US20190087599A1 - Compressing a slice name listing in a dispersed storage network - Google Patents

Compressing a slice name listing in a dispersed storage network Download PDF

Info

Publication number
US20190087599A1
US20190087599A1 US16/197,235 US201816197235A US2019087599A1 US 20190087599 A1 US20190087599 A1 US 20190087599A1 US 201816197235 A US201816197235 A US 201816197235A US 2019087599 A1 US2019087599 A1 US 2019087599A1
Authority
US
United States
Prior art keywords
slice
representation
names
slice name
name
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/197,235
Inventor
Jason K. Resch
Andrew D. Baptist
Ilya Volvovski
Wesley B. Leggette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pure Storage Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/610,220 external-priority patent/US20150288680A1/en
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US16/197,235 priority Critical patent/US20190087599A1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAPTIST, ANDREW D., LEGGETTE, WESLEY B., RESCH, JASON K., VOLVOVSKI, ILYA
Publication of US20190087599A1 publication Critical patent/US20190087599A1/en
Assigned to PURE STORAGE, INC. reassignment PURE STORAGE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to PURE STORAGE, INC. reassignment PURE STORAGE, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE DELETE 15/174/279 AND 15/174/596 PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 49555 FRAME: 530. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Priority to US16/883,902 priority patent/US10891390B1/en
Priority to US17/247,417 priority patent/US11586755B1/en
Priority to US18/105,616 priority patent/US11928230B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6245Protecting personal data, e.g. for financial or medical purposes
    • G06F21/6254Protecting personal data, e.g. for financial or medical purposes by anonymising data, e.g. decorrelating personal data from the owner's identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6272Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database by registering files or documents with a third party
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6281Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database at program execution time, where the protection is within the operating system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0823Network architectures or network communication protocols for network security for authentication of entities using certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/104Grouping of entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2141Access rights, e.g. capability lists, access control lists, access tables, access matrices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/101Access control lists [ACL]

Definitions

  • This invention relates generally to computer networks and more particularly to identifying dispersed error encoded data.
  • Computing devices are known to communicate data, process data, and/or store data. Such computing devices range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, and video game devices, to data centers that support millions of web searches, stock trades, or on-line purchases every day.
  • a computing device includes a central processing unit (CPU), a memory system, user input/output interfaces, peripheral device interfaces, and an interconnecting bus structure.
  • a computer may effectively extend its CPU by using “cloud computing” to perform one or more computing functions (e.g., a service, an application, an algorithm, an arithmetic logic function, etc.) on behalf of the computer.
  • cloud computing may be performed by multiple cloud computing resources in a distributed manner to improve the response time for completion of the service, application, and/or function.
  • Hadoop is an open source software framework that supports distributed applications enabling application execution by thousands of computers.
  • a computer may use “cloud storage” as part of its memory system.
  • cloud storage enables a user, via its computer, to store files, applications, etc. on an Internet storage system.
  • the Internet storage system may include a RAID (redundant array of independent disks) system and/or a dispersed storage system that uses an error correction scheme to encode data for storage.
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core in accordance with the present invention.
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data in accordance with the present invention.
  • FIG. 4 is a schematic block diagram of a generic example of an error encoding function in accordance with the present invention.
  • FIG. 5 is a schematic block diagram of a specific example of an error encoding function in accordance with the present invention.
  • FIG. 6 is a schematic block diagram of an example of a slice name of an encoded data slice (EDS) in accordance with the present invention.
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of data in accordance with the present invention.
  • FIG. 8 is a schematic block diagram of a generic example of an error decoding function in accordance with the present invention.
  • FIG. 9 is a schematic block diagram of an example of identifying stored encoded data slices in accordance with the present invention.
  • FIG. 10 is a logic diagram of an example of a method of identifying stored encoded data slices in accordance with the present invention.
  • FIGS. 11A-11D are schematic block diagrams of examples of list range responses in accordance with the present invention.
  • FIG. 12 is a logic diagram of an example of a method of listing stored encoded data slices in accordance with the present invention.
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed, or distributed, storage network (DSN) 10 that includes a plurality of computing devices 12 - 16 , a managing unit 18 , an integrity processing unit 20 , and a DSN memory 22 .
  • the components of the DSN 10 are coupled to a network 24 , which may include one or more wireless and/or wire lined communication systems; one or more non-public intranet systems and/or public internet systems; and/or one or more local area networks (LAN) and/or wide area networks (WAN).
  • LAN local area network
  • WAN wide area network
  • the DSN memory 22 includes a plurality of storage units 36 that may be located at geographically different sites (e.g., one in Chicago, one in Milwaukee, etc.), at a common site, or a combination thereof. For example, if the DSN memory 22 includes eight storage units 36 , each storage unit is located at a different site. As another example, if the DSN memory 22 includes eight storage units 36 , all eight storage units are located at the same site. As yet another example, if the DSN memory 22 includes eight storage units 36 , a first pair of storage units are at a first common site, a second pair of storage units are at a second common site, a third pair of storage units are at a third common site, and a fourth pair of storage units are at a fourth common site.
  • geographically different sites e.g., one in Chicago, one in Milwaukee, etc.
  • each storage unit is located at a different site.
  • all eight storage units are located at the same site.
  • a first pair of storage units are at a first common site
  • a DSN memory 22 may include more or less than eight storage units 36 . Further note that each storage unit 36 includes a computing core (as shown in FIG. 2 , or components thereof) and a plurality of memory devices for storing dispersed error encoded data.
  • Each of the computing devices 12 - 16 , the managing unit 18 , and the integrity processing unit 20 include a computing core 26 , which includes network interfaces 30 - 33 .
  • Computing devices 12 - 16 may each be a portable computing device and/or a fixed computing device.
  • a portable computing device may be a social networking device, a gaming device, a cell phone, a smart phone, a digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, and/or any other portable device that includes a computing core.
  • a fixed computing device may be a computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game console, and/or any type of home or office computing equipment.
  • each of the managing unit 18 and the integrity processing unit 20 may be separate computing devices, may be a common computing device, and/or may be integrated into one or more of the computing devices 12 - 16 and/or into one or more of the storage units 36 .
  • Each interface 30 , 32 , and 33 includes software and hardware to support one or more communication links via the network 24 indirectly and/or directly.
  • interface 30 supports a communication link (e.g., wired, wireless, direct, via a LAN, via the network 24 , etc.) between computing devices 14 and 16 .
  • interface 32 supports communication links (e.g., a wired connection, a wireless connection, a LAN connection, and/or any other type of connection to/from the network 24 ) between computing devices 12 & 16 and the DSN memory 22 .
  • interface 33 supports a communication link for each of the managing unit 18 and the integrity processing unit 20 to the network 24 .
  • Computing devices 12 and 16 include a dispersed storage (DS) client module 34 , which enables the computing device to dispersed storage error encode and decode data 40 as subsequently described with reference to one or more of FIGS. 3-8 .
  • computing device 16 functions as a dispersed storage processing agent for computing device 14 .
  • computing device 16 dispersed storage error encodes and decodes data on behalf of computing device 14 .
  • the DSN 10 is tolerant of a significant number of storage unit failures (the number of failures is based on parameters of the dispersed storage error encoding function) without loss of data and without the need for a redundant or backup copies of the data. Further, the DSN 10 stores data for an indefinite period of time without data loss and in a secure manner (e.g., the system is very resistant to unauthorized attempts at accessing the data).
  • the managing unit 18 performs DS management services. For example, the managing unit 18 establishes distributed data storage parameters (e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.) for computing devices 12 - 14 individually or as part of a group of user devices. As a specific example, the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSTN memory 22 for a user device, a group of devices, or for public access and establishes per vault dispersed storage (DS) error encoding parameters for a vault.
  • distributed data storage parameters e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.
  • the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSTN memory 22 for a user device, a group of devices, or for public access and establish
  • the managing unit 18 facilitates storage of DS error encoding parameters for each vault by updating registry information of the DSN 10 , where the registry information may be stored in the DSN memory 22 , a computing device 12 - 16 , the managing unit 18 , and/or the integrity processing unit 20 .
  • the DSN managing unit 18 creates and stores user profile information (e.g., an access control list (ACL)) in local memory and/or within memory of the DSN memory 22 .
  • the user profile information includes authentication information, permissions, and/or the security parameters.
  • the security parameters may include encryption/decryption scheme, one or more encryption keys, key generation scheme, and/or data encoding/decoding scheme.
  • the DSN managing unit 18 creates billing information for a particular user, a user group, a vault access, public vault access, etc. For instance, the DSTN managing unit 18 tracks the number of times a user accesses a non-public vault and/or public vaults, which can be used to generate a per-access billing information. In another instance, the DSTN managing unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group, which can be used to generate a per-data-amount billing information.
  • the managing unit 18 performs network operations, network administration, and/or network maintenance.
  • Network operations includes authenticating user data allocation requests (e.g., read and/or write requests), managing creation of vaults, establishing authentication credentials for user devices, adding/deleting components (e.g., user devices, storage units, and/or computing devices with a DS client module 34 ) to/from the DSN 10 , and/or establishing authentication credentials for the storage units 36 .
  • Network administration includes monitoring devices and/or units for failures, maintaining vault information, determining device and/or unit activation status, determining device and/or unit loading, and/or determining any other system level operation that affects the performance level of the DSN 10 .
  • Network maintenance includes facilitating replacing, upgrading, repairing, and/or expanding a device and/or unit of the DSN 10 .
  • the integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded data slices.
  • the integrity processing unit 20 performs rebuilding by periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded data slices, from the DSN memory 22 .
  • retrieved encoded slices they are checked for errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged as a ‘bad’ slice.
  • encoded data slices that were not received and/or not listed they are flagged as missing slices.
  • Bad and/or missing slices are subsequently rebuilt using other retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices.
  • the rebuilt slices are stored in the DSTN memory 22 .
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core 26 that includes a processing module 50 , a memory controller 52 , main memory 54 , a video graphics processing unit 55 , an input/output (IO) controller 56 , a peripheral component interconnect (PCI) interface 58 , an IO interface module 60 , at least one IO device interface module 62 , a read only memory (ROM) basic input output system (BIOS) 64 , and one or more memory interface modules.
  • IO input/output
  • PCI peripheral component interconnect
  • IO interface module 60 at least one IO device interface module 62
  • ROM read only memory
  • BIOS basic input output system
  • the one or more memory interface module(s) includes one or more of a universal serial bus (USB) interface module 66 , a host bus adapter (HBA) interface module 68 , a network interface module 70 , a flash interface module 72 , a hard drive interface module 74 , and a DSN interface module 76 .
  • USB universal serial bus
  • HBA host bus adapter
  • the DSN interface module 76 functions to mimic a conventional operating system (OS) file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet small computer system interface (iSCSI), etc.).
  • OS operating system
  • the DSN interface module 76 and/or the network interface module 70 may function as one or more of the interface 30 - 33 of FIG. 1 .
  • the IO device interface module 62 and/or the memory interface modules 66 - 76 may be collectively or individually referred to as IO ports.
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data.
  • a computing device 12 or 16 When a computing device 12 or 16 has data to store it disperse storage error encodes the data in accordance with a dispersed storage error encoding process based on dispersed storage error encoding parameters.
  • the dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values.
  • an encoding function e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.
  • a data segmenting protocol e.g., data segment size
  • the per data segment encoding values include a total, or pillar width, number (T) of encoded data slices per encoding of a data segment i.e., in a set of encoded data slices); a decode threshold number (D) of encoded data slices of a set of encoded data slices that are needed to recover the data segment; a read threshold number (R) of encoded data slices to indicate a number of encoded data slices per set to be read from storage for decoding of the data segment; and/or a write threshold number (W) to indicate a number of encoded data slices per set that must be accurately stored before the encoded data segment is deemed to have been properly stored.
  • T total, or pillar width, number
  • D decode threshold number
  • R read threshold number
  • W write threshold number
  • the dispersed storage error encoding parameters may further include slicing information (e.g., the number of encoded data slices that will be created for each data segment) and/or slice security information (e.g., per encoded data slice encryption, compression, integrity checksum, etc.).
  • slicing information e.g., the number of encoded data slices that will be created for each data segment
  • slice security information e.g., per encoded data slice encryption, compression, integrity checksum, etc.
  • the encoding function has been selected as Cauchy Reed-Solomon (a generic example is shown in FIG. 4 and a specific example is shown in FIG. 5 );
  • the data segmenting protocol is to divide the data object into fixed sized data segments; and the per data segment encoding values include: a pillar width of 5, a decode threshold of 3, a read threshold of 4, and a write threshold of 4.
  • the computing device 12 or 16 divides the data (e.g., a file (e.g., text, video, audio, etc.), a data object, or other data arrangement) into a plurality of fixed sized data segments (e.g., 1 through Y of a fixed size in range of Kilo-bytes to Tera-bytes or more).
  • the number of data segments created is dependent of the size of the data and the data segmenting protocol.
  • FIG. 4 illustrates a generic Cauchy Reed-Solomon encoding function, which includes an encoding matrix (EM), a data matrix (DM), and a coded matrix (CM).
  • the size of the encoding matrix (EM) is dependent on the pillar width number (T) and the decode threshold number (D) of selected per data segment encoding values.
  • EM encoding matrix
  • T pillar width number
  • D decode threshold number
  • Z is a function of the number of data blocks created from the data segment and the decode threshold number (D).
  • the coded matrix is produced by matrix multiplying the data matrix by the encoding matrix.
  • FIG. 5 illustrates a specific example of Cauchy Reed-Solomon encoding with a pillar number (T) of five and decode threshold number of three.
  • a first data segment is divided into twelve data blocks (D 1 -D 12 ).
  • the coded matrix includes five rows of coded data blocks, where the first row of X 11 -X 14 corresponds to a first encoded data slice (EDS 1 _ 1 ), the second row of X 21 -X 24 corresponds to a second encoded data slice (EDS 2 _ 1 ), the third row of X 31 -X 34 corresponds to a third encoded data slice (EDS 3 _ 1 ), the fourth row of X 41 -X 44 corresponds to a fourth encoded data slice (EDS 4 _ 1 ), and the fifth row of X 51 -X 54 corresponds to a fifth encoded data slice (EDS 5 _ 1 ).
  • the second number of the EDS designation corresponds to the data segment number.
  • the computing device also creates a slice name (SN) for each encoded data slice (EDS) in the set of encoded data slices.
  • a typical format for a slice name 80 is shown in FIG. 6 .
  • the slice name (SN) 80 includes a pillar number of the encoded data slice (e.g., one of 1-T), a data segment number (e.g., one of 1-Y), a vault identifier (ID), a data object identifier (ID), and may further include revision level information of the encoded data slices.
  • the slice name functions as, at least part of, a DSN address for the encoded data slice for storage and retrieval from the DSN memory 22 .
  • the computing device 12 or 16 produces a plurality of sets of encoded data slices, which are provided with their respective slice names to the storage units for storage.
  • the first set of encoded data slices includes EDS 1 _ 1 through EDS 5 _ 1 and the first set of slice names includes SN 1 _ 1 through SN 5 _ 1 and the last set of encoded data slices includes EDS 1 _Y through EDS 5 _Y and the last set of slice names includes SN 1 _Y through SN 5 _Y.
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of a data object that was dispersed storage error encoded and stored in the example of FIG. 4 .
  • the computing device 12 or 16 retrieves from the storage units at least the decode threshold number of encoded data slices per data segment. As a specific example, the computing device retrieves a read threshold number of encoded data slices.
  • the computing device uses a decoding function as shown in FIG. 8 .
  • the decoding function is essentially an inverse of the encoding function of FIG. 4 .
  • the coded matrix includes a decode threshold number of rows (e.g., three in this example) and the decoding matrix in an inversion of the encoding matrix that includes the corresponding rows of the coded matrix. For example, if the coded matrix includes rows 1 , 2 , and 4 , the encoding matrix is reduced to rows 1 , 2 , and 4 , and then inverted to produce the decoding matrix.
  • FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) that includes a rebuilding module 90 , the network 24 of FIG. 1 , and the storage unit 36 of FIG. 1 .
  • the rebuilding module 90 may be implemented by one of a computing device 12 or 16 , a managing unit 18 , and a integrity processing unit 20 of FIG. 1 .
  • the storage unit 36 includes the memory 88 .
  • the DSN functions to efficiently identify encoded data slices stored in the memory 88 .
  • the rebuilding module 90 issues, via the network 24 , a list range request 1 that identifies a start slice name range and an end slice name range.
  • the encoded data slices stored in the memory 88 are associated with slice names.
  • the storage unit 36 is associated with a stored slice name range, where the stored slice name range includes slice names of the stored encoded data slices.
  • the stored slice name range includes a range of the list range request. For example, the start slice name range and the end slice name range fall within the stored slice name range.
  • the storage unit 36 receives the list range request 1 . Having received the list range request 1 , the storage unit 36 identifies slice names 80 associated with stored encoded data slices corresponding to the list range request 1 . For example, the storage unit 36 identifies slices A- 1 - 1 , A- 1 - 2 , through A- 1 -M as the slice names that fall within the slice name range of the request.
  • the storage unit 36 Having identified the slice names of the stored encoded data slices associated with the request, the storage unit 36 , for a first slice name 80 of the slice name range, generates a first portion of a list range response 1 that includes the first slice name (e.g., A- 1 - 1 ) in a slice name field 89 , an entry of a slice revision count field 92 corresponding to the first slice name, and, for each identified revision, the slice revision entry of a slice revision field 94 and a slice length entry of a slice length field 96 .
  • the slice revision entry includes 00h when there are no visible slice revisions.
  • the slice length entry includes a slice length (e.g., number of bytes of the slice) of a slice revision.
  • the storage unit 36 Having generated the first portion of the list range response 1 , the storage unit 36 , for each remaining slice name of the slice name range, generates further portions of the list range response 1 that includes a representation of the remaining slice name in a slice name offset field 81 , an entry of another slice revision count field 92 for the remaining slice name, and, for each identified revision of the remaining slice name, a slice revision entry of another slice revision field 94 and a slice length entry of another slice length field 96 .
  • the representation of the remaining slice name includes at least one of an offset from the first slice name based on the remaining slice name, and a result of applying a deterministic function to the first slice name and the remaining slice name.
  • the storage unit 36 generates the representation of the remaining slice name as 10 when the remaining slice name (e.g., A- 1 - 11 ) is offset by 10 from the first slice name.
  • a size efficiency is provided as successive slice name offset fields are smaller in size (e.g., 4-24 bytes) than the slice name field (e.g., 48 bytes).
  • FIG. 10 is a flowchart illustrating an example of identifying stored encoded data slices.
  • the method begins or continues at step 100 where a processing module (e.g., of a dispersed storage (DS) client module) receives a list range request from a requesting entity, where the request includes a slice name range.
  • a processing module e.g., of a dispersed storage (DS) client module
  • receives a list range request from a requesting entity where the request includes a slice name range.
  • the processing module identifies slice names of stored slices that correspond to the slice name range. For example, the processing module identifies slice names of stored encoded data slices where the slice names fall within the slice name range.
  • DS dispersed storage
  • the method continues at step 104 where, for a first slice name of the slice name range, the processing module generates a first portion of a list range response that includes the first slice name and one or more other parameters of one or more revisions of stored slices associated with the first slice name.
  • the other parameters include one or more of a slice revision count of the number of the one or more revisions, a slice revision number for each slice revision, and a slice length of the stored slice of each slice revision.
  • the method continues at step 106 where, for each remaining slice name of the slice name range, the processing module generates another portion of the list range response that includes a representation of the remaining slice name and one or more other parameters of one or more revisions of stored slices associated with the remaining slice name. For example, the processing module generates the other portion of the list range response to include an offset from the first slice name as the representation of the remaining slice name.
  • the method continues at step 108 where the processing module sends the list range response to the requesting entity.
  • FIGS. 11A-11D are a schematic block diagrams of examples of list range responses (e.g., a list range response of FIG. 9 ).
  • the list range responses identify stored encoded data slices within a slice name range.
  • a list range response from a storage unit to a computing device of the DSN includes one or more representations of a range of slice names that identify the encoded data slices stored within the storage unit.
  • FIG. 11A is an example of a list range response message that includes a first slice name representation (SNR) 110 and a subsequent portion(s) representation 112 .
  • the first slice name representation identifies the first slice name.
  • a representation is able to identify one or more slice names in accordance with one or more of a DSN protocol.
  • the DSN protocol is based on dispersed storage error encoding parameters. For example, a data object A is dispersed storage error encoded in accordance with dispersed storage error encoding parameters to produce a plurality of sets of encoded data slices that are stored in a set of storage units of the DSN.
  • a first encoded data slice of each set of the plurality of sets of encoded data slices are grouped into a first group of encoded data slices (e.g., share a common pillar number (e.g., 1 of A- 1 - 1 through A- 1 -M)) and stored in a first storage unit of the set of storage units in accordance with the DSN protocol.
  • a first group of encoded data slices e.g., share a common pillar number (e.g., 1 of A- 1 - 1 through A- 1 -M)
  • the dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values (e.g., pillar width, decode threshold, etc).
  • a requesting device sends a list request for a range of encoded data slices A- 1 - 1 through A- 1 -M.
  • the request can include a representation structure for the list response.
  • the representation structure is based on the DSN protocol (e.g., data segmenting protocol, data storage protocol, slice naming protocol, etc).
  • a requesting device determines the DSN protocol is to store the first pillar number of encoded data slices in the first storage unit.
  • the requesting device determines the representation structure is to exclude (e.g., truncate) the pillar number in a list response.
  • the first slice name representation is A- 2 for slice name A- 1 - 2 and a first subsequent portion representation is A- 3 for a slice name A- 1 - 3 .
  • FIG. 11B is an example of a list range response that includes a first slice name representation 110 and a last slice name representation 113 .
  • the first and last representations are of a similar representation structure.
  • the first slice name representation includes a result based on a deterministic function applied to the first slice name and the last slice name representation includes a second result based on the deterministic function applied to the last slice name.
  • the first and last representations are not of a similar representation structure.
  • the first slice name representation is the first slice name and the last slice name representation is an offset value of the last slice name from the first slice name.
  • FIG. 11C is a schematic block diagram of another example of a list range response that includes a first slice name representation (SNR) 110 , a first contiguous range SNR 114 , another first SNR and a second contiguous range SNR 116 .
  • a (e.g., the first) contiguous range SNR 114 includes the first SNR 110 (e.g., based on a DSN protocol).
  • the first contiguous range SNR 114 does not include the first SNR 110 .
  • a storage device stores encoded data slices A- 1 - 1 through A- 1 -M that are associated with a range of slice names.
  • the storage device receives a list range request for the range of slice names that are associated with the encoded data slices A- 1 - 1 through A- 1 - 13 .
  • the storage device identifies encoded data slices A- 1 - 2 through A- 1 - 5 and A- 1 - 7 through A- 1 - 13 as being stored in memory of the storage device.
  • the storage device generates the first SNR to include “A- 2 ”, the 1 st contiguous range SNR to include “3” (to represent A- 1 - 3 , A- 1 - 4 , and A- 1 - 5 ), the additional first SNR to include “A- 7 ” and the second contiguous range SNR to include “6” (to represent A- 1 - 8 , A- 1 - 9 , A- 1 - 10 , A- 1 - 11 , A- 1 - 12 and A- 1 - 13 .
  • FIG. 11D is a schematic block diagram of another example of a list range response that includes a first SNR field 110 , a 1 st missing SNR field 115 , a 2 nd missing SNR field 115 and a last SNR field 113 .
  • the storage unit storing encoded data slices A- 1 - 1 through A- 1 - 13 receives a list range request that includes a slice name range and a representation structure that indicates to respond with a first slice name representation of the first slice name within the slice name range, a last slice name representation for the first slice name within the slice name range, and one or more missing SNRs 115 .
  • the storage device receives a list range request for the range of slice names that are associated with the encoded data slices A- 1 - 1 through A- 1 - 13 .
  • the storage device identifies encoded data slices A- 1 - 2 through A- 1 - 5 and A- 1 - 7 through A- 1 - 13 as being stored in memory of the storage device.
  • the storage device then generates, according to the representation structure, the first SNR to include “A- 2 ”, the 1 st missing slice SNR to include A- 1 - 1 , the 2 nd missing slice SNR to include A- 1 - 6 and the last SNR 113 to include A- 1 - 13 .
  • a list range response may include a first SNR and a 1 st missing contiguous range SNR.
  • the offset may also indicate a difference between a first list range response and a second list range response.
  • the offset may also be based on a data object identification, a pillar number, a segment number and other information within the slice name.
  • FIG. 12 is a logic diagram of an example of a method of listing stored encoded data slices in accordance with the present invention.
  • the method begins with step 120 , where a storage unit receives a list range request for a plurality of slice names within a slice name range, wherein the plurality of slice names is associated with a plurality of encoded data slices stored in the storage unit.
  • data is dispersed storage error encoded into pluralities of sets of encoded data slices and stored in storage units of the DSN.
  • the dispersed storage error encoding is in accordance with dispersed data storage parameters and the pluralities of sets of encoded data slices include the plurality of encoded data slices stored in the storage unit.
  • step 122 the storage unit identifies slice names of the plurality of slice names within the slice name range. For example, the storage unit identifies the slice names associated with encoded data slices stored in the storage unit within the slice name range.
  • the method continues with step 124 , where the storage unit determines a representation structure for a list range response.
  • the representation structure includes one or more of an offset representation, a first slice name representation, a last slice name representation, a deterministic function representation, a missing encoded data slice representation, a contiguous grouping of encoded data slices representation, a revision representation (e.g., all slice lengths or revisions are the same across two or more slice names, an offset in the revision field, etc.) and any other information regarding the structure of a list name response.
  • the method continues with step 126 , where the storage unit generates, in accordance with the representation structure, a first portion of a list range response for a first slice name of the slice names.
  • the first portion includes a first representation of the first slice name.
  • the first representation includes one of the first slice name, a result based on performing a deterministic function on the first slice name and a truncated (e.g., shortened) version of the first slice name.
  • the first portion and the one or more subsequent portions may each further include a slice revision count field.
  • the slice revision count field includes one or more slice revision fields and one or more corresponding slice length fields.
  • step 128 the storage unit generates, in accordance with the representation structure, one or more subsequent portions of the list range response for remaining slice names of the slice names.
  • the one or more subsequent portions includes one or more representations of the remaining slices names.
  • a representation of the one or more representations includes one or more of an offset from the first slice name, a result based on a deterministic function applied to the first slice name and a remaining slice name of the remaining slice names, a result based on a number of slice names within a contiguous range of slice names of the remaining slice names, and a last slice name of the slice names.
  • list range response further includes one or more of a request number, a payload length (e.g., a number of bytes after a header), a first slice name, and a last slice name.
  • a payload length e.g., a number of bytes after a header
  • the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
  • the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
  • inferred coupling i.e., where one element is coupled to another element by inference
  • the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items.
  • the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2 , a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1 .
  • the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
  • processing module may be a single processing device or a plurality of processing devices.
  • a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions.
  • the processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit.
  • a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
  • processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
  • the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures.
  • Such a memory device or memory element can be included in an article of manufacture.
  • a flow diagram may include a “start” and/or “continue” indication.
  • the “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines.
  • start indicates the beginning of the first step presented and may be preceded by other activities not specifically shown.
  • continue indicates that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown.
  • a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
  • the one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples.
  • a physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein.
  • the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
  • signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential.
  • signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential.
  • a signal path is shown as a single-ended path, it also represents a differential signal path.
  • a signal path is shown as a differential path, it also represents a single-ended signal path.
  • module is used in the description of one or more of the embodiments.
  • a module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions.
  • a module may operate independently and/or in conjunction with software and/or firmware.
  • a module may contain one or more sub-modules, each of which may be one or more modules.
  • a computer readable memory includes one or more memory elements.
  • a memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device.
  • Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
  • the memory device may be in a form a solid state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.

Abstract

A method begins by receiving a list range request for a plurality of slice names within a slice name range. The method continues with identifying slice names of the plurality of slice names within the slice name range. The method continues with determining a representation structure for a list range response. The method continues with generating, in accordance with the representation structure, a first portion of a list range response for a first slice name, where the first portion includes a first representation of the first slice name. The method continues with generating, in accordance with the representation structure, one or more subsequent portions of the list range response for remaining slice names of the slice names, where the one or more subsequent portions includes one or more representations of the remaining slices names. The method continues with sending the list range response to a requesting device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present U.S. Utility Patent Application claims priority pursuant to 35 U. S.C. § 120 as a continuation-in-part of U.S. Utility application Ser. No. 15/721,093, entitled “DISTRIBUTING REGISTRY INFORMATION IN A DISPERSED STORAGE NETWORK”, filed Sep. 27, 2017, which is a continuation of U.S. Utility application Ser. No. 14/610,220, entitled “DISTRIBUTING REGISTRY INFORMATION IN A DISPERSED STORAGE NETWORK”, filed Jan. 30, 2015, which claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/974,142, entitled “SCHEDULING REBUILDING OF STORED DATA IN A DISPERSED STORAGE NETWORK”, filed Apr. 02, 2014, expired, all of which are hereby incorporated herein by reference in their entirety and made part of the present U.S. Utility Patent Application for all purposes.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable.
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC
  • Not Applicable.
  • BACKGROUND OF THE INVENTION TECHNICAL FIELD OF THE INVENTION
  • This invention relates generally to computer networks and more particularly to identifying dispersed error encoded data.
  • DESCRIPTION OF RELATED ART
  • Computing devices are known to communicate data, process data, and/or store data. Such computing devices range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, and video game devices, to data centers that support millions of web searches, stock trades, or on-line purchases every day. In general, a computing device includes a central processing unit (CPU), a memory system, user input/output interfaces, peripheral device interfaces, and an interconnecting bus structure.
  • As is further known, a computer may effectively extend its CPU by using “cloud computing” to perform one or more computing functions (e.g., a service, an application, an algorithm, an arithmetic logic function, etc.) on behalf of the computer. Further, for large services, applications, and/or functions, cloud computing may be performed by multiple cloud computing resources in a distributed manner to improve the response time for completion of the service, application, and/or function. For example, Hadoop is an open source software framework that supports distributed applications enabling application execution by thousands of computers.
  • In addition to cloud computing, a computer may use “cloud storage” as part of its memory system. As is known, cloud storage enables a user, via its computer, to store files, applications, etc. on an Internet storage system. The Internet storage system may include a RAID (redundant array of independent disks) system and/or a dispersed storage system that uses an error correction scheme to encode data for storage.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention;
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core in accordance with the present invention;
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data in accordance with the present invention;
  • FIG. 4 is a schematic block diagram of a generic example of an error encoding function in accordance with the present invention;
  • FIG. 5 is a schematic block diagram of a specific example of an error encoding function in accordance with the present invention;
  • FIG. 6 is a schematic block diagram of an example of a slice name of an encoded data slice (EDS) in accordance with the present invention;
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of data in accordance with the present invention;
  • FIG. 8 is a schematic block diagram of a generic example of an error decoding function in accordance with the present invention;
  • FIG. 9 is a schematic block diagram of an example of identifying stored encoded data slices in accordance with the present invention;
  • FIG. 10 is a logic diagram of an example of a method of identifying stored encoded data slices in accordance with the present invention;
  • FIGS. 11A-11D are schematic block diagrams of examples of list range responses in accordance with the present invention; and
  • FIG. 12 is a logic diagram of an example of a method of listing stored encoded data slices in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a schematic block diagram of an embodiment of a dispersed, or distributed, storage network (DSN) 10 that includes a plurality of computing devices 12-16, a managing unit 18, an integrity processing unit 20, and a DSN memory 22. The components of the DSN 10 are coupled to a network 24, which may include one or more wireless and/or wire lined communication systems; one or more non-public intranet systems and/or public internet systems; and/or one or more local area networks (LAN) and/or wide area networks (WAN).
  • The DSN memory 22 includes a plurality of storage units 36 that may be located at geographically different sites (e.g., one in Chicago, one in Milwaukee, etc.), at a common site, or a combination thereof. For example, if the DSN memory 22 includes eight storage units 36, each storage unit is located at a different site. As another example, if the DSN memory 22 includes eight storage units 36, all eight storage units are located at the same site. As yet another example, if the DSN memory 22 includes eight storage units 36, a first pair of storage units are at a first common site, a second pair of storage units are at a second common site, a third pair of storage units are at a third common site, and a fourth pair of storage units are at a fourth common site. Note that a DSN memory 22 may include more or less than eight storage units 36. Further note that each storage unit 36 includes a computing core (as shown in FIG. 2, or components thereof) and a plurality of memory devices for storing dispersed error encoded data.
  • Each of the computing devices 12-16, the managing unit 18, and the integrity processing unit 20 include a computing core 26, which includes network interfaces 30-33. Computing devices 12-16 may each be a portable computing device and/or a fixed computing device. A portable computing device may be a social networking device, a gaming device, a cell phone, a smart phone, a digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, and/or any other portable device that includes a computing core. A fixed computing device may be a computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game console, and/or any type of home or office computing equipment. Note that each of the managing unit 18 and the integrity processing unit 20 may be separate computing devices, may be a common computing device, and/or may be integrated into one or more of the computing devices 12-16 and/or into one or more of the storage units 36.
  • Each interface 30, 32, and 33 includes software and hardware to support one or more communication links via the network 24 indirectly and/or directly. For example, interface 30 supports a communication link (e.g., wired, wireless, direct, via a LAN, via the network 24, etc.) between computing devices 14 and 16. As another example, interface 32 supports communication links (e.g., a wired connection, a wireless connection, a LAN connection, and/or any other type of connection to/from the network 24) between computing devices 12 & 16 and the DSN memory 22. As yet another example, interface 33 supports a communication link for each of the managing unit 18 and the integrity processing unit 20 to the network 24.
  • Computing devices 12 and 16 include a dispersed storage (DS) client module 34, which enables the computing device to dispersed storage error encode and decode data 40 as subsequently described with reference to one or more of FIGS. 3-8. In this example embodiment, computing device 16 functions as a dispersed storage processing agent for computing device 14. In this role, computing device 16 dispersed storage error encodes and decodes data on behalf of computing device 14. With the use of dispersed storage error encoding and decoding, the DSN 10 is tolerant of a significant number of storage unit failures (the number of failures is based on parameters of the dispersed storage error encoding function) without loss of data and without the need for a redundant or backup copies of the data. Further, the DSN 10 stores data for an indefinite period of time without data loss and in a secure manner (e.g., the system is very resistant to unauthorized attempts at accessing the data).
  • In operation, the managing unit 18 performs DS management services. For example, the managing unit 18 establishes distributed data storage parameters (e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.) for computing devices 12-14 individually or as part of a group of user devices. As a specific example, the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSTN memory 22 for a user device, a group of devices, or for public access and establishes per vault dispersed storage (DS) error encoding parameters for a vault. The managing unit 18 facilitates storage of DS error encoding parameters for each vault by updating registry information of the DSN 10, where the registry information may be stored in the DSN memory 22, a computing device 12-16, the managing unit 18, and/or the integrity processing unit 20.
  • The DSN managing unit 18 creates and stores user profile information (e.g., an access control list (ACL)) in local memory and/or within memory of the DSN memory 22. The user profile information includes authentication information, permissions, and/or the security parameters. The security parameters may include encryption/decryption scheme, one or more encryption keys, key generation scheme, and/or data encoding/decoding scheme.
  • The DSN managing unit 18 creates billing information for a particular user, a user group, a vault access, public vault access, etc. For instance, the DSTN managing unit 18 tracks the number of times a user accesses a non-public vault and/or public vaults, which can be used to generate a per-access billing information. In another instance, the DSTN managing unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group, which can be used to generate a per-data-amount billing information.
  • As another example, the managing unit 18 performs network operations, network administration, and/or network maintenance. Network operations includes authenticating user data allocation requests (e.g., read and/or write requests), managing creation of vaults, establishing authentication credentials for user devices, adding/deleting components (e.g., user devices, storage units, and/or computing devices with a DS client module 34) to/from the DSN 10, and/or establishing authentication credentials for the storage units 36. Network administration includes monitoring devices and/or units for failures, maintaining vault information, determining device and/or unit activation status, determining device and/or unit loading, and/or determining any other system level operation that affects the performance level of the DSN 10. Network maintenance includes facilitating replacing, upgrading, repairing, and/or expanding a device and/or unit of the DSN 10.
  • The integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded data slices. At a high level, the integrity processing unit 20 performs rebuilding by periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded data slices, from the DSN memory 22. For retrieved encoded slices, they are checked for errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged as a ‘bad’ slice. For encoded data slices that were not received and/or not listed, they are flagged as missing slices. Bad and/or missing slices are subsequently rebuilt using other retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices. The rebuilt slices are stored in the DSTN memory 22.
  • FIG. 2 is a schematic block diagram of an embodiment of a computing core 26 that includes a processing module 50, a memory controller 52, main memory 54, a video graphics processing unit 55, an input/output (IO) controller 56, a peripheral component interconnect (PCI) interface 58, an IO interface module 60, at least one IO device interface module 62, a read only memory (ROM) basic input output system (BIOS) 64, and one or more memory interface modules. The one or more memory interface module(s) includes one or more of a universal serial bus (USB) interface module 66, a host bus adapter (HBA) interface module 68, a network interface module 70, a flash interface module 72, a hard drive interface module 74, and a DSN interface module 76.
  • The DSN interface module 76 functions to mimic a conventional operating system (OS) file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet small computer system interface (iSCSI), etc.). The DSN interface module 76 and/or the network interface module 70 may function as one or more of the interface 30-33 of FIG. 1. Note that the IO device interface module 62 and/or the memory interface modules 66-76 may be collectively or individually referred to as IO ports.
  • FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data. When a computing device 12 or 16 has data to store it disperse storage error encodes the data in accordance with a dispersed storage error encoding process based on dispersed storage error encoding parameters. The dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values. The per data segment encoding values include a total, or pillar width, number (T) of encoded data slices per encoding of a data segment i.e., in a set of encoded data slices); a decode threshold number (D) of encoded data slices of a set of encoded data slices that are needed to recover the data segment; a read threshold number (R) of encoded data slices to indicate a number of encoded data slices per set to be read from storage for decoding of the data segment; and/or a write threshold number (W) to indicate a number of encoded data slices per set that must be accurately stored before the encoded data segment is deemed to have been properly stored. The dispersed storage error encoding parameters may further include slicing information (e.g., the number of encoded data slices that will be created for each data segment) and/or slice security information (e.g., per encoded data slice encryption, compression, integrity checksum, etc.).
  • In the present example, Cauchy Reed-Solomon has been selected as the encoding function (a generic example is shown in FIG. 4 and a specific example is shown in FIG. 5); the data segmenting protocol is to divide the data object into fixed sized data segments; and the per data segment encoding values include: a pillar width of 5, a decode threshold of 3, a read threshold of 4, and a write threshold of 4. In accordance with the data segmenting protocol, the computing device 12 or 16 divides the data (e.g., a file (e.g., text, video, audio, etc.), a data object, or other data arrangement) into a plurality of fixed sized data segments (e.g., 1 through Y of a fixed size in range of Kilo-bytes to Tera-bytes or more). The number of data segments created is dependent of the size of the data and the data segmenting protocol.
  • The computing device 12 or 16 then disperse storage error encodes a data segment using the selected encoding function (e.g., Cauchy Reed-Solomon) to produce a set of encoded data slices. FIG. 4 illustrates a generic Cauchy Reed-Solomon encoding function, which includes an encoding matrix (EM), a data matrix (DM), and a coded matrix (CM). The size of the encoding matrix (EM) is dependent on the pillar width number (T) and the decode threshold number (D) of selected per data segment encoding values. To produce the data matrix (DM), the data segment is divided into a plurality of data blocks and the data blocks are arranged into D number of rows with Z data blocks per row. Note that Z is a function of the number of data blocks created from the data segment and the decode threshold number (D). The coded matrix is produced by matrix multiplying the data matrix by the encoding matrix.
  • FIG. 5 illustrates a specific example of Cauchy Reed-Solomon encoding with a pillar number (T) of five and decode threshold number of three. In this example, a first data segment is divided into twelve data blocks (D1-D12). The coded matrix includes five rows of coded data blocks, where the first row of X11-X14 corresponds to a first encoded data slice (EDS 1_1), the second row of X21-X24 corresponds to a second encoded data slice (EDS 2_1), the third row of X31-X34 corresponds to a third encoded data slice (EDS 3_1), the fourth row of X41-X44 corresponds to a fourth encoded data slice (EDS 4_1), and the fifth row of X51-X54 corresponds to a fifth encoded data slice (EDS 5_1). Note that the second number of the EDS designation corresponds to the data segment number.
  • Returning to the discussion of FIG. 3, the computing device also creates a slice name (SN) for each encoded data slice (EDS) in the set of encoded data slices. A typical format for a slice name 80 is shown in FIG. 6. As shown, the slice name (SN) 80 includes a pillar number of the encoded data slice (e.g., one of 1-T), a data segment number (e.g., one of 1-Y), a vault identifier (ID), a data object identifier (ID), and may further include revision level information of the encoded data slices. The slice name functions as, at least part of, a DSN address for the encoded data slice for storage and retrieval from the DSN memory 22.
  • As a result of encoding, the computing device 12 or 16 produces a plurality of sets of encoded data slices, which are provided with their respective slice names to the storage units for storage. As shown, the first set of encoded data slices includes EDS 1_1 through EDS 5_1 and the first set of slice names includes SN 1_1 through SN 5_1 and the last set of encoded data slices includes EDS 1_Y through EDS 5_Y and the last set of slice names includes SN 1_Y through SN 5_Y.
  • FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of a data object that was dispersed storage error encoded and stored in the example of FIG. 4. In this example, the computing device 12 or 16 retrieves from the storage units at least the decode threshold number of encoded data slices per data segment. As a specific example, the computing device retrieves a read threshold number of encoded data slices.
  • To recover a data segment from a decode threshold number of encoded data slices, the computing device uses a decoding function as shown in FIG. 8. As shown, the decoding function is essentially an inverse of the encoding function of FIG. 4. The coded matrix includes a decode threshold number of rows (e.g., three in this example) and the decoding matrix in an inversion of the encoding matrix that includes the corresponding rows of the coded matrix. For example, if the coded matrix includes rows 1, 2, and 4, the encoding matrix is reduced to rows 1, 2, and 4, and then inverted to produce the decoding matrix.
  • FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) that includes a rebuilding module 90, the network 24 of FIG. 1, and the storage unit 36 of FIG. 1. The rebuilding module 90 may be implemented by one of a computing device 12 or 16, a managing unit 18, and a integrity processing unit 20 of FIG. 1. The storage unit 36 includes the memory 88. The DSN functions to efficiently identify encoded data slices stored in the memory 88.
  • In an example of operation of the identifying of the encoded data slices stored in the memory 88, the rebuilding module 90 issues, via the network 24, a list range request 1 that identifies a start slice name range and an end slice name range. The encoded data slices stored in the memory 88 are associated with slice names. The storage unit 36 is associated with a stored slice name range, where the stored slice name range includes slice names of the stored encoded data slices. The stored slice name range includes a range of the list range request. For example, the start slice name range and the end slice name range fall within the stored slice name range.
  • The storage unit 36 receives the list range request 1. Having received the list range request 1, the storage unit 36 identifies slice names 80 associated with stored encoded data slices corresponding to the list range request 1. For example, the storage unit 36 identifies slices A-1-1, A-1-2, through A-1-M as the slice names that fall within the slice name range of the request.
  • Having identified the slice names of the stored encoded data slices associated with the request, the storage unit 36, for a first slice name 80 of the slice name range, generates a first portion of a list range response 1 that includes the first slice name (e.g., A-1-1) in a slice name field 89, an entry of a slice revision count field 92 corresponding to the first slice name, and, for each identified revision, the slice revision entry of a slice revision field 94 and a slice length entry of a slice length field 96. In one example, the slice revision entry includes 00h when there are no visible slice revisions. The slice length entry includes a slice length (e.g., number of bytes of the slice) of a slice revision.
  • Having generated the first portion of the list range response 1, the storage unit 36, for each remaining slice name of the slice name range, generates further portions of the list range response 1 that includes a representation of the remaining slice name in a slice name offset field 81, an entry of another slice revision count field 92 for the remaining slice name, and, for each identified revision of the remaining slice name, a slice revision entry of another slice revision field 94 and a slice length entry of another slice length field 96.
  • The representation of the remaining slice name includes at least one of an offset from the first slice name based on the remaining slice name, and a result of applying a deterministic function to the first slice name and the remaining slice name. For example, the storage unit 36 generates the representation of the remaining slice name as 10 when the remaining slice name (e.g., A-1-11) is offset by 10 from the first slice name. As such, a size efficiency is provided as successive slice name offset fields are smaller in size (e.g., 4-24 bytes) than the slice name field (e.g., 48 bytes).
  • FIG. 10 is a flowchart illustrating an example of identifying stored encoded data slices. The method begins or continues at step 100 where a processing module (e.g., of a dispersed storage (DS) client module) receives a list range request from a requesting entity, where the request includes a slice name range. The method continues at step 102 where the processing module identifies slice names of stored slices that correspond to the slice name range. For example, the processing module identifies slice names of stored encoded data slices where the slice names fall within the slice name range.
  • The method continues at step 104 where, for a first slice name of the slice name range, the processing module generates a first portion of a list range response that includes the first slice name and one or more other parameters of one or more revisions of stored slices associated with the first slice name. The other parameters include one or more of a slice revision count of the number of the one or more revisions, a slice revision number for each slice revision, and a slice length of the stored slice of each slice revision.
  • The method continues at step 106 where, for each remaining slice name of the slice name range, the processing module generates another portion of the list range response that includes a representation of the remaining slice name and one or more other parameters of one or more revisions of stored slices associated with the remaining slice name. For example, the processing module generates the other portion of the list range response to include an offset from the first slice name as the representation of the remaining slice name. The method continues at step 108 where the processing module sends the list range response to the requesting entity.
  • FIGS. 11A-11D are a schematic block diagrams of examples of list range responses (e.g., a list range response of FIG. 9). The list range responses identify stored encoded data slices within a slice name range. For example, a list range response from a storage unit to a computing device of the DSN includes one or more representations of a range of slice names that identify the encoded data slices stored within the storage unit.
  • FIG. 11A is an example of a list range response message that includes a first slice name representation (SNR) 110 and a subsequent portion(s) representation 112. The first slice name representation identifies the first slice name. In one example, a representation is able to identify one or more slice names in accordance with one or more of a DSN protocol. In one example, the DSN protocol is based on dispersed storage error encoding parameters. For example, a data object A is dispersed storage error encoded in accordance with dispersed storage error encoding parameters to produce a plurality of sets of encoded data slices that are stored in a set of storage units of the DSN. In one example, a first encoded data slice of each set of the plurality of sets of encoded data slices are grouped into a first group of encoded data slices (e.g., share a common pillar number (e.g., 1 of A-1-1 through A-1-M)) and stored in a first storage unit of the set of storage units in accordance with the DSN protocol.
  • The dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values (e.g., pillar width, decode threshold, etc). In this example, a requesting device sends a list request for a range of encoded data slices A-1-1 through A-1-M. The request can include a representation structure for the list response. Alternatively, or in addition to, the representation structure is based on the DSN protocol (e.g., data segmenting protocol, data storage protocol, slice naming protocol, etc). For example, a requesting device determines the DSN protocol is to store the first pillar number of encoded data slices in the first storage unit. In this example, the requesting device determines the representation structure is to exclude (e.g., truncate) the pillar number in a list response. For example, the first slice name representation is A-2 for slice name A-1-2 and a first subsequent portion representation is A-3 for a slice name A-1-3.
  • FIG. 11B is an example of a list range response that includes a first slice name representation 110 and a last slice name representation 113. In one example, the first and last representations are of a similar representation structure. For example, the first slice name representation includes a result based on a deterministic function applied to the first slice name and the last slice name representation includes a second result based on the deterministic function applied to the last slice name. In a second example, the first and last representations are not of a similar representation structure. For example, the first slice name representation is the first slice name and the last slice name representation is an offset value of the last slice name from the first slice name.
  • FIG. 11C is a schematic block diagram of another example of a list range response that includes a first slice name representation (SNR) 110, a first contiguous range SNR 114, another first SNR and a second contiguous range SNR 116. In one example, a (e.g., the first) contiguous range SNR 114 includes the first SNR 110 (e.g., based on a DSN protocol). In a second example, the first contiguous range SNR 114 does not include the first SNR 110.
  • As a specific example, a storage device stores encoded data slices A-1-1 through A-1-M that are associated with a range of slice names. The storage device receives a list range request for the range of slice names that are associated with the encoded data slices A-1-1 through A-1-13. The storage device identifies encoded data slices A-1-2 through A-1-5 and A-1-7 through A-1-13 as being stored in memory of the storage device. The storage device generates the first SNR to include “A-2”, the 1st contiguous range SNR to include “3” (to represent A-1-3, A-1-4, and A-1-5), the additional first SNR to include “A-7” and the second contiguous range SNR to include “6” (to represent A-1-8, A-1-9, A-1-10, A-1-11, A-1-12 and A-1-13.
  • FIG. 11D is a schematic block diagram of another example of a list range response that includes a first SNR field 110, a 1st missing SNR field 115, a 2nd missing SNR field 115 and a last SNR field 113. In an example, the storage unit storing encoded data slices A-1-1 through A-1-13 receives a list range request that includes a slice name range and a representation structure that indicates to respond with a first slice name representation of the first slice name within the slice name range, a last slice name representation for the first slice name within the slice name range, and one or more missing SNRs 115.
  • As a specific example, the storage device receives a list range request for the range of slice names that are associated with the encoded data slices A-1-1 through A-1-13. The storage device identifies encoded data slices A-1-2 through A-1-5 and A-1-7 through A-1-13 as being stored in memory of the storage device. The storage device then generates, according to the representation structure, the first SNR to include “A-2”, the 1st missing slice SNR to include A-1-1, the 2nd missing slice SNR to include A-1-6 and the last SNR 113 to include A-1-13.
  • Note that any of the examples in the preceding figures may be combined. For example, a list range response may include a first SNR and a 1st missing contiguous range SNR. Further note, the offset may also indicate a difference between a first list range response and a second list range response. The offset may also be based on a data object identification, a pillar number, a segment number and other information within the slice name.
  • FIG. 12 is a logic diagram of an example of a method of listing stored encoded data slices in accordance with the present invention. The method begins with step 120, where a storage unit receives a list range request for a plurality of slice names within a slice name range, wherein the plurality of slice names is associated with a plurality of encoded data slices stored in the storage unit. In an example, data is dispersed storage error encoded into pluralities of sets of encoded data slices and stored in storage units of the DSN. The dispersed storage error encoding is in accordance with dispersed data storage parameters and the pluralities of sets of encoded data slices include the plurality of encoded data slices stored in the storage unit.
  • The method continues with step 122, where the storage unit identifies slice names of the plurality of slice names within the slice name range. For example, the storage unit identifies the slice names associated with encoded data slices stored in the storage unit within the slice name range.
  • The method continues with step 124, where the storage unit determines a representation structure for a list range response. The representation structure includes one or more of an offset representation, a first slice name representation, a last slice name representation, a deterministic function representation, a missing encoded data slice representation, a contiguous grouping of encoded data slices representation, a revision representation (e.g., all slice lengths or revisions are the same across two or more slice names, an offset in the revision field, etc.) and any other information regarding the structure of a list name response.
  • The method continues with step 126, where the storage unit generates, in accordance with the representation structure, a first portion of a list range response for a first slice name of the slice names. The first portion includes a first representation of the first slice name. As an example, the first representation includes one of the first slice name, a result based on performing a deterministic function on the first slice name and a truncated (e.g., shortened) version of the first slice name. Note the first portion and the one or more subsequent portions may each further include a slice revision count field. The slice revision count field includes one or more slice revision fields and one or more corresponding slice length fields.
  • The method continues with step 128, where the storage unit generates, in accordance with the representation structure, one or more subsequent portions of the list range response for remaining slice names of the slice names. The one or more subsequent portions includes one or more representations of the remaining slices names. For example, a representation of the one or more representations includes one or more of an offset from the first slice name, a result based on a deterministic function applied to the first slice name and a remaining slice name of the remaining slice names, a result based on a number of slice names within a contiguous range of slice names of the remaining slice names, and a last slice name of the slice names.
  • The method continues with step 130, where the storage unit sends the list range response to the requesting device. In an example, list range response further includes one or more of a request number, a payload length (e.g., a number of bytes after a header), a first slice name, and a last slice name.
  • It is noted that terminologies as may be used herein such as bit stream, stream, signal sequence, etc. (or their equivalents) have been used interchangeably to describe digital information whose content corresponds to any of a number of desired types (e.g., data, video, speech, audio, etc. any of which may generally be referred to as ‘data’).
  • As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1. As may be used herein, the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
  • As may also be used herein, the terms “processing module”, “processing circuit”, “processor”, and/or “processing unit” may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture.
  • One or more embodiments have been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claims. Further, the boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality.
  • To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claims. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.
  • In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
  • The one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
  • Unless specifically stated to the contra, signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential. For instance, if a signal path is shown as a single-ended path, it also represents a differential signal path. Similarly, if a signal path is shown as a differential path, it also represents a single-ended signal path. While one or more particular architectures are described herein, other architectures can likewise be implemented that use one or more data buses not expressly shown, direct connectivity between elements, and/or indirect coupling between other elements as recognized by one of average skill in the art.
  • The term “module” is used in the description of one or more of the embodiments. A module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions. A module may operate independently and/or in conjunction with software and/or firmware. As also used herein, a module may contain one or more sub-modules, each of which may be one or more modules.
  • As may further be used herein, a computer readable memory includes one or more memory elements. A memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. The memory device may be in a form a solid state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.
  • While particular combinations of various functions and features of the one or more embodiments have been expressly described herein, other combinations of these features and functions are likewise possible. The present disclosure is not limited by the particular examples disclosed herein and expressly incorporates these other combinations.

Claims (18)

What is claimed is:
1. A method for execution by a storage unit of a dispersed storage network (DSN) comprises:
receiving, from a requesting device, a list range request for a plurality of slice names within a slice name range, wherein the plurality of slice names are associated with a plurality of encoded data slices stored in the storage unit, wherein data is dispersed storage error encoded into pluralities of sets of encoded data slices and stored in storage units of the DSN, wherein the dispersed storage error encoding is in accordance with dispersed data storage parameters, wherein the pluralities of sets of encoded data slices include the plurality of encoded data slices;
identifying slice names of the plurality of slice names within the slice name range;
determining a representation structure for a list range response;
generating, in accordance with the representation structure, a first portion of a list range response for a first slice name of the slice names, wherein the first portion includes a first representation of the first slice name;
generating, in accordance with the representation structure, one or more subsequent portions of the list range response for remaining slice names of the slice names, wherein the one or more subsequent portions includes one or more representations of the remaining slices names; and
sending the list range response to the requesting device.
2. The method of claim 1, wherein the first representation includes one of:
the first slice name;
a result based on performing a deterministic function on the first slice name; and
a truncated version of the first slice name.
3. The method of claim 1, wherein a representation of the one or more representations includes one of:
an offset from the first slice name;
a result based on a deterministic function applied to the first slice name and a remaining slice name of the remaining slice names;
a result based on a number of slice names within a contiguous range of slice names of the remaining slice names; and
a last slice name of the slice names.
4. The method of claim 1, wherein the first portion further includes a slice revision count field, wherein the slice revision count field includes one or more of:
one or more slice revision fields; and
one or more corresponding slice length fields.
5. The method of claim 1, wherein the one or more subsequent portions each further include a slice revision count field, wherein the slice revision count field includes one or more of:
one or more slice revision fields; and
one or more corresponding slice length fields.
6. The method of claim 1, wherein the list range response further includes one or more of:
a request number;
a payload length;
a first slice name; and
a last slice name.
7. The method of claim 1 further comprises:
generating, in accordance with the representation structure, for a last slice name of the slice names, a last portion of the list range response.
8. The method of claim 1, wherein the representation structure includes one or more of:
an offset representation;
a first slice name representation;
a last slice name representation;
a deterministic function representation;
a missing encoded data slice representation;
a contiguous grouping of encoded data slices representation; and
a revision representation.
9. The method of claim 1, wherein the list range request includes the representation structure.
10. A storage unit of a dispersed storage network (DSN) comprises:
memory;
an interface; and
a processing module operably coupled to the memory and the interface, wherein the processing module is operable to:
receive, via the interface and from a requesting device, a list range request for a plurality of slice names within a slice name range, wherein the plurality of slice names are associated with a plurality of encoded data slices stored in the storage unit, wherein data is dispersed storage error encoded into pluralities of sets of encoded data slices and stored in storage units of the DSN, wherein the dispersed storage error encoding is in accordance with dispersed data storage parameters, wherein the pluralities of sets of encoded data slices include the plurality of encoded data slices;
identify slice names of the plurality of slice names within the slice name range;
determine a representation structure for a list range response;
generate, in accordance with the representation structure, a first portion of a list range response for a first slice name of the slice names, wherein the first portion includes a first representation of the first slice name;
generate, in accordance with the representation structure, one or more subsequent portions of the list range response for remaining slice names of the slice names, wherein the one or more subsequent portions includes one or more representations of the remaining slices names; and
send, via the interface, the list range response to the requesting device.
11. The storage unit of claim 10, wherein the processing module is operable to generate the first representation to include one of:
the first slice name;
a result based on performing a deterministic function on the first slice name; and
a truncated version of the first slice name.
12. The storage unit of claim 10, wherein processing module is operable to generate a representation of the one or more representations to include one or more of:
an offset from the first slice name;
a result based on a deterministic function applied to the first slice name and a remaining slice name of the remaining slice names;
a result based on a number of slice names within a contiguous range of slice names of the remaining slice names; and
a last slice name of the slice names.
13. The storage unit of claim 10, wherein the processing module is operable to generate the first portion to further include a slice revision count field, wherein the slice revision count field includes one or more of:
one or more slice revision fields; and
one or more corresponding slice length fields.
14. The storage unit of claim 10, wherein the processing module is further operable to generate the one or more subsequent portions to each further include a slice revision count field, wherein the slice revision count field includes one or more of:
one or more slice revision fields; and
one or more corresponding slice length fields.
15. The storage unit of claim 10, wherein the processing module is operable to generate the list range response to include one or more of:
a request number;
a payload length;
a first slice name; and
a last slice name.
16. The storage unit of claim 10, wherein the processing module is further operable to:
generating, in accordance with the representation structure, for a last slice name of the slice names, a last portion of the list range response.
17. The storage unit of claim 10, wherein the representation structure includes one or more of:
an offset representation;
a first slice name representation;
a last slice name representation;
a deterministic function representation;
a missing encoded data slice representation;
a contiguous grouping of encoded data slices representation; and
a revision representation.
18. The storage unit of claim 10, wherein the list range request includes the representation structure.
US16/197,235 2014-04-02 2018-11-20 Compressing a slice name listing in a dispersed storage network Abandoned US20190087599A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/197,235 US20190087599A1 (en) 2014-04-02 2018-11-20 Compressing a slice name listing in a dispersed storage network
US16/883,902 US10891390B1 (en) 2014-04-02 2020-05-26 Adjusting data storage efficiency of data in a storage network
US17/247,417 US11586755B1 (en) 2014-04-02 2020-12-10 Adjusting efficiency of storing data in a storage network
US18/105,616 US11928230B2 (en) 2014-04-02 2023-02-03 Adjusting efficiency of storing data

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461974142P 2014-04-02 2014-04-02
US14/610,220 US20150288680A1 (en) 2014-04-02 2015-01-30 Distributing registry information in a dispersed storage network
US15/721,093 US10325110B2 (en) 2014-04-02 2017-09-29 Distributing registry information in a dispersed storage network
US16/197,235 US20190087599A1 (en) 2014-04-02 2018-11-20 Compressing a slice name listing in a dispersed storage network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/721,093 Continuation-In-Part US10325110B2 (en) 2014-04-02 2017-09-29 Distributing registry information in a dispersed storage network

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/883,902 Continuation US10891390B1 (en) 2014-04-02 2020-05-26 Adjusting data storage efficiency of data in a storage network

Publications (1)

Publication Number Publication Date
US20190087599A1 true US20190087599A1 (en) 2019-03-21

Family

ID=65719397

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/197,235 Abandoned US20190087599A1 (en) 2014-04-02 2018-11-20 Compressing a slice name listing in a dispersed storage network
US16/883,902 Active US10891390B1 (en) 2014-04-02 2020-05-26 Adjusting data storage efficiency of data in a storage network
US17/247,417 Active 2035-08-05 US11586755B1 (en) 2014-04-02 2020-12-10 Adjusting efficiency of storing data in a storage network
US18/105,616 Active US11928230B2 (en) 2014-04-02 2023-02-03 Adjusting efficiency of storing data

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/883,902 Active US10891390B1 (en) 2014-04-02 2020-05-26 Adjusting data storage efficiency of data in a storage network
US17/247,417 Active 2035-08-05 US11586755B1 (en) 2014-04-02 2020-12-10 Adjusting efficiency of storing data in a storage network
US18/105,616 Active US11928230B2 (en) 2014-04-02 2023-02-03 Adjusting efficiency of storing data

Country Status (1)

Country Link
US (4) US20190087599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445782A (en) * 2019-08-06 2019-11-12 郑州信大捷安信息技术股份有限公司 A kind of multi-media safety broadcast control system and method
US10949301B2 (en) * 2011-06-06 2021-03-16 Pure Storage, Inc. Pre-positioning pre-stored content in a content distribution system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230092245A1 (en) * 2021-09-17 2023-03-23 Microsoft Technology Licensing, Llc Resistance to side-channel attacks on 5g network slices

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092732A (en) 1977-05-31 1978-05-30 International Business Machines Corporation System for recovering data stored in failed memory unit
US5485474A (en) 1988-02-25 1996-01-16 The President And Fellows Of Harvard College Scheme for information dispersal and reconstruction
US5454101A (en) 1992-09-15 1995-09-26 Universal Firmware Industries, Ltd. Data storage system with set lists which contain elements associated with parents for defining a logical hierarchy and general record pointers identifying specific data sets
US5987622A (en) 1993-12-10 1999-11-16 Tm Patents, Lp Parallel computer system including parallel storage subsystem including facility for correction of data in the event of failure of a storage device in parallel storage subsystem
US5825880A (en) 1994-01-13 1998-10-20 Sudia; Frank W. Multi-step digital signature method and system
US20020013898A1 (en) 1997-06-04 2002-01-31 Sudia Frank W. Method and apparatus for roaming use of cryptographic values
US6175571B1 (en) 1994-07-22 2001-01-16 Network Peripherals, Inc. Distributed memory switching hub
US5848230A (en) 1995-05-25 1998-12-08 Tandem Computers Incorporated Continuously available computer memory systems
US5774643A (en) 1995-10-13 1998-06-30 Digital Equipment Corporation Enhanced raid write hole protection and recovery
US5732062A (en) * 1995-10-16 1998-03-24 Ricoh Company, Ltd. Information recording apparatus, method and computer program product
US5809285A (en) 1995-12-21 1998-09-15 Compaq Computer Corporation Computer system having a virtual drive array controller
US6012159A (en) 1996-01-17 2000-01-04 Kencast, Inc. Method and system for error-free data transfer
US5802364A (en) 1996-04-15 1998-09-01 Sun Microsystems, Inc. Metadevice driver rename/exchange technique for a computer system incorporating a plurality of independent device drivers
US5890156A (en) 1996-05-02 1999-03-30 Alcatel Usa, Inc. Distributed redundant database
US6058454A (en) 1997-06-09 2000-05-02 International Business Machines Corporation Method and system for automatically configuring redundant arrays of disk memory devices
US6088330A (en) 1997-09-09 2000-07-11 Bruck; Joshua Reliable array of distributed computing nodes
US5991414A (en) 1997-09-12 1999-11-23 International Business Machines Corporation Method and apparatus for the secure distributed storage and retrieval of information
US6272658B1 (en) 1997-10-27 2001-08-07 Kencast, Inc. Method and system for reliable broadcasting of data files and streams
JPH11161505A (en) 1997-12-01 1999-06-18 Matsushita Electric Ind Co Ltd Media send-out device
JPH11167443A (en) 1997-12-02 1999-06-22 Casio Comput Co Ltd Interface device
US6374336B1 (en) 1997-12-24 2002-04-16 Avid Technology, Inc. Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner
US6415373B1 (en) 1997-12-24 2002-07-02 Avid Technology, Inc. Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner
CA2341014A1 (en) 1998-08-19 2000-03-02 Alexander Roger Deas A system and method for defining transforms of memory device addresses
US6356949B1 (en) 1999-01-29 2002-03-12 Intermec Ip Corp. Automatic data collection device that receives data output instruction from data consumer
US6609223B1 (en) 1999-04-06 2003-08-19 Kencast, Inc. Method for packet-level fec encoding, in which on a source packet-by-source packet basis, the error correction contributions of a source packet to a plurality of wildcard packets are computed, and the source packet is transmitted thereafter
US6571282B1 (en) 1999-08-31 2003-05-27 Accenture Llp Block-based communication in a communication services patterns environment
US6826711B2 (en) 2000-02-18 2004-11-30 Avamar Technologies, Inc. System and method for data protection with multidimensional parity
US7359507B2 (en) 2000-03-10 2008-04-15 Rsa Security Inc. Server-assisted regeneration of a strong secret from a weak secret
US6718361B1 (en) 2000-04-07 2004-04-06 Network Appliance Inc. Method and apparatus for reliable and scalable distribution of data files in distributed networks
WO2002035359A2 (en) 2000-10-26 2002-05-02 Prismedia Networks, Inc. Method and system for managing distributed content and related metadata
US7146644B2 (en) 2000-11-13 2006-12-05 Digital Doors, Inc. Data security system and method responsive to electronic attacks
US7140044B2 (en) 2000-11-13 2006-11-21 Digital Doors, Inc. Data security system and method for separation of user communities
US8176563B2 (en) 2000-11-13 2012-05-08 DigitalDoors, Inc. Data security system and method with editor
US7103915B2 (en) 2000-11-13 2006-09-05 Digital Doors, Inc. Data security system and method
GB2369206B (en) 2000-11-18 2004-11-03 Ibm Method for rebuilding meta-data in a data storage system and a data storage system
US6785783B2 (en) 2000-11-30 2004-08-31 International Business Machines Corporation NUMA system with redundant main memory architecture
US7080101B1 (en) 2000-12-01 2006-07-18 Ncr Corp. Method and apparatus for partitioning data for storage in a database
US20020080888A1 (en) 2000-12-22 2002-06-27 Li Shu Message splitting and spatially diversified message routing for increasing transmission assurance and data security over distributed networks
US6857059B2 (en) 2001-01-11 2005-02-15 Yottayotta, Inc. Storage virtualization system and methods
US20020156974A1 (en) 2001-01-29 2002-10-24 Ulrich Thomas R. Redundant dynamically distributed file system
KR100777271B1 (en) * 2001-02-28 2007-11-20 엘지전자 주식회사 method for memory management in digital system
US20030037261A1 (en) 2001-03-26 2003-02-20 Ilumin Corporation Secured content delivery system and method
US6879596B1 (en) 2001-04-11 2005-04-12 Applied Micro Circuits Corporation System and method for systolic array sorting of information segments
US7024609B2 (en) 2001-04-20 2006-04-04 Kencast, Inc. System for protecting the transmission of live data streams, and upon reception, for reconstructing the live data streams and recording them into files
GB2377049A (en) 2001-06-30 2002-12-31 Hewlett Packard Co Billing for utilisation of a data storage array
US6944785B2 (en) 2001-07-23 2005-09-13 Network Appliance, Inc. High-availability cluster virtual server system
US7636724B2 (en) 2001-08-31 2009-12-22 Peerify Technologies LLC Data storage system and method by shredding and deshredding
CN1207867C (en) 2001-09-28 2005-06-22 中国科学院研究生院 Safe digital signature system and its digital signature method
US7024451B2 (en) 2001-11-05 2006-04-04 Hewlett-Packard Development Company, L.P. System and method for maintaining consistent independent server-side state among collaborating servers
US7003688B1 (en) 2001-11-15 2006-02-21 Xiotech Corporation System and method for a reserved memory area shared by all redundant storage controllers
US7171493B2 (en) 2001-12-19 2007-01-30 The Charles Stark Draper Laboratory Camouflage of network traffic to resist attack
CA2493610C (en) 2002-07-29 2014-01-14 Robert Halford Multi-dimensional data protection and mirroring method for micro level data
US7051155B2 (en) 2002-08-05 2006-05-23 Sun Microsystems, Inc. Method and system for striping data to accommodate integrity metadata
US20040122917A1 (en) 2002-12-18 2004-06-24 Menon Jaishankar Moothedath Distributed storage system for data-sharing among client computers running defferent operating system types
CA2519116C (en) 2003-03-13 2012-11-13 Drm Technologies, Llc Secure streaming container
US7185144B2 (en) 2003-11-24 2007-02-27 Network Appliance, Inc. Semi-static distribution technique
GB0308264D0 (en) 2003-04-10 2003-05-14 Ibm Recovery from failures within data processing systems
GB0308262D0 (en) 2003-04-10 2003-05-14 Ibm Recovery from failures within data processing systems
US7415115B2 (en) 2003-05-14 2008-08-19 Broadcom Corporation Method and system for disaster recovery of data from a storage device
DE10336148A1 (en) 2003-08-07 2005-03-10 Bayerische Motoren Werke Ag A method of signing a data set in a public-key system and a data processing system for performing the method
EP1668486A2 (en) 2003-08-14 2006-06-14 Compellent Technologies Virtual disk drive system and method
US7899059B2 (en) 2003-11-12 2011-03-01 Agere Systems Inc. Media delivery using quality of service differentiation within a media stream
US7797544B2 (en) 2003-12-11 2010-09-14 Microsoft Corporation Attesting to establish trust between computer entities
US8332483B2 (en) 2003-12-15 2012-12-11 International Business Machines Corporation Apparatus, system, and method for autonomic control of grid system resources
US7206899B2 (en) 2003-12-29 2007-04-17 Intel Corporation Method, system, and program for managing data transfer and construction
US7225211B1 (en) * 2003-12-31 2007-05-29 Veritas Operating Corporation Multi-class storage mechanism
US7222133B1 (en) 2004-02-05 2007-05-22 Unisys Corporation Method for reducing database recovery time
US7240236B2 (en) 2004-03-23 2007-07-03 Archivas, Inc. Fixed content distributed data storage using permutation ring encoding
US8050409B2 (en) 2004-04-02 2011-11-01 University Of Cincinnati Threshold and identity-based key management and authentication for wireless ad hoc networks
US7231578B2 (en) 2004-04-02 2007-06-12 Hitachi Global Storage Technologies Netherlands B.V. Techniques for detecting and correcting errors using multiple interleave erasure pointers
JP4446839B2 (en) 2004-08-30 2010-04-07 株式会社日立製作所 Storage device and storage management device
US7680771B2 (en) 2004-12-20 2010-03-16 International Business Machines Corporation Apparatus, system, and method for database provisioning
US7386758B2 (en) 2005-01-13 2008-06-10 Hitachi, Ltd. Method and apparatus for reconstructing data in object-based storage arrays
JP4579000B2 (en) * 2005-02-14 2010-11-10 株式会社日立製作所 Data allocation setting in computer system
US7672930B2 (en) 2005-04-05 2010-03-02 Wal-Mart Stores, Inc. System and methods for facilitating a linear grid database with data organization by dimension
US8171101B2 (en) 2005-09-30 2012-05-01 Cleversafe, Inc. Smart access to a dispersed data storage network
US7546427B2 (en) 2005-09-30 2009-06-09 Cleversafe, Inc. System for rebuilding dispersed data
US7904475B2 (en) 2007-10-09 2011-03-08 Cleversafe, Inc. Virtualized data storage vaults on a dispersed data storage network
US7574579B2 (en) 2005-09-30 2009-08-11 Cleversafe, Inc. Metadata management system for an information dispersed storage system
US7953937B2 (en) 2005-09-30 2011-05-31 Cleversafe, Inc. Systems, methods, and apparatus for subdividing data for storage in a dispersed data storage grid
US8285878B2 (en) 2007-10-09 2012-10-09 Cleversafe, Inc. Block based access to a dispersed data storage network
US7574570B2 (en) 2005-09-30 2009-08-11 Cleversafe Inc Billing system for information dispersal system
US8989390B2 (en) 2005-12-12 2015-03-24 Qualcomm Incorporated Certify and split system and method for replacing cryptographic keys
US20070214285A1 (en) 2006-03-08 2007-09-13 Omneon Video Networks Gateway server
JP2007310608A (en) * 2006-05-18 2007-11-29 Fuji Xerox Co Ltd Data processor, data processing method and data processing program
JP2008084291A (en) * 2006-08-28 2008-04-10 Fujitsu Ltd Storage apparatus, control method, and control device
US20080126784A1 (en) * 2006-08-28 2008-05-29 Fujitsu Limited Storage apparatus, control method, and control device
JP5037952B2 (en) * 2007-01-15 2012-10-03 株式会社日立製作所 Storage system and storage system control method
US8930660B2 (en) 2007-02-16 2015-01-06 Panasonic Corporation Shared information distributing device, holding device, certificate authority device, and system
US7768886B2 (en) * 2007-02-26 2010-08-03 Mediatek Inc. Method for detecting a utilization status of an optical disc and apparatus thereof
GB2454640A (en) 2007-07-05 2009-05-20 Vodafone Plc Received message verification
US10268741B2 (en) * 2007-08-03 2019-04-23 International Business Machines Corporation Multi-nodal compression techniques for an in-memory database
IL187042A0 (en) * 2007-10-30 2008-02-09 Sandisk Il Ltd Write failure protection for hierarchical integrity schemes
JP5782214B2 (en) * 2008-05-30 2015-09-24 富士通株式会社 Information search program, information search device, and information search method
US20100037056A1 (en) 2008-08-07 2010-02-11 Follis Benjamin D Method to support privacy preserving secure data management in archival systems
US20100094972A1 (en) 2008-10-15 2010-04-15 Patentvc Ltd. Hybrid distributed streaming system comprising high-bandwidth servers and peer-to-peer devices
US7818441B2 (en) 2008-10-15 2010-10-19 Patentvc Ltd. Methods and systems for using a distributed storage to its maximum bandwidth
US8468355B2 (en) 2008-12-19 2013-06-18 University Of South Carolina Multi-dimensional credentialing using veiled certificates
CN102209953B (en) * 2009-01-30 2014-04-30 株式会社日立制作所 Storage system and storage control method that compress and store data elements
US8775736B2 (en) * 2009-10-20 2014-07-08 Dell Products, Lp System and method for enhanced application performance with tiered storage in an information handling system
CN102053990A (en) * 2009-10-30 2011-05-11 国际商业机器公司 Structured document processing method and equipment
US9152514B2 (en) 2009-11-24 2015-10-06 Cleversafe, Inc. Rebuilding a data segment in a dispersed storage network
JP2011128792A (en) * 2009-12-16 2011-06-30 Toshiba Corp Memory management device
US8725940B2 (en) * 2010-02-27 2014-05-13 Cleversafe, Inc. Distributedly storing raid data in a raid memory and a dispersed storage network memory
US8707091B2 (en) * 2010-03-15 2014-04-22 Cleversafe, Inc. Failsafe directory file system in a dispersed storage network
US8625635B2 (en) 2010-04-26 2014-01-07 Cleversafe, Inc. Dispersed storage network frame protocol header
US8566354B2 (en) * 2010-04-26 2013-10-22 Cleversafe, Inc. Storage and retrieval of required slices in a dispersed storage network
US9495117B2 (en) 2010-04-26 2016-11-15 International Business Machines Corporation Storing data in a dispersed storage network
US8683259B2 (en) 2010-05-19 2014-03-25 Cleversafe, Inc. Accessing data in multiple dispersed storage networks
US8892598B2 (en) 2010-06-22 2014-11-18 Cleversafe, Inc. Coordinated retrieval of data from a dispersed storage network
US8300506B1 (en) * 2010-06-23 2012-10-30 Marvell International Ltd. Overwrite parameter determination for optical drive
JP2012033002A (en) * 2010-07-30 2012-02-16 Toshiba Corp Memory management device and memory management method
US8904226B2 (en) * 2010-08-26 2014-12-02 Cleversafe, Inc. Migrating stored copies of a file to stored encoded data slices
US8627065B2 (en) 2010-11-09 2014-01-07 Cleversafe, Inc. Validating a certificate chain in a dispersed storage network
US9483398B2 (en) * 2010-11-29 2016-11-01 International Business Machines Corporation Partitioning data for storage in a dispersed storage network
US20120226667A1 (en) 2011-03-02 2012-09-06 Cleversafe, Inc. Determining a staleness state of a dispersed storage network local directory
US9219604B2 (en) 2011-05-09 2015-12-22 Cleversafe, Inc. Generating an encrypted message for storage
US8776186B2 (en) 2011-10-04 2014-07-08 Cleversafe, Inc. Obtaining a signed certificate for a dispersed storage network
US9430286B2 (en) 2011-12-12 2016-08-30 International Business Machines Corporation Authorizing distributed task processing in a distributed storage network
US9235590B1 (en) * 2011-12-30 2016-01-12 Teradata Us, Inc. Selective data compression in a database system
US9613052B2 (en) * 2012-06-05 2017-04-04 International Business Machines Corporation Establishing trust within a cloud computing system
US9413801B2 (en) 2012-06-28 2016-08-09 Adobe Systems Incorporated Media stream index merging
US20140074834A1 (en) * 2012-09-13 2014-03-13 Transparent Io, Inc. Storage Block Metadata Tagger
US10075523B2 (en) 2013-04-01 2018-09-11 International Business Machines Corporation Efficient storage of data in a dispersed storage network
US9405609B2 (en) 2013-05-22 2016-08-02 International Business Machines Corporation Storing data in accordance with a performance threshold
US9501360B2 (en) 2013-07-01 2016-11-22 International Business Machines Corporation Rebuilding data while reading data in a dispersed storage network
US20150039660A1 (en) 2013-07-31 2015-02-05 Cleversafe, Inc. Co-locate objects request
JP6190898B2 (en) * 2013-10-28 2017-08-30 株式会社日立製作所 System connected to server and method by system connected to server on which virtual machine is running
US9208347B2 (en) * 2013-11-05 2015-12-08 Bank Of America Corporation Updating roles based access
US9691044B2 (en) * 2013-11-05 2017-06-27 Bank Of America Corporation Application shell login role based access control
US9390283B2 (en) 2014-04-02 2016-07-12 International Business Machines Corporation Controlling access in a dispersed storage network
US10095872B2 (en) 2014-06-05 2018-10-09 International Business Machines Corporation Accessing data based on a dispersed storage network rebuilding issue
US9825652B1 (en) 2015-06-17 2017-11-21 Amazon Technologies, Inc. Inter-facility network traffic optimization for redundancy coded data storage systems
US10044371B2 (en) 2015-08-28 2018-08-07 Qualcomm Incorporated Systems and methods for repair rate control for large erasure coded data storage
US10564852B2 (en) 2016-06-25 2020-02-18 International Business Machines Corporation Method and system for reducing memory device input/output operations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10949301B2 (en) * 2011-06-06 2021-03-16 Pure Storage, Inc. Pre-positioning pre-stored content in a content distribution system
US11704195B1 (en) * 2011-06-06 2023-07-18 Pure Storage, Inc. Pre-positioning target content in a storage network
CN110445782A (en) * 2019-08-06 2019-11-12 郑州信大捷安信息技术股份有限公司 A kind of multi-media safety broadcast control system and method

Also Published As

Publication number Publication date
US11586755B1 (en) 2023-02-21
US11928230B2 (en) 2024-03-12
US20230177199A1 (en) 2023-06-08
US10891390B1 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
US10656871B2 (en) Expanding slice count in response to low-level failures
US10296404B2 (en) Determining slices used in a reconstruction
US20170153837A1 (en) Using pseudo dsn memory units to handle data in motion within a dsn memory
US10642489B2 (en) Determining when to initiate an intra-distributed storage unit rebuild vs. an inter-distributed storage unit rebuild
US10802732B2 (en) Multi-level stage locality selection on a large system
US10505915B2 (en) Determining whether to compress a data segment in a dispersed storage network
US20230108184A1 (en) Storage Modification Process for a Set of Encoded Data Slices
US10310763B2 (en) Forming a distributed storage network memory without namespace aware distributed storage units
US10235241B2 (en) Method for partial updating data content in a distributed storage network
US20190087599A1 (en) Compressing a slice name listing in a dispersed storage network
US10082970B2 (en) Storing an effective dynamic width of encoded data slices
US10104168B2 (en) Method for managing throughput in a distributed storage network
US20180024886A1 (en) Efficient method for rebuilding a set of encoded data slices
US10067822B2 (en) Combined slice objects in alternate memory locations
US10417253B2 (en) Multi-level data storage in a dispersed storage network
US10394476B2 (en) Multi-level stage locality selection on a large system
US20190050280A1 (en) Selecting storage units of a dispersed storage network
US20180107421A1 (en) Multi-site duplication via high-level storage unit processing modules
US10409678B2 (en) Self-optimizing read-ahead
US10459792B2 (en) Using an eventually consistent dispersed memory to implement storage tiers
US10681135B2 (en) Generating slices from a broadcast message and a recipient identity
US10002047B2 (en) Read-if-not-revision-equals protocol message
US10387071B2 (en) On-the-fly cancellation of unnecessary read requests
US20190042370A1 (en) Alternative storage location protocol for a distributed storage network
US20190056995A1 (en) Managing migration of encoded data slices in a dispersed storage network

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RESCH, JASON K.;BAPTIST, ANDREW D.;VOLVOVSKI, ILYA;AND OTHERS;REEL/FRAME:047558/0657

Effective date: 20181119

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: PURE STORAGE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:049555/0530

Effective date: 20190611

AS Assignment

Owner name: PURE STORAGE, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE DELETE 15/174/279 AND 15/174/596 PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 49555 FRAME: 530. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:051495/0831

Effective date: 20190611

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE