US20180313225A1 - Methods of cleaning a component within a turbine engine - Google Patents

Methods of cleaning a component within a turbine engine Download PDF

Info

Publication number
US20180313225A1
US20180313225A1 US15/498,141 US201715498141A US2018313225A1 US 20180313225 A1 US20180313225 A1 US 20180313225A1 US 201715498141 A US201715498141 A US 201715498141A US 2018313225 A1 US2018313225 A1 US 2018313225A1
Authority
US
United States
Prior art keywords
turbine engine
cleaning solution
component
disassembling
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/498,141
Inventor
Michael Robert Millhaem
Nicole Jessica Tibbetts
Byron Andrew Pritchard, Jr.
Bernard Patrick Bewlay
Keith Anthony Lauria
Ambarish Jayant Kulkarni
Mark Rosenzweig
Martin Matthew Morra
Timothy Mark Sambor
Andrew Jenkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US15/498,141 priority Critical patent/US20180313225A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMBOR, Timothy Mark, ROSENZWEIG, MARK, JENKINS, ANDREW, LAURIA, KEITH ANTHONY, PRITCHART, BYRON ANDREW, JR., TIBBETTS, NICOLE JESSICA, MILLHAEM, Michael Robert, BEWLAY, BERNARD PATRICK, Kulkarni, Ambarish Jayant, MORRA, MARTIN MATTHEW
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY CORRECTIVE ASSIGNMENT TO CORRECT THE 3RD INVENTOR NAME PREVIOUSLY RECORDED AT REEL: 042517 FRAME: 0214. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: SAMBOR, Timothy Mark, ROSENZWEIG, MARK, JENKINS, ANDREW, LAURIA, KEITH ANTHONY, PRITCHARD, BYRON ANDREW, JR., TIBBETTS, NICOLE JESSICA, MILLHAEM, Michael Robert, BEWLAY, BERNARD PATRICK, Kulkarni, Ambarish Jayant, MORRA, MARTIN MATTHEW
Priority to SG10201802904PA priority patent/SG10201802904PA/en
Priority to CA3001179A priority patent/CA3001179A1/en
Priority to EP20195145.6A priority patent/EP3767079A1/en
Priority to EP18169458.9A priority patent/EP3396116B1/en
Priority to CN201810389633.4A priority patent/CN108798800B/en
Priority to CN202110487929.1A priority patent/CN113374544A/en
Publication of US20180313225A1 publication Critical patent/US20180313225A1/en
Priority to US17/010,309 priority patent/US11649735B2/en
Priority to US18/135,378 priority patent/US20230250731A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/003Cleaning involving contact with foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/14Removing waste, e.g. labels, from cleaning liquid; Regenerating cleaning liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • B08B9/0326Using pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/222Fuel flow conduits, e.g. manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/30Cleaning aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/70Disassembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/72Maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00019Repairing or maintaining combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates generally to turbine engines and, more specifically, to cleaning coked hydrocarbons from a component within a turbine engine.
  • coking is a process that forms hard deposits within a fuel supply system of the turbine engine, for example.
  • the hard deposits also form from other hydrocarbon-based substances in other areas of the turbine engine, such as in a fan assembly of the turbine engine. Excess buildup of the hard deposits in the turbine engine can clog the components of the turbine engine, and necessitate service of the turbine engine after prolonged use.
  • servicing the fuel supply system generally includes detaching the turbine engine from an airframe, removing fuel nozzles of the fuel supply system from the turbine engine, replacing the fuel nozzles with different fuel nozzles, transferring the removed fuel nozzles to another location for cleaning, and reattaching the turbine engine to the airframe.
  • a stockpile of unused turbine engine components is maintained in the event a turbine engine is scheduled for service.
  • removing and replacing fuel nozzles in the fuel supply system can be a time-consuming and laborious task.
  • critical ventilation can be blocked, resulting in unscheduled engine removal and significant disassembly to service the components at a piece-part level.
  • a method of cleaning a component within a turbine engine includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point.
  • the component has coked hydrocarbons formed thereon.
  • the method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
  • disassembling the turbine engine includes disassembling the turbine engine when the turbine engine is coupled to an airframe.
  • disassembling the turbine engine includes disassembling a fuel manifold to define an inlet port within the fuel manifold, wherein the inlet port defines the access point.
  • discharging a flow of cleaning solution includes discharging the flow of cleaning solution towards the interior passageway in a pulsed interval having a discharge time defined within a range between about 5 seconds and about 120 seconds.
  • discharging a flow of cleaning solution includes discharging the flow of cleaning solution towards the interior passageway in at least a first pulsed interval and a second pulsed interval, wherein a residence time is defined between the first pulsed interval and the second pulsed interval.
  • the method further includes defining the residence time within a range between about 2 minutes and about 30 minutes.
  • discharging a flow of cleaning solution comprises heating the cleaning solution to a temperature defined within a range between about 30° C. and 95° C.
  • the method further includes disassembling the turbine engine to define a drainage port in the turbine engine, wherein the cleaning solution is drained from the turbine engine through the drainage port.
  • the method further includes discharging a flow of rinsing solution towards the interior passageway from the access point.
  • a method of cleaning a component within a turbine engine includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point, wherein the component has coked hydrocarbons formed thereon, and filling a volume of the interior passageway with an amount of cleaning solution.
  • the cleaning solution is configured to remove the coked hydrocarbons from the component.
  • the method further includes holding the amount of cleaning solution within the interior passageway for a predetermined residence time.
  • disassembling the turbine engine includes disassembling a fan assembly of the turbine engine to define a first open end of a fan midshaft of the turbine engine, wherein the first open end defines the access point.
  • the fan midshaft includes a second open end, and the method further includes sealing the second open end prior to discharging the flow of cleaning solution towards the interior passageway.
  • sealing the second open end includes positioning a plug within the interior passageway of the component proximate the second open end, wherein the plug is insertable through the first open end of the fan midshaft when in a first operational mode, and actuating the plug into a second operational mode from the first operational mode, wherein the plug is configured to seal the second open end when in the second operational mode.
  • filling a volume of the interior passageway includes filling the volume with the cleaning solution including a foaming agent.
  • holding the amount of cleaning solution comprises holding the amount of cleaning solution for the predetermined residence time defined within a range between about 30 minutes and about 8 hours.
  • a method of cleaning a component within a turbine engine includes disassembling the turbine engine to define an access point to the component.
  • the component has coked hydrocarbons formed thereon.
  • the method further includes discharging a flow of cleaning solution towards the component from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component, and wherein the cleaning solution includes at least one of citric acid or glycolic acid.
  • disassembling the turbine engine includes disassembling the turbine engine when the turbine engine is coupled to an airframe.
  • disassembling the turbine engine includes disassembling the turbine engine to provide access to a fuel nozzle of the turbine engine.
  • discharging a flow of cleaning solution includes discharging the flow of cleaning solution that further includes a foaming agent.
  • the method further includes disassembling a fuel manifold to define an inlet port within the fuel manifold, wherein the inlet port defines the access point, and discharging the flow of cleaning solution through the inlet port and towards the component.
  • FIG. 1 is a schematic illustration of an exemplary turbine engine
  • FIG. 2 is a schematic illustration of an exemplary fluid delivery system that may be used to clean the turbine engine shown in FIG. 1 ;
  • FIG. 3 is a box diagram illustrating the fluid delivery system shown in FIG. 2 providing fluid to a component of the turbine engine shown in FIG. 1 from an exemplary access point;
  • FIG. 4 is a box diagram illustrating the fluid delivery system shown in FIG. 2 providing fluid to the component of the turbine engine shown in FIG. 1 from an alternative access point;
  • FIG. 5 is a box diagram illustrating the fluid delivery system shown in FIG. 2 providing fluid to an alternative component of the turbine engine shown in FIG. 1 from an exemplary access point;
  • FIG. 6 is a schematic illustration of an exemplary sealing and discharge assembly in a first operational mode that may be used when delivering fluid to the component shown in FIG. 5 ;
  • FIG. 7 is a schematic illustration of the sealing and discharge assembly shown in FIG. 6 in a second operational mode
  • FIG. 8 is a flow diagram illustrating an exemplary method of cleaning a component within a turbine engine, in accordance with a first embodiment of the disclosure
  • FIG. 9 is a flow diagram illustrating an exemplary method of cleaning a component within a turbine engine, in accordance with a second embodiment of the disclosure.
  • FIG. 10 is a flow diagram illustrating an exemplary method of cleaning a component within a turbine engine, in accordance with a third embodiment of the disclosure.
  • Approximating language may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about”, “approximately”, and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value.
  • range limitations may be combined and/or interchanged. Such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
  • the terms “axial” and “axially” refer to directions and orientations that extend substantially parallel to a centerline of the turbine engine.
  • the terms “radial” and “radially” refer to directions and orientations that extend substantially perpendicular to the centerline of the turbine engine.
  • the terms “circumferential” and “circumferentially” refer to directions and orientations that extend arcuately about the centerline of the turbine engine.
  • Embodiments of the present disclosure relate to cleaning coked hydrocarbons from a component within a turbine engine. More specifically, the systems and methods described herein facilitate cleaning the turbine engine without, for example, having to detach the turbine engine from the airframe, and without having to remove the component to be cleaned from the turbine engine. In contrast, the systems and methods described herein provide a cleaning solution to the turbine engine via an access point, which is defined by disassembling a portion of the turbine engine while still coupled to the airframe. For example, in one embodiment, fuel nozzles of the turbine engine have coked hydrocarbons formed thereon, and the turbine engine is disassembled such that cleaning fluid may be provided to the fuel nozzles from a single access point. As such, the time and effort for disassembling and cleaning components of the turbine engine are reduced, thereby reducing the amount of time for returning a refurbished turbine engine to service.
  • turbofan engine While the following embodiments are described in the context of a turbofan engine, it should be understood that the systems and methods described herein are also applicable to turboprop engines, turboshaft engines, turbojet engines, and ground-based turbine engines, for example.
  • FIG. 1 is a schematic diagram of an exemplary turbine engine 10 coupled to an airframe 11 .
  • Turbine engine 10 includes a fan assembly 12 , a low-pressure or booster compressor assembly 14 , a high-pressure compressor assembly 16 , and a combustor assembly 18 .
  • Fan assembly 12 , booster compressor assembly 14 , high-pressure compressor assembly 16 , and combustor assembly 18 are coupled in flow communication.
  • Turbine engine 10 also includes a high-pressure turbine assembly 20 coupled in flow communication with combustor assembly 18 and a low-pressure turbine assembly 22 .
  • Fan assembly 12 includes an array of fan blades 24 extending radially outward from a rotor disk 26 .
  • Low-pressure turbine assembly 22 is coupled to fan assembly 12 and booster compressor assembly 14 through a first drive shaft 28
  • high-pressure turbine assembly 20 is coupled to high-pressure compressor assembly 16 through a second drive shaft 30
  • Turbine engine 10 has an intake 32 and an exhaust 34 .
  • Turbine engine 10 further includes a centerline 36 about which fan assembly 12 , booster compressor assembly 14 , high-pressure compressor assembly 16 , and turbine assemblies 20 and 22 rotate.
  • air entering turbine engine 10 through intake 32 is channeled through fan assembly 12 towards booster compressor assembly 14 .
  • Compressed air is discharged from booster compressor assembly 14 towards high-pressure compressor assembly 16 .
  • Highly compressed air is channeled from high-pressure compressor assembly 16 towards combustor assembly 18 , mixed with fuel, and the mixture is combusted within combustor assembly 18 .
  • High temperature combustion gas generated by combustor assembly 18 is channeled towards turbine assemblies 20 and 22 .
  • Combustion gas is subsequently discharged from turbine engine 10 via exhaust 34 .
  • FIG. 2 is a schematic illustration of an exemplary fluid delivery system 100 that may be used to clean turbine engine 10 (shown in FIG. 1 ).
  • fluid delivery system 100 is embodied as a mobile flight line cart including a plurality of components that, when used in combination, facilitate providing a flow of cleaning solution to turbine engine 10 .
  • Fluid delivery system 100 includes a cleaning tank 102 that stores the cleaning solution therein, and a rinse tank 104 that stores a rinsing solution therein, such as deionized water.
  • Cleaning tank 102 includes a heater 106 positioned therein for heating the cleaning solution to a predetermined temperature. Heater 106 facilitates heating the cleaning solution to any temperature that enables the systems and methods to function as described herein. In one embodiment, heater 106 heats the cleaning solution to a temperature defined within a range between about 30° C. and about 95° C. before being discharged towards turbine engine 10 .
  • Fluid delivery system 100 includes a first pump 110 coupled in flow communication with first valve assembly 108 .
  • First pump 110 discharges either the cleaning solution or the rinsing solution towards a second valve assembly 112 , which is selectively operable to discharge the selected solution towards turbine engine 10 via a discharge line 114 .
  • fluid delivery system 100 includes a compressor 116 coupled in flow communication with discharge line 114 , and compressor 116 is selectively operable to facilitate providing purge air through discharge line 114 when draining solution from turbine engine 10 .
  • Fluid delivery system 100 also includes an accumulator 118 coupled between first pump 110 and second valve assembly 112 . Accumulator 118 modulates the flow pulses discharged from first pump 110 to provide a steady flow to second valve assembly 112 .
  • fluid delivery system 100 further includes a receiving line 120 coupled in flow communication with turbine engine 10 .
  • receiving line 120 receives fluid that has been channeled towards turbine engine 10 through discharge line 114 , circulated through turbine engine 10 , and subsequently drained from turbine engine 10 .
  • fluid delivery system 100 includes a second pump 122 coupled in flow communication with receiving line 120 .
  • second pump 122 When used cleaning solution is channeled through receiving line 120 , second pump 122 induces flow of the used cleaning solution from turbine engine 10 and discharges the used cleaning solution towards a filter 124 .
  • filter 124 removes contaminants from the used cleaning solution, thereby forming reconditioned cleaning solution, which is then discharged into cleaning tank 102 for further use.
  • Fluid delivery system 100 may use any cleaning solution to clean turbine engine 10 that enables the systems and methods to function as described herein.
  • the cleaning solution is formed a cleaning detergent and water.
  • the cleaning solution includes cleaning detergent of up to about 20 percent by weight of the composition.
  • the cleaning solution includes any cleaning detergent that enables the systems and methods to function as described herein.
  • the cleaning detergent is generally effective at degreasing and decoking, and contains an organic and alkaline solution of up to about 20 percent by weight of the detergent.
  • the organic and alkaline solution includes alkyl and aromatic amines, non-ionic, anionic, and cationic surfactants, and either a polycyclic aromatic hydrocarbon or di-propylene glycol methyl ether.
  • the cleaning solution includes at least one of citric acid or glycolic acid.
  • An example cleaning solution that includes at least one of citric acid or glycolic acid includes, but is not limited to, Citranox® (“Citranox” is a registered trademark of Alconox, Inc., of White Plains, N.Y.).
  • the cleaning solution also includes at least one of a foaming agent, surfactants, or other suitable additives.
  • the cleaning solution includes an organic solvent, such as a Turco® 8226 cleaning solution.
  • FIGS. 3-5 are box diagrams illustrating fluid delivery system 100 (shown in FIG. 2 ) providing solution to a component of turbine engine 10 from an access point.
  • turbine engine 10 includes a fuel supply system 126 including a component 127 , such as at least one fuel nozzle 128 .
  • Fuel supply system 126 also includes a fuel circuit 130 , a split control unit (SCU) 132 coupled in selective flow communication with fuel circuit 130 , and a fuel manifold 134 coupled in flow communication SCU 132 .
  • SCU split control unit
  • fuel is channeled towards fuel nozzle 128 from fuel circuit 130 , through SCU 132 , through fuel manifold 134 , and towards an interior passageway 136 of fuel nozzle 128 .
  • coked hydrocarbons sometimes form on a component within turbine engine 10 after prolonged use.
  • the component is a component of fuel supply system 126 or a fan midshaft, as will be described in more detail below.
  • fuel nozzle 128 has coked hydrocarbons formed thereon, such as within interior passageway 136 or on an outer surface of fuel nozzle 128 .
  • the method includes disassembling a first portion of turbine engine 10 to provide a flow path 137 to interior passageway 136 of fuel nozzle 128 from an access point 138 . More specifically, fuel manifold 134 is disassembled by disconnecting SCU 132 from fuel manifold 134 to define inlet port 140 and access point 138 at fuel manifold 134 .
  • a flow of cleaning solution is then discharged towards interior passageway 136 from access point 138 , where the cleaning solution is configured to remove the coked hydrocarbons from fuel nozzle 128 .
  • discharge line 114 of fluid delivery system 100 (shown in FIG. 2 ) is connected to fuel manifold 134 at inlet port 140 , and fluid delivery system 100 is actuated to discharge cleaning solution towards turbine engine 10 .
  • the flow of cleaning solution is discharged in at least one pulsed interval having a predetermined discharge time.
  • the flow of cleaning solution is discharged in at least a first pulsed interval and a second pulsed interval, where a predetermined residence time is defined between the first pulsed interval and the second pulsed interval.
  • Introducing the cleaning solution into turbine engine 10 in the first pulsed interval and then allowing a predetermined residence time to elapse before discharging the second pulsed interval facilitates allowing the cleaning solution of the first pulsed interval to settle and interact with the coked hydrocarbons formed on fuel nozzle 128 .
  • the second pulsed interval is then discharged after the predetermined residence time has elapsed such that the cleaning solution within turbine engine 10 is refreshed.
  • a flow of rinsing solution is discharged into turbine engine 10 after the predetermined residence time has elapsed after the first pulsed interval.
  • the predetermined discharge time and the predetermined residence time may be of any duration that enables the systems and methods to function as described herein.
  • the predetermined discharge time is defined within a range between about 5 seconds and about 120 seconds.
  • the predetermined residence time is defined within a range between about 2 minutes and about 30 minutes.
  • the flow of cleaning solution is channeled through inlet port 140 , through fuel manifold 134 , through interior passageway 136 of fuel nozzle 128 , and is then discharged from fuel nozzle 128 .
  • the method further includes disassembling a second portion of turbine engine 10 to define a drainage port 142 therein. Drainage port 142 is coupled in flow communication with fuel nozzle 128 such that the solution channeled into turbine engine 10 is drained from turbine engine 10 through drainage port 142 .
  • drainage port 142 is defined by uninstalling at least one ignitor plug (not shown) from turbine engine 10 , where the at least one ignitor plug is located at about a 6 o'clock position within turbine engine 10 .
  • the solution is gravity drained from turbine engine 10 . More specifically, the solution is discharged from fuel nozzle 128 and into a combustor dome, is drained through air holes in the combustor dome into a combustor case, and is then drained from the combustor case through drainage port 142 . Moreover, in the exemplary embodiment, receiving line 120 of fluid delivery system 100 is coupled to turbine engine 10 at drainage port 142 such that used cleaning solution is recycled to fluid delivery system 100 , as described above.
  • the method further includes discharging a flow of rinsing solution towards interior passageway 136 of fuel nozzle 128 from access point 138 . More specifically, fluid delivery system 100 is actuated as described above to facilitate discharging the flow of rinsing solution through discharge line 114 rather than the flow of cleaning solution. The rinsing solution is then drained through drainage port 142 .
  • the method includes disassembling a portion of turbine engine 10 to provide direct access to fuel nozzle 128 having coked hydrocarbons formed thereon. More specifically, turbine engine 10 is disassembled to define an access point 144 at an inlet port 146 of turbine engine 10 .
  • inlet port 146 is defined by uninstalling at least one ignitor plug from turbine engine 10 , or by uninstalling a borescope cover from turbine engine 10 .
  • the flow of cleaning solution is then discharged towards fuel nozzle 128 from access point 144 , such that the cleaning solution impinges against an outer surface 148 of fuel nozzle 128 .
  • the cleaning solution enters fuel nozzle 128 through an opening defined therein such that coked hydrocarbons are also removed the interior of fuel nozzle 128 .
  • the method includes disassembling fan assembly 12 of turbine engine 10 to provide access to component 127 installed therein.
  • fan assembly 12 includes a fan midshaft 150 and a center body 152 and a center vent tube 153 coupled to fan midshaft 150 .
  • Disassembling fan assembly 12 includes removing center body 152 from fan midshaft 150 to define a first open end 154 in fan midshaft 150 , and removing center vent tube 153 from fan midshaft 150 to provide access to an interior of fan midshaft 150 . More specifically, first open end 154 defines an access point 156 to an interior passageway 158 of fan midshaft 150 , which has coked hydrocarbons formed therein.
  • the cleaning solution is then discharged into interior passageway 158 , and a volume of interior passageway 158 is filled with an amount of cleaning solution in the form of an aerated foam.
  • Interior passageway 158 is filled with the amount of cleaning solution for a predetermined residence time that facilitates allowing the cleaning solution to interact with the coked hydrocarbons formed therein, ranging effectively from 30 minutes to 8 hours.
  • the cleaning solution is then drained through first open end 154 and rinsing solution is discharged into interior passageway 158 followed by mechanical removal of additional coking products lifted from the fan mid shaft inner diameter employing an articulating brush comprised of nylon.
  • FIG. 6 is a schematic illustration of an exemplary sealing and discharge assembly 160 in a first operational mode that may be used when delivering fluid to fan midshaft 150
  • FIG. 7 is a schematic illustration of sealing and discharge assembly 160 in a second operational mode.
  • sealing and discharge assembly 160 includes a discharge shaft 162 , an inflatable plug 164 , and a supply line 166 coupled in flow communication with inflatable plug 164 .
  • Discharge shaft 162 includes a first end 168 and a second end 170 .
  • Inflatable plug 164 is coupled to discharge shaft 162 at first end 168
  • a sealing cap 172 is coupled to discharge shaft 162 at second end 170 .
  • fan midshaft 150 includes first open end 154 and a second open end 174 .
  • inflatable plug 164 When in the first operational mode, inflatable plug 164 is deflated to a size such that sealing and discharge assembly 160 is insertable through first open end 154 , and such that inflatable plug 164 is positionable within interior passageway 158 proximate second open end 174 .
  • the inflatable plug 164 is then actuated from the first operational mode to the second operational mode, where the inflatable plug 164 seals second open end 174 when in the second operational mode. More specifically, fluid is supplied to inflatable plug 164 via supply line 166 to inflate inflatable plug 164 to a size that facilitates sealing second open end 174 . Second open end 174 is sealed prior to discharging the flow of cleaning solution towards interior passageway 158 .
  • sealing cap 172 couples to fan midshaft 150 with an interference fit to facilitate sealing first open end 154 .
  • Discharge shaft 162 is coupled in flow communication with discharge line 114 (shown in FIG. 2 ), for example, and includes at least one discharge outlet 176 defined therein. As such, when sealed, interior passageway 158 is provided with cleaning solution discharged from discharge outlet 176 to facilitate removing coked hydrocarbons formed therein.
  • a volume of interior passageway 158 is filled with an amount of the cleaning solution, and the amount of cleaning solution is held within interior passageway 158 for a predetermined residence time.
  • the predetermined residence time is defined within a range between about 30 minutes and about 8 hours.
  • the cleaning solution includes a foaming agent, which facilitates filling the volume of interior passageway 158 and enabling the cleaning solution to interact with coked hydrocarbons on the surface of fan midshaft 150 without being directly applied thereto.
  • interior passageway 158 is drained through at least one of first open end 154 and second open end 174 .
  • the method includes suctioning the cleaning solution from interior passageway 158 .
  • fan midshaft 150 includes at least one annular member 178 positioned within interior passageway 158 . When draining solution from interior passageway 136 , the solution may pool in a space defined between adjacent annular members 178 .
  • suctioning solution from interior passageway 158 includes providing a directed suction force to the space defined between adjacent annular members 178 to facilitate removing pooled solution from interior passageway 158 .
  • Fan midshaft 150 is then cleaned mechanically and rinsed, or a second application of cleaning solution is provided.
  • FIGS. 8-10 are flow diagrams illustrating exemplary methods of cleaning a component within turbine engine 10 .
  • a method 200 includes disassembling 202 turbine engine 10 to provide a flow path 137 to interior passageway 136 of component 127 from access point 138 in turbine engine 10 .
  • Component 127 has coked hydrocarbons formed thereon.
  • Method 200 further includes discharging 204 a flow of cleaning solution towards interior passageway 136 from access point 138 .
  • the cleaning solution is configured to remove the coked hydrocarbons from component 127 .
  • a method 206 includes disassembling 208 turbine engine 10 to provide a flow path to interior passageway 158 of component 127 from access point 156 in turbine engine 10 .
  • Component 127 has coked hydrocarbons formed thereon.
  • Method 206 further includes filling 210 a volume of interior passageway 158 with an amount of cleaning solution, wherein the cleaning solution is configured to remove the coked hydrocarbon from the component, and holding 212 the amount of cleaning solution within interior passageway 158 for a predetermined residence time.
  • a method 214 includes disassembling 216 turbine engine 10 to define access point 144 to component 127 .
  • Component 127 has coked hydrocarbons formed thereon.
  • Method 214 further includes discharging 218 a flow of cleaning solution towards component 127 from access point 144 .
  • the cleaning solution is configured to remove the coked hydrocarbons from component 127 , and the cleaning solution includes at least one of citric acid or glycolic acid.
  • An exemplary technical effect of the assembly and methods described herein includes at least one of: (a) cleaning internal components of a turbine engine while coupled to an airframe; (b) cleaning internal components of the turbine engine in a quick and efficient manner; and (c) reducing an amount of time for cleaning and returning a cleaned turbine engine to service.
  • Exemplary embodiments of a cleaning system for use with a turbine engine and related components are described above in detail.
  • the system is not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein.
  • the configuration of components described herein may also be used in combination with other processes, and is not limited to practice with a fuel nozzles or a fan section of a turbine engine.
  • the exemplary embodiment can be implemented and utilized in connection with many applications where removing coked hydrocarbons from an object is desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.

Description

    BACKGROUND
  • The present disclosure relates generally to turbine engines and, more specifically, to cleaning coked hydrocarbons from a component within a turbine engine.
  • In a gas turbine engine, air is pressurized in a compressor, mixed with fuel in a combustor, and ignited such that hot combustion gas is generated. In at least some known turbine engines, ignition of the air and fuel can result in oxidation and partial decomposition of the mixture, thereby resulting in coking within the turbine engine. More specifically, coking is a process that forms hard deposits within a fuel supply system of the turbine engine, for example. The hard deposits also form from other hydrocarbon-based substances in other areas of the turbine engine, such as in a fan assembly of the turbine engine. Excess buildup of the hard deposits in the turbine engine can clog the components of the turbine engine, and necessitate service of the turbine engine after prolonged use. For example, servicing the fuel supply system generally includes detaching the turbine engine from an airframe, removing fuel nozzles of the fuel supply system from the turbine engine, replacing the fuel nozzles with different fuel nozzles, transferring the removed fuel nozzles to another location for cleaning, and reattaching the turbine engine to the airframe. As such, a stockpile of unused turbine engine components is maintained in the event a turbine engine is scheduled for service. In addition, removing and replacing fuel nozzles in the fuel supply system can be a time-consuming and laborious task. Moreover, if combusted engine oil is trapped outside of the fuel supply system, such as in the fan assembly, critical ventilation can be blocked, resulting in unscheduled engine removal and significant disassembly to service the components at a piece-part level.
  • BRIEF DESCRIPTION
  • In one aspect, a method of cleaning a component within a turbine engine is provided. The method includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, disassembling the turbine engine includes disassembling the turbine engine when the turbine engine is coupled to an airframe.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, disassembling the turbine engine includes disassembling a fuel manifold to define an inlet port within the fuel manifold, wherein the inlet port defines the access point.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, discharging a flow of cleaning solution includes discharging the flow of cleaning solution towards the interior passageway in a pulsed interval having a discharge time defined within a range between about 5 seconds and about 120 seconds.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, discharging a flow of cleaning solution includes discharging the flow of cleaning solution towards the interior passageway in at least a first pulsed interval and a second pulsed interval, wherein a residence time is defined between the first pulsed interval and the second pulsed interval.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, the method further includes defining the residence time within a range between about 2 minutes and about 30 minutes.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, discharging a flow of cleaning solution comprises heating the cleaning solution to a temperature defined within a range between about 30° C. and 95° C.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, the method further includes disassembling the turbine engine to define a drainage port in the turbine engine, wherein the cleaning solution is drained from the turbine engine through the drainage port.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, the method further includes discharging a flow of rinsing solution towards the interior passageway from the access point.
  • In another aspect, a method of cleaning a component within a turbine engine is provided. The method includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point, wherein the component has coked hydrocarbons formed thereon, and filling a volume of the interior passageway with an amount of cleaning solution. The cleaning solution is configured to remove the coked hydrocarbons from the component. The method further includes holding the amount of cleaning solution within the interior passageway for a predetermined residence time.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, disassembling the turbine engine includes disassembling a fan assembly of the turbine engine to define a first open end of a fan midshaft of the turbine engine, wherein the first open end defines the access point.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, the fan midshaft includes a second open end, and the method further includes sealing the second open end prior to discharging the flow of cleaning solution towards the interior passageway.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, sealing the second open end includes positioning a plug within the interior passageway of the component proximate the second open end, wherein the plug is insertable through the first open end of the fan midshaft when in a first operational mode, and actuating the plug into a second operational mode from the first operational mode, wherein the plug is configured to seal the second open end when in the second operational mode.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, filling a volume of the interior passageway includes filling the volume with the cleaning solution including a foaming agent.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, holding the amount of cleaning solution comprises holding the amount of cleaning solution for the predetermined residence time defined within a range between about 30 minutes and about 8 hours.
  • In yet another aspect, a method of cleaning a component within a turbine engine is provided. The method includes disassembling the turbine engine to define an access point to the component. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the component from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component, and wherein the cleaning solution includes at least one of citric acid or glycolic acid.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, disassembling the turbine engine includes disassembling the turbine engine when the turbine engine is coupled to an airframe.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, disassembling the turbine engine includes disassembling the turbine engine to provide access to a fuel nozzle of the turbine engine.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, discharging a flow of cleaning solution includes discharging the flow of cleaning solution that further includes a foaming agent.
  • In one embodiment, which may include at least a portion of the subject matter of any of the preceding and/or following examples and aspects, the method further includes disassembling a fuel manifold to define an inlet port within the fuel manifold, wherein the inlet port defines the access point, and discharging the flow of cleaning solution through the inlet port and towards the component.
  • DRAWINGS
  • These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
  • FIG. 1 is a schematic illustration of an exemplary turbine engine;
  • FIG. 2 is a schematic illustration of an exemplary fluid delivery system that may be used to clean the turbine engine shown in FIG. 1;
  • FIG. 3 is a box diagram illustrating the fluid delivery system shown in FIG. 2 providing fluid to a component of the turbine engine shown in FIG. 1 from an exemplary access point;
  • FIG. 4 is a box diagram illustrating the fluid delivery system shown in FIG. 2 providing fluid to the component of the turbine engine shown in FIG. 1 from an alternative access point;
  • FIG. 5 is a box diagram illustrating the fluid delivery system shown in FIG. 2 providing fluid to an alternative component of the turbine engine shown in FIG. 1 from an exemplary access point;
  • FIG. 6 is a schematic illustration of an exemplary sealing and discharge assembly in a first operational mode that may be used when delivering fluid to the component shown in FIG. 5;
  • FIG. 7 is a schematic illustration of the sealing and discharge assembly shown in FIG. 6 in a second operational mode;
  • FIG. 8 is a flow diagram illustrating an exemplary method of cleaning a component within a turbine engine, in accordance with a first embodiment of the disclosure;
  • FIG. 9 is a flow diagram illustrating an exemplary method of cleaning a component within a turbine engine, in accordance with a second embodiment of the disclosure; and
  • FIG. 10 is a flow diagram illustrating an exemplary method of cleaning a component within a turbine engine, in accordance with a third embodiment of the disclosure.
  • Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of the disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of the disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
  • DETAILED DESCRIPTION
  • In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.
  • The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
  • “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
  • Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about”, “approximately”, and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged. Such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
  • As used herein, the terms “axial” and “axially” refer to directions and orientations that extend substantially parallel to a centerline of the turbine engine. Moreover, the terms “radial” and “radially” refer to directions and orientations that extend substantially perpendicular to the centerline of the turbine engine. In addition, as used herein, the terms “circumferential” and “circumferentially” refer to directions and orientations that extend arcuately about the centerline of the turbine engine.
  • Embodiments of the present disclosure relate to cleaning coked hydrocarbons from a component within a turbine engine. More specifically, the systems and methods described herein facilitate cleaning the turbine engine without, for example, having to detach the turbine engine from the airframe, and without having to remove the component to be cleaned from the turbine engine. In contrast, the systems and methods described herein provide a cleaning solution to the turbine engine via an access point, which is defined by disassembling a portion of the turbine engine while still coupled to the airframe. For example, in one embodiment, fuel nozzles of the turbine engine have coked hydrocarbons formed thereon, and the turbine engine is disassembled such that cleaning fluid may be provided to the fuel nozzles from a single access point. As such, the time and effort for disassembling and cleaning components of the turbine engine are reduced, thereby reducing the amount of time for returning a refurbished turbine engine to service.
  • While the following embodiments are described in the context of a turbofan engine, it should be understood that the systems and methods described herein are also applicable to turboprop engines, turboshaft engines, turbojet engines, and ground-based turbine engines, for example.
  • FIG. 1 is a schematic diagram of an exemplary turbine engine 10 coupled to an airframe 11. Turbine engine 10 includes a fan assembly 12, a low-pressure or booster compressor assembly 14, a high-pressure compressor assembly 16, and a combustor assembly 18. Fan assembly 12, booster compressor assembly 14, high-pressure compressor assembly 16, and combustor assembly 18 are coupled in flow communication. Turbine engine 10 also includes a high-pressure turbine assembly 20 coupled in flow communication with combustor assembly 18 and a low-pressure turbine assembly 22. Fan assembly 12 includes an array of fan blades 24 extending radially outward from a rotor disk 26. Low-pressure turbine assembly 22 is coupled to fan assembly 12 and booster compressor assembly 14 through a first drive shaft 28, and high-pressure turbine assembly 20 is coupled to high-pressure compressor assembly 16 through a second drive shaft 30. Turbine engine 10 has an intake 32 and an exhaust 34. Turbine engine 10 further includes a centerline 36 about which fan assembly 12, booster compressor assembly 14, high-pressure compressor assembly 16, and turbine assemblies 20 and 22 rotate.
  • In operation, air entering turbine engine 10 through intake 32 is channeled through fan assembly 12 towards booster compressor assembly 14. Compressed air is discharged from booster compressor assembly 14 towards high-pressure compressor assembly 16. Highly compressed air is channeled from high-pressure compressor assembly 16 towards combustor assembly 18, mixed with fuel, and the mixture is combusted within combustor assembly 18. High temperature combustion gas generated by combustor assembly 18 is channeled towards turbine assemblies 20 and 22. Combustion gas is subsequently discharged from turbine engine 10 via exhaust 34.
  • FIG. 2 is a schematic illustration of an exemplary fluid delivery system 100 that may be used to clean turbine engine 10 (shown in FIG. 1). In the exemplary embodiment, fluid delivery system 100 is embodied as a mobile flight line cart including a plurality of components that, when used in combination, facilitate providing a flow of cleaning solution to turbine engine 10. Fluid delivery system 100 includes a cleaning tank 102 that stores the cleaning solution therein, and a rinse tank 104 that stores a rinsing solution therein, such as deionized water. Cleaning tank 102 includes a heater 106 positioned therein for heating the cleaning solution to a predetermined temperature. Heater 106 facilitates heating the cleaning solution to any temperature that enables the systems and methods to function as described herein. In one embodiment, heater 106 heats the cleaning solution to a temperature defined within a range between about 30° C. and about 95° C. before being discharged towards turbine engine 10.
  • Cleaning tank 102 and rinse tank 104 are coupled in flow communication with a first valve assembly 108 that is selectively operable to provide either the cleaning solution or the rinsing solution to turbine engine 10. More specifically, fluid delivery system 100 includes a first pump 110 coupled in flow communication with first valve assembly 108. First pump 110 discharges either the cleaning solution or the rinsing solution towards a second valve assembly 112, which is selectively operable to discharge the selected solution towards turbine engine 10 via a discharge line 114. In some embodiments, fluid delivery system 100 includes a compressor 116 coupled in flow communication with discharge line 114, and compressor 116 is selectively operable to facilitate providing purge air through discharge line 114 when draining solution from turbine engine 10. Fluid delivery system 100 also includes an accumulator 118 coupled between first pump 110 and second valve assembly 112. Accumulator 118 modulates the flow pulses discharged from first pump 110 to provide a steady flow to second valve assembly 112.
  • In one embodiment, fluid delivery system 100 further includes a receiving line 120 coupled in flow communication with turbine engine 10. As will be explained in more detail below, receiving line 120 receives fluid that has been channeled towards turbine engine 10 through discharge line 114, circulated through turbine engine 10, and subsequently drained from turbine engine 10. In the exemplary embodiment, fluid delivery system 100 includes a second pump 122 coupled in flow communication with receiving line 120. When used cleaning solution is channeled through receiving line 120, second pump 122 induces flow of the used cleaning solution from turbine engine 10 and discharges the used cleaning solution towards a filter 124. In some embodiments, filter 124 removes contaminants from the used cleaning solution, thereby forming reconditioned cleaning solution, which is then discharged into cleaning tank 102 for further use.
  • Fluid delivery system 100 may use any cleaning solution to clean turbine engine 10 that enables the systems and methods to function as described herein. In the exemplary embodiment, the cleaning solution is formed a cleaning detergent and water. In one embodiment, the cleaning solution includes cleaning detergent of up to about 20 percent by weight of the composition. Moreover, the cleaning solution includes any cleaning detergent that enables the systems and methods to function as described herein. In one embodiment, the cleaning detergent is generally effective at degreasing and decoking, and contains an organic and alkaline solution of up to about 20 percent by weight of the detergent. In some embodiments, the organic and alkaline solution includes alkyl and aromatic amines, non-ionic, anionic, and cationic surfactants, and either a polycyclic aromatic hydrocarbon or di-propylene glycol methyl ether.
  • In an alternative embodiment, the cleaning solution includes at least one of citric acid or glycolic acid. An example cleaning solution that includes at least one of citric acid or glycolic acid includes, but is not limited to, Citranox® (“Citranox” is a registered trademark of Alconox, Inc., of White Plains, N.Y.). In some embodiments, the cleaning solution also includes at least one of a foaming agent, surfactants, or other suitable additives. In a further alternative embodiment, the cleaning solution includes an organic solvent, such as a Turco® 8226 cleaning solution.
  • FIGS. 3-5 are box diagrams illustrating fluid delivery system 100 (shown in FIG. 2) providing solution to a component of turbine engine 10 from an access point. In the exemplary embodiment, turbine engine 10 includes a fuel supply system 126 including a component 127, such as at least one fuel nozzle 128. Fuel supply system 126 also includes a fuel circuit 130, a split control unit (SCU) 132 coupled in selective flow communication with fuel circuit 130, and a fuel manifold 134 coupled in flow communication SCU 132. In operation, fuel is channeled towards fuel nozzle 128 from fuel circuit 130, through SCU 132, through fuel manifold 134, and towards an interior passageway 136 of fuel nozzle 128. As noted above, coked hydrocarbons sometimes form on a component within turbine engine 10 after prolonged use. In the exemplary embodiment, the component is a component of fuel supply system 126 or a fan midshaft, as will be described in more detail below.
  • Referring to FIG. 3, a method of cleaning a component, such as fuel nozzle 128, within turbine engine 10 is described herein. In the exemplary embodiment, fuel nozzle 128 has coked hydrocarbons formed thereon, such as within interior passageway 136 or on an outer surface of fuel nozzle 128. The method includes disassembling a first portion of turbine engine 10 to provide a flow path 137 to interior passageway 136 of fuel nozzle 128 from an access point 138. More specifically, fuel manifold 134 is disassembled by disconnecting SCU 132 from fuel manifold 134 to define inlet port 140 and access point 138 at fuel manifold 134. A flow of cleaning solution is then discharged towards interior passageway 136 from access point 138, where the cleaning solution is configured to remove the coked hydrocarbons from fuel nozzle 128. For example, in the exemplary embodiment, discharge line 114 of fluid delivery system 100 (shown in FIG. 2) is connected to fuel manifold 134 at inlet port 140, and fluid delivery system 100 is actuated to discharge cleaning solution towards turbine engine 10.
  • In one embodiment, the flow of cleaning solution is discharged in at least one pulsed interval having a predetermined discharge time. For example, the flow of cleaning solution is discharged in at least a first pulsed interval and a second pulsed interval, where a predetermined residence time is defined between the first pulsed interval and the second pulsed interval. Introducing the cleaning solution into turbine engine 10 in the first pulsed interval and then allowing a predetermined residence time to elapse before discharging the second pulsed interval facilitates allowing the cleaning solution of the first pulsed interval to settle and interact with the coked hydrocarbons formed on fuel nozzle 128. The second pulsed interval is then discharged after the predetermined residence time has elapsed such that the cleaning solution within turbine engine 10 is refreshed. Alternatively, a flow of rinsing solution is discharged into turbine engine 10 after the predetermined residence time has elapsed after the first pulsed interval.
  • The predetermined discharge time and the predetermined residence time may be of any duration that enables the systems and methods to function as described herein. In one embodiment, the predetermined discharge time is defined within a range between about 5 seconds and about 120 seconds. In addition, in one embodiment, the predetermined residence time is defined within a range between about 2 minutes and about 30 minutes.
  • In the exemplary embodiment, the flow of cleaning solution is channeled through inlet port 140, through fuel manifold 134, through interior passageway 136 of fuel nozzle 128, and is then discharged from fuel nozzle 128. The method further includes disassembling a second portion of turbine engine 10 to define a drainage port 142 therein. Drainage port 142 is coupled in flow communication with fuel nozzle 128 such that the solution channeled into turbine engine 10 is drained from turbine engine 10 through drainage port 142. In one embodiment, drainage port 142 is defined by uninstalling at least one ignitor plug (not shown) from turbine engine 10, where the at least one ignitor plug is located at about a 6 o'clock position within turbine engine 10. As such, the solution is gravity drained from turbine engine 10. More specifically, the solution is discharged from fuel nozzle 128 and into a combustor dome, is drained through air holes in the combustor dome into a combustor case, and is then drained from the combustor case through drainage port 142. Moreover, in the exemplary embodiment, receiving line 120 of fluid delivery system 100 is coupled to turbine engine 10 at drainage port 142 such that used cleaning solution is recycled to fluid delivery system 100, as described above.
  • The method further includes discharging a flow of rinsing solution towards interior passageway 136 of fuel nozzle 128 from access point 138. More specifically, fluid delivery system 100 is actuated as described above to facilitate discharging the flow of rinsing solution through discharge line 114 rather than the flow of cleaning solution. The rinsing solution is then drained through drainage port 142.
  • Referring to FIG. 4, the method includes disassembling a portion of turbine engine 10 to provide direct access to fuel nozzle 128 having coked hydrocarbons formed thereon. More specifically, turbine engine 10 is disassembled to define an access point 144 at an inlet port 146 of turbine engine 10. For example, inlet port 146 is defined by uninstalling at least one ignitor plug from turbine engine 10, or by uninstalling a borescope cover from turbine engine 10. The flow of cleaning solution is then discharged towards fuel nozzle 128 from access point 144, such that the cleaning solution impinges against an outer surface 148 of fuel nozzle 128. In some embodiments, the cleaning solution enters fuel nozzle 128 through an opening defined therein such that coked hydrocarbons are also removed the interior of fuel nozzle 128.
  • Referring to FIG. 5, the method includes disassembling fan assembly 12 of turbine engine 10 to provide access to component 127 installed therein. For example, in the exemplary embodiment, fan assembly 12 includes a fan midshaft 150 and a center body 152 and a center vent tube 153 coupled to fan midshaft 150. Disassembling fan assembly 12 includes removing center body 152 from fan midshaft 150 to define a first open end 154 in fan midshaft 150, and removing center vent tube 153 from fan midshaft 150 to provide access to an interior of fan midshaft 150. More specifically, first open end 154 defines an access point 156 to an interior passageway 158 of fan midshaft 150, which has coked hydrocarbons formed therein. The cleaning solution is then discharged into interior passageway 158, and a volume of interior passageway 158 is filled with an amount of cleaning solution in the form of an aerated foam. Interior passageway 158 is filled with the amount of cleaning solution for a predetermined residence time that facilitates allowing the cleaning solution to interact with the coked hydrocarbons formed therein, ranging effectively from 30 minutes to 8 hours. The cleaning solution is then drained through first open end 154 and rinsing solution is discharged into interior passageway 158 followed by mechanical removal of additional coking products lifted from the fan mid shaft inner diameter employing an articulating brush comprised of nylon.
  • FIG. 6 is a schematic illustration of an exemplary sealing and discharge assembly 160 in a first operational mode that may be used when delivering fluid to fan midshaft 150, and FIG. 7 is a schematic illustration of sealing and discharge assembly 160 in a second operational mode. In the exemplary embodiment, sealing and discharge assembly 160 includes a discharge shaft 162, an inflatable plug 164, and a supply line 166 coupled in flow communication with inflatable plug 164. Discharge shaft 162 includes a first end 168 and a second end 170. Inflatable plug 164 is coupled to discharge shaft 162 at first end 168, and a sealing cap 172 is coupled to discharge shaft 162 at second end 170.
  • Referring to FIG. 7, fan midshaft 150 includes first open end 154 and a second open end 174. When in the first operational mode, inflatable plug 164 is deflated to a size such that sealing and discharge assembly 160 is insertable through first open end 154, and such that inflatable plug 164 is positionable within interior passageway 158 proximate second open end 174. Referring to FIG. 7, the inflatable plug 164 is then actuated from the first operational mode to the second operational mode, where the inflatable plug 164 seals second open end 174 when in the second operational mode. More specifically, fluid is supplied to inflatable plug 164 via supply line 166 to inflate inflatable plug 164 to a size that facilitates sealing second open end 174. Second open end 174 is sealed prior to discharging the flow of cleaning solution towards interior passageway 158.
  • When sealing and discharge assembly 160 is fully inserted within interior passageway 158, sealing cap 172 couples to fan midshaft 150 with an interference fit to facilitate sealing first open end 154. Discharge shaft 162 is coupled in flow communication with discharge line 114 (shown in FIG. 2), for example, and includes at least one discharge outlet 176 defined therein. As such, when sealed, interior passageway 158 is provided with cleaning solution discharged from discharge outlet 176 to facilitate removing coked hydrocarbons formed therein.
  • In one embodiment, a volume of interior passageway 158 is filled with an amount of the cleaning solution, and the amount of cleaning solution is held within interior passageway 158 for a predetermined residence time. The predetermined residence time is defined within a range between about 30 minutes and about 8 hours. In some embodiments, the cleaning solution includes a foaming agent, which facilitates filling the volume of interior passageway 158 and enabling the cleaning solution to interact with coked hydrocarbons on the surface of fan midshaft 150 without being directly applied thereto.
  • After the predetermined residence time has elapsed, interior passageway 158 is drained through at least one of first open end 154 and second open end 174. In some embodiments, the method includes suctioning the cleaning solution from interior passageway 158. Moreover, in the exemplary embodiment, fan midshaft 150 includes at least one annular member 178 positioned within interior passageway 158. When draining solution from interior passageway 136, the solution may pool in a space defined between adjacent annular members 178. As such, in one embodiment, suctioning solution from interior passageway 158 includes providing a directed suction force to the space defined between adjacent annular members 178 to facilitate removing pooled solution from interior passageway 158. Fan midshaft 150 is then cleaned mechanically and rinsed, or a second application of cleaning solution is provided.
  • FIGS. 8-10 are flow diagrams illustrating exemplary methods of cleaning a component within turbine engine 10. Referring to FIG. 8, a method 200 includes disassembling 202 turbine engine 10 to provide a flow path 137 to interior passageway 136 of component 127 from access point 138 in turbine engine 10. Component 127 has coked hydrocarbons formed thereon. Method 200 further includes discharging 204 a flow of cleaning solution towards interior passageway 136 from access point 138. The cleaning solution is configured to remove the coked hydrocarbons from component 127.
  • Referring to FIG. 9, a method 206 includes disassembling 208 turbine engine 10 to provide a flow path to interior passageway 158 of component 127 from access point 156 in turbine engine 10. Component 127 has coked hydrocarbons formed thereon. Method 206 further includes filling 210 a volume of interior passageway 158 with an amount of cleaning solution, wherein the cleaning solution is configured to remove the coked hydrocarbon from the component, and holding 212 the amount of cleaning solution within interior passageway 158 for a predetermined residence time.
  • Referring to FIG. 10, a method 214 includes disassembling 216 turbine engine 10 to define access point 144 to component 127. Component 127 has coked hydrocarbons formed thereon. Method 214 further includes discharging 218 a flow of cleaning solution towards component 127 from access point 144. The cleaning solution is configured to remove the coked hydrocarbons from component 127, and the cleaning solution includes at least one of citric acid or glycolic acid.
  • An exemplary technical effect of the assembly and methods described herein includes at least one of: (a) cleaning internal components of a turbine engine while coupled to an airframe; (b) cleaning internal components of the turbine engine in a quick and efficient manner; and (c) reducing an amount of time for cleaning and returning a cleaned turbine engine to service.
  • Exemplary embodiments of a cleaning system for use with a turbine engine and related components are described above in detail. The system is not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein. For example, the configuration of components described herein may also be used in combination with other processes, and is not limited to practice with a fuel nozzles or a fan section of a turbine engine. Rather, the exemplary embodiment can be implemented and utilized in connection with many applications where removing coked hydrocarbons from an object is desired.
  • Although specific features of various embodiments of the present disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of embodiments of the present disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
  • This written description uses examples to disclose the embodiments of the present disclosure, including the best mode, and also to enable any person skilled in the art to practice embodiments of the present disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the embodiments described herein is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (20)

What is claimed is:
1. A method of cleaning a component within a turbine engine, said method comprising:
disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point in the turbine engine, wherein the component has coked hydrocarbons formed thereon; and
discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
2. The method in accordance with claim 1, wherein disassembling the turbine engine comprises disassembling the turbine engine when the turbine engine is coupled to an airframe.
3. The method in accordance with claim 1, wherein disassembling the turbine engine comprises disassembling a fuel manifold to define an inlet port within the fuel manifold, wherein the inlet port defines the access point.
4. The method in accordance with claim 1, wherein discharging a flow of cleaning solution comprises discharging the flow of cleaning solution towards the interior passageway in a pulsed interval having a discharge time defined within a range between about 5 seconds and about 120 seconds.
5. The method in accordance with claim 1, wherein discharging a flow of cleaning solution comprises discharging the flow of cleaning solution towards the interior passageway in at least a first pulsed interval and a second pulsed interval, wherein a residence time is defined between the first pulsed interval and the second pulsed interval.
6. The method in accordance with claim 5 further comprising defining the residence time within a range between about 2 minutes and about 30 minutes.
7. The method in accordance with claim 1, wherein discharging a flow of cleaning solution comprises heating the cleaning solution to a temperature defined within a range between about 30° C. and 95° C.
8. The method in accordance with claim 1 further comprising disassembling the turbine engine to define a drainage port in the turbine engine, wherein the cleaning solution is drained from the turbine engine through the drainage port.
9. The method in accordance with claim 1 further comprising discharging a flow of rinsing solution towards the interior passageway from the access point.
10. A method of cleaning a component within a turbine engine, said method comprising:
disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point in the turbine engine, wherein the component has coked hydrocarbons formed thereon;
filling a volume of the interior passageway with an amount of cleaning solution, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component; and
holding the amount of cleaning solution within the interior passageway for a predetermined residence time.
11. The method in accordance with claim 10, wherein disassembling the turbine engine comprises disassembling a fan assembly of the turbine engine to define a first open end of a fan midshaft of the turbine engine, wherein the first open end defines the access point.
12. The method in accordance with claim 11, wherein the fan midshaft includes a second open end, said method further comprising sealing the second open end prior to discharging the flow of cleaning solution towards the interior passageway.
13. The method in accordance with claim 12, wherein sealing the second open end comprises:
positioning a plug within the interior passageway of the component proximate the second open end, wherein the plug is insertable through the first open end of the fan midshaft when in a first operational mode; and
actuating the plug into a second operational mode from the first operational mode, wherein the plug is configured to seal the second open end when in the second operational mode.
14. The method in accordance with claim 10, wherein filling a volume of the interior passageway comprises filling the volume with the cleaning solution including a foaming agent.
15. The method in accordance with claim 10, wherein holding the amount of cleaning solution comprises holding the amount of cleaning solution for the predetermined residence time defined within a range between about 30 minutes and about 8 hours.
16. A method of cleaning a component within a turbine engine, said method comprising:
disassembling the turbine engine to define an access point to the component, wherein the component has coked hydrocarbons formed thereon; and
discharging a flow of cleaning solution towards the component from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component, and wherein the cleaning solution includes at least one of citric acid or glycolic acid.
17. The method in accordance with claim 16, wherein disassembling the turbine engine comprises disassembling the turbine engine when the turbine engine is coupled to an airframe.
18. The method in accordance with claim 16, wherein disassembling the turbine engine comprises disassembling the turbine engine to provide access to a fuel nozzle of the turbine engine.
19. The method in accordance with claim 16, wherein discharging a flow of cleaning solution comprises discharging the flow of cleaning solution that further includes a foaming agent.
20. The method in accordance with claim 16 further comprising:
disassembling a fuel manifold to define an inlet port within the fuel manifold, wherein the inlet port defines the access point; and
discharging the flow of cleaning solution through the inlet port and towards the component.
US15/498,141 2017-04-26 2017-04-26 Methods of cleaning a component within a turbine engine Abandoned US20180313225A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US15/498,141 US20180313225A1 (en) 2017-04-26 2017-04-26 Methods of cleaning a component within a turbine engine
SG10201802904PA SG10201802904PA (en) 2017-04-26 2018-04-06 Methods of cleaning a component within a turbine engine
CA3001179A CA3001179A1 (en) 2017-04-26 2018-04-12 Methods of cleaning a component within a turbine engine
CN202110487929.1A CN113374544A (en) 2017-04-26 2018-04-26 Method of cleaning components within a turbine engine
CN201810389633.4A CN108798800B (en) 2017-04-26 2018-04-26 Method of cleaning components within a turbine engine
EP20195145.6A EP3767079A1 (en) 2017-04-26 2018-04-26 Methods of cleaning a component within a turbine engine
EP18169458.9A EP3396116B1 (en) 2017-04-26 2018-04-26 Methods of cleaning a component within a turbine engine
US17/010,309 US11649735B2 (en) 2017-04-26 2020-09-02 Methods of cleaning a component within a turbine engine
US18/135,378 US20230250731A1 (en) 2017-04-26 2023-04-17 Methods of cleaning a component within a turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/498,141 US20180313225A1 (en) 2017-04-26 2017-04-26 Methods of cleaning a component within a turbine engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/010,309 Division US11649735B2 (en) 2017-04-26 2020-09-02 Methods of cleaning a component within a turbine engine

Publications (1)

Publication Number Publication Date
US20180313225A1 true US20180313225A1 (en) 2018-11-01

Family

ID=62091690

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/498,141 Abandoned US20180313225A1 (en) 2017-04-26 2017-04-26 Methods of cleaning a component within a turbine engine
US17/010,309 Active 2037-07-18 US11649735B2 (en) 2017-04-26 2020-09-02 Methods of cleaning a component within a turbine engine
US18/135,378 Pending US20230250731A1 (en) 2017-04-26 2023-04-17 Methods of cleaning a component within a turbine engine

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/010,309 Active 2037-07-18 US11649735B2 (en) 2017-04-26 2020-09-02 Methods of cleaning a component within a turbine engine
US18/135,378 Pending US20230250731A1 (en) 2017-04-26 2023-04-17 Methods of cleaning a component within a turbine engine

Country Status (5)

Country Link
US (3) US20180313225A1 (en)
EP (2) EP3767079A1 (en)
CN (2) CN108798800B (en)
CA (1) CA3001179A1 (en)
SG (1) SG10201802904PA (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220351552A1 (en) * 2017-02-24 2022-11-03 Moc Products Company, Inc. Method for cleaning engine deposits
US11506077B2 (en) 2021-02-04 2022-11-22 General Electric Company Inflatable device with guiding mechanism for effective engine cleaning
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11801536B2 (en) 2016-09-30 2023-10-31 General Electric Company Wash system for a gas turbine engine
US11834632B2 (en) 2013-12-09 2023-12-05 General Electric Company Cleaning solution and methods of cleaning a turbine engine
US11834990B2 (en) 2020-03-10 2023-12-05 Oliver Crispin Robotics Limited Insertion tool
US11952906B2 (en) 2018-04-19 2024-04-09 General Electric Company Machine foam cleaning system with integrated sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112620215B (en) * 2020-11-30 2023-02-03 内蒙古兴洋科技股份有限公司 Cleaning equipment for various clean valves of silane packing materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170489A (en) * 1977-10-11 1979-10-09 Teledyne Sprague Engineering Division of Teledyne, Inc. Process for cleaning jet engine nozzles
US20130042920A1 (en) * 2011-08-19 2013-02-21 Woodward, Inc. Split Control Unit
US20160230592A1 (en) * 2013-10-02 2016-08-11 Aerocore Technologies Llc Cleaning method for jet engine
US20180094538A1 (en) * 2013-12-09 2018-04-05 General Electric Company Methods of cleaning a hot gas flowpath comonent of a turbine engine

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH420472A (en) * 1965-01-04 1966-09-15 Bbc Brown Boveri & Cie Process for preventing deposits in the flow path of turbo compressors
US4530640A (en) * 1982-09-29 1985-07-23 Roto-Master, Inc. Method and apparatus for wastegating turbocharged engine with divided exhaust system
JPS61123720A (en) * 1984-11-16 1986-06-11 Mitsubishi Heavy Ind Ltd Scrubbing method of turbine blade in exhaust turbosupercharger
US4713120A (en) * 1986-02-13 1987-12-15 United Technologies Corporation Method for cleaning a gas turbine engine
US5090205A (en) 1989-08-28 1992-02-25 Foster Charles D Methods and apparatus for periodic chemical cleanings of turbines
US5018355A (en) * 1989-08-28 1991-05-28 Foster Charles D Method and apparatus for periodic chemical cleanings of turbines
CN1050781C (en) 1992-10-06 2000-03-29 陈威宇 Apparatus for internal cleaning of processing systems
US5339845A (en) 1993-07-26 1994-08-23 Fuel Systems Textron, Inc. Cleaning apparatus and method for fuel and other passages
US6263534B1 (en) * 1997-05-02 2001-07-24 Tmo Enterprises Limited Delivery device
EP1199454A3 (en) 1998-05-08 2003-01-22 Mitsubishi Heavy Industries, Ltd. Gas turbine fuel oil distribution control system
US6311704B1 (en) 2000-03-03 2001-11-06 Hydrochem Industrial Services Methods and apparatus for chemically cleaning turbines
US6478033B1 (en) 2000-05-26 2002-11-12 Hydrochem Industrial Services, Inc. Methods for foam cleaning combustion turbines
US6537384B2 (en) 2001-02-06 2003-03-25 General Electric Company Composition and method for engine cleaning
RU2224126C1 (en) * 2002-06-26 2004-02-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И.Баранова" Method of and device for cleaning manifold with nozzles of combustion chamber of gas-turbine engine from fuel coking products
US7065955B2 (en) * 2003-06-18 2006-06-27 General Electric Company Methods and apparatus for injecting cleaning fluids into combustors
EP1715964B1 (en) * 2004-02-16 2010-08-25 Gas Turbine Efficiency AB Method and apparatus for cleaning a turbofan gas turbine engine
US7198052B2 (en) * 2004-03-12 2007-04-03 General Electric Company Mobile flushing unit and process
EP1756399B1 (en) * 2004-06-14 2010-03-31 Gas Turbine Efficiency AB System and devices for collecting and treating waste water from engine washing
FR2872218B1 (en) 2004-06-29 2006-09-29 Snecma Moteurs Sa DEGASSING TUBE FOR LOW PRESSURE TREE OF TURBOMACHINE
US20060073348A1 (en) 2004-10-06 2006-04-06 General Electric Company Electroplated fuel nozzle/swirler wear coat
US7531048B2 (en) * 2004-10-19 2009-05-12 Honeywell International Inc. On-wing combustor cleaning using direct insertion nozzle, wash agent, and procedure
US7454913B1 (en) 2005-04-29 2008-11-25 Tassone Bruce A Method and system for introducing fluid into an airstream
US7513260B2 (en) 2006-05-10 2009-04-07 United Technologies Corporation In-situ continuous coke deposit removal by catalytic steam gasification
GB0614874D0 (en) 2006-07-27 2006-09-06 Rolls Royce Plc Aeroengine washing system and method
DE502006005350D1 (en) 2006-08-16 2009-12-24 Siemens Ag Burner cleaning device
US7712301B1 (en) 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US7703272B2 (en) 2006-09-11 2010-04-27 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US7571735B2 (en) 2006-09-29 2009-08-11 Gas Turbine Efficiency Sweden Ab Nozzle for online and offline washing of gas turbine compressors
US7849878B2 (en) 2006-10-16 2010-12-14 Gas Turbine Efficiency Sweden Ab Gas turbine compressor water wash control of drain water purge and sensing of rinse and wash completion
US8685176B2 (en) 2006-10-16 2014-04-01 Ecoservices, Llc System and method for optimized gas turbine compressor cleaning and performance measurement
US8524010B2 (en) 2007-03-07 2013-09-03 Ecoservices, Llc Transportable integrated wash unit
EP1970133A1 (en) 2007-03-16 2008-09-17 Lufthansa Technik AG Device and method for cleaning the core engine of a turbojet engine
EP2052792A3 (en) 2007-10-09 2011-06-22 Gas Turbine Efficiency Sweden AB Drain valve, washing system and sensing of rinse and wash completion
US8277647B2 (en) 2007-12-19 2012-10-02 United Technologies Corporation Effluent collection unit for engine washing
US8061142B2 (en) 2008-04-11 2011-11-22 General Electric Company Mixer for a combustor
US8845819B2 (en) 2008-08-12 2014-09-30 General Electric Company System for reducing deposits on a compressor
DE102008047493B4 (en) * 2008-09-17 2016-09-22 MTU Aero Engines AG Method for cleaning an engine
US20100108107A1 (en) 2008-10-31 2010-05-06 General Electric Company System and apparatus for fluoride ion cleaning
US8206488B2 (en) 2008-10-31 2012-06-26 General Electric Company Fluoride ion cleaning method
US8303243B2 (en) 2009-01-15 2012-11-06 Pratt & Whitney Canada Corp. Turbine wash port for a gas turbine engine
US8028936B2 (en) 2009-02-17 2011-10-04 Mcdermott Peter Spray nozzle
US8377232B2 (en) 2009-05-04 2013-02-19 General Electric Company On-line cleaning of turbine hot gas path deposits via pressure pulsations
US9016293B2 (en) 2009-08-21 2015-04-28 Gas Turbine Efficiency Sweden Ab Staged compressor water wash system
DE102010045869A1 (en) 2010-08-03 2012-02-23 Mtu Aero Engines Gmbh Cleaning a turbo machine stage
US9239013B2 (en) * 2011-01-03 2016-01-19 General Electric Company Combustion turbine purge system and method of assembling same
US8535449B2 (en) * 2011-06-22 2013-09-17 Envirochem Solutions Llc Use of coke compositions for on-line gas turbine cleaning
US9187700B2 (en) 2012-01-13 2015-11-17 United Technologies Corporation Method for reducing coke deposition
US8998567B2 (en) 2012-06-08 2015-04-07 General Electric Company Method, system and apparatus for enhanced off line compressor and turbine cleaning
US9138782B2 (en) 2012-07-31 2015-09-22 Ecoservices, Llc Engine wash apparatus and method-collector
DE102013202616B4 (en) 2013-02-19 2015-10-01 Lufthansa Technik Ag Device for cleaning the core engine of a jet engine
CN203370761U (en) 2013-07-12 2014-01-01 西安航空动力股份有限公司 Nozzle cleaning device of aero-engine
CN103639156B (en) 2013-10-25 2015-07-29 沈阳黎明航空发动机(集团)有限责任公司 A kind of aero-engine nozzle deposit carbon minimizing technology
US9759131B2 (en) 2013-12-06 2017-09-12 General Electric Company Gas turbine engine systems and methods for imparting corrosion resistance to gas turbine engines
ITMI20132042A1 (en) 2013-12-06 2015-06-07 Nuovo Pignone Srl METHODS FOR WASHING MOTORS WITH GAS TURBINES AND GAS TURBINE ENGINES
US20150159122A1 (en) * 2013-12-09 2015-06-11 General Electric Company Cleaning solution and methods of cleaning a turbine engine
JP6567537B2 (en) 2014-02-13 2019-08-28 ゼネラル・エレクトリック・カンパニイ Anti-coking coating, treatment thereof, and hydrocarbon fluid passage comprising the same
RU2561367C1 (en) * 2014-05-20 2015-08-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Method of cleaning of fuel manifold with injectors of combustion chamber of gas-turbine engine of fuel coking products
US9739168B2 (en) 2014-06-05 2017-08-22 General Electric Company Off-line wash systems and methods for a gas turbine engine
US9874108B2 (en) * 2014-07-08 2018-01-23 Rolls-Royce Corporation Cleaning system for a turbofan gas turbine engine
US9657590B2 (en) 2014-08-04 2017-05-23 Rolls-Royce Corporation Aircraft engine cleaning system
US9821349B2 (en) * 2014-09-10 2017-11-21 Rolls-Royce Corporation Wands for gas turbine engine cleaning
US20160076456A1 (en) * 2014-09-12 2016-03-17 General Electric Company System and method for providing a wash treatment to a surface
US20160186602A1 (en) 2014-12-31 2016-06-30 Aerocore Technologies Llc Nozzle for foam washing of jet engine
US9957066B2 (en) 2015-02-13 2018-05-01 General Electric Company Detergent delivery methods and systems for turbine engines
DE102015006330B4 (en) 2015-05-13 2019-08-22 Robert Nesen Cleaning and / or care of a surface with a liquid mixture with water and a cleaning and / or care product
BR102016021259B1 (en) * 2015-10-05 2022-06-14 General Electric Company METHOD AND SOLUTIONS FOR CLEANING A TURBINE ENGINE AND REAGENT COMPOSITION
CN105436127A (en) 2015-12-03 2016-03-30 中国南方航空工业(集团)有限公司 Deposited carbon removing method for fuel nozzle
US9951647B2 (en) 2015-12-17 2018-04-24 General Electric Company System and method for in situ cleaning of internal components of a gas turbine engine and a related plug assembly
US10428683B2 (en) 2016-01-05 2019-10-01 General Electric Company Abrasive gel detergent for cleaning gas turbine engine components
US10920181B2 (en) 2017-05-03 2021-02-16 Illinois Tool Works Inc. Aerosol cleaning composition
JPWO2020022474A1 (en) 2018-07-27 2021-08-12 セントラル硝子株式会社 Azeotropic composition
DE102018119094A1 (en) 2018-08-06 2020-02-06 Lufthansa Technik Ag Device, method and arrangement for cleaning the core engine of a jet engine
DE102018119091A1 (en) 2018-08-06 2020-02-06 Lufthansa Technik Ag Method, device and arrangement for cleaning the core engine of a jet engine
GB201914723D0 (en) 2019-10-11 2019-11-27 Rolls Royce Plc Cleaning system and a method of cleaning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170489A (en) * 1977-10-11 1979-10-09 Teledyne Sprague Engineering Division of Teledyne, Inc. Process for cleaning jet engine nozzles
US20130042920A1 (en) * 2011-08-19 2013-02-21 Woodward, Inc. Split Control Unit
US20160230592A1 (en) * 2013-10-02 2016-08-11 Aerocore Technologies Llc Cleaning method for jet engine
US20180094538A1 (en) * 2013-12-09 2018-04-05 General Electric Company Methods of cleaning a hot gas flowpath comonent of a turbine engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834632B2 (en) 2013-12-09 2023-12-05 General Electric Company Cleaning solution and methods of cleaning a turbine engine
US11801536B2 (en) 2016-09-30 2023-10-31 General Electric Company Wash system for a gas turbine engine
US20220351552A1 (en) * 2017-02-24 2022-11-03 Moc Products Company, Inc. Method for cleaning engine deposits
US11749030B2 (en) * 2017-02-24 2023-09-05 Moc Products Company, Inc. Method for cleaning engine deposits
US11952906B2 (en) 2018-04-19 2024-04-09 General Electric Company Machine foam cleaning system with integrated sensing
US11707819B2 (en) 2018-10-15 2023-07-25 General Electric Company Selectively flexible extension tool
US11702955B2 (en) 2019-01-14 2023-07-18 General Electric Company Component repair system and method
US11692650B2 (en) 2020-01-23 2023-07-04 General Electric Company Selectively flexible extension tool
US11752622B2 (en) 2020-01-23 2023-09-12 General Electric Company Extension tool having a plurality of links
US11613003B2 (en) 2020-01-24 2023-03-28 General Electric Company Line assembly for an extension tool having a plurality of links
US11834990B2 (en) 2020-03-10 2023-12-05 Oliver Crispin Robotics Limited Insertion tool
US11506077B2 (en) 2021-02-04 2022-11-22 General Electric Company Inflatable device with guiding mechanism for effective engine cleaning
US11654547B2 (en) 2021-03-31 2023-05-23 General Electric Company Extension tool

Also Published As

Publication number Publication date
US20200400037A1 (en) 2020-12-24
EP3396116A2 (en) 2018-10-31
EP3396116A3 (en) 2018-12-26
CA3001179A1 (en) 2018-10-26
US11649735B2 (en) 2023-05-16
CN108798800B (en) 2021-11-26
EP3396116B1 (en) 2021-06-16
SG10201802904PA (en) 2018-11-29
CN108798800A (en) 2018-11-13
EP3767079A1 (en) 2021-01-20
CN113374544A (en) 2021-09-10
US20230250731A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
US11649735B2 (en) Methods of cleaning a component within a turbine engine
US9951647B2 (en) System and method for in situ cleaning of internal components of a gas turbine engine and a related plug assembly
US8245952B2 (en) Compressor wash nozzle integrated in an inlet case strut
EP1489269B1 (en) Methods and apparatus for injecting cleaning fluids into combustors
EP1225307A2 (en) Methods and apparatus for washing gas turbine engines
US10323539B2 (en) System and method for cleaning gas turbine engine components
US10731508B2 (en) Method for cleaning components of a turbine engine
CA2958126C (en) Dry detergent for cleaning gas turbine engine components
CN104956047A (en) Gas turbine offline compressor wash with buffer air from combustor
US8776370B2 (en) Method of maintaining gas turbine engine components
US11306609B2 (en) Retractable washing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILLHAEM, MICHAEL ROBERT;TIBBETTS, NICOLE JESSICA;PRITCHART, BYRON ANDREW, JR.;AND OTHERS;SIGNING DATES FROM 20170501 TO 20170526;REEL/FRAME:042517/0214

AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 3RD INVENTOR NAME PREVIOUSLY RECORDED AT REEL: 042517 FRAME: 0214. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MILLHAEM, MICHAEL ROBERT;TIBBETTS, NICOLE JESSICA;PRITCHARD, BYRON ANDREW, JR.;AND OTHERS;SIGNING DATES FROM 20170501 TO 20170526;REEL/FRAME:042642/0133

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION