US20170206490A1 - System and method to dynamically integrate components of omni-channel order fulfilment - Google Patents

System and method to dynamically integrate components of omni-channel order fulfilment Download PDF

Info

Publication number
US20170206490A1
US20170206490A1 US15/153,900 US201615153900A US2017206490A1 US 20170206490 A1 US20170206490 A1 US 20170206490A1 US 201615153900 A US201615153900 A US 201615153900A US 2017206490 A1 US2017206490 A1 US 2017206490A1
Authority
US
United States
Prior art keywords
processor
dimensional
multipliers
adjusted
order fulfillment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/153,900
Inventor
Ajay A. Deshpande
Saurabh Gupta
Arun Hampapur
Ali Koc
Yingjie Li
Xuan Liu
Christopher S. Milite
Brian L. Quanz
Chek Keong TAN
Dahai Xing
Xiaobo Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DoorDash Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US15/153,900 priority Critical patent/US20170206490A1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMPAPUR, ARUN, MILITE, CHRISTOPHER S., GUPTA, SAURABH, DESHPANDE, AJAY A., LI, YINGJIE, KOC, ALI, ZHENG, XIAOBO, LIU, XUAN, QUANZ, BRIAN L., TAN, CHEK KEONG, XING, DAHAI
Publication of US20170206490A1 publication Critical patent/US20170206490A1/en
Assigned to DoorDash, Inc. reassignment DoorDash, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0834Choice of carriers
    • G06Q10/08345Pricing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/14Details of searching files based on file metadata
    • G06F16/148File search processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/1734Details of monitoring file system events, e.g. by the use of hooks, filter drivers, logs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/182Distributed file systems
    • G06F16/1824Distributed file systems implemented using Network-attached Storage [NAS] architecture
    • G06F16/183Provision of network file services by network file servers, e.g. by using NFS, CIFS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/182Distributed file systems
    • G06F16/184Distributed file systems implemented as replicated file system
    • G06F16/1844Management specifically adapted to replicated file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating
    • G06F16/2365Ensuring data consistency and integrity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/045Explanation of inference; Explainable artificial intelligence [XAI]; Interpretable artificial intelligence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0633Workflow analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0833Tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0838Historical data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • G06Q10/0875Itemisation or classification of parts, supplies or services, e.g. bill of materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • G06Q30/0284Time or distance, e.g. usage of parking meters or taximeters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0633Lists, e.g. purchase orders, compilation or processing
    • G06Q30/0635Processing of requisition or of purchase orders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0882Utilisation of link capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level

Definitions

  • the present application relates generally to order fulfillment, and more particularly to optimizing an order fulfillment system.
  • Omni-channel retailing systems provide consumers with a seamless and unified purchasing experience via both offline and online sales channels.
  • the consumers may view and purchase goods and/or services through a variety of different platforms including on-line e-commerce web portals, mobile applications, brick and mortar stores, catalogues, and other similar platforms. Orders placed by a consumer may be fulfilled either directly, for example, the consumer may purchase the item at the brick and mortar store, or through the use of a shipping company or postage carrier, for example, delivered to a location of the consumer's choosing.
  • dimensional multipliers for a plurality of dimensions are optimized by iteratively solving a multi criteria decision analysis framework (MCDA) sequentially for each dimension.
  • the optimized dimensional multipliers may be used by the MCDA as inputs along with current data to generate a solution for each dimension.
  • the solution may be integrated by the order fulfillment system to optimize order fulfillment based on the current data.
  • a method including receiving historical data associated with an order fulfillment system and setting a dimensional multiplier for each of a plurality of dimensions of the order fulfillment system to an initial pre-determined value.
  • the method iteratively performs the following until the dimensional multipliers for each of the plurality of dimensions have been optimized: running a multi criteria decision analysis framework based on the historical data and the dimensional multipliers for the plurality of dimensions to generate a solution value for each dimension, comparing the solution value for each dimension to an interval including a minimum and maximum solution value for each dimension, determining whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison, if it is determined that one or more of the dimensional multipliers need to be adjusted: adjusting the one or more dimensional multipliers based at least in part on the comparison, and performing the next iteration based at least in part on the one or more adjusted dimensional multipliers, if it is determined that none of the dimensional multipliers need to be adjusted, determining that the dimensional multipli
  • the method further includes receiving current data associated with a current state of the order fulfillment system, running the multi criteria decision analysis framework based on the current data and the optimized dimensional multipliers for each of the plurality of dimensions to generate an optimized solution value for each dimension, and applying the optimized solution value to the order fulfillment system.
  • FIG. 1 illustrates a schematic of an example computer or processing system that may implement an order fulfillment system in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a diagram of an optimization model illustrating components used for optimizing an order fulfillment plan in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates an example of a user interface in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a flow chart illustrating a method of optimizing an order fulfillment system according to an embodiment of the present disclosure.
  • FIG. 5 depicts a cloud computing environment according to an embodiment of the present disclosure.
  • FIG. 6 depicts abstraction model layers according to an embodiment of the present disclosure.
  • the methods, systems, and computer program products of the present disclosure may provide ways to optimize the order fulfillment in an omni-channel retail system.
  • Determining optimal order fulfillment in an omni-channel retail system may rely on a diverse set of inputs and considerations.
  • Some inputs that may be used when determining optimal order fulfillment may include, for example, current inventory levels at stores, current inventory levels at distribution centers, how much inventory is currently in transit, the rate at which inventory is being depleted at stores, the rate at which inventory is being depleted at distribution centers, the cost of shipping inventory from distribution centers to stores, the cost of shipping inventory from distribution centers to customer provided delivery addresses, the cost of shipping inventory from stores to customer provided delivery addresses, the cost of shipping inventory from stores to other stores, the cost of markdowns due to unsold inventory, customer loyalty, and other similar criteria.
  • FIG. 1 illustrates a schematic of an example computer or processing system 100 that may implement an order fulfillment optimizing system in one embodiment of the present disclosure.
  • the computer system is only one example of a suitable processing system and is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the methodology described herein.
  • the processing system shown may be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the processing system shown in FIG.
  • 1 may include, but are not limited to, personal computer systems, server computer systems, thin clients, thick clients, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing environments that include any of the above systems or devices, and the like.
  • the computer system 100 may be described in the general context of computer system executable instructions, such as program modules, being executed by a computer system.
  • program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types.
  • the computer system may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer system storage media including memory storage devices.
  • the components of computer system 100 may include, but are not limited to, one or more processors or processing units 112 , a system memory 116 , and a bus 114 that couples various system components including system memory 116 to processor 112 .
  • the processor 112 may include one or more program modules 110 that perform the methods described herein.
  • the program modules 110 may be programmed into the integrated circuits of the processor 112 , or loaded from memory 116 , storage device 118 , or network 124 or combinations thereof.
  • Bus 114 may represent one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures.
  • bus architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnects (PCI) bus.
  • Computer system 100 may include a variety of computer system readable media. Such media may be any available media that is accessible by computer system, and it may include both volatile and non-volatile media, removable and non-removable media.
  • System memory 116 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) and/or cache memory or others.
  • Computer system 100 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 118 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (e.g., a “hard drive”).
  • a magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk”).
  • an optical disk drive for reading from or writing to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media.
  • each can be connected to bus 114 by one or more data media interfaces.
  • Computer system 100 may also communicate with one or more external devices 126 such as a keyboard, a pointing device, a display 128 , etc.; one or more devices that enable a user to interact with computer system 100 ; and/or any devices (e.g., network card, modem, etc.) that enable computer system to communicate with one or more other computing devices. Such communication can occur via Input/Output (I/O) interfaces 120 .
  • external devices 126 such as a keyboard, a pointing device, a display 128 , etc.
  • devices that enable a user to interact with computer system 100 and/or any devices (e.g., network card, modem, etc.) that enable computer system to communicate with one or more other computing devices.
  • I/O Input/Output
  • computer system 100 can communicate with one or more networks 124 such as a local area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network adapter 122 .
  • network adapter 122 communicates with the other components of computer system via bus 114 .
  • bus 114 It should be understood that although not shown, other hardware and/or software components could be used in conjunction with computer system 100 . Examples include, but are not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, etc.
  • a dimension 210 may be used as inputs into a multi criteria decision analysis framework (MCDA) 220 .
  • Dimensions 210 may be, for example, objectives that a user may wish to target as a basis for a final solution.
  • a dimension 210 may be, for example, optimizing sourcing of items from fulfillment nodes (e.g., stores, distribution centers, etc.) so that the customer receives the order on time and the least expensive shipment option is chosen (Ship from the closest store).
  • a dimension 210 may be, for example, incentivizing stores that have more inventory and decentivizing stores that have less inventory (Balancing inventory).
  • a dimension 210 may be, for example, incentivizing stores that have less workload and decentivizing stores that have more workload (Balancing store utilization). In some embodiments, a dimension 210 may be, for example, incentivizing stores that have the risk of having unsold items at the end of the season (Avoiding markdowns). In some embodiments, a dimension 210 may be, for example, delivering orders earlier to customers having more loyalty points (Honoring customer loyalty).
  • a dimension 210 may be, for example, minimizing the total cost to serve, which may include, for example, improving fulfillment efficiency and speed, improving inventory performance, reducing fulfillment cost, improving customer satisfaction, and improving processing of e-com inventory returned to stores, each of which may also be separate dimensions 210 .
  • Some additional dimensions 210 may include, for example, reducing shipping costs, reducing underutilization of fulfillment capacity at a node (stores, e-fulfillment centers (EFCs), distribution centers (DCs), etc.), reducing operational costs including expenses to clear backlogs or to expedite backlogs, increasing inventory utilization savings including money saved by targeting stock keeping unit (SKU)-node pairs identified by markdown lists and money saved by reducing the risk of markdowns and reducing the risk of lost store sales, reducing the cost of cancellation, reducing the load variance costs (impact of deviating from a fulfillment plan at a given node), increasing customer satisfaction savings (projected gain in market share due to improving customer satisfaction by, for example, reducing delivery times), and reducing real-estate costs (difference in cost of real-estate between warehouse and retail store space).
  • any other dimensions 210 may be used depending on the particular retail business involved.
  • MCDA 220 is a mathematical model that is configured to address all of the dimensions 210 to provide an optimized output taking each dimension 210 into account. MCDA 220 implements the following formulas to generate an optimized result:
  • Each SKU k corresponds to a particular item that may be sold, for example, a blue t-shirt in a large size may have a first SKU k, the same blue t-shirt in a medium size may have a second SKU k, a green t-shirt of the same style in a large size may have a third SKU k, etc.
  • the set of SKUs k may be defined, for example, by the retailer, manufacturer, or any other party.
  • i ⁇ I denotes a set of order fulfillment nodes, for example, stores, EFCs, distribution centers (DCs), warehouses, or any other source having an inventory of SKUs k that can be used for fulfilling orders.
  • i ⁇ I(k) denotes the subset of nodes i from which a specific SKU k can be sourced.
  • h ⁇ 1 . . . H denotes the shipping cost for a package of weight class h.
  • the shipping cost is a function of shipping node i, but the shipping node i can be suppressed since index h is always used with index i.
  • w k denotes the weight of an item of SKU k.
  • denotes the width of the weight interval to which total weight of an order from node i belongs.
  • is related to how shipping costs are calculated by carriers. Different shipping costs may be associated with each weight interval, for example, a first cost for the weight interval [0 pounds, 1 pound], a second cost for the weight interval [1 pound, 2 pounds], etc.
  • the width co is 1 pound.
  • the width ⁇ is 2 pounds.
  • c ih j denotes the shipping cost to a zip or zone code j from a node i for a package of weight class h.
  • X ik denotes the current available inventory of the item SKU k in node i.
  • C ik denotes the cost of sourcing an item of SKU k from node i.
  • Q k denotes the number of items of SKU k that have been demanded. For example, the number of items of SKU k that have been ordered by customers, the inventory shortfall at a particular store, or any other type of demand.
  • multipliers ⁇ may, for example, be a percentage from 0% to 100%. In some embodiments, a decimal representation, e.g., 0.00 to 1.00, may be used. Multipliers ⁇ may denote a weighting that each dimension contributes to the final solution. In some embodiments, multipliers ⁇ may be pre-determined in advance, for example, by a user, by system 10 , by a retailer, or in any other manner. In some embodiments, a user of system 100 may be provided with a user interface 300 that allows the user to set values for each multiplier ⁇ as shown, for example, in FIG. 3 .
  • each dimension 310 includes a corresponding element 320 that is adjustable by the user to set the multiplier ⁇ for the dimension 310 .
  • a dimension 312 of reducing backlog includes a slider 322 that is adjustable to set a multiplier ⁇ 1 , for example, to a value of 25% or 0.25. Accordingly, the multiplier ⁇ 1 corresponding to the dimension 312 of reducing backlog is set to 0.25 or 25% using element 322 . As further shown in the example provided by FIG.
  • dimensions 314 (Avoid markdown), 316 (Minimize shipping cost), and 318 (Minimize labor cost) may each have corresponding elements 324 , 326 , and 328 that, in this example, respectively set the corresponding multipliers ⁇ 2 , ⁇ 3 and ⁇ 4 to 50% (0.50), 25% (0.25), and 0% (0.00).
  • elements 320 may be any other form of input that allows a user to set a value for multipliers ⁇ .
  • a user may enter a value for each multiplier ⁇ directly, e.g., by selecting a multiplier ⁇ and inputting a desired value using a user input device, or may adjust or set the value of multipliers ⁇ in any other similar manner.
  • multipliers ⁇ may be adjusted automatically by system 100 .
  • u ik denotes a decision on whether or not to source units of SKU k from node i.
  • u ik may be the number of units of SKU k that have shipped or will be shipped from node i.
  • w i denotes the weight of a package shipped from node i.
  • the package may include only items of a specific SKU k.
  • the package may include any items being shipped from node i, regardless of SKU.
  • y ih denotes a binary variable indicating whether or not a package has shipped from node i in weight class h.
  • MCDA 220 optimizes the result by solving for both u and y variables simultaneously. In this manner, MCDA 220 brings together multiple dimensions at the same time to find a middle ground between all of the dimensions. In an example, if one dimension is the cost of shipping and another dimension is markdown avoidance, MCDA 220 finds a balance between shipping costs and the cost of future markdowns for the item. For example, MCDA 220 may provide an optimized result based on the fact that 1 dollar in shipping costs now may be offset by the opportunity cost of not sourcing the item effectively which leads to future markdowns and losing that same dollar or more further downstream. In a similar manner MCDA 220 may balance each dimension at the same time to generate the most optimal result.
  • MCDA 220 may be optimized according to one or more models 230 that may provide a basis for a solution.
  • MCDA 220 may be optimized according to a goal programming model 232 to achieve solutions based on goals or target values to be achieved, may be run to achieve pareto optimality 234 such that it is impossible to make one dimension better off without making at least one other dimension worse off, may be run based on constrained service levels 236 , or may be run based on any other similar model.
  • the solution time may increase exponentially such that, for example, obtaining a pareto optimal solution graph, or other outputs from each model 230 may be exponentially more time consuming for each individual problem.
  • a decomposition and heuristic based optimization 240 may be implemented to reduce the solution time and to allow the solution to be generated in or near real-time.
  • Optimization 240 may include the implementation of a sequential approach by solving MCDA 220 for each dimension 210 disjointly using historical data to create a baseline of what a target and service level can or should look like.
  • historical data may be provided by or received from a retailer, e.g., from a database or other storage system via a wired or wireless connection, the internet, or any other communication system, and used as inputs for MCDA 220 .
  • the output solutions for each dimension may then be analyzed to determine the right mix of dimension multipliers.
  • expert opinions may be solicited to assist in optimizing the dimensions multipliers, for example, through the use of user interface 300 .
  • each dimension 210 or group of dimensions 210 may be solved separately in MCDA 220 and later combined to form an order fulfillment solution. Assuming a minimum solution value for a dimension d is ⁇ d and a maximum value for dimension d is ⁇ d . For example in shipping cost minimization, ⁇ d represents minimum shipping cost, and ⁇ d represents maximum shipping cost. Sometimes obtaining minimum and maximum values optimally may take considerable time. In that case, heuristic procedures available in commercial optimization solvers can be used. The heuristic procedure used to solve each dimension may differ depending on the type of dimension being solved. Some non-limiting examples of commercial solvers having heuristic methods may include, for example, the Cplex® solver, the GurobiTM solver, or any other similar solver.
  • An iterative process may be used to combine the individual solutions and resolve them to ultimately end up with a global solution to the overall approach.
  • the amount of time required for calculating the solution may be reduced.
  • t d ⁇ [ ⁇ d , ⁇ d ] may be used to denote a target value t d for dimension d assuming a goal of minimizing objective values in each dimension.
  • Target value t d can be obtained either by user preference or as some percentage value of ⁇ d .
  • ⁇ d may be used.
  • the target value t d may be used in place of ⁇ d .
  • the overall problem may be initially solved with a dimensional multiplier ⁇ d of each dimension d having an initial value of 1.
  • the solution Z d of each individual dimension d may be compared to the minimum value ⁇ d (or target value t d ) and maximum value ⁇ d for that dimension d.
  • the dimensional multiplier ⁇ d may be adjusted, for example, increased or decreased, and the dimension d may solved again using the adjusted ⁇ d multiplier.
  • This process may be performed iteratively such that the value of the dimensional multiplier ⁇ d of each dimension is adjusted until the solution Z d for each dimension d achieves a desired value in the interval [ ⁇ d , ⁇ d ] (or [t d , ⁇ d ]).
  • system 100 may sort the s d values of each dimension d in increasing order and obtain (d), where (d) denotes the position of a dimension din the sorted sequence.
  • system 100 may sort s d values in decreasing order and obtain [d], where [d] denotes the position of a dimension d in the sorted sequence.
  • the pre-determined criteria for satisfaction value s d may be set by a user of system 100 .
  • an iteration of satisfaction value s d for a dimension d will decrease if the satisfaction value s d of the previous iteration was greater than the satisfaction values s d for other dimensions d. In some embodiments, the iteration of satisfaction value s d for the dimension d will increase if the satisfaction value s d of the previous iteration was less than the satisfaction values s d for other dimensions d.
  • FIG. 4 illustrates a flow chart implementing optimization 240 .
  • historical data is received from the retailer.
  • the multiplier ⁇ for each dimension 210 is initially set to 1.
  • multiplier ⁇ for each dimension 210 may alternatively be initially set to any other pre-determined value.
  • a user of system 100 may set the pre-determined value.
  • each multiplier ⁇ may be set to the same value.
  • one or more multiplier ⁇ may be set to different values.
  • each dimension is solved separately based on the respective dimensional multiplier ⁇ and the received historical data to generate an output Z d for each dimension.
  • the output Z d for each dimension 210 is compared to the respective interval [ ⁇ d , ⁇ d ] (or [t d , ⁇ d ]) for each dimension 210 .
  • t d may be set by a user as described above.
  • system 100 determines whether the dimension multiplier ⁇ for any of dimensions 210 needs to be adjusted based on the comparison from 408 . For example, in some embodiments, a user or an expert may review the Z d and the interval [ ⁇ d , ⁇ d ] (or [t d , ⁇ d ]) for a dimension to determine whether an adjustment needs to be made to that dimension.
  • system 100 may define one or more pre-determined or user set thresholds in the interval [ ⁇ d , ⁇ d ] (or [t d , ⁇ d ]) for each dimension.
  • an adjustment of the dimensional multiplier ⁇ for a particular dimension 210 may be necessary.
  • system 100 may include thresholds at values of 7, 10, and 12.
  • an adjustment may be necessary.
  • an adjustment may be required based on what percentage of the interval Z d is at.
  • a target solution may be at 50% of the interval [ ⁇ d , ⁇ d ] (or [t d , ⁇ d ]) where a % higher or lower, say 20% or 70% may require an adjustment.
  • dimensional multipliers ⁇ that are determined to require an adjustment may be adjusted.
  • adjustments to dimensional multipliers ⁇ may be performed manually by a user or expert, for example, via user interface 300 .
  • adjustments to dimensional multipliers ⁇ may be performed automatically by system 100 .
  • a dimensional multiplier ⁇ may be adjusted by an amount that is based on how far a solution Z d produced by MCDA 220 based on the dimensional multiplier ⁇ is from a target solution Z d for the dimension 210 .
  • a Z d between 20 and 30 may require a first adjustment
  • a Z d between 30 and 40 may require a second adjustment
  • a Z d between 45 and 55 may require no adjustment.
  • the first adjustment may be larger than the second adjustment, smaller than the second adjustment, or equal to the second adjustment.
  • the initial value of 1 for a dimensional multiplier ⁇ may be decreased based on the comparison in 408 .
  • a dimensional multiplier ⁇ for a particular dimension 210 may be reduced from 1 to 0.75. Other amounts of reduction or adjustment of a dimensional multiplier ⁇ are also contemplated.
  • any dimensions of MCDA 220 that have adjusted dimensional multipliers ⁇ may solved to generate updated solutions Z d at 406 , the updated solutions Z d for each dimension 210 may again be compared to the respective interval [ ⁇ d , ⁇ d ] for each dimension 210 at 408 , and a determination may be made at 410 of whether another adjustment is necessary.
  • This process from 406 - 412 occurs iteratively until the dimensional multipliers ⁇ no longer need to be adjusted by system 100 .
  • the multipliers ⁇ may now be considered optimized multipliers ⁇ .
  • the process from 406 - 412 may be performed automatically by system 100 without further user input to generate the optimized multipliers ⁇ .
  • current data may be received at 414 .
  • Current data may be data relating to current inventory and stock levels of various SKUs, current customer demand levels for the SKUs, or any other current data related to the current state of the retailers business.
  • each dimension of MCDA 220 may be solved based on the current data and the optimized multipliers ⁇ for each dimension.
  • the solutions Z d for each dimension may then be combined according to MCDA 220 to generate a combined solution Z o as an output to MCDA 220 .
  • the solved values of the combined solution Z o may be implemented by the retailer's order fulfillment system and the order fulfillment system may perform order fulfillment based on the combined solution Z o .
  • aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages, a scripting language such as Perl, VBS or similar languages, and/or functional languages such as Lisp and ML and logic-oriented languages such as Prolog.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider an Internet Service Provider
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • the computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the computer program product may comprise all the respective features enabling the implementation of the methodology described herein, and which—when loaded in a computer system—is able to carry out the methods.
  • Computer program, software program, program, or software in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form.
  • aspects of the present disclosure may be embodied as a program, software, or computer instructions embodied in a computer or machine usable or readable medium, which causes the computer or machine to perform the steps of the method when executed on the computer, processor, and/or machine.
  • a program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform various functionalities and methods described in the present disclosure is also provided.
  • the system and method of the present disclosure may be implemented and run on a general-purpose computer or special-purpose computer system.
  • the terms “computer system” and “computer network” as may be used in the present application may include a variety of combinations of fixed and/or portable computer hardware, software, peripherals, and storage devices.
  • the computer system may include a plurality of individual components that are networked or otherwise linked to perform collaboratively, or may include one or more stand-alone components.
  • the hardware and software components of the computer system of the present application may include and may be included within fixed and portable devices such as desktop, laptop, and/or server.
  • a module may be a component of a device, software, program, or system that implements some “functionality”, which can be embodied as software, hardware, firmware, electronic circuitry, or etc.
  • Cloud computing is a model of service delivery for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, network bandwidth, servers, processing, memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with minimal management effort or interaction with a provider of the service.
  • This cloud model may include at least five characteristics, at least three service models, and at least four deployment models.
  • On-demand self-service a cloud consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with the service's provider.
  • Resource pooling the provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to demand. There is a sense of location independence in that the consumer generally has no control or knowledge over the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter).
  • Rapid elasticity capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.
  • Measured service cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both the provider and consumer of the utilized service.
  • level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts).
  • SaaS Software as a Service: the capability provided to the consumer is to use the provider's applications running on a cloud infrastructure.
  • the applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based e-mail).
  • a web browser e.g., web-based e-mail
  • the consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.
  • PaaS Platform as a Service
  • the consumer does not manage or control the underlying cloud infrastructure including networks, servers, operating systems, or storage, but has control over the deployed applications and possibly application hosting environment configurations.
  • IaaS Infrastructure as a Service
  • the consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly limited control of select networking components (e.g., host firewalls).
  • Private cloud the cloud infrastructure is operated solely for an organization. It may be managed by the organization or a third party and may exist on-premises or off-premises.
  • Public cloud the cloud infrastructure is made available to the general public or a large industry group and is owned by an organization selling cloud services.
  • Hybrid cloud the cloud infrastructure is a composition of two or more clouds (private, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load-balancing between clouds).
  • a cloud computing environment is service oriented with a focus on statelessness, low coupling, modularity, and semantic interoperability.
  • An infrastructure that includes a network of interconnected nodes.
  • cloud computing environment 50 includes one or more cloud computing nodes 10 with which local computing devices used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54 A, desktop computer 54 B, laptop computer 54 C, and/or automobile computer system 54 N may communicate.
  • Nodes 10 may communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks, such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof.
  • This allows cloud computing environment 50 to offer infrastructure, platforms and/or software as services for which a cloud consumer does not need to maintain resources on a local computing device.
  • computing devices 54 A-N shown in FIG. 1 are intended to be illustrative only and that computing nodes 10 and cloud computing environment 50 can communicate with any type of computerized device over any type of network and/or network addressable connection (e.g., using a web browser).
  • FIG. 2 a set of functional abstraction layers provided by cloud computing environment 50 ( FIG. 1 ) is shown. It should be understood in advance that the components, layers, and functions shown in FIG. 2 are intended to be illustrative only and embodiments of the invention are not limited thereto. As depicted, the following layers and corresponding functions are provided:
  • Hardware and software layer 60 includes hardware and software components.
  • hardware components include: mainframes 61 ; RISC (Reduced Instruction Set Computer) architecture based servers 62 ; servers 63 ; blade servers 64 ; storage devices 65 ; and networks and networking components 66 .
  • software components include network application server software 67 and database software 68 .
  • Virtualization layer 70 provides an abstraction layer from which the following examples of virtual entities may be provided: virtual servers 71 ; virtual storage 72 ; virtual networks 73 , including virtual private networks; virtual applications and operating systems 74 ; and virtual clients 75 .
  • management layer 80 may provide the functions described below.
  • Resource provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to perform tasks within the cloud computing environment.
  • Metering and Pricing 82 provide cost tracking as resources are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In one example, these resources may include application software licenses.
  • Security provides identity verification for cloud consumers and tasks, as well as protection for data and other resources.
  • User portal 83 provides access to the cloud computing environment for consumers and system administrators.
  • Service level management 84 provides cloud computing resource allocation and management such that required service levels are met.
  • Service Level Agreement (SLA) planning and fulfillment 85 provide pre-arrangement for, and procurement of, cloud computing resources for which a future requirement is anticipated in accordance with an SLA.
  • SLA Service Level Agreement
  • Workloads layer 90 provides examples of functionality for which the cloud computing environment may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and navigation 91 ; software development and lifecycle management 92 ; virtual classroom education delivery 93 ; data analytics processing 94 ; transaction processing 95 ; and omni-channel order fulfillment optimization 96 .

Abstract

The methods, systems, and computer program products described herein provide optimized order fulfillment in an omni-channel order fulfillment system. In an aspect of the present disclosure, dimensional multipliers for a plurality of dimensions are optimized by iteratively solving a multi criteria decision analysis framework (MCDA) sequentially for each dimension. The optimized dimensional multipliers may be used by the MCDA as inputs along with current data to generate a solution for each dimension. The solution may be integrated by the order fulfillment system to optimize order fulfillment based on the current data.

Description

    RELATED APPLICATION
  • This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/279,738, filed Jan. 16, 2016, the entire contents of which are incorporated herein by reference.
  • FIELD
  • The present application relates generally to order fulfillment, and more particularly to optimizing an order fulfillment system.
  • BACKGROUND
  • Omni-channel retailing systems provide consumers with a seamless and unified purchasing experience via both offline and online sales channels. The consumers may view and purchase goods and/or services through a variety of different platforms including on-line e-commerce web portals, mobile applications, brick and mortar stores, catalogues, and other similar platforms. Orders placed by a consumer may be fulfilled either directly, for example, the consumer may purchase the item at the brick and mortar store, or through the use of a shipping company or postage carrier, for example, delivered to a location of the consumer's choosing.
  • BRIEF SUMMARY
  • The methods, systems, and computer program products described herein provide optimization for omni-channel order fulfillment systems. In an aspect of the present disclosure, dimensional multipliers for a plurality of dimensions are optimized by iteratively solving a multi criteria decision analysis framework (MCDA) sequentially for each dimension. The optimized dimensional multipliers may be used by the MCDA as inputs along with current data to generate a solution for each dimension. The solution may be integrated by the order fulfillment system to optimize order fulfillment based on the current data.
  • In an aspect of the present disclosure, a method is disclosed including receiving historical data associated with an order fulfillment system and setting a dimensional multiplier for each of a plurality of dimensions of the order fulfillment system to an initial pre-determined value. The method iteratively performs the following until the dimensional multipliers for each of the plurality of dimensions have been optimized: running a multi criteria decision analysis framework based on the historical data and the dimensional multipliers for the plurality of dimensions to generate a solution value for each dimension, comparing the solution value for each dimension to an interval including a minimum and maximum solution value for each dimension, determining whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison, if it is determined that one or more of the dimensional multipliers need to be adjusted: adjusting the one or more dimensional multipliers based at least in part on the comparison, and performing the next iteration based at least in part on the one or more adjusted dimensional multipliers, if it is determined that none of the dimensional multipliers need to be adjusted, determining that the dimensional multipliers for each of the plurality of dimensions have been optimized. Once the dimensional multipliers have been optimized, the method further includes receiving current data associated with a current state of the order fulfillment system, running the multi criteria decision analysis framework based on the current data and the optimized dimensional multipliers for each of the plurality of dimensions to generate an optimized solution value for each dimension, and applying the optimized solution value to the order fulfillment system.
  • In aspects of the present disclosure apparatus, systems, and computer program products in accordance with the above aspect may also be provided.
  • Further features as well as the structure and operation of various embodiments are described in detail below with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 illustrates a schematic of an example computer or processing system that may implement an order fulfillment system in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a diagram of an optimization model illustrating components used for optimizing an order fulfillment plan in accordance with an embodiment of the present disclosure.
  • FIG. 3 illustrates an example of a user interface in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a flow chart illustrating a method of optimizing an order fulfillment system according to an embodiment of the present disclosure.
  • FIG. 5 depicts a cloud computing environment according to an embodiment of the present disclosure.
  • FIG. 6 depicts abstraction model layers according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • The methods, systems, and computer program products of the present disclosure may provide ways to optimize the order fulfillment in an omni-channel retail system.
  • Determining optimal order fulfillment in an omni-channel retail system may rely on a diverse set of inputs and considerations. Some inputs that may be used when determining optimal order fulfillment may include, for example, current inventory levels at stores, current inventory levels at distribution centers, how much inventory is currently in transit, the rate at which inventory is being depleted at stores, the rate at which inventory is being depleted at distribution centers, the cost of shipping inventory from distribution centers to stores, the cost of shipping inventory from distribution centers to customer provided delivery addresses, the cost of shipping inventory from stores to customer provided delivery addresses, the cost of shipping inventory from stores to other stores, the cost of markdowns due to unsold inventory, customer loyalty, and other similar criteria.
  • FIG. 1 illustrates a schematic of an example computer or processing system 100 that may implement an order fulfillment optimizing system in one embodiment of the present disclosure. The computer system is only one example of a suitable processing system and is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the methodology described herein. The processing system shown may be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the processing system shown in FIG. 1 may include, but are not limited to, personal computer systems, server computer systems, thin clients, thick clients, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputer systems, mainframe computer systems, and distributed cloud computing environments that include any of the above systems or devices, and the like.
  • The computer system 100 may be described in the general context of computer system executable instructions, such as program modules, being executed by a computer system. Generally, program modules may include routines, programs, objects, components, logic, data structures, and so on that perform particular tasks or implement particular abstract data types. The computer system may be practiced in distributed cloud computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed cloud computing environment, program modules may be located in both local and remote computer system storage media including memory storage devices.
  • The components of computer system 100 may include, but are not limited to, one or more processors or processing units 112, a system memory 116, and a bus 114 that couples various system components including system memory 116 to processor 112. The processor 112 may include one or more program modules 110 that perform the methods described herein. The program modules 110 may be programmed into the integrated circuits of the processor 112, or loaded from memory 116, storage device 118, or network 124 or combinations thereof.
  • Bus 114 may represent one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnects (PCI) bus.
  • Computer system 100 may include a variety of computer system readable media. Such media may be any available media that is accessible by computer system, and it may include both volatile and non-volatile media, removable and non-removable media.
  • System memory 116 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) and/or cache memory or others. Computer system 100 may further include other removable/non-removable, volatile/non-volatile computer system storage media. By way of example only, storage system 118 can be provided for reading from and writing to a non-removable, non-volatile magnetic media (e.g., a “hard drive”). Although not shown, a magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a “floppy disk”), and an optical disk drive for reading from or writing to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be provided. In such instances, each can be connected to bus 114 by one or more data media interfaces.
  • Computer system 100 may also communicate with one or more external devices 126 such as a keyboard, a pointing device, a display 128, etc.; one or more devices that enable a user to interact with computer system 100; and/or any devices (e.g., network card, modem, etc.) that enable computer system to communicate with one or more other computing devices. Such communication can occur via Input/Output (I/O) interfaces 120.
  • Still yet, computer system 100 can communicate with one or more networks 124 such as a local area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network adapter 122. As depicted, network adapter 122 communicates with the other components of computer system via bus 114. It should be understood that although not shown, other hardware and/or software components could be used in conjunction with computer system 100. Examples include, but are not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, etc.
  • With reference to FIG. 2, an optimization model 200 is disclosed. As illustrated in FIG. 2, one or more dimension 210 may be used as inputs into a multi criteria decision analysis framework (MCDA) 220. Dimensions 210 may be, for example, objectives that a user may wish to target as a basis for a final solution. In some embodiments, a dimension 210 may be, for example, optimizing sourcing of items from fulfillment nodes (e.g., stores, distribution centers, etc.) so that the customer receives the order on time and the least expensive shipment option is chosen (Ship from the closest store). In some embodiments, a dimension 210 may be, for example, incentivizing stores that have more inventory and decentivizing stores that have less inventory (Balancing inventory). In some embodiments, a dimension 210 may be, for example, incentivizing stores that have less workload and decentivizing stores that have more workload (Balancing store utilization). In some embodiments, a dimension 210 may be, for example, incentivizing stores that have the risk of having unsold items at the end of the season (Avoiding markdowns). In some embodiments, a dimension 210 may be, for example, delivering orders earlier to customers having more loyalty points (Honoring customer loyalty). In some embodiments, a dimension 210 may be, for example, minimizing the total cost to serve, which may include, for example, improving fulfillment efficiency and speed, improving inventory performance, reducing fulfillment cost, improving customer satisfaction, and improving processing of e-com inventory returned to stores, each of which may also be separate dimensions 210. Some additional dimensions 210 may include, for example, reducing shipping costs, reducing underutilization of fulfillment capacity at a node (stores, e-fulfillment centers (EFCs), distribution centers (DCs), etc.), reducing operational costs including expenses to clear backlogs or to expedite backlogs, increasing inventory utilization savings including money saved by targeting stock keeping unit (SKU)-node pairs identified by markdown lists and money saved by reducing the risk of markdowns and reducing the risk of lost store sales, reducing the cost of cancellation, reducing the load variance costs (impact of deviating from a fulfillment plan at a given node), increasing customer satisfaction savings (projected gain in market share due to improving customer satisfaction by, for example, reducing delivery times), and reducing real-estate costs (difference in cost of real-estate between warehouse and retail store space). Although examples of dimensions 210 have been provided, any other dimensions 210 may be used depending on the particular retail business involved.
  • In an embodiment, MCDA 220 is a mathematical model that is configured to address all of the dimensions 210 to provide an optimized output taking each dimension 210 into account. MCDA 220 implements the following formulas to generate an optimized result:
  • min u , y , w i I h λ 1 C ih j y ih + k K i I λ 2 C ik u ik + k K i I λ 3 C ik u ik + + k K i I λ n C ik u ik s . t . i I ( k ) u ik = min { i I ( k ) U ik , Q k } k K u ik min { X ik , Q k } k I , i I ( k ) k K W k u ik = w i i I h = 0 H y ih = 1 i I w i hy ih ω h = 0 , , H u ik + ; y ih { 0 , 1 } , w i 0.
  • The terms in the above formulas may be defined as follows:
  • Figure US20170206490A1-20170720-P00001
    denotes a set of SKUs, also called items or units. Each SKU k corresponds to a particular item that may be sold, for example, a blue t-shirt in a large size may have a first SKU k, the same blue t-shirt in a medium size may have a second SKU k, a green t-shirt of the same style in a large size may have a third SKU k, etc. The set of SKUs k may be defined, for example, by the retailer, manufacturer, or any other party.
  • iεI denotes a set of order fulfillment nodes, for example, stores, EFCs, distribution centers (DCs), warehouses, or any other source having an inventory of SKUs k that can be used for fulfilling orders.
  • iεI(k) denotes the subset of nodes i from which a specific SKU k can be sourced.
  • hε1 . . . H denotes the shipping cost for a package of weight class h. The shipping cost is a function of shipping node i, but the shipping node i can be suppressed since index h is always used with index i.
  • wk denotes the weight of an item of SKU k.
  • ω denotes the width of the weight interval to which total weight of an order from node i belongs. ω is related to how shipping costs are calculated by carriers. Different shipping costs may be associated with each weight interval, for example, a first cost for the weight interval [0 pounds, 1 pound], a second cost for the weight interval [1 pound, 2 pounds], etc. In this example, the width co is 1 pound. In another example, there may be a first cost for the weight interval [0 pounds, 2 pounds], and a second cost for the weight interval [2 pounds, 4 pounds], etc. In this example, the width ω is 2 pounds.
  • cih j denotes the shipping cost to a zip or zone code j from a node i for a package of weight class h.
  • Xik denotes the current available inventory of the item SKU k in node i.
  • Cik denotes the cost of sourcing an item of SKU k from node i.
  • Qk denotes the number of items of SKU k that have been demanded. For example, the number of items of SKU k that have been ordered by customers, the inventory shortfall at a particular store, or any other type of demand.
  • λ1 . . . λn denote multipliers λ for each dimension. In some embodiments multipliers λ may, for example, be a percentage from 0% to 100%. In some embodiments, a decimal representation, e.g., 0.00 to 1.00, may be used. Multipliers λ may denote a weighting that each dimension contributes to the final solution. In some embodiments, multipliers λ may be pre-determined in advance, for example, by a user, by system 10, by a retailer, or in any other manner. In some embodiments, a user of system 100 may be provided with a user interface 300 that allows the user to set values for each multiplier λ as shown, for example, in FIG. 3. User interface 300 may, for example, be displayed on display 128. With reference now to FIG. 3, each dimension 310 includes a corresponding element 320 that is adjustable by the user to set the multiplier λ for the dimension 310. For example, a dimension 312 of reducing backlog includes a slider 322 that is adjustable to set a multiplier λ1, for example, to a value of 25% or 0.25. Accordingly, the multiplier λ1 corresponding to the dimension 312 of reducing backlog is set to 0.25 or 25% using element 322. As further shown in the example provided by FIG. 3, dimensions 314 (Avoid markdown), 316 (Minimize shipping cost), and 318 (Minimize labor cost) may each have corresponding elements 324, 326, and 328 that, in this example, respectively set the corresponding multipliers λ2, λ3 and λ4 to 50% (0.50), 25% (0.25), and 0% (0.00). Although illustrated as sliding elements 320 in FIG. 3, elements 320 may be any other form of input that allows a user to set a value for multipliers λ. For example, alternatively or in addition to sliding elements, a user may enter a value for each multiplier λ directly, e.g., by selecting a multiplier λ and inputting a desired value using a user input device, or may adjust or set the value of multipliers λ in any other similar manner. In some embodiments, multipliers λ may be adjusted automatically by system 100.
  • uik denotes a decision on whether or not to source units of SKU k from node i. For example, in some embodiments, uik may be the number of units of SKU k that have shipped or will be shipped from node i.
  • wi denotes the weight of a package shipped from node i. In some embodiments, the package may include only items of a specific SKU k. In some embodiments, the package may include any items being shipped from node i, regardless of SKU.
  • yih denotes a binary variable indicating whether or not a package has shipped from node i in weight class h.
  • MCDA 220 optimizes the result by solving for both u and y variables simultaneously. In this manner, MCDA 220 brings together multiple dimensions at the same time to find a middle ground between all of the dimensions. In an example, if one dimension is the cost of shipping and another dimension is markdown avoidance, MCDA 220 finds a balance between shipping costs and the cost of future markdowns for the item. For example, MCDA 220 may provide an optimized result based on the fact that 1 dollar in shipping costs now may be offset by the opportunity cost of not sourcing the item effectively which leads to future markdowns and losing that same dollar or more further downstream. In a similar manner MCDA 220 may balance each dimension at the same time to generate the most optimal result.
  • In some embodiments, MCDA 220 may be optimized according to one or more models 230 that may provide a basis for a solution. For example, MCDA 220 may be optimized according to a goal programming model 232 to achieve solutions based on goals or target values to be achieved, may be run to achieve pareto optimality 234 such that it is impossible to make one dimension better off without making at least one other dimension worse off, may be run based on constrained service levels 236, or may be run based on any other similar model. As each goal or dimension is added, however, the solution time may increase exponentially such that, for example, obtaining a pareto optimal solution graph, or other outputs from each model 230 may be exponentially more time consuming for each individual problem.
  • In some embodiments, a decomposition and heuristic based optimization 240 may be implemented to reduce the solution time and to allow the solution to be generated in or near real-time. Optimization 240 may include the implementation of a sequential approach by solving MCDA 220 for each dimension 210 disjointly using historical data to create a baseline of what a target and service level can or should look like. For example, historical data may be provided by or received from a retailer, e.g., from a database or other storage system via a wired or wireless connection, the internet, or any other communication system, and used as inputs for MCDA 220. The output solutions for each dimension may then be analyzed to determine the right mix of dimension multipliers. In some embodiments, expert opinions may be solicited to assist in optimizing the dimensions multipliers, for example, through the use of user interface 300.
  • In an example sequential approach, each dimension 210 or group of dimensions 210 may be solved separately in MCDA 220 and later combined to form an order fulfillment solution. Assuming a minimum solution value for a dimension d is αd and a maximum value for dimension d is βd. For example in shipping cost minimization, αd represents minimum shipping cost, and βd represents maximum shipping cost. Sometimes obtaining minimum and maximum values optimally may take considerable time. In that case, heuristic procedures available in commercial optimization solvers can be used. The heuristic procedure used to solve each dimension may differ depending on the type of dimension being solved. Some non-limiting examples of commercial solvers having heuristic methods may include, for example, the Cplex® solver, the Gurobi™ solver, or any other similar solver.
  • An iterative process may be used to combine the individual solutions and resolve them to ultimately end up with a global solution to the overall approach. By solving each dimension 210 separately and implementing heuristic procedures, the amount of time required for calculating the solution may be reduced.
  • In some embodiments, tdε[αd, βd] may be used to denote a target value td for dimension d assuming a goal of minimizing objective values in each dimension. Target value td can be obtained either by user preference or as some percentage value of αd. For example, td may be determined according to the equation td=(1+10%)*αd which indicates that the user is willing to sacrifice 10% optimality from dimension d. For example, where a user desires to achieve a full minimum value, αd may be used. When the user wishes to sacrifice some optimality of a dimension in favor of other dimensions, the target value td may be used in place of αd.
  • For example, the overall problem may be initially solved with a dimensional multiplier λd of each dimension d having an initial value of 1. The solution Zd of each individual dimension d may be compared to the minimum value αd (or target value td) and maximum value βd for that dimension d. Depending on where Zd resides in the interval [αd, βd] (or [td, βd]) the dimensional multiplier λd may be adjusted, for example, increased or decreased, and the dimension d may solved again using the adjusted λd multiplier. This process may be performed iteratively such that the value of the dimensional multiplier λd of each dimension is adjusted until the solution Zd for each dimension d achieves a desired value in the interval [αd, βd] (or [td, βd]).
  • In some embodiments, the iterative process may be performed automatically. For example, system 100 may calculate a satisfaction value, sd, for each dimension d as sd=(Zd−td)/(βd−td). For example, lower sd values represent better target achievement for a dimension d while higher sd values represent worse target achievement for a dimension d. In some embodiments, system 100 may sort the sd values of each dimension d in increasing order and obtain (d), where (d) denotes the position of a dimension din the sorted sequence. In some embodiments, system 100 may sort sd values in decreasing order and obtain [d], where [d] denotes the position of a dimension d in the sorted sequence. System 100 may automatically process updates to the multipliers as λ(d)=s[d](d) and resolve the overall problem with the updated multipliers. The automatic process may continue by recalculating sd values for each dimension d, sorting them in ascending and descending order to generate (d) and [d], and resolving the problem until the satisfaction values sd satisfy pre-determined criteria. In some embodiments, the pre-determined criteria for satisfaction value sd may be set by a user of system 100. In some embodiments, an iteration of satisfaction value sd for a dimension d will decrease if the satisfaction value sd of the previous iteration was greater than the satisfaction values sd for other dimensions d. In some embodiments, the iteration of satisfaction value sd for the dimension d will increase if the satisfaction value sd of the previous iteration was less than the satisfaction values sd for other dimensions d.
  • FIG. 4 illustrates a flow chart implementing optimization 240. At 402, historical data is received from the retailer. At 404, the multiplier λ for each dimension 210 is initially set to 1. In some embodiments multiplier λ for each dimension 210 may alternatively be initially set to any other pre-determined value. For example, a user of system 100 may set the pre-determined value. In some embodiments, each multiplier λ may be set to the same value. In some embodiments, one or more multiplier λ may be set to different values. At 406, each dimension is solved separately based on the respective dimensional multiplier λ and the received historical data to generate an output Zd for each dimension. At 408, the output Zd for each dimension 210 is compared to the respective interval [αd, βd] (or [td, βd]) for each dimension 210. In some embodiments, td may be set by a user as described above. At 410, system 100 determines whether the dimension multiplier λ for any of dimensions 210 needs to be adjusted based on the comparison from 408. For example, in some embodiments, a user or an expert may review the Zd and the interval [αd, βd] (or [td, βd]) for a dimension to determine whether an adjustment needs to be made to that dimension. In some embodiments, system 100 may define one or more pre-determined or user set thresholds in the interval [αd, βd] (or [td, βd]) for each dimension. Depending on the relation of Zd to one or more of the pre-defined thresholds, an adjustment of the dimensional multiplier λ for a particular dimension 210 may be necessary. As an example, if αd (or td) has a value of 5 and βd has a value of 15, system 100 may include thresholds at values of 7, 10, and 12. Depending on the dimension, if the solution Zd is greater than, less than, or equal to a particular threshold, an adjustment may be necessary. In some embodiments, an adjustment may be required based on what percentage of the interval Zd is at. For example, a target solution may be at 50% of the interval [αd, βd] (or [td, βd]) where a % higher or lower, say 20% or 70% may require an adjustment.
  • At 412, dimensional multipliers λ that are determined to require an adjustment may be adjusted. In some embodiments, adjustments to dimensional multipliers λ may be performed manually by a user or expert, for example, via user interface 300. In some embodiments, adjustments to dimensional multipliers λ may be performed automatically by system 100. In some embodiments, a dimensional multiplier λ may be adjusted by an amount that is based on how far a solution Zd produced by MCDA 220 based on the dimensional multiplier λ is from a target solution Zd for the dimension 210. For example, if the interval is [0,100] for the dimension 210 and the target solution Zd for the dimension 210 is 50, a Zd between 20 and 30 may require a first adjustment, a Zd between 30 and 40 may require a second adjustment, and a Zd between 45 and 55 may require no adjustment. In some embodiments, for example, the first adjustment may be larger than the second adjustment, smaller than the second adjustment, or equal to the second adjustment. As an example, the initial value of 1 for a dimensional multiplier λ may be decreased based on the comparison in 408. For example, a dimensional multiplier λ for a particular dimension 210 may be reduced from 1 to 0.75. Other amounts of reduction or adjustment of a dimensional multiplier λ are also contemplated.
  • If an adjustment was necessary at 412, any dimensions of MCDA 220 that have adjusted dimensional multipliers λ may solved to generate updated solutions Zd at 406, the updated solutions Zd for each dimension 210 may again be compared to the respective interval [αd, βd] for each dimension 210 at 408, and a determination may be made at 410 of whether another adjustment is necessary. This process from 406-412 occurs iteratively until the dimensional multipliers λ no longer need to be adjusted by system 100. The multipliers λ may now be considered optimized multipliers λ. In some embodiments, the process from 406-412 may be performed automatically by system 100 without further user input to generate the optimized multipliers λ.
  • Once multipliers λ have been optimized, current data may be received at 414. Current data may be data relating to current inventory and stock levels of various SKUs, current customer demand levels for the SKUs, or any other current data related to the current state of the retailers business. At 416, each dimension of MCDA 220 may be solved based on the current data and the optimized multipliers λ for each dimension. The solutions Zd for each dimension may then be combined according to MCDA 220 to generate a combined solution Zo as an output to MCDA 220. At 418 the solved values of the combined solution Zo may be implemented by the retailer's order fulfillment system and the order fulfillment system may perform order fulfillment based on the combined solution Zo.
  • As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
  • Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages, a scripting language such as Perl, VBS or similar languages, and/or functional languages such as Lisp and ML and logic-oriented languages such as Prolog. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • Aspects of the present invention are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
  • The computer program product may comprise all the respective features enabling the implementation of the methodology described herein, and which—when loaded in a computer system—is able to carry out the methods. Computer program, software program, program, or software, in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form.
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • The corresponding structures, materials, acts, and equivalents of all means or step plus function elements, if any, in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
  • Various aspects of the present disclosure may be embodied as a program, software, or computer instructions embodied in a computer or machine usable or readable medium, which causes the computer or machine to perform the steps of the method when executed on the computer, processor, and/or machine. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform various functionalities and methods described in the present disclosure is also provided.
  • The system and method of the present disclosure may be implemented and run on a general-purpose computer or special-purpose computer system. The terms “computer system” and “computer network” as may be used in the present application may include a variety of combinations of fixed and/or portable computer hardware, software, peripherals, and storage devices. The computer system may include a plurality of individual components that are networked or otherwise linked to perform collaboratively, or may include one or more stand-alone components. The hardware and software components of the computer system of the present application may include and may be included within fixed and portable devices such as desktop, laptop, and/or server. A module may be a component of a device, software, program, or system that implements some “functionality”, which can be embodied as software, hardware, firmware, electronic circuitry, or etc.
  • It is to be understood that although this disclosure includes a detailed description on cloud computing, implementation of the teachings recited herein are not limited to a cloud computing environment. Rather, embodiments of the present invention are capable of being implemented in conjunction with any other type of computing environment now known or later developed.
  • Cloud computing is a model of service delivery for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, network bandwidth, servers, processing, memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with minimal management effort or interaction with a provider of the service. This cloud model may include at least five characteristics, at least three service models, and at least four deployment models.
  • Characteristics are as Follows:
  • On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as server time and network storage, as needed automatically without requiring human interaction with the service's provider.
  • Broad network access: capabilities are available over a network and accessed through standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs).
  • Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to demand. There is a sense of location independence in that the consumer generally has no control or knowledge over the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter).
  • Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.
  • Measured service: cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both the provider and consumer of the utilized service.
  • Service Models are as Follows:
  • Software as a Service (SaaS): the capability provided to the consumer is to use the provider's applications running on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based e-mail). The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.
  • Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including networks, servers, operating systems, or storage, but has control over the deployed applications and possibly application hosting environment configurations.
  • Infrastructure as a Service (IaaS): the capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly limited control of select networking components (e.g., host firewalls).
  • Deployment Models are as Follows:
  • Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by the organization or a third party and may exist on-premises or off-premises.
  • Community cloud: the cloud infrastructure is shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may be managed by the organizations or a third party and may exist on-premises or off-premises.
  • Public cloud: the cloud infrastructure is made available to the general public or a large industry group and is owned by an organization selling cloud services.
  • Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load-balancing between clouds).
  • A cloud computing environment is service oriented with a focus on statelessness, low coupling, modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure that includes a network of interconnected nodes.
  • Referring now to FIG. 1, illustrative cloud computing environment 50 is depicted. As shown, cloud computing environment 50 includes one or more cloud computing nodes 10 with which local computing devices used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54A, desktop computer 54B, laptop computer 54C, and/or automobile computer system 54N may communicate. Nodes 10 may communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks, such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This allows cloud computing environment 50 to offer infrastructure, platforms and/or software as services for which a cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of computing devices 54A-N shown in FIG. 1 are intended to be illustrative only and that computing nodes 10 and cloud computing environment 50 can communicate with any type of computerized device over any type of network and/or network addressable connection (e.g., using a web browser).
  • Referring now to FIG. 2, a set of functional abstraction layers provided by cloud computing environment 50 (FIG. 1) is shown. It should be understood in advance that the components, layers, and functions shown in FIG. 2 are intended to be illustrative only and embodiments of the invention are not limited thereto. As depicted, the following layers and corresponding functions are provided:
  • Hardware and software layer 60 includes hardware and software components. Examples of hardware components include: mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62; servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some embodiments, software components include network application server software 67 and database software 68.
  • Virtualization layer 70 provides an abstraction layer from which the following examples of virtual entities may be provided: virtual servers 71; virtual storage 72; virtual networks 73, including virtual private networks; virtual applications and operating systems 74; and virtual clients 75.
  • In one example, management layer 80 may provide the functions described below. Resource provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to perform tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as resources are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In one example, these resources may include application software licenses. Security provides identity verification for cloud consumers and tasks, as well as protection for data and other resources. User portal 83 provides access to the cloud computing environment for consumers and system administrators. Service level management 84 provides cloud computing resource allocation and management such that required service levels are met. Service Level Agreement (SLA) planning and fulfillment 85 provide pre-arrangement for, and procurement of, cloud computing resources for which a future requirement is anticipated in accordance with an SLA.
  • Workloads layer 90 provides examples of functionality for which the cloud computing environment may be utilized. Examples of workloads and functions which may be provided from this layer include: mapping and navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data analytics processing 94; transaction processing 95; and omni-channel order fulfillment optimization 96.
  • The embodiments described above are illustrative examples and it should not be construed that the present invention is limited to these particular embodiments. Thus, various changes and modifications may be effected by one skilled in the art without departing from the spirit or scope of the invention as defined in the appended claims.

Claims (20)

We claim:
1. A method, comprising:
receiving, by at least one processor, historical data associated with an order fulfillment system;
setting, by at least one processor, a dimensional multiplier for each of a plurality of dimensions of the order fulfillment system to an initial pre-determined value;
iteratively performing the following until the dimensional multipliers for each of the plurality of dimensions have been optimized:
running, by at least one processor, a multi criteria decision analysis framework based on the historical data and the dimensional multipliers for the plurality of dimensions to generate a solution value for each dimension;
comparing, by at least one processor, the solution value for each dimension to an interval including a minimum and maximum solution value for each dimension;
determining, by at least one processor, whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison;
if it is determined that one or more of the dimensional multipliers need to be adjusted:
adjusting, by at least one processor, the one or more dimensional multipliers based at least in part on the comparison; and
performing, by at least one processor, the next iteration based at least in part on the one or more adjusted dimensional multipliers;
if it is determined that none of the dimensional multipliers need to be adjusted, determining that the dimensional multipliers for each of the plurality of dimensions have been optimized;
receiving, by at least on processor, current data associated with a current state of the order fulfillment system; and
running, by at least one processor, the multi criteria decision analysis framework based on the current data and the optimized dimensional multipliers for each of the plurality of dimensions to generate an optimized solution; and
performing order fulfillment based on the optimized solution.
2. The method of claim 1, wherein determining whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison includes receiving by the order fulfillment system an indication from a user device that one or more of the dimensional multipliers need to be adjusted.
3. The method of claim 1, wherein adjusting the one or more dimensional multipliers based at least in part on the comparison includes receiving from a user device an adjusted value of the one or more of the dimensional multipliers.
4. The method of claim 3, further comprising:
causing the presentation of a graphical user interface on a display of the user device, the graphical user interface including one or more elements that are adjustable by a user of the user device, each element configured to adjust the value of one of the dimensional multipliers;
receiving from the user device an indication that one or more of the elements has been adjusted; and
adjusting the value of the corresponding one or more dimensional multipliers based on the received indication.
5. The method of claim 1, wherein the historical data comprises at least one of SKUs for at least one item, order fulfillment nodes, a subset of order fulfillment notes having items of a particular SKU, and shipping costs.
6. The method of claim 1, wherein the initial pre-determined value is set in advance by a user.
7. The method of claim 1, wherein at least one of the plurality of dimensions is selected from the group consisting of reducing backlog, avoiding markdowns, minimizing shipping costs, and minimizing labor costs.
8. A system, comprising:
at least one processor programmed for:
receiving, by at least one processor, historical data associated with an order fulfillment system;
setting, by at least one processor, a dimensional multiplier for each of a plurality of dimensions of the order fulfillment system to an initial pre-determined value;
iteratively performing the following until the dimensional multipliers for each of the plurality of dimensions have been optimized:
running, by at least one processor, a multi criteria decision analysis framework based on the historical data and the dimensional multipliers for the plurality of dimensions to generate a solution value for each dimension;
comparing, by at least one processor, the solution value for each dimension to an interval including a minimum and maximum solution value for each dimension;
determining, by at least one processor, whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison;
if it is determined that one or more of the dimensional multipliers need to be adjusted:
adjusting, by at least one processor, the one or more dimensional multipliers based at least in part on the comparison; and
performing, by at least one processor, the next iteration based at least in part on the one or more adjusted dimensional multipliers;
if it is determined that none of the dimensional multipliers need to be adjusted, determining that the dimensional multipliers for each of the plurality of dimensions have been optimized;
receiving, by at least on processor, current data associated with a current state of the order fulfillment system; and
running, by at least one processor, the multi criteria decision analysis framework based on the current data and the optimized dimensional multipliers for each of the plurality of dimensions to generate an optimized solution value for each dimension; and
performing order fulfillment based on the optimized solution.
9. The system of claim 8, wherein determining whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison includes receiving by the order fulfillment system an indication from a user device that one or more of the dimensional multipliers need to be adjusted.
10. The system of claim 8, wherein adjusting the one or more dimensional multipliers based at least in part on the comparison includes receiving from a user device an adjusted value of the one or more of the dimensional multipliers.
11. The system of claim 10, the at least one processor further programmed for:
causing the presentation of a graphical user interface on a display of the user device, the graphical user interface including one or more elements that are adjustable by a user of the user device, each element configured to adjust the value of one of the dimensional multipliers;
receiving from the user device an indication that one or more of the elements has been adjusted; and
adjusting the value of the corresponding one or more dimensional multipliers based on the received indication.
12. The system of claim 8, wherein the historical data comprises at least one of SKUs for at least one item, order fulfillment nodes, a subset of order fulfillment notes having items of a particular SKU, and shipping costs.
13. The system of claim 8, wherein the initial pre-determined value is set in advance by a user.
14. The system of claim 8, wherein at least one of the plurality of dimensions is selected from the group consisting of reducing backlog, avoiding markdowns, minimizing shipping costs, and minimizing labor costs.
15. A computer program product storing instructions that, when executed by at least one processor, program the at least one processor for:
receiving, by at least one processor, historical data associated with an order fulfillment system;
setting, by at least one processor, a dimensional multiplier for each of a plurality of dimensions of the order fulfillment system to an initial pre-determined value;
iteratively performing the following until the dimensional multipliers for each of the plurality of dimensions have been optimized:
running, by at least one processor, a multi criteria decision analysis framework based on the historical data and the dimensional multipliers for the plurality of dimensions to generate a solution value for each dimension;
comparing, by at least one processor, the solution value for each dimension to an interval including a minimum and maximum solution value for each dimension;
determining, by at least one processor, whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison;
if it is determined that one or more of the dimensional multipliers need to be adjusted:
adjusting, by at least one processor, the one or more dimensional multipliers based at least in part on the comparison; and
performing, by at least one processor, the next iteration based at least in part on the one or more adjusted dimensional multipliers;
if it is determined that none of the dimensional multipliers need to be adjusted, determining that the dimensional multipliers for each of the plurality of dimensions have been optimized;
receiving, by at least on processor, current data associated with a current state of the order fulfillment system; and
running, by at least one processor, the multi criteria decision analysis framework based on the current data and the optimized dimensional multipliers for each of the plurality of dimensions to generate an optimized solution value for each dimension; and
performing order fulfillment based on the optimized solution.
16. The computer program product of claim 15, wherein determining whether one or more of the dimensional multipliers need to be adjusted based at least in part on the comparison includes receiving by the order fulfillment system an indication from a user device that one or more of the dimensional multipliers need to be adjusted.
17. The computer program product of claim 15, wherein adjusting the one or more dimensional multipliers based at least in part on the comparison includes receiving from a user device an adjusted value of the one or more of the dimensional multipliers.
18. The computer program product of claim 17, the instructions, when executed by the at least one processor, further programming the at least one processor for:
causing the presentation of a graphical user interface on a display of the user device, the graphical user interface including one or more elements that are adjustable by a user of the user device, each element configured to adjust the value of one of the dimensional multipliers;
receiving from the user device an indication that one or more of the elements has been adjusted; and
adjusting the value of the corresponding one or more dimensional multipliers based on the received indication.
19. The computer program product of claim 15, wherein the historical data comprises at least one of SKUs for at least one item, order fulfillment nodes, a subset of order fulfillment notes having items of a particular SKU, and shipping costs.
20. The computer program product of claim 15, wherein at least one of the plurality of dimensions is selected from the group consisting of reducing backlog, avoiding markdowns, minimizing shipping costs, and minimizing labor costs.
US15/153,900 2016-01-16 2016-05-13 System and method to dynamically integrate components of omni-channel order fulfilment Abandoned US20170206490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/153,900 US20170206490A1 (en) 2016-01-16 2016-05-13 System and method to dynamically integrate components of omni-channel order fulfilment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662279738P 2016-01-16 2016-01-16
US15/153,900 US20170206490A1 (en) 2016-01-16 2016-05-13 System and method to dynamically integrate components of omni-channel order fulfilment

Publications (1)

Publication Number Publication Date
US20170206490A1 true US20170206490A1 (en) 2017-07-20

Family

ID=59314375

Family Applications (14)

Application Number Title Priority Date Filing Date
US15/017,860 Active US10074066B2 (en) 2016-01-16 2016-02-08 Two phase predictive approach for supply network optimization
US15/086,875 Active 2039-02-27 US10719803B2 (en) 2016-01-16 2016-03-31 Automatic learning of weight settings for multi-objective models
US15/087,569 Active 2037-10-25 US10373102B2 (en) 2016-01-16 2016-03-31 System and method to incorporate node fulfillment capacity and capacity utilization in balancing fulfillment load across retail supply networks
US15/087,012 Active 2037-07-02 US10373101B2 (en) 2016-01-16 2016-03-31 Data delivery and validation in hybrid cloud environments
US15/087,609 Active 2039-02-18 US10832205B2 (en) 2016-01-16 2016-03-31 System and method for determining node order fulfillment performance
US15/088,686 Active 2039-03-01 US10776747B2 (en) 2016-01-16 2016-04-01 System and method to incorporate node fulfillment capacity and network average capacity utilization in balancing fulfillment load across retail supply networks
US15/153,900 Abandoned US20170206490A1 (en) 2016-01-16 2016-05-13 System and method to dynamically integrate components of omni-channel order fulfilment
US15/153,963 Abandoned US20170206500A1 (en) 2016-01-16 2016-05-13 Real-time determination of delivery/shipping using multi-shipment rate cards
US15/154,249 Active 2039-07-27 US10902373B2 (en) 2016-01-16 2016-05-13 System, method and computer program product for order fulfillment in retail supply networks
US15/154,119 Active 2039-04-20 US10915854B2 (en) 2016-01-16 2016-05-13 System and method to incorporate customized capacity utilization cost in balancing fulfillment load across retail supply networks
US15/154,007 Active 2039-04-13 US10839338B2 (en) 2016-01-16 2016-05-13 Order sourcing with asynchronous communication and using optimization for large sourcing networks
US15/153,921 Active 2039-01-29 US10783483B2 (en) 2016-01-16 2016-05-13 System and method to incorporate node fulfillment capacity and network average capacity utilization in balancing fulfillment load across retail supply networks
US16/400,291 Active 2037-01-21 US11488095B2 (en) 2016-01-16 2019-05-01 Data delivery and validation in hybrid cloud environments
US16/445,568 Active 2036-04-15 US11074544B2 (en) 2016-01-16 2019-06-19 System and method to incorporate node fulfillment capacity and capacity utilization in balancing fulfillment load across retail supply networks

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US15/017,860 Active US10074066B2 (en) 2016-01-16 2016-02-08 Two phase predictive approach for supply network optimization
US15/086,875 Active 2039-02-27 US10719803B2 (en) 2016-01-16 2016-03-31 Automatic learning of weight settings for multi-objective models
US15/087,569 Active 2037-10-25 US10373102B2 (en) 2016-01-16 2016-03-31 System and method to incorporate node fulfillment capacity and capacity utilization in balancing fulfillment load across retail supply networks
US15/087,012 Active 2037-07-02 US10373101B2 (en) 2016-01-16 2016-03-31 Data delivery and validation in hybrid cloud environments
US15/087,609 Active 2039-02-18 US10832205B2 (en) 2016-01-16 2016-03-31 System and method for determining node order fulfillment performance
US15/088,686 Active 2039-03-01 US10776747B2 (en) 2016-01-16 2016-04-01 System and method to incorporate node fulfillment capacity and network average capacity utilization in balancing fulfillment load across retail supply networks

Family Applications After (7)

Application Number Title Priority Date Filing Date
US15/153,963 Abandoned US20170206500A1 (en) 2016-01-16 2016-05-13 Real-time determination of delivery/shipping using multi-shipment rate cards
US15/154,249 Active 2039-07-27 US10902373B2 (en) 2016-01-16 2016-05-13 System, method and computer program product for order fulfillment in retail supply networks
US15/154,119 Active 2039-04-20 US10915854B2 (en) 2016-01-16 2016-05-13 System and method to incorporate customized capacity utilization cost in balancing fulfillment load across retail supply networks
US15/154,007 Active 2039-04-13 US10839338B2 (en) 2016-01-16 2016-05-13 Order sourcing with asynchronous communication and using optimization for large sourcing networks
US15/153,921 Active 2039-01-29 US10783483B2 (en) 2016-01-16 2016-05-13 System and method to incorporate node fulfillment capacity and network average capacity utilization in balancing fulfillment load across retail supply networks
US16/400,291 Active 2037-01-21 US11488095B2 (en) 2016-01-16 2019-05-01 Data delivery and validation in hybrid cloud environments
US16/445,568 Active 2036-04-15 US11074544B2 (en) 2016-01-16 2019-06-19 System and method to incorporate node fulfillment capacity and capacity utilization in balancing fulfillment load across retail supply networks

Country Status (1)

Country Link
US (14) US10074066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10565547B2 (en) 2016-04-05 2020-02-18 Wayfair Llc Inter-store inventory transfer

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8386528B2 (en) * 2008-04-30 2013-02-26 Quad/Graphics, Inc. System and method of data processing for a communications operation
US10810222B2 (en) 2014-11-24 2020-10-20 Asana, Inc. Continuously scrollable calendar user interface
US10074066B2 (en) * 2016-01-16 2018-09-11 International Business Machines Corporation Two phase predictive approach for supply network optimization
US10275284B2 (en) * 2016-06-16 2019-04-30 Vmware, Inc. Datacenter resource allocation based on estimated capacity metric
US10423922B2 (en) * 2016-06-30 2019-09-24 International Business Machines Corporation Managing cross-channel fulfillment impact within shared inventory demand systems
US10423923B2 (en) * 2016-09-13 2019-09-24 International Business Machines Corporation Allocating a product inventory to an omnichannel distribution supply chain
JP7006607B2 (en) * 2016-09-29 2022-01-24 日本電気株式会社 Distributed processing system, distributed processing method, and recording medium
US11556883B2 (en) * 2017-03-15 2023-01-17 Bby Solutions, Inc. Cached data representations for service schedule availability
US10776848B2 (en) 2017-03-15 2020-09-15 Bby Solutions, Inc. System, method, and manufacture for a large product presourcing search engine
US10977434B2 (en) 2017-07-11 2021-04-13 Asana, Inc. Database model which provides management of custom fields and methods and apparatus therfor
CN107688901B (en) * 2017-08-24 2021-05-11 北京星选科技有限公司 Data adjusting method and device
US10838924B2 (en) * 2017-10-02 2020-11-17 Comcast Cable Communications Management, Llc Multi-component content asset transfer
US10713029B2 (en) * 2017-10-31 2020-07-14 Accenture Global Solutions Limited Manifest-enabled analytics platform deployment engine
CN108122069B (en) * 2017-12-08 2021-10-15 杭州电子科技大学 Mass traffic data-based resident travel starting point and end point matrix extraction method
US10832209B2 (en) * 2018-02-26 2020-11-10 Walmart Apollo, Llc Systems and methods for rush order fulfilment optimization
CN110176209B (en) 2018-02-27 2021-01-22 京东方科技集团股份有限公司 Optical compensation method and optical compensation apparatus for display panel
US10623359B1 (en) 2018-02-28 2020-04-14 Asana, Inc. Systems and methods for generating tasks based on chat sessions between users of a collaboration environment
US11138021B1 (en) 2018-04-02 2021-10-05 Asana, Inc. Systems and methods to facilitate task-specific workspaces for a collaboration work management platform
US10613735B1 (en) 2018-04-04 2020-04-07 Asana, Inc. Systems and methods for preloading an amount of content based on user scrolling
US11360939B2 (en) * 2018-05-22 2022-06-14 International Business Machines Corporation Testing of file system events triggered by file access
US20190362374A1 (en) * 2018-05-26 2019-11-28 Walmart Apollo, Llc Markdown optimization system
US10956859B2 (en) * 2018-06-01 2021-03-23 International Business Machines Corporation Avoidance of product stockouts through optimized routing of online orders
US11170117B2 (en) 2018-06-08 2021-11-09 Bmc Software, Inc. Rapid content deployment on a publication platform
US10785046B1 (en) 2018-06-08 2020-09-22 Asana, Inc. Systems and methods for providing a collaboration work management platform that facilitates differentiation between users in an overarching group and one or more subsets of individual users
US11301791B2 (en) 2018-06-11 2022-04-12 International Business Machines Corporation Fulfilment machine for optimizing shipping
US10891262B2 (en) * 2018-06-28 2021-01-12 Quadient Technologies France Compression of data attributes
CN109242333A (en) * 2018-09-27 2019-01-18 深圳市云带网投资科技有限公司 A kind of materials circulation delivery service system based under PC end pipe reason, APP platform
US10616151B1 (en) 2018-10-17 2020-04-07 Asana, Inc. Systems and methods for generating and presenting graphical user interfaces
US11599860B2 (en) * 2018-11-02 2023-03-07 International Business Machines Corporation Limit purchase price by stock keeping unit (SKU)
US11449822B2 (en) 2018-11-13 2022-09-20 Walmart Apollo, Llc Automatic determination of a shipping speed to display for an item
US11328329B1 (en) * 2018-11-16 2022-05-10 Level 3 Communications, Llc Telecommunications infrastructure system and method
US10956845B1 (en) 2018-12-06 2021-03-23 Asana, Inc. Systems and methods for generating prioritization models and predicting workflow prioritizations
US11113667B1 (en) 2018-12-18 2021-09-07 Asana, Inc. Systems and methods for providing a dashboard for a collaboration work management platform
US11568366B1 (en) * 2018-12-18 2023-01-31 Asana, Inc. Systems and methods for generating status requests for units of work
US11782737B2 (en) 2019-01-08 2023-10-10 Asana, Inc. Systems and methods for determining and presenting a graphical user interface including template metrics
US10684870B1 (en) 2019-01-08 2020-06-16 Asana, Inc. Systems and methods for determining and presenting a graphical user interface including template metrics
US11204683B1 (en) 2019-01-09 2021-12-21 Asana, Inc. Systems and methods for generating and tracking hardcoded communications in a collaboration management platform
US11521274B2 (en) * 2019-03-20 2022-12-06 Sap Se Cost allocation estimation using direct cost vectors and machine learning
US11276020B1 (en) 2019-07-22 2022-03-15 Whizzable, Inc. Computer-implemented method for prioritizing order fulfillment at a retail sales facility based on anticipated customer arrival times
US20210090003A1 (en) * 2019-09-19 2021-03-25 Coupang, Corp. Systems and methods for outbound forecasting based on postal code mapping
US11347572B2 (en) * 2019-09-26 2022-05-31 Vmware, Inc. Methods and apparatus for data pipelines between cloud computing platforms
US11488099B2 (en) 2019-10-18 2022-11-01 International Business Machines Corporation Supply-chain simulation
US11341445B1 (en) 2019-11-14 2022-05-24 Asana, Inc. Systems and methods to measure and visualize threshold of user workload
CN112819395A (en) * 2019-11-15 2021-05-18 北京沃东天骏信息技术有限公司 Distribution mode determining method, device, medium and equipment based on matrix representation
US11783253B1 (en) 2020-02-11 2023-10-10 Asana, Inc. Systems and methods to effectuate sets of automated actions outside and/or within a collaboration environment based on trigger events occurring outside and/or within the collaboration environment
US11599855B1 (en) 2020-02-14 2023-03-07 Asana, Inc. Systems and methods to attribute automated actions within a collaboration environment
US11763259B1 (en) 2020-02-20 2023-09-19 Asana, Inc. Systems and methods to generate units of work in a collaboration environment
CN111445188A (en) * 2020-03-30 2020-07-24 惠州市华达通气体制造股份有限公司 Goods inventory management method and device
US11620472B2 (en) 2020-04-23 2023-04-04 Citrix Systems, Inc. Unified people connector
US11237806B2 (en) * 2020-04-30 2022-02-01 International Business Machines Corporation Multi objective optimization of applications
US11416290B2 (en) * 2020-05-28 2022-08-16 Microsoft Technology Licensing, Llc Semi-autonomous intelligent task hub
WO2021248309A1 (en) * 2020-06-09 2021-12-16 Citrix Systems, Inc. Systems and methods for connecting to people with requested skillsets
US11455601B1 (en) 2020-06-29 2022-09-27 Asana, Inc. Systems and methods to measure and visualize workload for completing individual units of work
US11900323B1 (en) 2020-06-29 2024-02-13 Asana, Inc. Systems and methods to generate units of work within a collaboration environment based on video dictation
US11449836B1 (en) 2020-07-21 2022-09-20 Asana, Inc. Systems and methods to facilitate user engagement with units of work assigned within a collaboration environment
US11568339B2 (en) 2020-08-18 2023-01-31 Asana, Inc. Systems and methods to characterize units of work based on business objectives
CN112184300A (en) * 2020-09-24 2021-01-05 厦门立马耀网络科技有限公司 Person-to-person matching method, medium, system and equipment
US11178257B1 (en) * 2020-10-12 2021-11-16 International Business Machines Corporation Incarnation selection for application hosting on remote services environment
US11769115B1 (en) 2020-11-23 2023-09-26 Asana, Inc. Systems and methods to provide measures of user workload when generating units of work based on chat sessions between users of a collaboration environment
US20220164228A1 (en) * 2020-11-26 2022-05-26 Amazon Technologies, Inc. Fine-grained virtualization resource provisioning for in-place database scaling
US11405435B1 (en) 2020-12-02 2022-08-02 Asana, Inc. Systems and methods to present views of records in chat sessions between users of a collaboration environment
US11694162B1 (en) 2021-04-01 2023-07-04 Asana, Inc. Systems and methods to recommend templates for project-level graphical user interfaces within a collaboration environment
US11676107B1 (en) 2021-04-14 2023-06-13 Asana, Inc. Systems and methods to facilitate interaction with a collaboration environment based on assignment of project-level roles
US11553045B1 (en) 2021-04-29 2023-01-10 Asana, Inc. Systems and methods to automatically update status of projects within a collaboration environment
US11803814B1 (en) 2021-05-07 2023-10-31 Asana, Inc. Systems and methods to facilitate nesting of portfolios within a collaboration environment
US11792028B1 (en) 2021-05-13 2023-10-17 Asana, Inc. Systems and methods to link meetings with units of work of a collaboration environment
US11809222B1 (en) 2021-05-24 2023-11-07 Asana, Inc. Systems and methods to generate units of work within a collaboration environment based on selection of text
US20220398520A1 (en) * 2021-06-11 2022-12-15 Dell Products L.P. Infrastructure resource capacity management with intelligent expansion trigger computation
US11756000B2 (en) 2021-09-08 2023-09-12 Asana, Inc. Systems and methods to effectuate sets of automated actions within a collaboration environment including embedded third-party content based on trigger events
US11635884B1 (en) 2021-10-11 2023-04-25 Asana, Inc. Systems and methods to provide personalized graphical user interfaces within a collaboration environment
US11836681B1 (en) 2022-02-17 2023-12-05 Asana, Inc. Systems and methods to generate records within a collaboration environment
KR102430462B1 (en) * 2022-02-28 2022-08-09 쿠팡 주식회사 Method for transferring order information between fulfillment centers and electronic device using the same
US11863601B1 (en) 2022-11-18 2024-01-02 Asana, Inc. Systems and methods to execute branching automation schemes in a collaboration environment

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050096963A1 (en) * 2003-10-17 2005-05-05 David Myr System and method for profit maximization in retail industry
US20050288989A1 (en) * 2004-06-24 2005-12-29 Ncr Corporation Methods and systems for synchronizing distribution center and warehouse demand forecasts with retail store demand forecasts
US7801542B1 (en) * 2005-12-19 2010-09-21 Stewart Brett B Automatic management of geographic information pertaining to social networks, groups of users, or assets
US8060864B1 (en) * 2005-01-07 2011-11-15 Interactive TKO, Inc. System and method for live software object interaction
US20120173449A1 (en) * 1999-05-11 2012-07-05 William Henry Waddington Method and system for order fulfillment in a distribution center
US20130246310A1 (en) * 2012-03-13 2013-09-19 Michael Paul Weiss Systems and methods for providing an online private capital marketplace
US20160005055A1 (en) * 2014-07-01 2016-01-07 Siar SARFERAZ Generic time series forecasting
US20160300173A1 (en) * 2015-04-10 2016-10-13 Caterpillar Inc. Oscillation detection and reduction in supply chain
US20160307155A1 (en) * 2012-09-21 2016-10-20 General Electric Company Routing device for network optimization
US20170140406A1 (en) * 2015-11-16 2017-05-18 Oracle International Corporation System and method for providing a multi-channel inventory allocation approach for retailers
US20170206541A1 (en) * 2016-01-16 2017-07-20 International Business Machines Corporation System, method and computer program product for order fulfillment in retail supply networks
US20170236083A1 (en) * 2015-04-29 2017-08-17 NetSuite Inc. System and methods for fulfilling an order by determining an optimal set of sources and resources
US20170323250A1 (en) * 2014-10-31 2017-11-09 Ocado Innovation Limited System and method for fulfilling e-commerce orders from a hierarchy of fulfilment centres
US10296932B2 (en) * 2016-05-12 2019-05-21 International Business Machines Corporation System and method for differentiated customer service in terms of fufillment experience based on customer loyalty and cost to serve

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630070A (en) * 1993-08-16 1997-05-13 International Business Machines Corporation Optimization of manufacturing resource planning
EP0770967A3 (en) * 1995-10-26 1998-12-30 Koninklijke Philips Electronics N.V. Decision support system for the management of an agile supply chain
US8631066B2 (en) * 1998-09-10 2014-01-14 Vmware, Inc. Mechanism for providing virtual machines for use by multiple users
US20010047293A1 (en) * 1999-01-26 2001-11-29 Waller Matthew A. System, method and article of manufacture to optimize inventory and inventory investment utilization in a collaborative context
US20030195791A1 (en) * 1999-01-26 2003-10-16 Waller Matthew A. System, method and article of manufacture to determine and communicate redistributed product demand
US20020035537A1 (en) * 1999-01-26 2002-03-21 Waller Matthew A. Method for economic bidding between retailers and suppliers of goods in branded, replenished categories
WO2000065514A2 (en) * 1999-04-27 2000-11-02 I3E Holdings, Llc Remote ordering system
US7370005B1 (en) 1999-05-11 2008-05-06 Peter Ham Inventory replication based upon order fulfillment rates
US20110213648A1 (en) 1999-05-12 2011-09-01 Ewinwin, Inc. e-COMMERCE VOLUME PRICING
US7016873B1 (en) * 2000-03-02 2006-03-21 Charles Schwab & Co., Inc. System and method for tax sensitive portfolio optimization
US7774284B2 (en) 2000-03-27 2010-08-10 Stamps.Com Inc. Apparatus, systems and methods for online, multi-parcel, multi-carrier, multi-service enterprise parcel shipping management
WO2001099006A2 (en) 2000-06-16 2001-12-27 Manugistics, Inc. Transportation planning, execution, and freight payment managers and related methods
AU2001273459A1 (en) 2000-07-13 2002-01-30 Manugistics, Inc. Shipping and transportation optimization system and method
US6990459B2 (en) * 2000-08-22 2006-01-24 Deere & Company System and method for developing a farm management plan for production agriculture
US7092929B1 (en) * 2000-11-08 2006-08-15 Bluefire Systems, Inc. Method and apparatus for planning analysis
EP1205863A1 (en) 2000-11-14 2002-05-15 Honda R&D Europe (Deutschland) GmbH Multi-objective optimization
US20030069774A1 (en) * 2001-04-13 2003-04-10 Hoffman George Harry System, method and computer program product for distributor/supplier selection in a supply chain management framework
US7403911B2 (en) * 2001-07-10 2008-07-22 Hewlett-Packard Development Company, L.P. Method and system for setting an optimal preference policy for an auction
US8914300B2 (en) * 2001-08-10 2014-12-16 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US9729639B2 (en) * 2001-08-10 2017-08-08 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
US20030046130A1 (en) * 2001-08-24 2003-03-06 Golightly Robert S. System and method for real-time enterprise optimization
US7747543B1 (en) * 2001-09-27 2010-06-29 Amazon Technologies, Inc Dynamically determining actual delivery information for orders based on actual order fulfillment plans
US7295990B1 (en) 2001-09-27 2007-11-13 Amazon.Com, Inc. Generating current order fulfillment plans based on expected future orders
WO2003036330A2 (en) * 2001-10-22 2003-05-01 Coppola Emery A Jr Neural network based predication and optimization for groundwater / surface water system
US20030093388A1 (en) 2001-11-15 2003-05-15 Brian Albright Automated product sourcing from multiple fulfillment centers
US20030195780A1 (en) * 2001-12-13 2003-10-16 Liquid Engines, Inc. Computer-based optimization system for financial performance management
US20030149613A1 (en) * 2002-01-31 2003-08-07 Marc-David Cohen Computer-implemented system and method for performance assessment
US6826473B1 (en) * 2002-02-08 2004-11-30 Garmin Ltd. PDA with integrated navigation functions and expense reporting
US20030172007A1 (en) 2002-03-06 2003-09-11 Helmolt Hans-Ulrich Von Supply chain fulfillment coordination
US7212991B2 (en) * 2002-08-27 2007-05-01 Manish Chowdhary Method for optimizing a business transaction
US20040172311A1 (en) * 2003-02-28 2004-09-02 Kauderer Steven I. Method of and system for evaluating underwriting activities
US20060200333A1 (en) * 2003-04-10 2006-09-07 Mukesh Dalal Optimizing active decision making using simulated decision making
US7089594B2 (en) * 2003-07-21 2006-08-08 July Systems, Inc. Application rights management in a mobile environment
US7191107B2 (en) * 2003-07-25 2007-03-13 Hewlett-Packard Development Company, L.P. Method of determining value change for placement variable
US7356518B2 (en) * 2003-08-27 2008-04-08 Icosystem Corporation Methods and systems for multi-participant interactive evolutionary computing
US8065172B2 (en) 2003-12-24 2011-11-22 Ziti Technologies Limited Liability Company Method of sourcing orders for optimized logistics
US8407096B2 (en) 2003-12-24 2013-03-26 Ziti Technologies Limited Liability Company Method for ordering groups of products
US7848953B2 (en) 2004-03-10 2010-12-07 Siebel Systems, Inc. Order fulfillment logic for a field service system
GB2412275B (en) * 2004-03-18 2006-04-12 Motorola Inc A method of selecting operational parameters in a communication network
US7085677B1 (en) 2004-04-19 2006-08-01 Amazon Technologies, Inc. Automatically identifying incongruous item packages
US7593834B2 (en) * 2004-04-30 2009-09-22 Vladimir Sevastyanov Exclusion of regions method for multi-objective optimization
US20060112049A1 (en) * 2004-09-29 2006-05-25 Sanjay Mehrotra Generalized branching methods for mixed integer programming
US7917387B2 (en) 2005-01-07 2011-03-29 Kayak Software Corporation Individualized marketing to improve capacity utilization
EP1842158A1 (en) * 2005-01-30 2007-10-10 Elbit Systems Ltd. Method and apparatus for distributing assignments
US8032406B2 (en) * 2005-07-28 2011-10-04 Sap Ag System and method of assortment, space, and price optimization in retail store
US7689592B2 (en) * 2005-08-11 2010-03-30 International Business Machines Corporation Method, system and program product for determining objective function coefficients of a mathematical programming model
US8046262B1 (en) 2005-08-19 2011-10-25 Amazon Technologies, Inc. Coordinating the delivery of two or more packages shipped from different source locations
US20070130201A1 (en) 2005-12-05 2007-06-07 Sabre Inc. System, method, and computer program product for synchronizing price information among various sources of price information
US8249917B1 (en) 2005-12-07 2012-08-21 Amazon Technologies, Inc. Load balancing for a fulfillment network
US20070156555A1 (en) * 2005-12-17 2007-07-05 Orr Peter C Systems, methods and programs for determining optimal financial structures and risk exposures
US8521740B2 (en) * 2006-04-04 2013-08-27 Boomerang Technology Holdings, LLC. Extended correlation methods in a content transformation engine
US8374922B1 (en) 2006-09-22 2013-02-12 Amazon Technologies, Inc. Fulfillment network with customer-transparent costs
US8639558B2 (en) * 2006-09-25 2014-01-28 International Business Machines Corporation Providing markdown item pricing and promotion calendar
US7725366B1 (en) 2007-05-01 2010-05-25 Hector Franco Supply-chain management system
US8204799B1 (en) 2007-09-07 2012-06-19 Amazon Technologies, Inc. System and method for combining fulfillment of customer orders from merchants in computer-facilitated marketplaces
US7966207B2 (en) 2007-09-10 2011-06-21 International Business Machines Corporation Method, system and program product for managing fulfillment of orders
US8577733B2 (en) * 2007-11-02 2013-11-05 Tti Inventions C Llc Method and system for dynamic order fulfillment
US8407110B1 (en) * 2007-12-18 2013-03-26 Amazon Technologies, Inc. Method and apparatus for registration of fulfillment services
US8655742B2 (en) * 2008-03-19 2014-02-18 International Business Machines Corporation System and method for determining order fulfillment alternative with multiple supply modes
US20090254447A1 (en) 2008-04-04 2009-10-08 Global Launch Incorporated Methods for selection, purchase and shipping of items for sale
US8812338B2 (en) * 2008-04-29 2014-08-19 Sas Institute Inc. Computer-implemented systems and methods for pack optimization
US8108912B2 (en) 2008-05-29 2012-01-31 Red Hat, Inc. Systems and methods for management of secure data in cloud-based network
US8407172B1 (en) * 2008-06-09 2013-03-26 Euler Optimization, Inc. Method, apparatus, and article of manufacture for performing a pivot-in-place operation for a linear programming problem
US8566267B1 (en) * 2008-06-09 2013-10-22 Euler Optimization, Inc. Method, apparatus, and article of manufacture for solving linear optimization problems
US8352382B1 (en) * 2008-08-15 2013-01-08 Amazon Technologies, Inc. Heuristic methods for customer order fulfillment planning
US9213953B1 (en) * 2008-09-15 2015-12-15 Amazon Technologies, Inc. Multivariable load balancing in a fulfillment network
US20100250298A1 (en) * 2009-03-25 2010-09-30 International Business Machines Corporation Prioritization enablement for soa governance
US8429035B1 (en) * 2009-08-26 2013-04-23 Jda Software Group, Inc. System and method of solving large scale supply chain planning problems with integer constraints
US20110213730A1 (en) 2010-03-01 2011-09-01 International Business Machines Corporation Goal programming approach for optimal budget allocation for national analysis of wildland fire management
US9082122B2 (en) * 2010-04-20 2015-07-14 Bindo Labs, Inc. Systems and methods for transaction authorization and dynamic memberhips to facilitate E-commerce
US8930470B2 (en) * 2010-04-23 2015-01-06 Datcard Systems, Inc. Event notification in interconnected content-addressable storage systems
US20120029974A1 (en) 2010-07-30 2012-02-02 International Business Machines Corporation Complex service modeling
US8838612B2 (en) * 2010-09-16 2014-09-16 Oracle International Corporation Methods and systems for implementing fulfillment management
US20120239450A1 (en) * 2011-03-14 2012-09-20 ClearCare, Inc. System and apparatus for generating work schedules
US8881141B2 (en) * 2010-12-08 2014-11-04 Intenational Business Machines Corporation Virtualization of hardware queues in self-virtualizing input/output devices
US9542699B2 (en) 2010-12-13 2017-01-10 Oracle International Corporation Order management system with technical decoupling
US8560827B1 (en) 2010-12-28 2013-10-15 Emc International Company Automatically determining configuration parameters for a system based on business objectives
US9063789B2 (en) 2011-02-08 2015-06-23 International Business Machines Corporation Hybrid cloud integrator plug-in components
US8498888B1 (en) * 2011-06-22 2013-07-30 Amazon Technologies, Inc. Cost-based fulfillment tie-breaking
US8700443B1 (en) 2011-06-29 2014-04-15 Amazon Technologies, Inc. Supply risk detection
US8812337B2 (en) * 2011-10-20 2014-08-19 Target Brands, Inc. Resource allocation based on retail incident information
US20130166353A1 (en) * 2011-12-21 2013-06-27 Oracle International Corporation Price optimization using randomized search
US20130166458A1 (en) 2011-12-22 2013-06-27 Embraer S.A. System and method for remote and automatic assessment of structural damage and repair
US20130166468A1 (en) 2011-12-22 2013-06-27 Timo Vogelgesang Business rules-based determination of retail and wholesale allocation
US20150127438A1 (en) 2012-04-09 2015-05-07 R&D Consulting Professionals Inc. Systems and methods for managing a retail network
US20130326487A1 (en) * 2012-05-31 2013-12-05 Shenol YOUSOUF Emulating cloud functioning of applications locally
US20140047342A1 (en) 2012-08-07 2014-02-13 Advanced Micro Devices, Inc. System and method for allocating a cluster of nodes for a cloud computing system based on hardware characteristics
US9563480B2 (en) * 2012-08-21 2017-02-07 Rackspace Us, Inc. Multi-level cloud computing system
AU2013204166B2 (en) 2012-09-27 2015-05-07 iDive Pty Ltd Multichannel distribution management tool, system and method
US9015212B2 (en) * 2012-10-16 2015-04-21 Rackspace Us, Inc. System and method for exposing cloud stored data to a content delivery network
US10546262B2 (en) 2012-10-19 2020-01-28 Overstock.Com, Inc. Supply chain management system
US9524471B2 (en) * 2012-10-31 2016-12-20 Sas Institute Inc. Systems and methods for conflict resolution and stabilizing cut generation in a mixed integer program solver
US20140136255A1 (en) 2012-11-14 2014-05-15 Wal-Mart Stores, Inc. Dynamic Task Management
DE102012223307B4 (en) * 2012-12-14 2021-03-04 Continental Automotive Gmbh Synchronizing data packets in a data communication system of a vehicle
US8977596B2 (en) * 2012-12-21 2015-03-10 Zetta Inc. Back up using locally distributed change detection
US20140279294A1 (en) 2013-03-14 2014-09-18 Nordstrom, Inc. System and methods for order fulfillment, inventory management, and providing personalized services to customers
US20150341230A1 (en) * 2013-03-15 2015-11-26 Gravitant, Inc Advanced discovery of cloud resources
US10026049B2 (en) 2013-05-09 2018-07-17 Rockwell Automation Technologies, Inc. Risk assessment for industrial systems using big data
US10515153B2 (en) * 2013-05-16 2019-12-24 Educational Testing Service Systems and methods for automatically assessing constructed recommendations based on sentiment and specificity measures
WO2015017804A1 (en) * 2013-08-01 2015-02-05 Nant Holdings Ip, Llc Engagement point management system
US20150052019A1 (en) 2013-08-19 2015-02-19 Nordstrom Inc. System and Method for Multiple Weighted Factor Routing Schemes in Heterogeneous Fulfillment Networks Serving Multiple Clients with Distinct Routing Policies
US9424521B2 (en) * 2013-09-27 2016-08-23 Transvoyant, Inc. Computer-implemented systems and methods of analyzing spatial, temporal and contextual elements of data for predictive decision-making
US20150112904A1 (en) 2013-10-22 2015-04-23 Sandia Corporation Methods, systems and computer program products for quantifying relative system adaptability
US20150127412A1 (en) * 2013-11-04 2015-05-07 Amazon Technologies, Inc. Workflow management system
US10275422B2 (en) * 2013-11-19 2019-04-30 D-Wave Systems, Inc. Systems and methods for finding quantum binary optimization problems
US9417951B2 (en) * 2013-12-20 2016-08-16 Synopsys, Inc. Method and apparatus for cipher fault detection
IN2014MU00735A (en) 2014-03-04 2015-09-25 Tata Consultancy Services Ltd
US9866635B2 (en) 2014-03-26 2018-01-09 Rockwell Automation Technologies, Inc. Unified data ingestion adapter for migration of industrial data to a cloud platform
US9418046B2 (en) * 2014-05-14 2016-08-16 International Business Machines Corporation Price-and-branch algorithm for mixed integer linear programming
US9940603B1 (en) * 2014-06-03 2018-04-10 Target Brands, Inc. Shortage indicators
US10685319B2 (en) * 2014-10-15 2020-06-16 International Business Machines Corporation Big data sourcing simulator
US20160171540A1 (en) * 2014-12-12 2016-06-16 Suryanarayana MANGIPUDI Dynamic Omnichannel Relevant Content And Services Targeting In Real Time
US10303539B2 (en) * 2015-02-23 2019-05-28 International Business Machines Corporation Automatic troubleshooting from computer system monitoring data based on analyzing sequences of changes
US10248319B2 (en) * 2015-03-31 2019-04-02 International Business Machines Corporation Storage pool capacity management
US10042697B2 (en) * 2015-05-28 2018-08-07 Oracle International Corporation Automatic anomaly detection and resolution system
US10033702B2 (en) * 2015-08-05 2018-07-24 Intralinks, Inc. Systems and methods of secure data exchange
US20170063723A1 (en) * 2015-08-26 2017-03-02 International Business Machines Corporation Asset arrangement management for a shared pool of configurable computing resources associated with a streaming application
US10636079B2 (en) 2015-09-18 2020-04-28 Bby Solutions, Inc. Demand-based product sourcing
US20170091683A1 (en) * 2015-09-30 2017-03-30 Wal-Mart Stores, Inc. Database system for distribution center fulfillment capacity availability tracking and method therefor
US11899161B2 (en) * 2015-10-27 2024-02-13 Schlumberger Technology Corporation Optimization under uncertainty for integrated models
US10296963B2 (en) * 2015-10-28 2019-05-21 Accenture Global Services Limited Predictive modeling for unintended outcomes
US10348808B2 (en) * 2015-10-30 2019-07-09 International Business Machines Corporation Hybrid cloud applications
US10387828B2 (en) * 2015-11-12 2019-08-20 Mobile Price Card Electronic product information display and method thereof
US10776712B2 (en) * 2015-12-02 2020-09-15 Preferred Networks, Inc. Generative machine learning systems for drug design
US20170177613A1 (en) * 2015-12-22 2017-06-22 Egnyte, Inc. Event-Based User State Synchronization in a Cloud Storage System
US10425313B2 (en) * 2017-04-05 2019-09-24 International Business Machines Corporation Tuple traffic management
US11354139B2 (en) * 2019-12-13 2022-06-07 Sap Se Integrated code inspection framework and check variants

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120173449A1 (en) * 1999-05-11 2012-07-05 William Henry Waddington Method and system for order fulfillment in a distribution center
US7379890B2 (en) * 2003-10-17 2008-05-27 Makor Issues And Rights Ltd. System and method for profit maximization in retail industry
US20050096963A1 (en) * 2003-10-17 2005-05-05 David Myr System and method for profit maximization in retail industry
US20050288989A1 (en) * 2004-06-24 2005-12-29 Ncr Corporation Methods and systems for synchronizing distribution center and warehouse demand forecasts with retail store demand forecasts
US8060864B1 (en) * 2005-01-07 2011-11-15 Interactive TKO, Inc. System and method for live software object interaction
US7801542B1 (en) * 2005-12-19 2010-09-21 Stewart Brett B Automatic management of geographic information pertaining to social networks, groups of users, or assets
US20130246310A1 (en) * 2012-03-13 2013-09-19 Michael Paul Weiss Systems and methods for providing an online private capital marketplace
US20160307155A1 (en) * 2012-09-21 2016-10-20 General Electric Company Routing device for network optimization
US20160005055A1 (en) * 2014-07-01 2016-01-07 Siar SARFERAZ Generic time series forecasting
US20170323250A1 (en) * 2014-10-31 2017-11-09 Ocado Innovation Limited System and method for fulfilling e-commerce orders from a hierarchy of fulfilment centres
US20160300173A1 (en) * 2015-04-10 2016-10-13 Caterpillar Inc. Oscillation detection and reduction in supply chain
US20170236083A1 (en) * 2015-04-29 2017-08-17 NetSuite Inc. System and methods for fulfilling an order by determining an optimal set of sources and resources
US20170140406A1 (en) * 2015-11-16 2017-05-18 Oracle International Corporation System and method for providing a multi-channel inventory allocation approach for retailers
US20170206541A1 (en) * 2016-01-16 2017-07-20 International Business Machines Corporation System, method and computer program product for order fulfillment in retail supply networks
US10074066B2 (en) * 2016-01-16 2018-09-11 International Business Machines Corporation Two phase predictive approach for supply network optimization
US10373102B2 (en) * 2016-01-16 2019-08-06 International Business Machines Corporation System and method to incorporate node fulfillment capacity and capacity utilization in balancing fulfillment load across retail supply networks
US10296932B2 (en) * 2016-05-12 2019-05-21 International Business Machines Corporation System and method for differentiated customer service in terms of fufillment experience based on customer loyalty and cost to serve

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chen, Y., "The Order Fulfillment Planning Problem Considering Multi-Site Order Allocation and Single-Site Floor Scheduling," Journal of Intelligent Manuacturing, 25.3, pages 441-458, June 2014. *
Rickard, D., "The World of ME_Commerce," Manufacturing Business Technology, January 28, 2015. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10565547B2 (en) 2016-04-05 2020-02-18 Wayfair Llc Inter-store inventory transfer

Also Published As

Publication number Publication date
US20170206217A1 (en) 2017-07-20
US10915854B2 (en) 2021-02-09
US20170206478A1 (en) 2017-07-20
US10783483B2 (en) 2020-09-22
US20170206589A1 (en) 2017-07-20
US10832205B2 (en) 2020-11-10
US10373101B2 (en) 2019-08-06
US10074066B2 (en) 2018-09-11
US10902373B2 (en) 2021-01-26
US20170206499A1 (en) 2017-07-20
US20170206500A1 (en) 2017-07-20
US20170206485A1 (en) 2017-07-20
US20170206491A1 (en) 2017-07-20
US20170206590A1 (en) 2017-07-20
US11488095B2 (en) 2022-11-01
US11074544B2 (en) 2021-07-27
US20170206541A1 (en) 2017-07-20
US20190303865A1 (en) 2019-10-03
US10776747B2 (en) 2020-09-15
US10373102B2 (en) 2019-08-06
US10839338B2 (en) 2020-11-17
US20190258998A1 (en) 2019-08-22
US20170206591A1 (en) 2017-07-20
US10719803B2 (en) 2020-07-21
US20170206481A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
US20170206490A1 (en) System and method to dynamically integrate components of omni-channel order fulfilment
US10832194B2 (en) System and method for setting inventory thresholds for offering and fulfillment across retail supply networks
US11416296B2 (en) Selecting an optimal combination of cloud resources within budget constraints
US20130060945A1 (en) Identifying services and associated capabilities in a networked computing environment
US10296932B2 (en) System and method for differentiated customer service in terms of fufillment experience based on customer loyalty and cost to serve
US10607275B2 (en) System and method for shortcutting order fulfillment decisions
US20170279692A1 (en) Deploying a service from a selected cloud service provider based on an evaluation of migration ability using graph analytics
US10956850B2 (en) Causal performance analysis approach for store merchandizing analysis
US10839420B2 (en) Constrained large-data markdown optimizations based upon markdown budget
US20210334713A1 (en) Resource Capacity Planning System
US10943288B2 (en) Cognitive article reception
US10565535B2 (en) System having inventory allocation tool and method of using same
US10614402B2 (en) Human steering dashboard to analyze 360-degree market view for merchants based on financial transactions
US20200401994A1 (en) Packing and shipment sharing through trusted network
US20170344943A1 (en) Incentivized adjustment of optimal delivery route
US20180285911A1 (en) Optimizing profitability in fulfilling website-based order
US11301791B2 (en) Fulfilment machine for optimizing shipping
US20200143446A1 (en) Arranging Content on a User Interface of a Computing Device
US10438217B1 (en) Estimating an output based on robustness associated with multiple input variables
US20170132642A1 (en) System, method, and recording medium for yield management of events
US20210256441A1 (en) Allocation of Resources in a Collaborative Supply Chain Using Blockchain Technology
Gowda et al. Cloud Based Supply Chain Networks—Principles and Practices
WO2023278800A1 (en) Order fulfillment system

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESHPANDE, AJAY A.;GUPTA, SAURABH;HAMPAPUR, ARUN;AND OTHERS;SIGNING DATES FROM 20160501 TO 20160510;REEL/FRAME:038697/0799

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DOORDASH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:057826/0939

Effective date: 20211012