US20180347426A1 - Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same - Google Patents

Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same Download PDF

Info

Publication number
US20180347426A1
US20180347426A1 US15/615,107 US201715615107A US2018347426A1 US 20180347426 A1 US20180347426 A1 US 20180347426A1 US 201715615107 A US201715615107 A US 201715615107A US 2018347426 A1 US2018347426 A1 US 2018347426A1
Authority
US
United States
Prior art keywords
exhaust gas
reductant
scr
ice
turbocharger turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/615,107
Inventor
Isadora RICCI
Emilie Reynier
Ken Friis Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Priority to US15/615,107 priority Critical patent/US20180347426A1/en
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Hansen, Ken Friis, Reynier, Emilie, RICCI, ISADORA
Priority to CN201810513511.1A priority patent/CN108999680A/en
Priority to DE102018113212.3A priority patent/DE102018113212A1/en
Publication of US20180347426A1 publication Critical patent/US20180347426A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Exhaust gas systems and method for controlling the same are provided. Systems include a hydrolysis catalyst device (HCD) in fluid communication with an exhaust gas conduit, a turbocharger turbine disposed downstream from the HCD and in fluid communication therewith via the conduit, a selective catalytic reduction device (SCR) disposed downstream from the turbine and in fluid communication therewith via the conduit; and a reductant injector configured to inject reductant into the conduit upstream from the HCD. The HCD can comprise TiO2, V2O5, A12O3, and SiO2. Methods can include injecting reductant upstream from turbine, such as while the SCR is below a NOx light-off temperature and/or a reductant decomposition temperature. The system can further include a second reductant injector configured to inject reductant into the conduit at a second injection location downstream from the turbine and upstream from the SCR, and the method can include injecting reductant via the second injector.

Description

    INTRODUCTION
  • During a combustion cycle of an internal combustion engine (ICE), air/fuel mixtures are provided to cylinders of the ICE. The air/fuel mixtures are compressed and/or ignited and combusted to provide output torque. After combustion, pistons of the ICE force exhaust gases in the cylinders out through exhaust valve openings and into an exhaust system. The exhaust gas emitted from an ICE, particularly a diesel engine, is a heterogeneous mixture that contains gaseous emissions such as carbon monoxide (CO), unburned hydrocarbons (HC), and oxides of nitrogen (NOx), and oxides of sulfur (SOx) as well as condensed phase materials (liquids and solids) that constitute particulate matter.
  • Exhaust gas treatment systems may employ catalysts in one or more components configured for accomplishing an after-treatment process such as reducing NOx to produce more tolerable exhaust constituents of nitrogen (e.g., N2) and water. One type of exhaust treatment technology for reducing NOx emissions is a selective catalytic reduction device (SCR), which generally includes a catalytic composition capable of reducing NOx species. A reductant, such as urea, is typically sprayed into hot exhaust gases upstream of the SCR, decomposed into ammonia, and absorbed by the SCR device. The ammonia then reduces the NOx to nitrogen and water in the presence of the SCR catalyst. Another type of exhaust treatment device is an oxidation catalyst (OC) device, which is commonly positioned upstream from a SCR to serve several catalytic functions, including oxidizing HC and CO species. Further, OCs can convert NO into NO2 to alter the NO:NOx ratio of exhaust gas in order to increase the NOx reduction efficiency of the downstream SCR.
  • SUMMARY
  • According to an aspect of an exemplary embodiment, an exhaust gas system is provided. The system can include a hydrolysis catalyst device (HCD) in fluid communication with an exhaust gas conduit, a turbocharger turbine disposed downstream from the HCD and in fluid communication therewith via the exhaust gas conduit, a selective catalytic reduction device (SCR) disposed downstream from the turbocharger turbine and in fluid communication therewith via the exhaust gas conduit, and a reductant injector configured to inject reductant into the exhaust gas conduit upstream from the HCD. The HCD can include one or more of TiO2 and V2O5. The HCD can include one or more of TiO2, V2O5, A1 2O3, and SiO2. Reductant can include urea and/or a nitrogen-rich substance capable of decomposing into ammonia. A decomposition temperature threshold of the reductant can be higher than a light-off temperature of the SCR. The SCR can be close-coupled to the turbocharger turbine.
  • According to another aspect of an exemplary embodiment, an internal combustion engine (ICE) exhaust gas system is provided. The system can include an ICE configured to emit exhaust gas to an exhaust gas conduit, a turbocharger turbine disposed downstream from the ICE and in fluid communication therewith via the exhaust gas conduit, a selective catalytic reduction device (SCR) disposed downstream from the turbocharger turbine and in fluid communication therewith via the exhaust gas conduit, and a first reductant injector configured to inject reductant into the exhaust gas conduit at a first injection location upstream from the turbocharger turbine. A decomposition temperature threshold of the reductant can be higher than a light-off temperature of the SCR. The system can further include a hydrolysis catalyst device (HCD) in fluid communication with the exhaust gas conduit and disposed between the reductant injection location and the turbocharger turbine. The HCD can include one or more of TiO2, V2O5, A1 2O3, and SiO2. The system can further include a second reductant injector configured to inject reductant into the exhaust gas conduit at a second injection location downstream from the turbocharger turbine and upstream from the SCR. The ICE can be a diesel ICE. The reductant can include urea and/or a nitrogen-rich substance capable of decomposing into ammonia. The system can further include an oxidation catalyst device in fluid communication with the exhaust gas conduit and disposed downstream from the SCR.
  • According to another aspect of an exemplary embodiment, a method for controlling an internal combustion engine (ICE) exhaust gas system is provided. The system can include an ICE configured to emit exhaust gas to an exhaust gas conduit, a turbocharger turbine disposed downstream from the ICE and in fluid communication therewith via the exhaust gas conduit, a selective catalytic reduction device (SCR) disposed downstream from the turbocharger turbine and in fluid communication therewith via the exhaust gas conduit, and a first reductant injector configured to inject reductant into the exhaust gas conduit at a first injection location upstream from the turbocharger turbine. A decomposition temperature threshold of the reductant can be higher than a light-off temperature of the SCR. Reductant can include urea and/or a nitrogen-rich substance capable of decomposing into ammonia. The method can include injecting reductant upstream from turbocharger turbine. Injecting reductant upstream from the turbocharger turbine can occur while the SCR is below a NOx light-off temperature and/or a reductant decomposition temperature threshold. The method can further include subsequently ceasing injection of reductant upstream from the turbocharger turbine after the SCR achieves a NOx light-off temperature and/or a reductant decomposition temperature threshold. The system can further include a second reductant injector configured to inject reductant into the exhaust gas conduit at a second injection location downstream from the turbocharger turbine and upstream from the SCR, and the method further can further include injecting reductant via the second injector after the SCR achieves a NOx light-off temperature and/or a reductant decomposition temperature threshold.
  • Although many of the embodiments herein are describe in relation to ICE exhaust gas systems, the embodiments herein are generally suitable for all systems capable of accepting and treating NOx species using selective oxidation/reduction catalysts.
  • Other objects, advantages and novel features of the exemplary embodiments will become more apparent from the following detailed description of exemplary embodiments and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a schematic view of an exhaust gas treatment system, according to one or more embodiments;
  • FIG. 2 illustrates a method for controlling an exhaust gas system, according to one or more embodiments.
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
  • Generally, this disclosure pertains to exhaust gas treatment systems utilizing turbochargers, selective catalytic reduction devices (SCR), and reductant injectors configured to inject reductant upstream from the turbocharger. Injecting reductant upstream from turbochargers provides better reductant decomposition and increases SCR performance, particularly at low temperatures. The exhaust gas treatment systems described herein can be implemented in various ICE systems that can include, but are not limited to, diesel engine systems, gasoline direct injection systems, and homogeneous charge compression ignition engine systems. The ICEs will be described herein for use in generating torque for vehicles, yet other non-vehicular applications are within the scope of this disclosure. Therefore when reference is made to a vehicle, such disclosure should be interpreted as applicable to any application of an ICE. Moreover, exhaust gas treatment systems are described in combination with an optional ICE for the purposes of illustration only, and the disclosure herein is not to be limited to gas sources provided by ICEs. It should be further understood that the embodiments disclosed herein may be applicable to treatment of any exhaust streams including oxides of nitrogen (NOx) or other chemical species which are desirably reduced by SCRs.
  • FIG. 1 illustrates an exhaust gas system 100 including a turbocharger 10 configured to receive exhaust gas 8 via exhaust gas conduit 9, and an SCR 20 configured to receive exhaust gas 8 and reductant 36 via exhaust gas conduit 9. Reductant 36 can be injected into exhaust gas conduit 9 via injector 30 at a reductant injection location. Exhaust gas 8 can be generated and communicated by ICE 1, for example. System 100 can further optionally include a hydrolysis catalyst device (HCD) 40 in fluid communication with the exhaust gas conduit 9 and disposed between the reductant injection location and the turbocharger 10. System 100 can further optionally include an oxidation catalyst device (OC) 50 configured to receive exhaust gas 8. As used herein, “upstream” and “downstream” can be defined in relation to the direction of the flow of exhaust gas 8 from ICE 1; accordingly, a component located upstream relative to a downstream component generally means that it is relatively closer to ICE 1, or that exhaust gas 8 arrives at the upstream component prior to the downstream component.
  • ICE 1 can include one or more cylinders 2 capable of each accepting a piston (not shown) which can reciprocate therein. Air and fuel are combusted in the one or more cylinders thereby reciprocating the appurtenant pistons therein. Air 4 can be supplied to one or more cylinders 2 via an air intake manifold 3, for example. The pistons can be attached to a crankshaft (not shown) operably attached to a vehicle driveline (not shown) in order to deliver tractive torque thereto, for example. ICE 1 can be of a spark ignition or a compression ignition design and can generally include any number of cylinder arrangements and a variety of reciprocating engine configurations including, but not limited to, V-engines, inline engines, and horizontally opposed engines, as well as both overhead cam and cam-in-block configurations. ICE I can comprise any engine configuration or application, including various vehicular applications (e.g., automotive, marine and the like), as well as various non-vehicular applications (e.g., pumps, generators and the like),
  • Exhaust gas 8 can generally include carbon monoxide (CO), unburned hydrocarbons (HC), water, NOx species, and optionally oxides of sulfur (SOx). Constituents of exhaust gas, as used herein, are not limited to gaseous species. As used herein, “NOx” refers to one or more nitrogen oxides. NOx species can include NyOx species, wherein y>0 and x>0. Non-limiting examples of nitrogen oxides can include NO, NO2, N2O, N2O2, N2O3, N2O4, and N2O5. HC refers to combustable chemical species comprising hydrogen and carbon, and generally includes one or more chemical species of gasoline, diesel fuel, or the like.
  • Turbocharger 10 includes a turbine 11, for example disposed within a turbine housing (not shown), and a compressor 12, for example disposed within a compressor housing (not shown). Turbine 11 and compressor 12 are mechanically coupled via a common rotatable shaft 13. Turbine 11 is configured in fluid communication with ICE 1 in order to receive exhaust gas 8 therefrom. In operation, the turbine 11 receives exhaust gas 8 from ICE 1, for example via a turbine exhaust intake (not shown). The intake can communicate exhaust gas to a circumferential volute, or scroll, which receives the exhaust gas 8 and directs the same to turbine 11, whereafter exhaust gas 8 is expelled from the turbine housing. Turbine 11 captures kinetic energy from the exhaust gases and spins the compressor 12 via common shaft 13. Volumetric restrictions of the exhaust gas within the turbine housing further convert thermal energy into additional kinetic energy which is similarly captured by the turbine 11. Such a conversion results in a temperature differential (ΔT) across turbine 11. For example, under normal ICE 1 operating conditions, the temperature of exhaust gas 8 may be 400° C. upstream from turbine 11 and 200° C. upstream from turbine 11 (i.e., a ΔT of 200° C.). The rotation of compressor 12 via the common shaft 30 draws in air 4 through a compressor intake (not shown) which is compressed and delivered to the intake manifold 3 of ICE 1. Turbochargers are commonly used to enhance the efficiency and/or performance of ICEs, and are ideally close-coupled to an appurtenant ICE such that exhaust gas 8 kinetic energy and/or thermal energy is maximized prior to contacting turbine 11. As used herein, “close-coupled” refers to a close orientation of a device (e.g., turbine 11) relative to another (e.g., ICE 1), such as within 1 meter of linear exhaust gas conduit 9, or within the engine compartment of a vehicle.
  • In general, the SCR 20 includes all devices which utilize a reductant 36 and a catalyst to reduce NOx species to desired chemical species, including diatomic nitrogen, nitrogen-containing inert species, or species which are considered acceptable emissions, for example. The reductant 36 can be ammonia (NH3), such as anhydrous ammonia or aqueous ammonia, or generated from a nitrogen and hydrogen rich substance such as urea (CO(NH2)2). For example, the reductant 36 can comprise urea and/or a nitrogen-rich substance capable of decomposing into ammonia. Additionally or alternatively, the reductant 36 can be any compound capable of decomposing or reacting in the presence of exhaust gas 8 and/or heat to form ammonia. The reductant 36 can be diluted with water in various implementations. In implementations where the reductant 36 is diluted with water, heat (e.g., from the exhaust) evaporates the water, and ammonia is supplied to the SCR 20. Non-ammonia reductants can be used as a full or partial alternative to ammonia as desired. In implementations where the reductant 36 includes urea, the urea reacts with the exhaust to produce ammonia, and ammonia is supplied to the SCR 20. Equation (1) below provides an exemplary chemical reaction of ammonia production via urea decomposition.

  • CO(NH2)2+H2O→2NH3+CO2   (1)
  • It should be appreciated that Equation (1) is merely illustrative, and is not meant to confine the urea or other reductant 36 decomposition to a particular single mechanism, nor preclude the operation of other mechanisms. Efficient decomposition urea to NH3 typically requires temperatures in excess of about 200° C., and, depending on the amount of urea injected, for example relative to a flow rate of exhaust gas 8, urea can crystalize in temperatures less than about 200° C. Accordingly, reductant 36 injection events and/or dosing quantities are typically determined based upon system temperature and exhaust gas 8 flow rate, among others, such that urea decomposition yield is maximized and urea crystallization is minimized. A reductant 36 decomposition threshold can accordingly refer to a temperature threshold below which reductant 36 crystalizes and/or does not suitably decompose.
  • Equations (2)-(6) provide exemplary chemical reactions for NOx reduction involving ammonia.

  • 6NO+4NH3→5N2+6H2O   (2)

  • 4NO+4NH3+O2→4N2+6H2O   (3)

  • 6NO2+8NH3→7N2+12H2O   (4)

  • 2NO2+4NH3+O2→3N2+6H2O   (5)

  • NO+NO2+2NH3→2N2+3H2O   (6)
  • It should be appreciated that Equations (2)-(6) are merely illustrative, and are not meant to confine SCR 20 to a particular NOx reduction mechanism or mechanisms, nor preclude the operation of other mechanisms. SCR 20 can be configured to perform any one of the above NOx reduction reactions, combinations of the above NOx reduction reactions, and other NOx reduction reactions. In some instances, SCR 20 comprises a NOx oxidizing temperature threshold above which SCR 20 can oxidize reductant 36 and/or its decomposition products (e.g., urea, NH3) into NOx. A NOx oxidizing temperature threshold can be 500° C., for example.
  • SCR 20 includes a catalytic composition (CC) and can be packaged in a shell or canister in fluid communication with exhaust gas conduit 9 and configured to receive exhaust gas 8 and reductant 36 at upstream side. The shell or canister can comprise a substantially inert material, relative to the exhaust gas constituents, such as stainless steel. CC can comprise, be disposed on, or impregnated into a porous and high surface area material which can operate efficiently to convert NOx constituents in the exhaust gas 8 in the presence of a reductant 36, such as ammonia. For example, the catalyst composition can contain a zeolite impregnated with one or more base metal components such as iron (Fe), cobalt (Co), copper (Cu), vanadium (V), sodium (Na), barium (Ba), titanium (Ti), tungsten (W), and combinations thereof. In a particular embodiment, the catalyst composition can contain a zeolite impregnated with one or more of copper, iron, or vanadium. In some embodiments the zeolite can be a β-type zeolite, a Y-type zeolite, a ZM5 zeolite, or any other crystalline zeolite structure such as a Chabazite or a USY (ultra-stable Y-type) zeolite. In a particular embodiment, the zeolite comprises Chabazite. In a particular embodiment, the zeolite comprises SSZ. Suitable CCs can have high thermal structural stability, particularly when used in tandem with particulate filter (PF) devices or when incorporated into selective catalytic reduction filter devices (SCRF), which are regenerated via high temperature exhaust soot burning techniques. CC can optionally further comprise one or more base metal oxides as promoters to further decrease the SO3 formation and to extend catalyst life. The one or more base metal oxides can include WO3, Al2O3, and MoO3, in some embodiments. In one embodiment, WO3, Al2O3, and MoO3 can be used in combination with V2O5.
  • SCR 20 can have a light-off temperature above which CC exhibits desired or suitable catalytic activity or yield (e.g., reduction of NOx species). The light-off temperature can be dependent upon the type of catalytic materials of which CC is comprised, and the amount of catalytic materials present in SCR 20, among other factors. For example, a CC comprising V2O5 can have a light off temperature of about 300° C. In another example, a CC comprising Fe-impregnated zeolite can have a light off temperature of about 350° C. In another example, a CC comprising Cu-impregnated zeolite can have a light off temperature of about 150° C. When SCR 20 operates at a temperature below its light-off temperature, undesired NOx breakthrough and NH3 slip can occur wherein NOx and/or NH3 pass through SCR 20 unreacted or unstored. NOx breakthrough and NH3 slip can be particularly problematic immediately after engine startup and in cold conditions. NOx breakthrough can also be exacerbated by lean burn strategies commonly implemented in diesel engines, for example. Lean burn strategies coordinate combustion at higher than stoichiometric air to fuel mass ratios to improve fuel economy, and produce hot exhaust with a relatively high content of O2 and NOx species. The high O2 content can further inhibit or prevent the reduction of NOx species in some scenarios. While SCRs 20 with low NOx light-off temperatures can reduce or prevent NOx breakthrough, reductant 36 decomposition thresholds ultimately limit SCR 20 performance.
  • Exhaust gas treatment devices which reduce the pressure and/or temperature of exhaust gas 8, such as SCR 20, are commonly positioned downstream from turbine 11 in order to maximize turbocharger 10 performance. In some instances, SCR 20 is preferably positioned downstream from turbine 11 because, under some ICE 1 operation conditions, exhaust gas 8 upstream from turbine 11 can exceed SCR 20 NOx oxidizing thresholds. Reductant 36 can be supplied from a reductant reservoir (not shown) and is commonly injected into the exhaust gas conduit 9 at a location upstream from SCR 20 via an injector 30, or other suitable delivery means. Specifically, system 100 includes injector 30 configured to inject reductant 36 into exhaust gas conduit 9 at an injection location upstream from turbine 11 where exhaust gas 8 temperatures are higher. Reductant 36 injection upstream from turbine 11 better facilitates reductant 36 heating and/or decomposition and utilizes turbine 11 as a mixer/vaporizor, thereby allowing reductant 36 to be injected sooner in an ICE 1 operating cycle and eliminating or reducing reductant 36 crystallization, for example. In order to maximize the benefits of upstream turbine 11 reductant 36 injection, in some embodiments SCR 20 is close-coupled to turbine 11.
  • The position of injector 30 is particularly advantageous during vehicle cold starts and in operating conditions wherein the temperature of system 100 and/or the ambient is below the reductant 36 decomposition threshold. Specifically, injection of reductant 36 upstream from turbine 11 allows reductant 36 to contact higher-temperature exhaust gas 8 and effect greater decomposition and mixing/vaporization, and the disposition of SCR 20 downstream from turbine 11 does not deprive turbine 11 of thermal energy. As used herein, a cold start refers to an ICE 1 start or operating period that occurs while the temperature of one or more exhaust gas 8 treatment devices (e.g., SCR 20) is lower than the ideal or suitable operating temperature of the device. Particularly, the temperature of SCR 20 can refer to the average temperature of the CC. Additionally or alternatively a cold start can be identified by an ambient temperature threshold (e.g., below 40° C.), or an ambient temperature less than an ideal or suitable operating temperature of SCR 20 CC.
  • In some embodiments, in order to increase turbocharger 10 performance, increase SCR 20 performance, optimize reductant 36 decomposition, and/or reduce wear to the turbine 11 caused by upstream reductant injection 36, system 100 can further comprise a second injector 30′ configured to inject reductant 36 at a second injection location downstream from turbine 11 and upstream from SCR 20. Accordingly, reductant 36 can be supplied by injector 30 under certain conditions, and reductant 36 can be supplied by injector 30′ the same certain conditions and/or other conditions. For example, reductant 36 can be supplied by injector 30 during a vehicle cold start, and reductant 36 can subsequently be supplied by 30′ after system 100 has achieved a desired temperature. Reductant 36 can be supplied to injectors 30 and 30′ from a common reservoir (not shown) in some embodiments.
  • Optional HCD 40 is configured to accept exhaust gas 8, for example via exhaust gas conduit 9, and facilitate and/or encourage the decomposition of reductant 36 into desired chemical species. In particular, HCD 40 is configured to decompose urea into NH3. HCD 40 comprises a CC which can be packaged in a shell or canister configured to receive exhaust gas 8 at upstream side. The shell or canister can comprise a substantially inert material, relative to the exhaust gas constituents, such as stainless steel. CC can comprise, be disposed on, or impregnated into a porous and high surface area material, and can comprise one or more of TiO2, V2O5, Al2O3, and SiO2. In one embodiment, the CC comprises TiO2 and/or V2O5. For example the CC can be disposed on a porous monolith substrate, such as those discussed above. The HCD 40, and in particular the CC substrate, can be configured to exhibit a low pressure differential (AP) across the device. The volume of HCD 40 and the amount of CC can depend on many factors including the type of ICE 1, the volumetric flow of exhaust gas 8, and the amount of reductant 36 normally injected, for example. While the HCD 40 may exacerbate pre-turbine 11 heat lost and turbocharger 10 lag, its disposition upstream from turbine 11 serves to effect enhanced decomposition of reductant 36 and enhance SRC 20 performance, particularly in cold conditions. In some embodiments, as an alternative to HCD 40, turbine 11 can comprise HCD 40 CC on one or more outer surfaces such that the CC contacts reductant 36. An HCD, such as HCD 40, can have a similar NOx light-off temperature to an SCR, such as SCR 20.
  • Optional OC 50 is a flow-through device comprising a CC and configured to accept exhaust gas 8. OC 50 is generally utilized to oxidize various exhaust gas 8 species, including HC, CO and NOx species. CC can he housed within a housing, such as a metal housing, having an inlet (i.e., upstream) opening and outlet (i.e., downstream) opening, or be otherwise configured to provide structural support and facilitate fluid (e.g., exhaust gas) flow through OC 50. CC can comprise many various catalytically active materials and physical configurations thereof, and can optionally comprise a substrate such as a porous ceramic matrix or the like. Catalytically active materials can comprise platinum group metal catalysts, metal oxide catalysts, and combinations thereof. Suitable platinum group metals can include Pt, Pd, Rh, Ru, Os or Ir, or combinations thereof, including alloys thereof. In one embodiment, suitable metals include Pt, Pd, and combinations thereof, including alloys thereof. Suitable metal oxide catalyst can include iron oxides, zinc oxides, aluminum oxides, perovksites, and combination thereof, for example. In one embodiment, CC can comprise Pt and Al2O3. In many embodiments, CC comprises zeolite impregnated with one or more catalytically active base metal components. The zeolite can comprise a β-type zeolite, a Y-type zeolite, a ZM5 zeolite, or any other crystalline zeolite structure such as a Chabazite or a USY (ultra-stable Y-type) zeolite. In a particular embodiment, the zeolite comprises Chabazite. In a particular embodiment, the zeolite comprises SSZ. It is to be understood that the CC is not limited to the particular examples provided, and can include any catalytically active device capable of oxidizing HC, CO, and NOx species. OC 50 can store and/or oxidize NOx species in exhaust gas 8, which, for example, may form during the combustion of fuel. For example, in some embodiments, OC 50 can be utilized to convert NO into NO2 in order to optimize the exhaust gas NO:NO2 ratio for downstream SCRs and/or SCRFs which generally operate more efficiently with exhaust gas feed streams having a NO:NO2 ratio of about 1:1. As shown in FIG. 1, however, OC is disposed downstream from SCR.
  • System 100 can further include a control module 60 operably connected to monitor and/or control ICE 1, turbocharger 10, SCR 20, injector 30, HCD 40, DOC 50, and combinations thereof. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality. Module 60 can control reductant 36 injection, for example.
  • FIG. 2 illustrates a method 200 for controlling system 100. Method 200 will be described in the context of system 100 for the purpose of clarity only, and those of skill in the art will recognize that method 100 is not to be limited thereby. Method 200 comprises injecting 210 reductant 36 upstream from turbine 11 via injector 30. In some embodiments, injecting 210 can occur while SCR 20 is below a NOx light-off temperature. In some embodiments, injecting 210 can occur while SCR 20 is below a reductant decomposition temperature. In some embodiments, injecting 210 can occur while SCR 20 is below a NOx light-off temperature and/or a reductant decomposition temperature. Method 200 can further comprise subsequently injecting 220 reductant 36 downstream from turbine 11 via injector 30′. In some embodiments, injecting 220 can occur after SCR 20 has achieved a NOx light-off temperature. In some embodiments, injecting 220 can occur after SCR 20 has achieved a reductant decomposition temperature. In some embodiments, injecting 220 can occur after SCR 20 has achieved a NOx light-off temperature and/or a reductant decomposition temperature. Method 200 can further comprise ceasing 230 injection of reductant 36 upstream from turbine 11 via injector 30. In some embodiments, ceasing 230 injection of reductant 36 can occur after SCR 20 has achieved a reductant decomposition temperature. In some embodiments, ceasing 230 injection of reductant 36 can occur after SCR 20 has achieved a reductant decomposition temperature. In some embodiments, ceasing 230 injection of reductant 36 can occur after injecting 220 reductant via injector 30′. In some embodiments, ceasing 230 injection of reductant 36 can occur after SCR 20 has achieved a reductant decomposition temperature, after SCR 20 has achieved a reductant decomposition temperature, and/or after injecting 220 reductant via injector 30′.
  • While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depend on the specific application and implementation. These attributes can include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, embodiments described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and can be desirable for particular applications.

Claims (20)

What is claimed is:
1. An exhaust gas system comprising:
a hydrolysis catalyst device (HCD) in fluid communication with an exhaust gas conduit
a turbocharger turbine disposed downstream from the HCD and in fluid communication therewith via the exhaust gas conduit;
a selective catalytic reduction device (SCR) disposed downstream from the turbocharger turbine and in fluid communication therewith via the exhaust gas conduit; and
a reductant injector configured to inject reductant into the exhaust gas conduit upstream from the HCD.
2. The exhaust gas system of claim 1, wherein the HCD comprises one or more of TiO2, V2O5, Al2O3, and SiO2.
3. The exhaust gas system of claim 1, wherein the HCD comprises one or more of TiO2 and V2O5.
4. The exhaust gas system of claim 1, wherein the reductant comprises urea and/or a nitrogen-rich substance capable of decomposing into ammonia.
5. The exhaust gas system of claim 1, wherein a decomposition temperature threshold of the reductant is higher than a light-off temperature of the SCR.
6. The exhaust gas system of claim 1, wherein the SCR is close-coupled to the turbocharger turbine.
7. An internal combustion engine (ICE) exhaust gas system comprising:
an ICE configured to emit exhaust gas to an exhaust gas conduit;
a turbocharger turbine disposed downstream from the ICE and in fluid communication therewith via the exhaust gas conduit;
a selective catalytic reduction device (SCR) disposed downstream from the turbocharger turbine and in fluid communication therewith via the exhaust gas conduit; and
a first reductant injector configured to inject reductant into the exhaust gas conduit at a first injection location upstream from the turbocharger turbine.
8. The ICE exhaust gas system of claim 7, wherein a decomposition temperature threshold of the reductant is higher than a light-off temperature of the SCR.
9. The ICE exhaust gas system of claim 7, further comprising a hydrolysis catalyst device (HCD) in fluid communication with the exhaust gas conduit and disposed between the reductant injection location and the turbocharger turbine.
10. The ICE exhaust gas system of claim 9, wherein the HCD comprises one or more of TiO2, V2O5, Al2O3, and SiO2.
11. The ICE exhaust gas system of claim 7, further comprising a second reductant injector configured to inject reductant into the exhaust gas conduit at a second injection location downstream from the turbocharger turbine and upstream from the SCR.
12. The ICE exhaust gas system of claim 7, wherein the ICE comprises a diesel ICE.
13. The ICE exhaust gas system of claim 7, wherein the reductant comprises urea and/or a nitrogen-rich substance capable of decomposing into ammonia.
14. The ICE exhaust gas system of claim 7, further comprising an oxidation catalyst device in fluid communication with the exhaust gas conduit and disposed downstream from the SCR.
15. A method for controlling an internal combustion engine (ICE) exhaust gas system, wherein the system includes an ICE configured to emit exhaust gas to an exhaust gas conduit, a turbocharger turbine disposed downstream from the ICE and in fluid communication therewith via the exhaust gas conduit, a selective catalytic reduction device (SCR) disposed downstream from the turbocharger turbine and in fluid communication therewith via the exhaust gas conduit, and a first reductant injector configured to inject reductant into the exhaust gas conduit at a first injection location upstream from the turbocharger turbine, the method comprising:
injecting reductant upstream from turbocharger turbine.
16. The method of claim 15, wherein injecting reductant upstream from the turbocharger turbine occurs while the SCR is below a NOx light-off temperature and/or a reductant decomposition temperature threshold.
17. The method of claim 15, further comprising subsequently ceasing injection of reductant upstream from the turbocharger turbine after the SCR achieves a NOx light-off temperature and/or a reductant decomposition temperature threshold.
18. The method of claim 15, wherein the system further comprises a second reductant injector configured to inject reductant into the exhaust gas conduit at a second injection location downstream from the turbocharger turbine and upstream from the SCR, and the method further comprises injecting reductant via the second injector after the SCR achieves a NOx light-off temperature and/or a reductant decomposition temperature threshold.
19. The system of claim 15, wherein a decomposition temperature threshold of the reductant is higher than a light-off temperature of the SCR.
20. The system of claim 15, wherein the reductant comprises urea and/or a nitrogen-rich substance capable of decomposing into ammonia.
US15/615,107 2017-06-06 2017-06-06 Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same Abandoned US20180347426A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/615,107 US20180347426A1 (en) 2017-06-06 2017-06-06 Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same
CN201810513511.1A CN108999680A (en) 2017-06-06 2018-05-24 Utilize the exhaust system and its control method of turbine pre reduction agent injector
DE102018113212.3A DE102018113212A1 (en) 2017-06-06 2018-06-04 Exhaust systems using pilot turbine reducer injections and methods of controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/615,107 US20180347426A1 (en) 2017-06-06 2017-06-06 Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same

Publications (1)

Publication Number Publication Date
US20180347426A1 true US20180347426A1 (en) 2018-12-06

Family

ID=64279421

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/615,107 Abandoned US20180347426A1 (en) 2017-06-06 2017-06-06 Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same

Country Status (3)

Country Link
US (1) US20180347426A1 (en)
CN (1) CN108999680A (en)
DE (1) DE102018113212A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603814A (en) * 2019-01-10 2019-04-12 中国华电科工集团有限公司 A kind of SCR denitration and preparation method thereof of anti-arsenic alkali resistant metal poisoning
CN113864033A (en) * 2021-09-29 2021-12-31 广西玉柴机器股份有限公司 Tail gas emission control system for light vehicle engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219718B (en) * 2019-07-16 2023-12-15 潍柴动力股份有限公司 Post-treatment system for urea injection before vortex and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308287B4 (en) * 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Process for exhaust gas purification
JP2013241859A (en) * 2012-05-18 2013-12-05 Isuzu Motors Ltd Exhaust gas purification system and method for purifying exhaust gas
US20150361842A1 (en) * 2014-06-11 2015-12-17 Homayoun Ahari Exhaust system for a vehicle
WO2016089963A1 (en) * 2014-12-05 2016-06-09 Cummins, Inc. Reductant injection in exhaust manifold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603814A (en) * 2019-01-10 2019-04-12 中国华电科工集团有限公司 A kind of SCR denitration and preparation method thereof of anti-arsenic alkali resistant metal poisoning
CN113864033A (en) * 2021-09-29 2021-12-31 广西玉柴机器股份有限公司 Tail gas emission control system for light vehicle engine

Also Published As

Publication number Publication date
CN108999680A (en) 2018-12-14
DE102018113212A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US10167795B2 (en) Exhaust gas treatment system warm-up methods
US10337377B2 (en) Methods for controlling and monitoring oxidation catalyst devices
US10138789B1 (en) Exhaust gas treatment systems utilizing a plurality of reduced-resistance mixers
US20180334939A1 (en) Electric heaters comprising corrosion resistant metals and selective catalytic reduction devices utilizing the same
US8636970B2 (en) Exhaust purification device and exhaust purification method for diesel engine
US8596063B2 (en) Exhaust treatment system for an internal combustion engine
EP2530265B1 (en) Exhaust purification device and exhaust purification method for diesel engine
US10215072B2 (en) Methods for controlling and detecting catalyst poisoning of selective catalytic reduction devices
US10641147B2 (en) Exhaust gas treatment systems utilizing a single electrically heated catalyst
US20090205325A1 (en) Compact Exhaust Gas Aftertreatment System
US10322373B2 (en) Method for controlling an exhaust gas treatment system
EP2292316B1 (en) Apparatus for after-treatment of exhaust from diesel engine
CN102822462B (en) diesel engine exhaust after-treatment system and method
US20180038298A1 (en) Method for controlling an exhaust gas treatment system
US20180347426A1 (en) Exhaust gas systems utilizing pre-turbine reductant injectors and methods for controlling the same
US10907521B2 (en) Methods for operating and diagnosing internal combustion engine exhaust gas treatment systems
US10138779B2 (en) Selective catalytic reduction filter devices having NOx storage capabilities
US10450924B2 (en) Methods for assessing the condition of a selective catalytic reduction devices
KR20200134608A (en) Exhaust gas post processing apparatus
US10400648B2 (en) Method for controlling an exhaust gas treatment system
US10047651B2 (en) Soot oxidation catalyst materials and selective catalytic reduction filter devices incorporating the same
US11867108B1 (en) Pollutant abatement device of an internal combustion engine and pollutant abatement system comprising the device
US10151229B2 (en) Method for controlling an exhaust gas treatment system

Legal Events

Date Code Title Description
AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RICCI, ISADORA;REYNIER, EMILIE;HANSEN, KEN FRIIS;REEL/FRAME:042616/0613

Effective date: 20170529

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION