing sub-system that is hardware isolated from a peripheral processing sub-system
US9064259B2 (en) 2012-12-19 2015-06-23 Genesys Telecomminucations Laboratories, Inc. Customer care mobile application
US10147086B2 (en) 2012-12-19 2018-12-04 Nxp B.V. Digital wallet device for virtual wallet
US20150339474A1 (en) 2012-12-24 2015-11-26 Cell Buddy Network Ltd. User authentication system
US8934837B2 (en) 2013-01-03 2015-01-13 Blackberry Limited Mobile wireless communications device including NFC antenna matching control circuit and associated methods
US9942750B2 (en) 2013-01-23 2018-04-10 Qualcomm Incorporated Providing an encrypted account credential from a first device to a second device
US20140214674A1 (en) 2013-01-29 2014-07-31 Reliance Communications, Llc. Method and system for conducting secure transactions with credit cards using a monitoring device
US20140229375A1 (en) 2013-02-11 2014-08-14 Groupon, Inc. Consumer device payment token management
US9785946B2 (en) 2013-03-07 2017-10-10 Mastercard International Incorporated Systems and methods for updating payment card expiration information
US10152706B2 (en) 2013-03-11 2018-12-11 Cellco Partnership Secure NFC data authentication
US9307505B2 (en) 2013-03-12 2016-04-05 Blackberry Limited System and method for adjusting a power transmission level for a communication device
US9763097B2 (en) 2013-03-13 2017-09-12 Lookout, Inc. Method for performing device security corrective actions based on loss of proximity to another device
US20150134452A1 (en) 2013-03-15 2015-05-14 Gerald Shawn Williams Mechanism for facilitating dynamic and targeted advertisements for computing systems
US20140339315A1 (en) 2013-04-02 2014-11-20 Tnt Partners, Llc Programmable Electronic Card and Supporting Device
WO2014170741A2 (en) 2013-04-15 2014-10-23 Pardhasarthy Mahesh Bhupathi Payback payment system and method to facilitate the same
JP6307593B2 (en) 2013-04-26 2018-04-04 インターデイジタル パテント ホールディングス インコーポレイテッド Multi-factor authentication to achieve the required level of certification assurance
US20140337235A1 (en) 2013-05-08 2014-11-13 The Toronto-Dominion Bank Person-to-person electronic payment processing
US9104853B2 (en) 2013-05-16 2015-08-11 Symantec Corporation Supporting proximity based security code transfer from mobile/tablet application to access device
US10043164B2 (en) 2013-05-20 2018-08-07 Mastercard International Incorporated System and method for facilitating a transaction between a merchant and a cardholder
US20140365780A1 (en) 2013-06-07 2014-12-11 Safa Movassaghi System and methods for one-time password generation on a mobile computing device
US10475027B2 (en) 2013-07-23 2019-11-12 Capital One Services, Llc System and method for exchanging data with smart cards
WO2015011552A1 (en) 2013-07-25 2015-01-29 Bionym Inc. Preauthorized wearable biometric device, system and method for use thereof
GB2516861A (en) 2013-08-01 2015-02-11 Mastercard International Inc Paired Wearable payment device
CN103417202B (en) 2013-08-19 2015-11-18 赵蕴博 A kind of wrist-life physical sign monitoring device and monitoring method thereof
CN105493538B (en) 2013-09-24 2019-05-03 英特尔公司 The system and method for NFC access control for safety element center type NFC framework
EP2854332A1 (en) 2013-09-27 2015-04-01 Gemalto SA Method for securing over-the-air communication between a mobile application and a gateway
US10878414B2 (en) 2013-09-30 2020-12-29 Apple Inc. Multi-path communication of electronic device secure element data for online payments
US11748746B2 (en) 2013-09-30 2023-09-05 Apple Inc. Multi-path communication of electronic device secure element data for online payments
KR101797643B1 (en) 2013-11-15 2017-12-12 쿠앙치 인텔리전트 포토닉 테크놀로지 리미티드 Instruction information transmission and reception methods and devices thereof
CN105934771B (en) 2013-11-19 2020-05-05 维萨国际服务协会 Automatic account provisioning
WO2015084797A1 (en) 2013-12-02 2015-06-11 Mastercard International Incorporated Method and system for secure tranmission of remote notification service messages to mobile devices without secure elements
AU2014368949A1 (en) 2013-12-19 2016-06-09 Visa International Service Association Cloud-based transactions methods and systems
US20150205379A1 (en) 2014-01-20 2015-07-23 Apple Inc. Motion-Detected Tap Input
US9420496B1 (en) 2014-01-24 2016-08-16 Sprint Communications Company L.P. Activation sequence using permission based connection to network
US9773151B2 (en) 2014-02-06 2017-09-26 University Of Massachusetts System and methods for contactless biometrics-based identification
US20160012465A1 (en) 2014-02-08 2016-01-14 Jeffrey A. Sharp System and method for distributing, receiving, and using funds or credits and apparatus thereof
US20150371234A1 (en) 2014-02-21 2015-12-24 Looppay, Inc. Methods, devices, and systems for secure provisioning, transmission, and authentication of payment data
EP2924914A1 (en) 2014-03-25 2015-09-30 Gemalto SA Method to manage a one time password key
US9251330B2 (en) 2014-04-09 2016-02-02 International Business Machines Corporation Secure management of a smart card
US20150317626A1 (en) 2014-04-30 2015-11-05 Intuit Inc. Secure proximity exchange of payment information between mobile wallet and point-of-sale
AU2015253182B2 (en) 2014-05-01 2019-02-14 Visa International Service Association Data verification using access device
WO2015171942A1 (en) 2014-05-07 2015-11-12 Visa International Service Association Enhanced data interface for contactless communications
US10475026B2 (en) 2014-05-16 2019-11-12 International Business Machines Corporation Secure management of transactions using a smart/virtual card
US20150339663A1 (en) 2014-05-21 2015-11-26 Mastercard International Incorporated Methods of payment token lifecycle management on a mobile device
US9449239B2 (en) 2014-05-30 2016-09-20 Apple Inc. Credit card auto-fill
KR101508320B1 (en) 2014-06-30 2015-04-07 주식회사 인포바인 Apparatus for issuing and generating one time password using nfc card, and method using the same
US9455968B1 (en) 2014-12-19 2016-09-27 Emc Corporation Protection of a secret on a mobile device using a secret-splitting technique with a fixed user share
US9780953B2 (en) 2014-07-23 2017-10-03 Visa International Service Association Systems and methods for secure detokenization
US20160026997A1 (en) 2014-07-25 2016-01-28 XPressTap, Inc. Mobile Communication Device with Proximity Based Communication Circuitry
US9875347B2 (en) 2014-07-31 2018-01-23 Nok Nok Labs, Inc. System and method for performing authentication using data analytics
US20160048913A1 (en) 2014-08-15 2016-02-18 Mastercard International Incorporated Systems and Methods for Assigning a Variable Length Bank Identification Number
US9775029B2 (en) 2014-08-22 2017-09-26 Visa International Service Association Embedding cloud-based functionalities in a communication device
US10242356B2 (en) 2014-08-25 2019-03-26 Google Llc Host-formatted select proximity payment system environment response
WO2016033610A1 (en) 2014-08-29 2016-03-03 Visa International Service Association Methods for secure cryptogram generation
CN104239783A (en) 2014-09-19 2014-12-24 东软集团股份有限公司 System and method for safely inputting customizing messages
US9953323B2 (en) 2014-09-23 2018-04-24 Sony Corporation Limiting e-card transactions based on lack of proximity to associated CE device
GB2530726B (en) 2014-09-25 2016-11-02 Ibm Distributed single sign-on
BR112017005824A2 (en) 2014-09-26 2017-12-12 Visa Int Service Ass method and mobile device.
US9473509B2 (en) 2014-09-29 2016-10-18 International Business Machines Corporation Selectively permitting or denying usage of wearable device services
US9432339B1 (en) 2014-09-29 2016-08-30 Emc Corporation Automated token renewal using OTP-based authentication codes
CN104463270A (en) 2014-11-12 2015-03-25 惠州Tcl移动通信有限公司 Intelligent terminal, financial card and financial management system based on RFID
US9379841B2 (en) 2014-11-17 2016-06-28 Empire Technology Development Llc Mobile device prevention of contactless card attacks
US9589264B2 (en) 2014-12-10 2017-03-07 American Express Travel Related Services Company, Inc. System and method for pre-provisioned wearable contactless payments
GB2533333A (en) 2014-12-16 2016-06-22 Visa Europe Ltd Transaction authorisation
US20170374070A1 (en) 2015-01-09 2017-12-28 Interdigital Technology Corporation Scalable policy based execution of multi-factor authentication
US10333696B2 (en) 2015-01-12 2019-06-25 X-Prime, Inc. Systems and methods for implementing an efficient, scalable homomorphic transformation of encrypted data with minimal data expansion and improved processing efficiency
US20170011406A1 (en) 2015-02-10 2017-01-12 NXT-ID, Inc. Sound-Directed or Behavior-Directed Method and System for Authenticating a User and Executing a Transaction
CN105930040A (en) 2015-02-27 2016-09-07 三星电子株式会社 Electronic device including electronic payment system and operating method thereof
US20160267486A1 (en) 2015-03-13 2016-09-15 Radiius Corp Smartcard Payment System and Method
US11736468B2 (en) 2015-03-16 2023-08-22 Assa Abloy Ab Enhanced authorization
US20160277383A1 (en) 2015-03-16 2016-09-22 Assa Abloy Ab Binding to a user device
WO2016160816A1 (en) 2015-03-30 2016-10-06 Hendrick Chaya Coleena Smart data cards that enable the performance of various functions upon activation/authentication by a user's fingerprint, oncard pin number entry, and/or by facial recognition of the user, or by facial recognition of a user alone, including an automated changing security number that is displayed on a screen on a card's surface following an authenticated biometric match
US20170289127A1 (en) 2016-03-29 2017-10-05 Chaya Coleena Hendrick Smart data cards that enable the performance of various functions upon activation/authentication by a user's fingerprint, oncard pin number entry, and/or by facial recognition of the user, or by facial recognition of a user alone, including an automated changing security number that is displayed on a screen on a card's surface following an authenticated biometric match
EP3567512A1 (en) 2015-04-14 2019-11-13 Capital One Services, LLC A system, method, and apparatus for a dynamic transaction card
US10360557B2 (en) 2015-04-14 2019-07-23 Capital One Services, Llc Dynamic transaction card protected by dropped card detection
US10482453B2 (en) 2015-04-14 2019-11-19 Capital One Services, Llc Dynamic transaction card protected by gesture and voice recognition
US9674705B2 (en) 2015-04-22 2017-06-06 Kenneth Hugh Rose Method and system for secure peer-to-peer mobile communications
CN107851111A (en) 2015-05-05 2018-03-27 识卡公司 Use the identity management services of block chain
US20160335531A1 (en) 2015-05-12 2016-11-17 Dynamics Inc. Dynamic security codes, tokens, displays, cards, devices, multi-card devices, systems and methods
FR3038429B1 (en) 2015-07-03 2018-09-21 Ingenico Group PAYMENT CONTAINER, CREATION METHOD, PROCESSING METHOD, DEVICES AND PROGRAMS THEREOF
US20170039566A1 (en) 2015-07-10 2017-02-09 Diamond Sun Labs, Inc. Method and system for secured processing of a credit card
US10108965B2 (en) 2015-07-14 2018-10-23 Ujet, Inc. Customer communication system including service pipeline
US11120436B2 (en) 2015-07-17 2021-09-14 Mastercard International Incorporated Authentication system and method for server-based payments
US20170024716A1 (en) 2015-07-22 2017-01-26 American Express Travel Related Services Company, Inc. System and method for single page banner integration
US10492163B2 (en) 2015-08-03 2019-11-26 Jpmorgan Chase Bank, N.A. Systems and methods for leveraging micro-location devices for improved travel awareness
KR20170028015A (en) 2015-09-03 2017-03-13 엔에이치엔엔터테인먼트 주식회사 on-line credit card payment system using mobile terminal and payment method thereof
WO2017042400A1 (en) 2015-09-11 2017-03-16 Dp Security Consulting Sas Access method to an on line service by means of access tokens and secure elements restricting the use of these access tokens to their legitimate owner
FR3041195A1 (en) 2015-09-11 2017-03-17 Dp Security Consulting METHOD OF ACCESSING ONLINE SERVICE USING SECURE MICROCIRCUIT AND SECURITY TOKENS RESTRICTING THE USE OF THESE TOKENS TO THEIR LEGITIMATE HOLDER
ITUB20155318A1 (en) 2015-10-26 2017-04-26 St Microelectronics Srl TAG, ITS PROCEDURE AND SYSTEM TO IDENTIFY AND / OR AUTHENTICATE ITEMS
US20170140379A1 (en) 2015-11-17 2017-05-18 Bruce D. Deck Credit card randomly generated pin
US11328298B2 (en) 2015-11-27 2022-05-10 The Toronto-Dominion Bank System and method for remotely activating a pin-pad terminal
WO2017100318A1 (en) 2015-12-07 2017-06-15 Capital One Services, Llc Electronic access control system
US9948467B2 (en) 2015-12-21 2018-04-17 Mastercard International Incorporated Method and system for blockchain variant using digital signatures
KR101637863B1 (en) 2016-01-05 2016-07-08 주식회사 코인플러그 Security system and method for transmitting a password
EP3411824B1 (en) 2016-02-04 2019-10-30 Nasdaq Technology AB Systems and methods for storing and sharing transactional data using distributed computer systems
US9619952B1 (en) 2016-02-16 2017-04-11 Honeywell International Inc. Systems and methods of preventing access to users of an access control system
US10148135B2 (en) 2016-02-16 2018-12-04 Intel IP Corporation System, apparatus and method for authenticating a device using a wireless charger
FR3049083A1 (en) 2016-03-15 2017-09-22 Dp Security Consulting Sas A METHOD FOR DUPLICATING DATA FROM A SECURE MICROCIRCUIT TO ANOTHER SECURE MICROCIRCUIT SO AT LEAST ONE SECURE MICROCIRCUIT SECURE TO BE OPERATIONAL TO A GIVEN TIME
US9961194B1 (en) 2016-04-05 2018-05-01 State Farm Mutual Automobile Insurance Company Systems and methods for authenticating a caller at a call center
EP3229397B1 (en) 2016-04-07 2020-09-09 ContactOffice Group Method for fulfilling a cryptographic request requiring a value of a private key
US10255816B2 (en) 2016-04-27 2019-04-09 Uber Technologies, Inc. Transport vehicle configuration for impaired riders
US10333705B2 (en) 2016-04-30 2019-06-25 Civic Technologies, Inc. Methods and apparatus for providing attestation of information using a centralized or distributed ledger
KR20170126688A (en) 2016-05-10 2017-11-20 엘지전자 주식회사 Smart card and method for controlling the same
US9635000B1 (en) 2016-05-25 2017-04-25 Sead Muftic Blockchain identity management system based on public identities ledger
GB201609460D0 (en) 2016-05-30 2016-07-13 Silverleap Technology Ltd Increased security through ephemeral keys for software virtual contactless card in a mobile phone
US10097544B2 (en) 2016-06-01 2018-10-09 International Business Machines Corporation Protection and verification of user authentication credentials against server compromise
US10680677B2 (en) 2016-08-01 2020-06-09 Nxp B.V. NFC system wakeup with energy harvesting
US10032169B2 (en) 2016-08-08 2018-07-24 Ellipse World, Inc. Prepaid, debit and credit card security code generation system
US20180039986A1 (en) 2016-08-08 2018-02-08 Ellipse World S.A. Method for a Prepaid, Debit and Credit Card Security Code Generation System
US10084762B2 (en) 2016-09-01 2018-09-25 Ca, Inc. Publicly readable blockchain registry of personally identifiable information breaches
US10748130B2 (en) 2016-09-30 2020-08-18 Square, Inc. Sensor-enabled activation of payment instruments
US10462128B2 (en) 2016-10-11 2019-10-29 Michael Arthur George Verification of both identification and presence of objects over a network
US10719771B2 (en) 2016-11-09 2020-07-21 Cognitive Scale, Inc. Method for cognitive information processing using a cognitive blockchain architecture
US20180160255A1 (en) 2016-12-01 2018-06-07 Youngsuck PARK Nfc tag-based web service system and method using anti-simulation function
US10133979B1 (en) 2016-12-29 2018-11-20 Wells Fargo Bank, N.A. Wearable computing device-powered chip-enabled card
US10237070B2 (en) 2016-12-31 2019-03-19 Nok Nok Labs, Inc. System and method for sharing keys across authenticators
DE102017000768A1 (en) 2017-01-27 2018-08-02 Giesecke+Devrient Mobile Security Gmbh Method for performing two-factor authentication
US20180240106A1 (en) 2017-02-21 2018-08-23 Legacy Ip Llc Hand-held electronics device for aggregation of and management of personal electronic data
US20180254909A1 (en) 2017-03-06 2018-09-06 Lamark Solutions, Inc. Virtual Identity Credential Issuance and Verification Using Physical and Virtual Means
US10764043B2 (en) 2017-04-05 2020-09-01 University Of Florida Research Foundation, Incorporated Identity and content authentication for phone calls
US10129648B1 (en) 2017-05-11 2018-11-13 Microsoft Technology Licensing, Llc Hinged computing device for binaural recording
US20190019375A1 (en) 2017-07-14 2019-01-17 Gamblit Gaming, Llc Ad hoc customizable electronic gaming table
US9940571B1 (en) 2017-08-25 2018-04-10 Capital One Services, Llc Metal contactless transaction card
US10019707B1 (en) 2017-10-24 2018-07-10 Capital One Services, Llc Transaction card mode related to locating a transaction card
US11102180B2 (en) 2018-01-31 2021-08-24 The Toronto-Dominion Bank Real-time authentication and authorization based on dynamically generated cryptographic data

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020108039A1 (en) * 1997-09-10 2002-08-08 Takeshi Kubo Authentication apparatus, user authentication method, user authentication card and storage medium
US20090200385A1 (en) * 2008-02-13 2009-08-13 John Richard Hachey Financial transaction card with non-embossed, raised indicia
US20110108625A1 (en) * 2008-07-01 2011-05-12 Byung Jin Lee Contact card recognition system and recognition method using a touch screen
US20150006376A1 (en) * 2013-06-27 2015-01-01 Ebay Inc. Conductive payment device
US20190050867A1 (en) * 2014-05-29 2019-02-14 Apple Inc. User interface for payments
US20170038907A1 (en) * 2015-08-04 2017-02-09 International Business Machines Corporation Input device and method for capacitive touch screen
WO2018048851A1 (en) * 2016-09-08 2018-03-15 Trusona, Inc. Tactile stylus based authentication systems and methods

Also Published As

Publication number Publication date
EP3680796A1 (en) 2020-07-15
US11361302B2 (en) 2022-06-14
US20200226582A1 (en) 2020-07-16
US20220292486A1 (en) 2022-09-15
CA3067692A1 (en) 2020-07-11
CA3067692C (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP7463342B2 (en) System and method for dynamic generation of URLs with smart cards - Patents.com
US11922254B2 (en) Devices and methods for contactless card alignment with a foldable mobile device
CN112805735A (en) System and method for password authentication of contactless cards
US10643420B1 (en) Contextual tapping engine
US11057390B2 (en) Systems for providing electronic items having customizable locking mechanism
US11210676B2 (en) System and method for augmented reality display of account information
US11062098B1 (en) Augmented reality information display and interaction via NFC based authentication
US20150095222A1 (en) Dynamic identity representation in mobile devices
CA3173933A1 (en) Application-based point of sale system in mobile operating systems
US20220292486A1 (en) Systems and methods for touch screen interface interaction using a card overlay
US20150006405A1 (en) System and methods for secure entry of a personal identification number (pin) using multi-touch trackpad technologies
JP7286770B2 (en) Authentication for third-party digital wallet provisioning
WO2021231440A1 (en) Augmented reality card activation experience
JP2024508286A (en) Establishing sustainability of authentication
US20240087241A1 (en) Augmented reality at a front-end device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CAPITAL ONE SERVICES, LLC, VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RULE, JEFFREY;OSBORN, KEVIN;SIGNING DATES FROM 20190110 TO 20190111;REEL/FRAME:047981/0023

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION