US20190013214A1 - Package structure and manufacturing method thereof - Google Patents

Package structure and manufacturing method thereof Download PDF

Info

Publication number
US20190013214A1
US20190013214A1 US15/644,831 US201715644831A US2019013214A1 US 20190013214 A1 US20190013214 A1 US 20190013214A1 US 201715644831 A US201715644831 A US 201715644831A US 2019013214 A1 US2019013214 A1 US 2019013214A1
Authority
US
United States
Prior art keywords
die
encapsulant
semiconductor die
package structure
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/644,831
Inventor
Han-Wen LIN
Hung-Hsin Hsu
Shang-Yu Chang Chien
Nan-Chun Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powertech Technology Inc
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to US15/644,831 priority Critical patent/US20190013214A1/en
Assigned to POWERTECH TECHNOLOGY INC. reassignment POWERTECH TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSU, HUNG-HSIN, CHANG CHIEN, SHANG-YU, LIN, HAN-WEN, LIN, NAN-CHUN
Priority to TW106130583A priority patent/TWI662635B/en
Priority to CN201710845069.8A priority patent/CN109243981B/en
Publication of US20190013214A1 publication Critical patent/US20190013214A1/en
Priority to US16/724,387 priority patent/US10796931B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68372Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support a device or wafer when forming electrical connections thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02381Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/27318Manufacturing methods by local deposition of the material of the layer connector in liquid form by dispensing droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0652Bump or bump-like direct electrical connections from substrate to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18165Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19106Disposition of discrete passive components in a mirrored arrangement on two different side of a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention generally relates to a package structure, in particular, to a manufacturing method of a package structure using sacrificial structures for wire bonding.
  • the invention provides a package structure and a manufacturing method thereof, which uses sacrificial structures to fix the location of a wire for wire bonding.
  • the method effectively reduces the size and manufacturing cost of the package, and overcomes the issue of wafer or panel warpage.
  • the invention provides a manufacturing method of a package structure.
  • the method includes at least the following steps.
  • a carrier is provided.
  • a semiconductor die and a sacrificial structure are disposed on the carrier.
  • the semiconductor die is electrically connected to bonding pads on the sacrificial structure through a plurality of conductive wires.
  • As encapsulant is formed on the carrier to encapsulate the semiconductor die, the sacrificial structure and the conductive wires.
  • the carrier is debonded, and the sacrificial structure is removed through a thinning process to reveal the bonding pads or the conductive wires.
  • a redistribution layer is formed on the semiconductor die and the encapsulant. The redistribution layer is electrically connected to the semiconductor die through the conductive wires.
  • the invention further provides a package structure including an encapsulant, a stacked die, a plurality of bonding pads, a plurality of conductive wires, and a redistribution layer.
  • the encapsulant has a top surface and a bottom surface opposite to the top surface.
  • the stacked die is embedded in the encapsulant.
  • the bonding pads are embedded in the encapsulant, wherein the bonding pads are exposed on a top surface of the encapsulant.
  • the conductive wires are embedded in the encapsulant, wherein the stacked die is electrically connected to the bonding pads through the conductive wires.
  • the redistribution layer is disposed on the stacked die and on the top surface of the encapsulant, wherein the redistribution layer is electrically connected to the stacked die through the bonding pads and the conductive wires.
  • a sacrificial structure is used to fix the position of the conductive wires.
  • the precise location of the wire or weld may be provided for further connection.
  • a thickness of the semiconductor die may be effectively controlled during the thinning process, thus an overall size of the package structure may be reduced.
  • an area ratio between the dies and the encapsulant is decreased.
  • the issue of wafer or panel warpage may be resolved.
  • the simplicity of the manufacturing process of the package structure may be realized, thereby reducing the manufacturing cost.
  • FIG. 1A to FIG. 1G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 2A to FIG. 2G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 1A to FIG. 1G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • a carrier 102 is provided.
  • the carrier 102 may be a glass substrate or a glass supporting board.
  • other suitable substrate material may be adapted as the carrier 102 as long as the material is able to withstand the subsequent processes while carrying the package structure formed thereon.
  • the sacrificial structures 104 B are disposed on the carrier 102 .
  • the sacrificial structures 104 B are, for example, a sacrificial layer to be removed in a subsequent process.
  • a material of the sacrificial layer is not particularly limited, as long as it can be removed through a thinning process described thereafter.
  • the sacrificial structures 104 B are disposed on the carrier 102 through an adhesive layer 103 located on the carrier 102 .
  • the adhesive layer 103 may be a die attach film or formed from adhesive materials including an epoxy resin.
  • the adhesive layer 103 may be formed by methods such as coating, inkjet printing, film attaching or other suitable methods for providing a structural support to eliminate the need for mechanical clamping between the sacrificial structures 104 B and the carrier 102 .
  • the semiconductor die 104 A is disposed on the carrier 102 , and located on the sacrificial structures 104 B.
  • the semiconductor die 104 A is, for example stacked dies that comprise at least a bottom semiconductor die and a top semiconductor die stacked on top of each other.
  • the semiconductor die 104 A includes a first semiconductor die 104 A- 1 , a second semiconductor die 104 A- 2 and a third semiconductor die 104 A- 3 stacked on top of each other.
  • the first semiconductor die 104 A- 1 serve as the bottom semiconductor die
  • the third semiconductor die 104 A- 3 serve as the top semiconductor die
  • the second semiconductor die 104 A- 2 is sandwiched therebetween.
  • the number of stacked dies in the semiconductor die 104 A is not particularly limited.
  • a die attach film (DAF; not illustrated) may be disposed between each of the stacked dies to enhance their adhesion.
  • the semiconductor die 104 A is, for example, an ASIC (Application-Specific Integrated Circuit).
  • ASIC Application-Specific Integrated Circuit
  • Other suitable active devices may also be utilized as the semiconductor die 104 A.
  • a width W 2 of the sacrificial structure 104 B is greater than a width W 1 of the semiconductor die 104 A.
  • the width W 2 of the sacrificial structure 104 B is greater than a width of each of the semiconductor dies ( 104 A- 1 , 104 A- 2 and 104 A- 3 ).
  • the semiconductor die 104 A or the stacked dies each have a first surface Y 1 facing the carrier 102 and a second surface Y 2 facing away from the carrier 102 .
  • bonding pads 105 are provided on the sacrificial structures 104 B, and provided on the second surfaces Y 2 of the semiconductor die 104 A (stacked dies).
  • the bonding pads 105 are, for example, aluminum pads or any other suitable material used for wire bonding. In some embodiments, the bonding pads 105 can be embedded within the sacrificial structures 104 B.
  • a plurality of conductive wires 106 is provided to electrically connect the bonding pads 105 of the semiconductor die 104 A to the bonding pads 105 of the sacrificial structures 104 B.
  • the conductive wires 106 are, for example, used for wire bonding, and have a curved three-dimensional structure.
  • the conductive wires 106 are formed after stacking several dies in a group. For example, for multi-die stacking, the conductive wires 106 are used to provide electrical connection after two to four dies are stacked. For instance, in the embodiment shown in FIG.
  • the conductive wires 106 are used to electrically connect the bonding pads 105 on the stacked semiconductor dies ( 104 A- 1 and 104 A- 2 ) to the bonding pads 105 on the sacrificial structure 104 B. The process is repeated until all dies are stacked and the electrical connection is established. In some alternative embodiments, the conductive wires 106 are formed after all dies ( 104 A- 1 , 104 A- 2 and 104 A- 3 ) are stacked.
  • an encapsulant 108 is formed on the carrier 102 to encapsulate the semiconductor die 104 A, the sacrificial structure 104 B and the conductive wires 106 .
  • the semiconductor die 104 A, the sacrificial structures 104 B and the conductive wires 106 are completely encapsulated by the encapsulant 108 .
  • the encapsulant 108 may be a molding compound formed by molding processes.
  • the encapsulant 108 may be formed by an insulating material such as epoxy or other suitable resins. In general, when an area ratio of a die to an encapsulant is low, a problem of wafer or panel warpage may occur.
  • an area ratio of the dies (sacrificial structure as dummy die plus the semiconductor die) to the encapsulant 108 is increased. As such, an issue of wafer or panel warpage may be resolved.
  • the carrier 102 is debonded. That is, the carrier 102 is separated from the encapsulant 108 , the semiconductor die 104 A, and sacrificial structures 104 B.
  • a de-bonding layer (not illustrated) may be disposed on the carrier 102 before disposing the dies ( 104 A/ 104 B) on the carrier 102 .
  • the de-bonding layer is, for example, a light to heat conversion (LTHC) release layer or other suitable release layers.
  • connection terminals CT of the conductive wires 106 are exposed.
  • connection terminals CT may refer to end portions of the conductive wires 106 that are available for further connection.
  • the connection terminals CT can be the bonding pads 105 or studs of the conductive wires 106 that are used for further connection. That is, the connection terminals CT are generally treated as “connection points” that connect the conductive wires 106 to a redistribution layer 110 formed thereafter.
  • the bonding pads 105 or studs of the conductive wires 106 may have a surface area greater than an area of the cross section of the conductive wires 106 .
  • the thinning process may be performed through mechanical grinding, chemical mechanical polishing (CMP), or other suitable processes.
  • CMP chemical mechanical polishing
  • the connection terminals CT of the revealed conductive wires 106 are coplanar with a first surface S 1 of the semiconductor die 104 A.
  • the thinning process may remove portions of the semiconductor die 104 A to form a thinned semiconductor die 104 A.
  • a portion of the first semiconductor die 104 A- 1 (or bottom semiconductor die) is partially removed by the thinning process, so that the connection terminals CT (of the conductive wires 106 ) are coplanar with the first surface S of the first semiconductor die 104 A- 1 (bottom semiconductor die).
  • a thickness of the first semiconductor die 104 A- 1 is reduced.
  • the first semiconductor die 104 A- 1 have a thickness of T 1 before the thinning process
  • a thickness of the first semiconductor die 104 A- 1 reduces to T 2 after the thinning process.
  • the thickness of the semiconductor die 104 may be reduced during the thinning process.
  • the thickness of the semiconductor die 104 A does not change after the thinning process.
  • the thickness of the semiconductor die 104 A may be adjusted based on requirement during the thinning process.
  • the bonding pads 105 on the sacrificial structures 104 B are removed by the thinning process to reveal the conductive wires 106 underneath. That is, the end portions of the conductive wires 106 are treated as the connection terminals CT.
  • the bonding pads 105 on the sacrificial structures 104 B remain after the thinning process.
  • the thinning process is performed to reveal the bonding pads 105 on the sacrificial structures 104 B, and the revealed portions of the bonding pads 105 serve as the connection terminals CT.
  • the sacrificial structures 104 B may be completely removed by the thinning process or residual amounts of the sacrificial structures 104 B may remain after the thinning process.
  • a redistribution layer 110 is formed on the semiconductor die 104 A and the encapsulant 108 .
  • the redistribution layer 110 may include a plurality of conductive elements 110 A and a plurality of dielectric layers 110 B alternately formed and stacked on top of each other. As illustrated in FIG. 1E , the redistribution layer 110 includes four dielectric layers 110 B. However, the number of the dielectric layer 110 B is not limited and may be adjusted based on circuit design.
  • the conductive elements 110 A may include a plurality of trace layers and a plurality of interconnect structures connecting the trace layers.
  • the redistribution layer 110 is formed on the first surface S 1 of the semiconductor die 104 A (stacked die).
  • the redistribution layer 110 is electrically connected to the semiconductor die 104 A through the conductive wires 106 at the connection terminals CT.
  • the conductive wires 106 are electrically connected to the conductive elements 110 A of the redistribution layer 110 through the connection terminals CT.
  • Conductive terminals 118 are then formed on the redistribution layer 110 , and being electrically connected to the conductive elements 110 A.
  • the conductive terminals 118 may be a plurality of under-ball metallurgy (UBM) patterns for ball mount or connection pads for mounting of passive components.
  • UBM under-ball metallurgy
  • a plurality of conductive balls 120 are placed onto the conductive terminals 118 , and one or more passive components 115 may be mounted on the conductive terminals 118 .
  • the conductive terminals 118 and the conductive balls 120 may, for example, be formed by a ball placement process and a reflow process.
  • the passive components 115 may be mounted on the conductive terminals 118 through a soldering process. Examples of the passive components 115 include capacitors, resistors, inductors, fuses, or antennas. However, they construe no limitation in the invention.
  • a dicing or singulation process is performed on the package structure illustrated in FIG. 1F to render a plurality of individual packages 100 as shown in FIG. 1G .
  • the dicing process is, for example, performed at the dicing line DL for singulation of the individual packages 100 .
  • FIG. 2A to FIG. 2G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • the embodiments shown in FIG. 2A to FIG. 2G are similar to the embodiments shown in FIG. 1A to FIG. 1G , therefore, the same reference numerals are used to refer to the same or like parts, and their detailed descriptions are omitted herein.
  • the difference between the embodiments shown in FIG. 2A to FIG. 2G and the embodiments shown in FIG. 1A to FIG. 1G is in the position/design of the sacrificial structures 104 B.
  • the semiconductor die 104 A and at least one sacrificial structure 104 B are disposed on the carrier 102 .
  • a plurality of the sacrificial structures 104 B are disposed on the carrier 102 to surround the semiconductor die 104 A.
  • the semiconductor die 104 A and the sacrificial structures 104 B are disposed on a same plane and on a same surface 102 A of the carrier 102 .
  • a width (W 2 /W 3 ) of the sacrificial structures 102 B is smaller than a width W 1 of the semiconductor die 104 A.
  • the plurality of sacrificial structures 102 B may have different widths W 2 and W 3 .
  • both of the widths W 2 and W 3 are smaller than the width W 1 of the semiconductor die 104 A.
  • a thickness K 2 of the sacrificial structures 104 B is smaller than a thickness K 1 of the semiconductor dies 104 A.
  • the thickness K 1 of the semiconductor dies 104 A refers to the thickness of the first semiconductor die 104 A- 1 (bottom semiconductor die) of the stacked dies.
  • the sacrificial structures 104 B is also a sacrificial layer that is removed thereafter.
  • a thickness difference X 1 between the semiconductor die 104 A and the sacrificial structures 104 B (K 1 -K 2 ) will determine a thickness of a thinned semiconductor die 104 A formed thereafter.
  • bonding pads 105 may be formed on the semiconductor dies 104 A and the sacrificial structures 104 B to allow for wire bonding.
  • the wire bonding process is, for example, performed after the stacking of several dies in a group, or performed after stacking of all of the dies.
  • passive components 115 may be disposed on the sacrificial structures 104 B.
  • the passive components 115 may be adjacent to the bonding pads 105 and may be disposed on the same surface of the sacrificial structures 104 B.
  • a plurality of conductive wires 106 is provided to electrically connect the bonding pads 105 of the semiconductor die 104 A to the bonding pads 105 of the sacrificial structures 104 B.
  • an encapsulant 108 is formed on the carrier 102 to encapsulate the semiconductor die 104 A, the sacrificial structure 104 B and the conductive wires 106 .
  • the encapsulant 108 further encapsulates the passive components 115 .
  • the semiconductor die 104 A, the sacrificial structures 104 B, the conductive wires 106 and the passive components 115 are completely encapsulated by the encapsulant 108 . As shown in FIG.
  • the carrier 102 are debonded. That is, the carrier 102 is separated from the encapsulant 108 , the semiconductor die 104 A, and sacrificial structures 104 B.
  • a de-bonding layer (not illustrated) may be disposed on the carrier 102 before disposing the dies ( 104 A/ 104 B) on the carrier 102 .
  • the de-bonding layer is, for example, a light to heat conversion (LTHC) release layer or other suitable release layers.
  • connection terminals CT can be the end portions (or studs) of the conductive wires 106 . That is, the thinning process is performed to reveal/expose the end portions of the conductive wires 106 .
  • connection terminals CT are generally treated as “connection points” that connect the conductive wires 106 to a redistribution layer 110 formed thereafter. Therefore, the connection terminals CT will apply to all embodiments, and its position may be altered depending on which portion is revealed (wires/pads) for connection.
  • connection terminals CT of the bonding pads 105 are coplanar with a first surface S 1 of the semiconductor die 104 A.
  • a portion of the first semiconductor die 104 A- 1 (or bottom semiconductor die) is removed by the thinning process, so that the connection terminals CT are coplanar with the first surface S 1 of the first semiconductor die 104 A- 1 (bottom semiconductor die).
  • a thickness 104 T of the thinned semiconductor die (first semiconductor die 104 A- 1 ) will correspond to a thickness difference X 1 (see FIG. 2A ) between the semiconductor die 104 A (first semiconductor die 104 A- 1 ) and the sacrificial structure 104 B before the thinning process.
  • a redistribution layer 110 is formed on the semiconductor die 104 A and the encapsulant 108 .
  • the redistribution layer 110 of FIG. 2E is similar to the redistribution layer 110 of FIG. 1E , hence its detailed description is omitted herein.
  • the redistribution layer 110 is electrically connected to the semiconductor die 104 A through the conductive wires 106 at the connection terminals CT.
  • the conductive wires 106 are electrically connected to the conductive elements 110 A of the redistribution layer 110 through the connection terminals CT (of bonding pads 105 ).
  • Conductive terminals 118 are then formed on the redistribution layer 110 , and being electrically connected to the conductive elements 110 A.
  • a plurality of conductive balls 120 are placed onto the conductive terminals 118 .
  • the conductive terminals 118 and the conductive balls 120 may, for example, be formed by a ball placement process and a reflow process.
  • a dicing or singulation process is performed on the package structure illustrated in FIG. 2F to render a plurality of individual packages 100 ′ as shown in FIG. 2G .
  • the dicing process is, for example, performed at the dicing line DL for singulation of the individual packages 100 ′.
  • the individual packages 100 ′ includes an encapsulant 108 , a stacked die 104 A, a plurality of bonding pads 105 , a plurality of conductive wires 106 , a redistribution layer 110 and a plurality of conductive balls 120 .
  • the encapsulant 108 has a top surface 108 A and a bottom surface 108 B opposite to the top surface 108 A.
  • the stack die 104 A is embedded in the encapsulant 108 .
  • the bonding pads 105 are embedded in the encapsulant 108 , wherein connection terminals CT of the bonding pads 105 are exposed on a top surface 108 A of the encapsulant 108 .
  • the conductive wires 106 are embedded in the encapsulant 108 , wherein the stacked die 104 A is electrically connected to the bonding pads 105 through the conductive wires.
  • the redistribution layer 110 is disposed on the stacked die 104 A and on the top surface 108 A of the encapsulant 108 , wherein the redistribution layer 110 is electrically connected to the stacked die 104 A through the bonding pads 105 and the conductive wires 106 .
  • the stacked die (semiconductor die 104 A) has a first surface S 1 exposed through the encapsulant 108 .
  • the connection terminals CT of the bonding pads 105 are coplanar with the first surface S 1 of the stacked die 104 A and the top surface 108 A of the encapsulant 108 .
  • the stacked die 104 A may include a first die (first semiconductor die) 104 A- 1 , a second die (second semiconductor die) 104 A- 2 and a third die (third semiconductor die) 104 A- 3 .
  • the first die 104 A- 1 has the first surface S 1 exposed through the encapsulant 108 .
  • the second die 104 A- 2 is stacked on the first die 104 A- 1 opposite to a side of the first surface S 1 .
  • the second die 104 A- 2 cover portions of the first die 104 A- 1 , and other portions of the first die 104 A- 1 not covered by the second die 104 A- 2 contain die pads DP (bonding pads 105 ).
  • the die pads DP of the first die 104 A- 1 are electrically connected to the bonding pads 105 through the conductive wires 106 .
  • the third die 104 A- 3 is stacked on the second die 104 A- 2 , the third die 104 A- 3 cover portions of the second die 104 A- 2 , and other portions of the second die 104 A- 2 not covered by the third die 104 A- 3 contain die pads DP, the die pads DP of the second die 104 A- 2 are electrically connected to the bonding pads 105 through the conductive wires 106 .
  • the individual packages 100 ′ further includes at least one passive component 115 embedded in the encapsulant 108 .
  • the passive components 115 may be disposed on the redistribution layer 110 .
  • the encapsulant 108 has a first thickness 108 T
  • the redistribution layer 110 has a second thickness 110 T smaller than the first thickness 108 T. That is, the encapsulant 108 provides a first rigidity, and the redistribution layer 110 provides a second rigidity, wherein the first rigidity is greater than the second rigidity.
  • the bonding pads 105 are arranged with a first pitch P and the conductive balls 120 are arranged with a second pitch P 2 , the second pitch P 2 is greater than the first pitch P 1 . That is, the individual packages 100 ′ are directed to fan-out packages.
  • the first pitch P and the second pitch P 2 is calculated based on a center position of the bonding pads 105 and the conductive balls 120 .
  • the sacrificial structures are used to fix the position of the conductive wires.
  • the precise location of the wire or weld may be provided for further connection.
  • a thickness of the semiconductor die may be effectively controlled during the thinning process, thus an overall size of the package structure may be reduced.
  • an area ratio between the dies and the encapsulant is decreased.
  • the issue of wafer or panel warpage may be resolved. Accordingly, the simplicity of the manufacturing process of the package structure may be realized, thereby reducing the overall manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A manufacturing method of a package structure is described. The method includes at least the following steps. A carrier is provided. A semiconductor die and a sacrificial structure are disposed on the carrier. The semiconductor die is electrically connected to the bonding pads on the sacrificial structure through a plurality of conductive wires. As encapsulant is formed on the carrier to encapsulate the semiconductor die, the sacrificial structure and the conductive wires. The carrier is debonded, and at least a portion of the sacrificial structure is removed through a thinning process. A redistribution layer is formed on the semiconductor die and the encapsulant. The redistribution layer is electrically connected to the semiconductor die through the conductive wires.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention generally relates to a package structure, in particular, to a manufacturing method of a package structure using sacrificial structures for wire bonding.
  • 2. Description of Related Art
  • In order for electronic product design to achieve being light, slim, short, and small, semiconductor packaging technology has kept progressing, in attempt to develop products that are smaller in volume, lighter in weight, higher in integration, and more competitive in market. For example, integrated fan-out packages have become increasingly popular due to their compactness. However, in current fan-out package designs, if a package requires multi-chip stacking, two redistribution layers (RDL) and big pillars are generally required to provide the connection. For such package designs, the manufacturing process is usually complicated, time consuming and an issue of warpage also exist. Therefore, a simplified method/design having lower production cost is desired.
  • SUMMARY OF THE INVENTION
  • The invention provides a package structure and a manufacturing method thereof, which uses sacrificial structures to fix the location of a wire for wire bonding. The method effectively reduces the size and manufacturing cost of the package, and overcomes the issue of wafer or panel warpage.
  • The invention provides a manufacturing method of a package structure. The method includes at least the following steps. A carrier is provided. A semiconductor die and a sacrificial structure are disposed on the carrier. The semiconductor die is electrically connected to bonding pads on the sacrificial structure through a plurality of conductive wires. As encapsulant is formed on the carrier to encapsulate the semiconductor die, the sacrificial structure and the conductive wires. The carrier is debonded, and the sacrificial structure is removed through a thinning process to reveal the bonding pads or the conductive wires. A redistribution layer is formed on the semiconductor die and the encapsulant. The redistribution layer is electrically connected to the semiconductor die through the conductive wires.
  • The invention further provides a package structure including an encapsulant, a stacked die, a plurality of bonding pads, a plurality of conductive wires, and a redistribution layer. The encapsulant has a top surface and a bottom surface opposite to the top surface. The stacked die is embedded in the encapsulant. The bonding pads are embedded in the encapsulant, wherein the bonding pads are exposed on a top surface of the encapsulant. The conductive wires are embedded in the encapsulant, wherein the stacked die is electrically connected to the bonding pads through the conductive wires. The redistribution layer is disposed on the stacked die and on the top surface of the encapsulant, wherein the redistribution layer is electrically connected to the stacked die through the bonding pads and the conductive wires.
  • Based on the above, a sacrificial structure is used to fix the position of the conductive wires. As such, when removing the sacrificial structure, the precise location of the wire or weld may be provided for further connection. In addition, a thickness of the semiconductor die may be effectively controlled during the thinning process, thus an overall size of the package structure may be reduced. Furthermore, with the presence of the sacrificial structure, an area ratio between the dies and the encapsulant is decreased. Thus, the issue of wafer or panel warpage may be resolved. Overall, the simplicity of the manufacturing process of the package structure may be realized, thereby reducing the manufacturing cost.
  • To make the above features and advantages of the present invention more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1A to FIG. 1G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • FIG. 2A to FIG. 2G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention.
  • DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
  • FIG. 1A to FIG. 1G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention. Referring to FIG. 1A, a carrier 102 is provided. The carrier 102 may be a glass substrate or a glass supporting board. In some embodiments, other suitable substrate material may be adapted as the carrier 102 as long as the material is able to withstand the subsequent processes while carrying the package structure formed thereon.
  • The sacrificial structures 104B are disposed on the carrier 102. The sacrificial structures 104B are, for example, a sacrificial layer to be removed in a subsequent process. Thus, a material of the sacrificial layer is not particularly limited, as long as it can be removed through a thinning process described thereafter. The sacrificial structures 104B are disposed on the carrier 102 through an adhesive layer 103 located on the carrier 102. In some embodiments, the adhesive layer 103 may be a die attach film or formed from adhesive materials including an epoxy resin. The adhesive layer 103 may be formed by methods such as coating, inkjet printing, film attaching or other suitable methods for providing a structural support to eliminate the need for mechanical clamping between the sacrificial structures 104B and the carrier 102.
  • The semiconductor die 104A is disposed on the carrier 102, and located on the sacrificial structures 104B. In the present embodiment, the semiconductor die 104A is, for example stacked dies that comprise at least a bottom semiconductor die and a top semiconductor die stacked on top of each other. For instance, as shown in FIG. 1A, the semiconductor die 104A includes a first semiconductor die 104A-1, a second semiconductor die 104A-2 and a third semiconductor die 104A-3 stacked on top of each other. The first semiconductor die 104A-1 serve as the bottom semiconductor die, while the third semiconductor die 104A-3 serve as the top semiconductor die, while the second semiconductor die 104A-2 is sandwiched therebetween. However, it construes no limitation in the invention. The number of stacked dies in the semiconductor die 104A is not particularly limited. In some embodiments, a die attach film (DAF; not illustrated) may be disposed between each of the stacked dies to enhance their adhesion. Furthermore, in the present embodiment, the semiconductor die 104A is, for example, an ASIC (Application-Specific Integrated Circuit). However, it construes no limitation in the invention. Other suitable active devices may also be utilized as the semiconductor die 104A.
  • As shown in FIG. 1A, a width W2 of the sacrificial structure 104B is greater than a width W1 of the semiconductor die 104A. In the case for stacked dies, the width W2 of the sacrificial structure 104B is greater than a width of each of the semiconductor dies (104A-1, 104A-2 and 104A-3). The semiconductor die 104A or the stacked dies each have a first surface Y1 facing the carrier 102 and a second surface Y2 facing away from the carrier 102. Furthermore, bonding pads 105 are provided on the sacrificial structures 104B, and provided on the second surfaces Y2 of the semiconductor die 104A (stacked dies). The bonding pads 105 are, for example, aluminum pads or any other suitable material used for wire bonding. In some embodiments, the bonding pads 105 can be embedded within the sacrificial structures 104B.
  • Furthermore, as shown in FIG. 1A, a plurality of conductive wires 106 is provided to electrically connect the bonding pads 105 of the semiconductor die 104A to the bonding pads 105 of the sacrificial structures 104B. The conductive wires 106 are, for example, used for wire bonding, and have a curved three-dimensional structure. In some embodiments, the conductive wires 106 are formed after stacking several dies in a group. For example, for multi-die stacking, the conductive wires 106 are used to provide electrical connection after two to four dies are stacked. For instance, in the embodiment shown in FIG. 1A, after disposing the first semiconductor die 104A-1 on the sacrificial structures 104B, and disposing the second semiconductor die 104A-2 on the first semiconductor die 104A-1, the conductive wires 106 are used to electrically connect the bonding pads 105 on the stacked semiconductor dies (104A-1 and 104A-2) to the bonding pads 105 on the sacrificial structure 104B. The process is repeated until all dies are stacked and the electrical connection is established. In some alternative embodiments, the conductive wires 106 are formed after all dies (104A-1, 104A-2 and 104A-3) are stacked.
  • Referring to FIG. 1B, after wire bonding, an encapsulant 108 is formed on the carrier 102 to encapsulate the semiconductor die 104A, the sacrificial structure 104B and the conductive wires 106. The semiconductor die 104A, the sacrificial structures 104B and the conductive wires 106 are completely encapsulated by the encapsulant 108. In some embodiments, the encapsulant 108 may be a molding compound formed by molding processes. However, in some alternative embodiments, the encapsulant 108 may be formed by an insulating material such as epoxy or other suitable resins. In general, when an area ratio of a die to an encapsulant is low, a problem of wafer or panel warpage may occur. As shown in FIG. 1B, by having the sacrificial structure 104B serving as a base structure, an area ratio of the dies (sacrificial structure as dummy die plus the semiconductor die) to the encapsulant 108 is increased. As such, an issue of wafer or panel warpage may be resolved.
  • Referring to FIG. 1C, the carrier 102 is debonded. That is, the carrier 102 is separated from the encapsulant 108, the semiconductor die 104A, and sacrificial structures 104B. In some alternative embodiments, in order to enhance the releasability of the semiconductor die 104A and sacrificial structures 104B from the carrier 102, a de-bonding layer (not illustrated) may be disposed on the carrier 102 before disposing the dies (104A/104B) on the carrier 102. The de-bonding layer is, for example, a light to heat conversion (LTHC) release layer or other suitable release layers.
  • Referring to FIG. 1D, after debonding the carrier 102, the sacrificial structures 104B are removed by a thinning process to reveal/expose the conductive wires 106. Specifically, connection terminals CT of the conductive wires 106 are exposed. In the present embodiment, connection terminals CT may refer to end portions of the conductive wires 106 that are available for further connection. However, it construes no limitation in the invention. In alternative embodiments, the connection terminals CT can be the bonding pads 105 or studs of the conductive wires 106 that are used for further connection. That is, the connection terminals CT are generally treated as “connection points” that connect the conductive wires 106 to a redistribution layer 110 formed thereafter. Wherein, the bonding pads 105 or studs of the conductive wires 106 may have a surface area greater than an area of the cross section of the conductive wires 106.
  • Referring back to FIG. 1D, the thinning process may be performed through mechanical grinding, chemical mechanical polishing (CMP), or other suitable processes. After the thinning process, the connection terminals CT of the revealed conductive wires 106 are coplanar with a first surface S1 of the semiconductor die 104A. In some embodiments, the thinning process may remove portions of the semiconductor die 104A to form a thinned semiconductor die 104A. For example, in the present embodiment, a portion of the first semiconductor die 104A-1 (or bottom semiconductor die) is partially removed by the thinning process, so that the connection terminals CT (of the conductive wires 106) are coplanar with the first surface S of the first semiconductor die 104A-1 (bottom semiconductor die). In other words, a thickness of the first semiconductor die 104A-1 is reduced. In particular, referring to FIG. 1C, the first semiconductor die 104A-1 have a thickness of T1 before the thinning process, whereas in FIG. 1D, a thickness of the first semiconductor die 104A-1 reduces to T2 after the thinning process. From the present embodiment, the thickness of the semiconductor die 104 may be reduced during the thinning process. However, it construes no limitation in the invention. In other embodiments, the thickness of the semiconductor die 104A does not change after the thinning process. In alternative embodiments, the thickness of the semiconductor die 104A may be adjusted based on requirement during the thinning process.
  • As shown in FIG. 1D, the bonding pads 105 on the sacrificial structures 104B are removed by the thinning process to reveal the conductive wires 106 underneath. That is, the end portions of the conductive wires 106 are treated as the connection terminals CT. However, it construes no limitation in the invention. In alternative embodiments, the bonding pads 105 on the sacrificial structures 104B remain after the thinning process. In such embodiments, the thinning process is performed to reveal the bonding pads 105 on the sacrificial structures 104B, and the revealed portions of the bonding pads 105 serve as the connection terminals CT. Furthermore, the sacrificial structures 104B may be completely removed by the thinning process or residual amounts of the sacrificial structures 104B may remain after the thinning process.
  • Referring to FIG. 1E, after removing the sacrificial structures 104B through the thinning process, a redistribution layer 110 is formed on the semiconductor die 104A and the encapsulant 108. The redistribution layer 110 may include a plurality of conductive elements 110A and a plurality of dielectric layers 110B alternately formed and stacked on top of each other. As illustrated in FIG. 1E, the redistribution layer 110 includes four dielectric layers 110B. However, the number of the dielectric layer 110B is not limited and may be adjusted based on circuit design. The conductive elements 110A may include a plurality of trace layers and a plurality of interconnect structures connecting the trace layers. Furthermore, in the present embodiment, the redistribution layer 110 is formed on the first surface S1 of the semiconductor die 104A (stacked die). The redistribution layer 110 is electrically connected to the semiconductor die 104A through the conductive wires 106 at the connection terminals CT. In particular, the conductive wires 106 are electrically connected to the conductive elements 110A of the redistribution layer 110 through the connection terminals CT. Conductive terminals 118 are then formed on the redistribution layer 110, and being electrically connected to the conductive elements 110A. The conductive terminals 118 may be a plurality of under-ball metallurgy (UBM) patterns for ball mount or connection pads for mounting of passive components.
  • Referring to FIG. 1F, after the formation of the redistribution layer 110 and the conductive terminals 118, a plurality of conductive balls 120 are placed onto the conductive terminals 118, and one or more passive components 115 may be mounted on the conductive terminals 118. The conductive terminals 118 and the conductive balls 120 may, for example, be formed by a ball placement process and a reflow process. The passive components 115 may be mounted on the conductive terminals 118 through a soldering process. Examples of the passive components 115 include capacitors, resistors, inductors, fuses, or antennas. However, they construe no limitation in the invention. After placing the conductive balls 120 and the passive components 115 on the conductive terminals 118, a dicing or singulation process is performed on the package structure illustrated in FIG. 1F to render a plurality of individual packages 100 as shown in FIG. 1G. The dicing process is, for example, performed at the dicing line DL for singulation of the individual packages 100.
  • FIG. 2A to FIG. 2G are schematic cross-sectional views illustrating a manufacturing method of a package structure according to an embodiment of the invention. The embodiments shown in FIG. 2A to FIG. 2G are similar to the embodiments shown in FIG. 1A to FIG. 1G, therefore, the same reference numerals are used to refer to the same or like parts, and their detailed descriptions are omitted herein. The difference between the embodiments shown in FIG. 2A to FIG. 2G and the embodiments shown in FIG. 1A to FIG. 1G is in the position/design of the sacrificial structures 104B.
  • As shown in FIG. 2A, the semiconductor die 104A and at least one sacrificial structure 104B are disposed on the carrier 102. In the exemplary embodiment, a plurality of the sacrificial structures 104B are disposed on the carrier 102 to surround the semiconductor die 104A. Moreover, the semiconductor die 104A and the sacrificial structures 104B are disposed on a same plane and on a same surface 102A of the carrier 102. In the present embodiment, a width (W2/W3) of the sacrificial structures 102B is smaller than a width W1 of the semiconductor die 104A. The plurality of sacrificial structures 102B may have different widths W2 and W3. However, both of the widths W2 and W3 are smaller than the width W1 of the semiconductor die 104A. Furthermore, a thickness K2 of the sacrificial structures 104B is smaller than a thickness K1 of the semiconductor dies 104A. The thickness K1 of the semiconductor dies 104A refers to the thickness of the first semiconductor die 104A-1 (bottom semiconductor die) of the stacked dies. In the present embodiment, the sacrificial structures 104B is also a sacrificial layer that is removed thereafter. In other words, a thickness difference X1 between the semiconductor die 104A and the sacrificial structures 104B (K1-K2) will determine a thickness of a thinned semiconductor die 104A formed thereafter.
  • Similar to the embodiments shown in FIG. 1A, bonding pads 105 may be formed on the semiconductor dies 104A and the sacrificial structures 104B to allow for wire bonding. The wire bonding process is, for example, performed after the stacking of several dies in a group, or performed after stacking of all of the dies. In addition, passive components 115 may be disposed on the sacrificial structures 104B. For example, the passive components 115 may be adjacent to the bonding pads 105 and may be disposed on the same surface of the sacrificial structures 104B. Furthermore, a plurality of conductive wires 106 is provided to electrically connect the bonding pads 105 of the semiconductor die 104A to the bonding pads 105 of the sacrificial structures 104B.
  • Referring to FIG. 2B, similar to the embodiment shown in FIG. 1B, an encapsulant 108 is formed on the carrier 102 to encapsulate the semiconductor die 104A, the sacrificial structure 104B and the conductive wires 106. However, in the embodiment shown in FIG. 2B, the encapsulant 108 further encapsulates the passive components 115. The semiconductor die 104A, the sacrificial structures 104B, the conductive wires 106 and the passive components 115 are completely encapsulated by the encapsulant 108. As shown in FIG. 2B, by having the sacrificial structures 104B surrounding the semiconductor die 104A, an area ratio of the die (semiconductor dies and sacrificial dummy dies) to the encapsulant 108 is increased. As such, an issue of wafer or panel warpage may be resolved.
  • Referring to FIG. 2C, after formation of the encapsulant 108, the carrier 102 are debonded. That is, the carrier 102 is separated from the encapsulant 108, the semiconductor die 104A, and sacrificial structures 104B. In some alternative embodiments, in order to enhance the releasability of the semiconductor die 104A and sacrificial structures 104B from the carrier 102, a de-bonding layer (not illustrated) may be disposed on the carrier 102 before disposing the dies (104A/104B) on the carrier 102. The de-bonding layer is, for example, a light to heat conversion (LTHC) release layer or other suitable release layers.
  • Referring to FIG. 2D, after debonding the carrier 102, the sacrificial structures 104B are removed by a thinning process to reveal/expose the bonding pads 105 on the sacrificial structures 104B. That is, a revealed portion of the bonding pads 105 serve as the connection terminals CT. However, it construes no limitation in the invention. In alternative embodiments, the connection terminals CT can be the end portions (or studs) of the conductive wires 106. That is, the thinning process is performed to reveal/expose the end portions of the conductive wires 106. As noted above, connection terminals CT are generally treated as “connection points” that connect the conductive wires 106 to a redistribution layer 110 formed thereafter. Therefore, the connection terminals CT will apply to all embodiments, and its position may be altered depending on which portion is revealed (wires/pads) for connection.
  • As shown in FIG. 2D, after the thinning process, the connection terminals CT of the bonding pads 105 are coplanar with a first surface S1 of the semiconductor die 104A. In particular, a portion of the first semiconductor die 104A-1 (or bottom semiconductor die) is removed by the thinning process, so that the connection terminals CT are coplanar with the first surface S1 of the first semiconductor die 104A-1 (bottom semiconductor die). Moreover, a thickness 104T of the thinned semiconductor die (first semiconductor die 104A-1) will correspond to a thickness difference X1 (see FIG. 2A) between the semiconductor die 104A (first semiconductor die 104A-1) and the sacrificial structure 104B before the thinning process.
  • Referring to FIG. 2E, after removing the sacrificial structures 104B through the thinning process, a redistribution layer 110 is formed on the semiconductor die 104A and the encapsulant 108. The redistribution layer 110 of FIG. 2E is similar to the redistribution layer 110 of FIG. 1E, hence its detailed description is omitted herein. In the present embodiment, the redistribution layer 110 is electrically connected to the semiconductor die 104A through the conductive wires 106 at the connection terminals CT. In particular, the conductive wires 106 are electrically connected to the conductive elements 110A of the redistribution layer 110 through the connection terminals CT (of bonding pads 105). Conductive terminals 118 are then formed on the redistribution layer 110, and being electrically connected to the conductive elements 110A.
  • Referring to FIG. 2F, after the formation of the redistribution layer 110 and the conductive terminals 118, a plurality of conductive balls 120 are placed onto the conductive terminals 118. The conductive terminals 118 and the conductive balls 120 may, for example, be formed by a ball placement process and a reflow process. After placing the conductive balls 120 on the conductive terminals 118, a dicing or singulation process is performed on the package structure illustrated in FIG. 2F to render a plurality of individual packages 100′ as shown in FIG. 2G. The dicing process is, for example, performed at the dicing line DL for singulation of the individual packages 100′.
  • Referring to FIG. 2G, the individual packages 100′ includes an encapsulant 108, a stacked die 104A, a plurality of bonding pads 105, a plurality of conductive wires 106, a redistribution layer 110 and a plurality of conductive balls 120. The encapsulant 108 has a top surface 108A and a bottom surface 108B opposite to the top surface 108A. The stack die 104A is embedded in the encapsulant 108. The bonding pads 105 are embedded in the encapsulant 108, wherein connection terminals CT of the bonding pads 105 are exposed on a top surface 108A of the encapsulant 108. The conductive wires 106 are embedded in the encapsulant 108, wherein the stacked die 104A is electrically connected to the bonding pads 105 through the conductive wires. The redistribution layer 110 is disposed on the stacked die 104A and on the top surface 108A of the encapsulant 108, wherein the redistribution layer 110 is electrically connected to the stacked die 104A through the bonding pads 105 and the conductive wires 106.
  • In the exemplary embodiment, the stacked die (semiconductor die 104A) has a first surface S1 exposed through the encapsulant 108. The connection terminals CT of the bonding pads 105 are coplanar with the first surface S1 of the stacked die 104A and the top surface 108A of the encapsulant 108. Furthermore, the stacked die 104A may include a first die (first semiconductor die) 104A-1, a second die (second semiconductor die) 104A-2 and a third die (third semiconductor die) 104A-3. The first die 104A-1 has the first surface S1 exposed through the encapsulant 108. The second die 104A-2 is stacked on the first die 104A-1 opposite to a side of the first surface S1. The second die 104A-2 cover portions of the first die 104A-1, and other portions of the first die 104A-1 not covered by the second die 104A-2 contain die pads DP (bonding pads 105). The die pads DP of the first die 104A-1 are electrically connected to the bonding pads 105 through the conductive wires 106. In addition, the third die 104A-3 is stacked on the second die 104A-2, the third die 104A-3 cover portions of the second die 104A-2, and other portions of the second die 104A-2 not covered by the third die 104A-3 contain die pads DP, the die pads DP of the second die 104A-2 are electrically connected to the bonding pads 105 through the conductive wires 106.
  • In the embodiment shown in FIG. 2G, the individual packages 100′ further includes at least one passive component 115 embedded in the encapsulant 108. However, it construes no limitation in the invention. In alternative embodiments, the passive components 115 may be disposed on the redistribution layer 110. Furthermore, in the exemplary embodiment, the encapsulant 108 has a first thickness 108T, and the redistribution layer 110 has a second thickness 110T smaller than the first thickness 108T. That is, the encapsulant 108 provides a first rigidity, and the redistribution layer 110 provides a second rigidity, wherein the first rigidity is greater than the second rigidity. In addition, the bonding pads 105 are arranged with a first pitch P and the conductive balls 120 are arranged with a second pitch P2, the second pitch P2 is greater than the first pitch P1. That is, the individual packages 100′ are directed to fan-out packages. The first pitch P and the second pitch P2 is calculated based on a center position of the bonding pads 105 and the conductive balls 120.
  • In the embodiments shown above, the sacrificial structures are used to fix the position of the conductive wires. As such, when removing the sacrificial structure, the precise location of the wire or weld may be provided for further connection. Furthermore, a thickness of the semiconductor die may be effectively controlled during the thinning process, thus an overall size of the package structure may be reduced. In addition, with the presence of the sacrificial structure, an area ratio between the dies and the encapsulant is decreased. Thus, the issue of wafer or panel warpage may be resolved. Accordingly, the simplicity of the manufacturing process of the package structure may be realized, thereby reducing the overall manufacturing cost.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention covers modifications and variations of this invention provided fall within the scope of the following claims and their equivalents.

Claims (20)

1. A manufacturing method of a package structure, comprising:
providing a carrier,
disposing a semiconductor die and at least one sacrificial structure on the carrier;
electrically connecting the semiconductor die to bonding pads on the sacrificial structure through a plurality of conductive wires;
forming an encapsulant on the carrier to encapsulate the semiconductor die, the sacrificial structure and the conductive wires;
debonding the carrier,
removing at least a portion of the sacrificial structure through a thinning process; and
forming a redistribution layer on the semiconductor die and the encapsulant, the redistribution layer is electrically connected to the semiconductor die through the conductive wires.
2. The manufacturing method of a package structure according to claim 1, wherein the sacrificial structure is disposed on the carrier, and the semiconductor die is disposed on the sacrificial structure.
3. The manufacturing method of a package structure according to claim 2, wherein a width of the sacrificial structure is greater than a width of the semiconductor die.
4. The manufacturing method of a package structure according to claim 2, wherein the redistribution layer is formed on the semiconductor die and the encapsulant after the removal of the sacrificial structure, and a plurality of passive components is disposed on the redistribution layer.
5. The manufacturing method of a package structure according to claim 1, wherein the thinning process removes a portion of the semiconductor die to form a thinned semiconductor die.
6. The manufacturing method of a package structure according to claim 1, wherein the bonding pads or the conductive wires are revealed after the thinning process.
7. The manufacturing method of a package structure according to claim 1, wherein a plurality of the sacrificial structures is disposed on the carrier to surround the semiconductor die.
8. The manufacturing method of a package structure according to claim 7, wherein the semiconductor die and the sacrificial structures are disposed on a same plane and on a same surface of the carriers.
9. The manufacturing method of a package structure according to claim 7, further comprising:
forming a plurality of passive components on the sacrificial structures, wherein the encapsulant is formed to encapsulate the passive components.
10. The manufacturing method of a package structure according to claim 9, wherein the redistribution layer is formed on the semiconductor die and the encapsulant after the removal of the sacrificial structure, and the redistribution layer is electrically connected to the semiconductor die and the passive components.
11. A package structure, comprising:
an encapsulant having a top surface and a bottom surface opposite to the top surface;
a stacked die embedded in the encapsulant;
a plurality of bonding pads of a sacrificial structure encapsulated by the encapsulant, wherein connection terminals of the bonding pads are exposed on a top surface of the encapsulant;
a plurality of conductive wires embedded in the encapsulant, each of the plurality of conductive wires having one end coupled to the stacked die and another end coupled to a terminal of the bonding pads opposite the connection terminals;
a redistribution layer, directly formed on a first surface of the stacked die exposed through the encapsulant, the connection terminals of the bonding pads, and the top surface of the encapsulant, the redistribution layer is electrically connected to the stacked die through the bonding pads and the conductive wires, wherein the connection terminals of the bonding pads, the first surface of the stacked die, and the top surface of the encapsulant are coplanar to each other.
12. The package structure according to claim 11, further comprising at least one passive component embedded in the encapsulant.
13. The package structure according to claim 11, further comprising at least one passive component disposed on the redistribution layer.
14. The package structure according to claim 11, wherein the encapsulant has a first thickness, and the redistribution layer has a second thickness smaller than the first thickness.
15. The package structure according to claim 14, wherein the encapsulant provides a first rigidity, and the redistribution layer provides a second rigidity, the first rigidity is greater than the second rigidity.
16. (canceled)
17. The package structure according to claim 11, wherein the stacked die comprises:
a first die having a first surface exposed through the encapsulant;
a second die stacked on the first die opposite to a side of the first surface, the second die cover portions of the first die, and other portions of the first die not covered by the second die contain die pads, the die pads of the first die are electrically connected to the bonding pads through the conductive wires.
18. The package structure according to claim 17, wherein the stacked die further comprises:
a third die stacked on the second die, the third die cover portions of the second die, and other portions of the second die not covered by the third die contain die pads, the die pads of the second die are electrically connected to the bonding pads through the conductive wires.
19. The package structure according to claim 11, further comprising a plurality of conductive balls disposed on the redistribution layer.
20. The package structure according to claim 19, wherein the bonding pads are arranged with a first pitch and the conductive balls are arranged with a second pitch, the second pitch is greater than the first pitch.
US15/644,831 2017-07-10 2017-07-10 Package structure and manufacturing method thereof Abandoned US20190013214A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/644,831 US20190013214A1 (en) 2017-07-10 2017-07-10 Package structure and manufacturing method thereof
TW106130583A TWI662635B (en) 2017-07-10 2017-09-07 Package structure and manufacturing method thereof
CN201710845069.8A CN109243981B (en) 2017-07-10 2017-09-19 Package structure and method for manufacturing the same
US16/724,387 US10796931B2 (en) 2017-07-10 2019-12-23 Manufacturing method of package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/644,831 US20190013214A1 (en) 2017-07-10 2017-07-10 Package structure and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/724,387 Division US10796931B2 (en) 2017-07-10 2019-12-23 Manufacturing method of package structure

Publications (1)

Publication Number Publication Date
US20190013214A1 true US20190013214A1 (en) 2019-01-10

Family

ID=64904208

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/644,831 Abandoned US20190013214A1 (en) 2017-07-10 2017-07-10 Package structure and manufacturing method thereof
US16/724,387 Active US10796931B2 (en) 2017-07-10 2019-12-23 Manufacturing method of package structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/724,387 Active US10796931B2 (en) 2017-07-10 2019-12-23 Manufacturing method of package structure

Country Status (3)

Country Link
US (2) US20190013214A1 (en)
CN (1) CN109243981B (en)
TW (1) TWI662635B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11574891B2 (en) * 2021-01-26 2023-02-07 Nanya Technology Corporation Semiconductor device with heat dissipation unit and method for fabricating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195667A1 (en) * 2003-04-04 2004-10-07 Chippac, Inc Semiconductor multipackage module including processor and memory package assemblies
US20080284003A1 (en) * 2007-05-17 2008-11-20 Chua Swee Kwang Semiconductor Packages And Method For Fabricating Semiconductor Packages With Discrete Components
US20090032969A1 (en) * 2007-07-30 2009-02-05 Camillo Pilla Arrangement of Integrated Circuit Dice and Method for Fabricating Same
US20150228621A1 (en) * 2013-02-26 2015-08-13 Sandisk Information Technology (Shanghai) Co., Ltd. Semiconductor device including alternating stepped semiconductor die stacks
US20150311185A1 (en) * 2014-04-29 2015-10-29 Micron Technology, Inc. Stacked semiconductor die assemblies with support members and associated systems and methods
US20180026022A1 (en) * 2016-07-21 2018-01-25 Samsung Electronics Co., Ltd. Solid state drive package

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781261B2 (en) * 2007-12-12 2010-08-24 Stats Chippac Ltd. Integrated circuit package system with offset stacking and anti-flash structure
US8283209B2 (en) * 2008-06-10 2012-10-09 Stats Chippac, Ltd. Semiconductor device and method of forming PiP with inner known good die interconnected with conductive bumps
US10163766B2 (en) * 2016-11-21 2018-12-25 Semiconductor Components Industries, Llc Methods of forming leadless semiconductor packages with plated leadframes and wettable flanks
CN102201348A (en) * 2010-03-26 2011-09-28 力成科技股份有限公司 Array cutting type quad flat non-leaded packaging method
US8415808B2 (en) * 2010-07-28 2013-04-09 Sandisk Technologies Inc. Semiconductor device with die stack arrangement including staggered die and efficient wire bonding
US20130037929A1 (en) * 2011-08-09 2013-02-14 Kay S. Essig Stackable wafer level packages and related methods
TWI495066B (en) * 2012-08-31 2015-08-01 Chipmos Technologies Inc Wafer level package structure and manufacturing method of the same
US9368438B2 (en) * 2012-12-28 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package (PoP) bonding structures
US9472533B2 (en) * 2013-11-20 2016-10-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming wire bondable fan-out EWLB package
CN105280575A (en) * 2014-07-17 2016-01-27 联华电子股份有限公司 Semiconductor packaging structure and manufacturing method thereof
TWI562318B (en) * 2015-09-11 2016-12-11 Siliconware Precision Industries Co Ltd Electronic package and fabrication method thereof
TWI590407B (en) * 2015-12-11 2017-07-01 南茂科技股份有限公司 Semiconductor package structure and manufacturing method thereof
TWI582919B (en) * 2015-12-31 2017-05-11 力成科技股份有限公司 Substrateless fan-out multi-chip package and its fabricating method
TWM537304U (en) * 2016-11-14 2017-02-21 Jorjin Tech Inc 3D multi-chip module packaging structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195667A1 (en) * 2003-04-04 2004-10-07 Chippac, Inc Semiconductor multipackage module including processor and memory package assemblies
US20080284003A1 (en) * 2007-05-17 2008-11-20 Chua Swee Kwang Semiconductor Packages And Method For Fabricating Semiconductor Packages With Discrete Components
US20090032969A1 (en) * 2007-07-30 2009-02-05 Camillo Pilla Arrangement of Integrated Circuit Dice and Method for Fabricating Same
US20150228621A1 (en) * 2013-02-26 2015-08-13 Sandisk Information Technology (Shanghai) Co., Ltd. Semiconductor device including alternating stepped semiconductor die stacks
US20150311185A1 (en) * 2014-04-29 2015-10-29 Micron Technology, Inc. Stacked semiconductor die assemblies with support members and associated systems and methods
US20180026022A1 (en) * 2016-07-21 2018-01-25 Samsung Electronics Co., Ltd. Solid state drive package

Also Published As

Publication number Publication date
CN109243981A (en) 2019-01-18
US20200126815A1 (en) 2020-04-23
TWI662635B (en) 2019-06-11
TW201909293A (en) 2019-03-01
US10796931B2 (en) 2020-10-06
CN109243981B (en) 2021-05-11

Similar Documents

Publication Publication Date Title
US10410993B2 (en) Manufacturing method of semiconductor device and semiconductor device thereof
US10269744B2 (en) Semiconductor device with thin redistribution layers
US10410970B1 (en) Electronic package and method for fabricating the same
KR101892801B1 (en) Integrated fan-out package and the methods of manufacturing
US9831219B2 (en) Manufacturing method of package structure
US8188585B2 (en) Electronic device and method for producing a device
US20230260920A1 (en) Chip package and manufacturing method thereof
US9716079B2 (en) Multi-chip package having encapsulation body to replace substrate core
US20200006274A1 (en) Semiconductor package and manufacturing method thereof
US9230894B2 (en) Methods for manufacturing a chip package
TWI578490B (en) Method of manufacturing a package-on-package type semiconductor package
KR20200035322A (en) Hybrid add-on stacked memory die using wire bond
CN112397474B (en) Electronic package and its combined substrate and manufacturing method
US6903449B2 (en) Semiconductor component having chip on board leadframe
CN112447534A (en) Package and method for manufacturing the same
US10629559B2 (en) Semiconductor package and manufacturing method thereof
US10796931B2 (en) Manufacturing method of package structure
CN111883506B (en) Electronic package, bearing substrate thereof and manufacturing method
US8779566B2 (en) Flexible routing for high current module application
US10438931B2 (en) Package structure and manufacturing method thereof
US20190189494A1 (en) Package structure and manufacturing method thereof
US9761570B1 (en) Electronic component package with multple electronic components
KR20160041834A (en) Packaged semiconductor devices and packaging methods thereof
CN111883505A (en) Electronic package, bearing substrate thereof and manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWERTECH TECHNOLOGY INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, HAN-WEN;HSU, HUNG-HSIN;CHANG CHIEN, SHANG-YU;AND OTHERS;SIGNING DATES FROM 20170619 TO 20170623;REEL/FRAME:042957/0212

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION