US20170191659A9 - Electrodynamic control in a burner system - Google Patents

Electrodynamic control in a burner system Download PDF

Info

Publication number
US20170191659A9
US20170191659A9 US14/206,919 US201414206919A US2017191659A9 US 20170191659 A9 US20170191659 A9 US 20170191659A9 US 201414206919 A US201414206919 A US 201414206919A US 2017191659 A9 US2017191659 A9 US 2017191659A9
Authority
US
United States
Prior art keywords
command
flame
burner
components
electrodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/206,919
Other versions
US9732958B2 (en
US20140295360A1 (en
Inventor
Christopher A. Wiklof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clearsign Technologies Corp
Original Assignee
Clearsign Combustion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/753,047 external-priority patent/US8851882B2/en
Application filed by Clearsign Combustion Corp filed Critical Clearsign Combustion Corp
Priority to US14/206,919 priority Critical patent/US9732958B2/en
Assigned to CLEARSIGN COMBUSTION CORPORATION reassignment CLEARSIGN COMBUSTION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIKLOF, CHRISTOPHER A
Publication of US20140295360A1 publication Critical patent/US20140295360A1/en
Publication of US20170191659A9 publication Critical patent/US20170191659A9/en
Priority to US15/654,026 priority patent/US20170314782A1/en
Application granted granted Critical
Publication of US9732958B2 publication Critical patent/US9732958B2/en
Priority to US16/296,623 priority patent/US11073280B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means

Definitions

  • legacy burner systems may have lower efficiencies than newer burner systems, which may include various improvements over the legacy burner systems.
  • increasing efficiency of the legacy burner systems may be desirable for any number of reasons, such as to reduce fuel cost, reduce emissions, increase output, etc.
  • replacing a legacy burner system may be cost prohibitive or otherwise undesirable. For example, cost of a new system (even when amortized over its useful lifetime) may outweigh fuel savings.
  • a legacy burner system may be updated or retrofitted to improve its efficiency, reduce emissions, and the like. Accordingly, manufacturers and users of burner systems continue to seek improvements for modifying or retrofitting existing burner systems.
  • Embodiments disclosed herein relate to combustion systems, retrofit flame control systems, and methods for controlling a flame in a combustion or burner system.
  • the burner system includes one or more burner components configured to control at least one of supply of fuel to a flame area or fuel mixture for forming the flame in the flame area.
  • the burner system further includes one or more electrodynamic components including one or more electrodes configured to control one or more characteristics of the flame.
  • the burner system additionally includes a data interface configured to receive a first command for controlling the burner components and to prepare a second command for controlling at least one of the one or more electrodynamic components, with the second command being at least partially based on the first command.
  • a retrofit flame control system includes one or more electrodynamic components configured for integration with an existing burner system capable of producing a flame.
  • the one or more electrodynamic components include one or more electrodes configured to generate an electric field for controlling one or more characteristics of the flame and one or more chargers configured to charge the flame.
  • the flame control system further includes a data interface configured to receive a first command for controlling the burner components and prepare a second command for controlling the one or more electrodynamic components, with the second command being at least partially based on the first command.
  • a method for controlling a flame of a burner system includes receiving a first command from a control system, with the first command including information for controlling one or more of a burner or a fuel source.
  • the method further includes preparing a second command at least partially based on the first command, with the second command including information for controlling one or more electrodynamic components that include at least one of one or more electrodes or a charger.
  • the method additionally includes transmitting the second command to the one or more electrodynamic components.
  • FIG. 1A is a block diagram of a burner system configured to charge a flame and control one or more characteristics of the flame according to an embodiment.
  • FIG. 1B is a block diagram of an embodiment of a control system in a burner system.
  • FIG. 2 is a block diagram of an embodiment of a data interface that may be incorporated in a control system to facilitate control of various components of a burner system.
  • FIG. 3 is a block diagram of a control system for a burner system according to an embodiment.
  • FIG. 4 is an embodiment of a method for controlling a burner system.
  • Embodiments disclosed herein relate to combustion systems, retrofit flame control systems, and methods for controlling a flame in a combustion or burner system.
  • Embodiments disclosed herein further relate to a data interface configured to control a burner system.
  • the data interface may be integrated with burner systems including legacy burner systems and that may enable control of the burner system or control of components of the burner system.
  • efficiency of a legacy burner system may be improved by controlling the flame. While the general direction of a flame may be controlled using the flame's momentum, controlling other aspects of the flame (e.g., the flame height) may further improve the efficiency of the legacy burner system. More specifically, in some embodiments, the retrofit flame control system may be easily integrated with an existing burner system to improve efficiency thereof.
  • An existing burner system may have several components that may be controlled by the retrofit flame control system.
  • elements or components of the burner system may be controlled in a manner that impacts the efficiency and operation of the burner system.
  • a burner system typically has a fuel source.
  • the operation of the burner system may be controlled by controlling various aspects or characteristics of the fuel source.
  • Fuel flow rate, mixture ratios, fuel type, fuel temperature, fuel pressure, or the like are examples of characteristics of the fuel or of the fuel source that may be controlled.
  • the burner may also have controllable elements or components, such as valves and dampeners.
  • a flame generally may include ionized gases or charged particles (ions) with the mix of positive and negative ions. Accordingly, in some instances, the flame has a net zero charge. In some embodiments, as described in more detail below, the flame may be charged to exhibit a net positive or net negative charge so that the charged flame may be manipulated via an electric field.
  • application of an electric field to one or more regions at least proximate to a flame via one or more electrodes enables influencing flame geometry, flame combustion characteristics, flame chemistry, flame heat transfer (e.g., heat transfer to a surface, non-transfer of heat to a surface), flame holding position, flame luminosity, or combinations thereof.
  • flame geometry, flame combustion characteristics, flame chemistry, flame heat transfer, flame holding position, flame luminosity, or combinations thereof may be controllably altered.
  • Flame geometry may be controlled, for example, by charging the flame or the flame area and then using one or more electrodes to apply the electric field to control the flame geometry.
  • Causing a response in the flame via the electric field may include causing a visible response in the flame. Additionally or alternatively, causing a response in the flame via the electric field may include causing increased mixing of fuel and oxidizer in the flame. Causing the increased mixing of fuel and oxidizer may increase a rate of combustion. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may increase fuel and air contact in the flame. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease a flame temperature.
  • causing the increased mixing of fuel and oxidizer may decrease an evolution of oxides of nitrogen (“NOx”) by the flame. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease an evolution of carbon monoxide (“CO”) by the flame. Causing the increased mixing of fuel and oxidizer may increase flame stability and/or decrease a chance of flame blow-out. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may increase flame emissivity. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease flame size for a given fuel flow rate.
  • NOx oxides of nitrogen
  • CO carbon monoxide
  • Embodiments disclosed herein may inject charges (e.g., positive or negative ions) into the flame (or the fuel or the flame area) such that the flame as a whole is electrically biased either positively or negatively (i.e., the flame may have a net negative or net positive charge).
  • charges e.g., positive or negative ions
  • the flame's geometries may also be controlled by applying an appropriate electric field. More specifically, the geometry of the flame may be controlled using one or more electrodes that may have the same charge as the biased flame or a different charge from the biased flame. In some embodiments, the electrodes may be positively charged or negatively charged. Additional or alternative embodiments may include multiple electrodes, some of which may have a negative charge and other may have a positive charge.
  • a counter electrode or ground electrode(s) may also be used to generate the electric fields and to control directions and configurations of the electric fields.
  • the placement and bias of the electrodes may be placed and configured according to a desired flame shape or to enable control of the flame shape according to desired ranges.
  • one or more electrodes may be positioned in or near a buoyancy-dominated region of the flame which may not even be visible as opposed to a momentum-dominated region of the flame that is at or near the base of the flame.
  • the polarities of the electrodes may be controlled such that the flame is controlled by repulsion or attraction.
  • positive electrodes may control the flame geometry or characteristic (e.g., flame height) by repelling the biased flame. More specifically, in an embodiment, positively charged electrodes may repel positive ions in the flame. In this manner, at least the height of the flame may be controlled.
  • Controlling the flame geometry or other characteristics of the flame may be influenced by placement of the electrodes, size and shape of the electrodes, directions of electric fields, relative potentials of the electrodes or relative strengths of the corresponding electric fields, or the like or any combination thereof. Electrodes may be placed at any number of suitable locations relative to the flame. For example, one or more electrodes may be positioned above the flame, on the sides of the flame, within the flame, or the like or any combination thereof. The electrodes also may have any number of suitable shapes and/or sizes, which may vary from one embodiment to the next, and which may be shaped like rods, rings, partial-rings, plates, or the like or any combination thereof. Also, the electrodes may also be oriented in different directions or along one or more axes. The electrodes for a given burner system may have different shapes, orientations, sizes, or the like. The electrodes in a given burner system may be similarly configured or differently configured.
  • Embodiments disclosed herein may also contemplate other electrodes.
  • Some other electrodes may be counter electrodes.
  • Counter electrodes e.g., a grounded electrode
  • Other electrodes e.g., corona electrodes
  • Embodiments disclosed herein further relate to a data interface that may facilitate control of at least the above-described aspects of burner systems.
  • the data interface may cooperate with multiple controllers using minimal communication lines.
  • the data interface may be effectively placed between the controllable elements of the burner system and a control system.
  • the data interface may be able to pass data/commands, generate data/commands, route data/commands, the like, or combinations thereof.
  • the data interface may include a lookup table (“LUT”) stored in a memory.
  • the lookup table may allow or facilitate certain actions to be performed even if not explicitly reflected in the original command. For example, a command to shut off the fuel to the burner may result in commands for other elements of the burner system.
  • the operational states of the electrodes and the charger may also be changed in response to a command to shut off the fuel to the burner.
  • the data interface may be configured to receive signals or commands from a control system, interpret the commands, and then route the commands as necessary to implement the original command. Some embodiments may include using the lookup table (e.g., stored in a memory), which may facilitate generating appropriate commands and sending commands to various elements or components of the burner system.
  • the lookup table e.g., stored in a memory
  • FIG. 1A illustrates an embodiment of a burner system 100 that is configured to control a flame 116 .
  • the burner system 100 includes a burner 108 and a fuel source 110 .
  • the burner 108 is connected with the fuel source 110 .
  • the fuel source 110 may provide pressurized fuel to the burner 108 . Pressurizing the fuel may provide direction to the flame and may be used at least in part to control flame height.
  • the fuel provided by the fuel source 110 combusts in the burner 108 (e.g., as the fuel exits nozzles that may be part of the burner 108 ) and produces the flame 116 .
  • the burner system 100 further includes a control system 102 that is operably connected with electrodes 104 , an optional charger 106 , the burner 108 , and the fuel source 110 .
  • the electrodes 104 and the charger 106 are electrodynamic components 118
  • the burner 108 and the fuel source 110 are burner components 120 .
  • the charger 106 is configured to charge the flame 116 or to add charge to the flame 116 (or to a flame area 114 ).
  • the charger 106 may charge the flame 116 using synchronized AC polarity.
  • the charger 106 may add positive or negative ions (e.g., gaseous ions) to the flame 116 , to the fuel flow, or to a flame area to produce a biased flame.
  • the flame may include ions of different charges, but the overall charge of the flame 116 may be substantially neutral.
  • the charger 106 is configured to provide charge to or bias the flame 116 . In some embodiments, the charger 106 may ensure that the overall or net charge of the flame 116 is positive or negative.
  • the height of the flame 116 may be controlled using the existing charges in the flame and the charger 106 may not be required.
  • the charge and potential of the electrodes 104 may be varied and set at least partially based on the response of the flame that has not been charged by the charger 106 .
  • the charger 106 may be omitted.
  • the electrodes 104 may be generally arranged relative to the flame 116 and/or to the charger 106 in a manner that the geometry of the flame 116 (e.g., the height) may be controlled.
  • the charger 106 may provide the flame 116 with a positive charge as previously stated.
  • the electrodes 104 may also be positively biased in order to create an electric field that acts on the positively charged flame. By controlling the strength and/or direction of the electric field, the height, width, or other shape of the flame 116 may be adjusted by repelling the flame 116 with the electrodes 104 , which act on the charges in the flame 116 .
  • the electrodes 104 also may be turned off, or the potential of the electrodes 104 may be lowered in some embodiments, which would increase the height of the flame 116 . In an embodiment, the potential or bias of the electrodes may be made negative, which may increase the height of the flame 116 .
  • Various other properties of the flame or related combustion characteristics other than flame geometry may also be controlled by the electric field applied via the electrodes 104 as previously discussed, such as flame combustion characteristics, flame chemistry, flame heat transfer (e.g., heat transfer to a surface, non-transfer of heat to a surface), flame holding position, flame luminosity, or combinations thereof.
  • commands issued by the control system 102 may contemplate and account for situations where the polarity of the electrodes 104 is always positive or neutral, always negative or neutral, or where the polarity may change from positive to negative or from negative to positive.
  • the control system 102 may be configured to control at least the electrodes 104 , the charger 106 , the burner 108 , and the fuel source 110 .
  • the control system 102 may control the potential and polarity of the electrodes 104 , the amount of charge emitted or generated by the charger 106 , the like, or combinations thereof.
  • the control system 102 may also be able to control the burner 108 and the fuel source 110 (e.g., rate of fuel flow, pressure, or the like).
  • the burner system 100 further includes a data interface 150 .
  • the data interface 150 may be integrated in the burner system 100 to interface with the control system 102 and with the electrodynamic components 118 and the burner components 120 .
  • the fuel source 110 may include various components such as valves and dampeners.
  • the control system 102 may issue a command to control the fuel source 110 (e.g., shut or partially close a valve or a dampener).
  • the command may be formed as a set of bits (e.g., a command frame), for example, that may have predefined fields.
  • the commands are received by the data interface 150 and converted into action.
  • the interface is positioned in the burner system 100 to control the fuel source 110 in response to a command from the control system 102 .
  • commands directed to the burner e.g., related to fuel mixing, air flow, or the like
  • the data interface 150 may interpret commands, route commands, augment commands with additional instructions, modify commands, pass commands unmodified, the like, or any combination thereof.
  • a communication line 122 may pass commands to the burner components 120 and to the electrodynamic components 118 .
  • One or more embodiments may allow incorporation of the electrodynamic components 118 into a legacy burner system without the need of separate control systems.
  • the data interface 150 may generate commands for the electrodynamic components 118 , which may be at least partially based on commands by the control system 102 issued to the burner components 120 .
  • a command to reduce fuel flow may be modified by the data interface 150 to include a command to the electrodes 104 and/or the charger 106 that may be at least partially based on the command issued to the burner components 120 .
  • a command to the burner components 120 typically has a certain effect on the flame 116 .
  • the data interface 150 may issue commands to the electrodynamic components 118 that are consistent with such anticipated effect on the flame 116 (from the commands issued to the burner components 120 ).
  • a command to shut off the fuel flow may result in an additional command to shut off application of voltage to the electrodes 104 .
  • a command directed to the electrodes 104 e.g., changing a potential of an electrode, changing a direction or strength of an electric field
  • a command directed to the charger 106 e.g., controlling an amount of injected charge
  • the data interface 150 enables the same communication line to the control system 102 to be used for all components of the burner system 100 and may prevent commands that would not be understood or accepted by a particular component from reaching that component.
  • FIG. 1B illustrates a block diagram of an embodiment of a retrofit flame control system that may be integrated with or incorporated into a burner system.
  • each of the electrodes 104 , the optional charger 106 , the burner 108 , and the fuel source 110 may each be associated with their own controllers as illustrated in FIG. 1B .
  • the data interface 150 may have an interface to the control system 102 and an interface to each of an electrode controller 152 , a charger controller 154 , a burner controller 156 , and a fuel source controller 158 . Commands from the control system 102 may be interpreted by the data interface 150 and distributed to the appropriate controller (e.g., to the electrode controller 152 , charger controller 154 , burner controller 156 , or fuel source controller 158 ).
  • the data interface 150 may use existing communication line 122 ( FIG. 1A ) as well as existing communication lines to the burner 108 and the fuel source 110 .
  • the data interface 150 may have multiple input and output (“I/O”) ports, such that multiple components may be electrically connected one to another in a manner illustrated in FIG. 1A or 1B .
  • the data interface 150 may include a connection configured to connect to one or more upline components such as the control system 102 .
  • the data interface 150 may also include a connection configured to connect to one or more downline components such as component controllers.
  • the data interface 150 may be embodied as a hardware device and/or as software programmed and/or stored on the hardware control system 102 .
  • the data interface 150 receives all data that originates upline.
  • the data interface 150 may then pass data to one or more of the intended components, such as to fuel control components.
  • the data may be reviewed prior to being passed, such that other correlated commands may be generated and sent downline to the electrodynamic control components.
  • the data interface 150 may have a multi-task operating system that may operate multiple controllers or that may control multiple components.
  • FIG. 2 illustrates an embodiment of a data interface 250 that may be incorporated into a burner system.
  • the data interface 250 and a burner system 200 and their respective components or elements may be similar to or the same as the data interface 150 and the burner system 100 ( FIG. 1A ) and their respective components and elements.
  • the data interface 250 may be integrated with a legacy system and use communication lines that may be already included in the legacy system.
  • the data interface 250 also may facilitate integration or incorporation of additional components, which may be controlled using some of the same communication lines.
  • the data interface 250 may include a processor 210 and a lookup table (LUT) 208 .
  • the LUT 208 may be stored in a memory and may be updated over time.
  • the data interface 250 also may include other circuitry and components that cooperate to receive/transmit data/signals in upline and downline directions. Additionally or alternatively, the data interface 250 may be configured to access the LUT 208 , which may be stored and/or located remotely from the data interface 250 .
  • the LUT 208 may be a database or table that stores information related to the control of the burner system 200 .
  • the LUT 208 may include one or more fields that may include information or parameters that may correlate one command with another.
  • the LUT 208 may be accessed to prepare one or more commands at least partially based on the information contained in one or more other commands.
  • the LUT 208 may include specific information for preparing each new command at least partially based on the one or more other commands.
  • the LUT 208 may be accessed based on an original command 202 received over a communication line 218 that is connected to a port 212 .
  • the LUT 208 may include other commands that correspond to the original command 202 .
  • the LUT 208 may be accessed to obtain information or parameters from preparing one or more commands that may be based on or related to the original command 202 .
  • commands 204 and 206 may be associated with and/or based on the original command 202 .
  • the data interface 250 may generate and/or transmit both the command 204 and the command 206 in response to receiving the command 202 .
  • the command 202 may be a command to change a pressurization of the fuel source and may be intended for the fuel source 110 or the fuel source controller 158 ( FIG. 1A ).
  • the data interface 250 may transmit the command 204 that is similar or identical to the command 202 .
  • the data interface 250 may transmit the command 206 to the electrodes.
  • the data interface 250 may facilitate control of the electrodes 104 in a manner that is consistent with the original command 202 , which was intended for the fuel source in this example.
  • the command 206 to the electrodes may have been made to ensure that the flame height did not change. This enables an increase in heat without changing the flame height.
  • Other commands may be similarly implemented.
  • the contents of the LUT 208 may be changed as necessary or suitable. For instance, new data may be entered into the LUT 208 .
  • the LUT 208 may be configured such that the appropriate actions are taken in response to an initial command (e.g., a command that may be provided by a user). This advantageously relieves the user of having to control each component of the burner system 200 individually. In addition, the control of the burner system 200 may be more consistent or predictable.
  • the command 202 may have a format that may be interpreted by the data interface 250 .
  • the command 202 may identify the component to control, the specific burner affected, a value to implement, a time stamp, other information, or combination thereof.
  • the data interface 250 may receive the command 202 and may, at least partially based on the LUT 208 , prepare new commands 204 , 206 at least partially based on the command 202 .
  • the data interface 250 may receive any number of commands and may prepare and send any number of commands that may be based at least in part on the received commands.
  • any of the sent commands may be similar to or the same as the received commands.
  • the data interface 250 may generate additional commands (e.g., command 206 ) at least partially based on the information provided in the original command (e.g., command 202 ).
  • the LUT 208 enables the data interface 250 to coordinate control of the components in the burner system 200 .
  • the LUT 208 allows the data interface 250 to generate and transmit commands to components that may not be included in the original command.
  • the LUT 208 may be arranged in a table format that may be indexed according to all available commands. Associated portions of the table may then identify the commands that may be generated and transmitted based on the command that was received.
  • commands that affect the fuel or the fuel flow may be correlated with commands to the charger or electrodes that have a corresponding impact on what the original command intended to achieve.
  • a command to shut off the valve may result in the electrodes and charger being turned off.
  • a command to increase fuel flow rate or flow pressure may result in commands that change the magnitude and/or direction of the electric field or of the amount of charge injected into the flame area.
  • the LUT 208 also may include routing instructions, which may indicate the destination of the command. Hence, in some embodiments, the LUT 208 may be used to determine which component should receive the command 202 .
  • the LUT 208 may contain one or more fields that may be identified using information contained in the command 202 , and which may include instructions for routing the command 202 to a component and/or to a port of a component.
  • the data interface 250 may include multiple ports, illustrated as portions 212 , 214 , and 216 .
  • the port 212 is an input port that is connected to the communication line 218 .
  • the same line 218 may be used for communicating commands to all components of the burner system 200 .
  • the ports 214 and 216 are examples of output ports and are connected to respective lines 220 and 222 .
  • the data interface 250 may include more or fewer ports in other embodiments. As a result, the data interface 250 may be scalable and may accommodate as many components as may be necessary or suitable for a particular application or burner system. The data interface 250 also may facilitate control of multiple burner systems.
  • the number of commands output may vary and may depend on the information in the LUT 208 .
  • the data interface 250 may simply pass the command 202 directly through the data interface as the command 204 .
  • the command 202 may be changed into two commands, illustrated as the command 204 and the command 206 .
  • the lines 218 , 220 , and 222 may support unidirectional or bi-directional communication. This enables, for example, feedback to be received by the data interface 250 from the various components of the burner system 200 .
  • FIG. 3 illustrates a block diagram of a control system for a burner system according to an embodiment.
  • the control system 102 a includes a data interface 350 , which may be implemented as hardware, software, firmware, or combinations thereof. Except as otherwise described herein the control system 102 a and its elements or components may be similar to or the same as the control system 102 ( FIG. 1A ) and its respective elements and components.
  • a single set of wires or communication lines illustrated as lines 302 , 304 , and 306 ) are provided.
  • One, some, or all of the commands to the fuel component control 352 or the electrodynamic component control 354 may be transmitted on the same lines.
  • Each line or link may be unidirectional or bi-directional.
  • the data interface 350 may be associated with an output port 308 and an input port 310 (they may be the same port in one embodiment). Outgoing communications may proceed on the line 304 to the electrodynamic component control 354 , then to the fuel component control 352 on the line 306 and, if necessary, back to the data interface 350 via the line 302 .
  • commands to the fuel component control 352 may be simply passed through by the electrodynamic component control 354 or vice versa if the commands travel in the other direction.
  • the fuel component control 352 may recognize commands that are intended for the components 356 and cause the appropriate action (e.g., may send such commands to the electrodynamic component control 354 ).
  • the electrodynamic component control 354 may recognize commands that are intended for the components 358 and cause the appropriate action (e.g., may send such commands to the fuel component control 352 ).
  • the data interface 350 may have access to a LUT as previously described such that any command generated by the control system 102 may be correlated to the appropriate commands for the components 356 and/or the components 358 .
  • the electrodynamic component control 354 may pass a data stream to the fuel component control 352 while picking out the appropriate commands for the components 358 .
  • the fuel component control 352 may similarly pick out the appropriate commands for the components 356 .
  • Feedback from the electrodynamic component control 354 may be passed back to the data interface 350 through the fuel component control 352 .
  • embodiments may include any suitable number of sets of wires, which may vary from one embodiment to the next.
  • additional or alternative embodiments may include multiple sets of wires, some of which may be dedicated to transmitting data between certain ones of one or more controls and/or one or more components.
  • the data interface may be viewed as a wedge data interface that, in an embodiment, may be inserted into legacy systems.
  • the existing communication lines may be used to convey commands while providing a way to control new components that may be added to the system.
  • the interface may facilitate new components to be properly controlled with legacy commands and/or with commands particular to the new components.
  • the LUT may ensure that commands to a fuel source results in additional commands to the electrodes or charger such that the intended result is achieved by all of the components operating appropriately in the context of the original command.
  • FIG. 4 illustrates an embodiment of a method for controlling a burner system.
  • the method may include an act 402 of receiving a command.
  • the command may be received, for example, from a control system or from a user via a user interface (e.g., via a graphical user interface).
  • the data interface may correlate the received command with other commands.
  • the data interface may access memory to identify commands that are correlated with the originally received command.
  • the correlated commands may relate to other components of the burner system that, when performed, may cause the various components to work together to achieve an intent of the original command.
  • new commands may be generated.
  • the new commands may include the original command as well as other additional commands.
  • the intent of an original command that is achieved by controlling a fuel source may be implemented with commands to the fuel source and other components that are operated to achieve the same intent as discussed herein.
  • the new commands may be transmitted to the appropriate components.
  • control system and/or the data interface may comprise a special purpose or general-purpose computer including various computer hardware or other hardware including duplexers, amplifiers, or the like, as discussed in greater detail below.
  • Embodiments disclosed herein also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon.
  • Such computer-readable media may be any available media that may be accessed by a general purpose or special purpose computer.
  • Such computer-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to carry or store desired program code means in the form of computer-executable instructions or data structures and which may be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
  • Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A burner system and a retrofit flame control system for an existing burner system are disclosed. The burner system may include burner components, electrodynamic components, and a data interface. The data interface may receive a command for controlling the burner components and prepare a command for controlling the electrodynamic components at least partially based on the command for controlling the burner components.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application No. 61/806,480 filed on 29 Mar. 2013; which, to the extent not inconsistent with the disclosure herein, is incorporated by reference.
  • BACKGROUND
  • There are many technologies where heat is needed and the heat is often generated by burning fuel in a burner system. The fuel is delivered to the burner system and combustion occurs in a flame area (e.g., at the nozzle), resulting in a flame. In some instances, legacy burner systems may have lower efficiencies than newer burner systems, which may include various improvements over the legacy burner systems. Generally, increasing efficiency of the legacy burner systems may be desirable for any number of reasons, such as to reduce fuel cost, reduce emissions, increase output, etc.
  • In some instances, replacing a legacy burner system may be cost prohibitive or otherwise undesirable. For example, cost of a new system (even when amortized over its useful lifetime) may outweigh fuel savings. Sometimes, a legacy burner system may be updated or retrofitted to improve its efficiency, reduce emissions, and the like. Accordingly, manufacturers and users of burner systems continue to seek improvements for modifying or retrofitting existing burner systems.
  • SUMMARY
  • Embodiments disclosed herein relate to combustion systems, retrofit flame control systems, and methods for controlling a flame in a combustion or burner system. The burner system includes one or more burner components configured to control at least one of supply of fuel to a flame area or fuel mixture for forming the flame in the flame area. The burner system further includes one or more electrodynamic components including one or more electrodes configured to control one or more characteristics of the flame. The burner system additionally includes a data interface configured to receive a first command for controlling the burner components and to prepare a second command for controlling at least one of the one or more electrodynamic components, with the second command being at least partially based on the first command.
  • In an embodiment, a retrofit flame control system is disclosed. The retrofit flame control system includes one or more electrodynamic components configured for integration with an existing burner system capable of producing a flame. The one or more electrodynamic components include one or more electrodes configured to generate an electric field for controlling one or more characteristics of the flame and one or more chargers configured to charge the flame. The flame control system further includes a data interface configured to receive a first command for controlling the burner components and prepare a second command for controlling the one or more electrodynamic components, with the second command being at least partially based on the first command.
  • In an embodiment, a method for controlling a flame of a burner system is disclosed. The method includes receiving a first command from a control system, with the first command including information for controlling one or more of a burner or a fuel source. The method further includes preparing a second command at least partially based on the first command, with the second command including information for controlling one or more electrodynamic components that include at least one of one or more electrodes or a charger. The method additionally includes transmitting the second command to the one or more electrodynamic components.
  • Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, which are not to scale or to proportion, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings and claims, are not meant to be limiting. Other embodiments may be used and/or and other changes may be made without departing from the spirit or scope of the present disclosure.
  • FIG. 1A is a block diagram of a burner system configured to charge a flame and control one or more characteristics of the flame according to an embodiment.
  • FIG. 1B is a block diagram of an embodiment of a control system in a burner system.
  • FIG. 2 is a block diagram of an embodiment of a data interface that may be incorporated in a control system to facilitate control of various components of a burner system.
  • FIG. 3 is a block diagram of a control system for a burner system according to an embodiment.
  • FIG. 4 is an embodiment of a method for controlling a burner system.
  • DETAILED DESCRIPTION
  • Embodiments disclosed herein relate to combustion systems, retrofit flame control systems, and methods for controlling a flame in a combustion or burner system. Embodiments disclosed herein further relate to a data interface configured to control a burner system. For example, the data interface may be integrated with burner systems including legacy burner systems and that may enable control of the burner system or control of components of the burner system.
  • In some instances, efficiency of a legacy burner system may be improved by controlling the flame. While the general direction of a flame may be controlled using the flame's momentum, controlling other aspects of the flame (e.g., the flame height) may further improve the efficiency of the legacy burner system. More specifically, in some embodiments, the retrofit flame control system may be easily integrated with an existing burner system to improve efficiency thereof.
  • An existing burner system may have several components that may be controlled by the retrofit flame control system. For instance, elements or components of the burner system may be controlled in a manner that impacts the efficiency and operation of the burner system. For example, a burner system typically has a fuel source. The operation of the burner system may be controlled by controlling various aspects or characteristics of the fuel source. Fuel flow rate, mixture ratios, fuel type, fuel temperature, fuel pressure, or the like are examples of characteristics of the fuel or of the fuel source that may be controlled. In some embodiments, the burner may also have controllable elements or components, such as valves and dampeners.
  • Flame geometry, flame combustion characteristics, flame chemistry, flame heat transfer (e.g., heat transfer to a surface, or non-transfer of heat to a surface), flame holding position, flame luminosity, or combinations thereof may be controlled in accordance with embodiments disclosed herein. A flame generally may include ionized gases or charged particles (ions) with the mix of positive and negative ions. Accordingly, in some instances, the flame has a net zero charge. In some embodiments, as described in more detail below, the flame may be charged to exhibit a net positive or net negative charge so that the charged flame may be manipulated via an electric field.
  • In at least one embodiment, application of an electric field to one or more regions at least proximate to a flame via one or more electrodes enables influencing flame geometry, flame combustion characteristics, flame chemistry, flame heat transfer (e.g., heat transfer to a surface, non-transfer of heat to a surface), flame holding position, flame luminosity, or combinations thereof. For example, by controlling a timing, a direction, a strength, a location, a wave form, a frequency spectrum of the electric field, or combinations thereof, flame geometry, flame combustion characteristics, flame chemistry, flame heat transfer, flame holding position, flame luminosity, or combinations thereof may be controllably altered.
  • Flame geometry may be controlled, for example, by charging the flame or the flame area and then using one or more electrodes to apply the electric field to control the flame geometry. Causing a response in the flame via the electric field may include causing a visible response in the flame. Additionally or alternatively, causing a response in the flame via the electric field may include causing increased mixing of fuel and oxidizer in the flame. Causing the increased mixing of fuel and oxidizer may increase a rate of combustion. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may increase fuel and air contact in the flame. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease a flame temperature. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease an evolution of oxides of nitrogen (“NOx”) by the flame. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease an evolution of carbon monoxide (“CO”) by the flame. Causing the increased mixing of fuel and oxidizer may increase flame stability and/or decrease a chance of flame blow-out. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may increase flame emissivity. Additionally or alternatively, causing the increased mixing of fuel and oxidizer may decrease flame size for a given fuel flow rate.
  • Embodiments disclosed herein may inject charges (e.g., positive or negative ions) into the flame (or the fuel or the flame area) such that the flame as a whole is electrically biased either positively or negatively (i.e., the flame may have a net negative or net positive charge). By adjusting the electrical bias of the flame, the flame's geometries may also be controlled by applying an appropriate electric field. More specifically, the geometry of the flame may be controlled using one or more electrodes that may have the same charge as the biased flame or a different charge from the biased flame. In some embodiments, the electrodes may be positively charged or negatively charged. Additional or alternative embodiments may include multiple electrodes, some of which may have a negative charge and other may have a positive charge. A counter electrode or ground electrode(s) may also be used to generate the electric fields and to control directions and configurations of the electric fields. The placement and bias of the electrodes may be placed and configured according to a desired flame shape or to enable control of the flame shape according to desired ranges. For example, one or more electrodes may be positioned in or near a buoyancy-dominated region of the flame which may not even be visible as opposed to a momentum-dominated region of the flame that is at or near the base of the flame.
  • The polarities of the electrodes may be controlled such that the flame is controlled by repulsion or attraction. For example, if the flame is provided with an overall positive charge by the injection or addition of positive ions, then positive electrodes may control the flame geometry or characteristic (e.g., flame height) by repelling the biased flame. More specifically, in an embodiment, positively charged electrodes may repel positive ions in the flame. In this manner, at least the height of the flame may be controlled.
  • Controlling the flame geometry or other characteristics of the flame may be influenced by placement of the electrodes, size and shape of the electrodes, directions of electric fields, relative potentials of the electrodes or relative strengths of the corresponding electric fields, or the like or any combination thereof. Electrodes may be placed at any number of suitable locations relative to the flame. For example, one or more electrodes may be positioned above the flame, on the sides of the flame, within the flame, or the like or any combination thereof. The electrodes also may have any number of suitable shapes and/or sizes, which may vary from one embodiment to the next, and which may be shaped like rods, rings, partial-rings, plates, or the like or any combination thereof. Also, the electrodes may also be oriented in different directions or along one or more axes. The electrodes for a given burner system may have different shapes, orientations, sizes, or the like. The electrodes in a given burner system may be similarly configured or differently configured.
  • Embodiments disclosed herein may also contemplate other electrodes. Some other electrodes may be counter electrodes. Counter electrodes (e.g., a grounded electrode) may be included in the burner system (or in a burner configuration) to establish a desired electric field relative to other electrodes that are at a different potential. Other electrodes (e.g., corona electrodes) may be used to generate the ions that are added to or injected into the flame to provide a charge to the flame.
  • Embodiments disclosed herein further relate to a data interface that may facilitate control of at least the above-described aspects of burner systems. In some embodiments, the data interface may cooperate with multiple controllers using minimal communication lines. In an embodiment, the data interface may be effectively placed between the controllable elements of the burner system and a control system. The data interface may be able to pass data/commands, generate data/commands, route data/commands, the like, or combinations thereof.
  • In an embodiment, the data interface may include a lookup table (“LUT”) stored in a memory. The lookup table may allow or facilitate certain actions to be performed even if not explicitly reflected in the original command. For example, a command to shut off the fuel to the burner may result in commands for other elements of the burner system. In some embodiments, the operational states of the electrodes and the charger may also be changed in response to a command to shut off the fuel to the burner.
  • The data interface may be configured to receive signals or commands from a control system, interpret the commands, and then route the commands as necessary to implement the original command. Some embodiments may include using the lookup table (e.g., stored in a memory), which may facilitate generating appropriate commands and sending commands to various elements or components of the burner system.
  • FIG. 1A illustrates an embodiment of a burner system 100 that is configured to control a flame 116. The burner system 100 includes a burner 108 and a fuel source 110. The burner 108 is connected with the fuel source 110. The fuel source 110 may provide pressurized fuel to the burner 108. Pressurizing the fuel may provide direction to the flame and may be used at least in part to control flame height. The fuel provided by the fuel source 110 combusts in the burner 108 (e.g., as the fuel exits nozzles that may be part of the burner 108) and produces the flame 116.
  • The burner system 100 further includes a control system 102 that is operably connected with electrodes 104, an optional charger 106, the burner 108, and the fuel source 110. In an embodiment, the electrodes 104 and the charger 106 are electrodynamic components 118, while the burner 108 and the fuel source 110 are burner components 120.
  • The charger 106 is configured to charge the flame 116 or to add charge to the flame 116 (or to a flame area 114). The charger 106 may charge the flame 116 using synchronized AC polarity. The charger 106 may add positive or negative ions (e.g., gaseous ions) to the flame 116, to the fuel flow, or to a flame area to produce a biased flame. As previously discussed, the flame may include ions of different charges, but the overall charge of the flame 116 may be substantially neutral. The charger 106 is configured to provide charge to or bias the flame 116. In some embodiments, the charger 106 may ensure that the overall or net charge of the flame 116 is positive or negative.
  • In some embodiments, the height of the flame 116 may be controlled using the existing charges in the flame and the charger 106 may not be required. Hence, in at least one embodiment, the charge and potential of the electrodes 104 may be varied and set at least partially based on the response of the flame that has not been charged by the charger 106. In additional or alternative embodiments the charger 106 may be omitted.
  • The electrodes 104 may be generally arranged relative to the flame 116 and/or to the charger 106 in a manner that the geometry of the flame 116 (e.g., the height) may be controlled. For example, the charger 106 may provide the flame 116 with a positive charge as previously stated. The electrodes 104 may also be positively biased in order to create an electric field that acts on the positively charged flame. By controlling the strength and/or direction of the electric field, the height, width, or other shape of the flame 116 may be adjusted by repelling the flame 116 with the electrodes 104, which act on the charges in the flame 116.
  • The electrodes 104 also may be turned off, or the potential of the electrodes 104 may be lowered in some embodiments, which would increase the height of the flame 116. In an embodiment, the potential or bias of the electrodes may be made negative, which may increase the height of the flame 116. Various other properties of the flame or related combustion characteristics other than flame geometry may also be controlled by the electric field applied via the electrodes 104 as previously discussed, such as flame combustion characteristics, flame chemistry, flame heat transfer (e.g., heat transfer to a surface, non-transfer of heat to a surface), flame holding position, flame luminosity, or combinations thereof. When controlling the flame, commands issued by the control system 102 may contemplate and account for situations where the polarity of the electrodes 104 is always positive or neutral, always negative or neutral, or where the polarity may change from positive to negative or from negative to positive.
  • The control system 102 may be configured to control at least the electrodes 104, the charger 106, the burner 108, and the fuel source 110. The control system 102 may control the potential and polarity of the electrodes 104, the amount of charge emitted or generated by the charger 106, the like, or combinations thereof. The control system 102 may also be able to control the burner 108 and the fuel source 110 (e.g., rate of fuel flow, pressure, or the like).
  • The burner system 100 further includes a data interface 150. The data interface 150 may be integrated in the burner system 100 to interface with the control system 102 and with the electrodynamic components 118 and the burner components 120.
  • The fuel source 110, for example, may include various components such as valves and dampeners. The control system 102 may issue a command to control the fuel source 110 (e.g., shut or partially close a valve or a dampener). The command may be formed as a set of bits (e.g., a command frame), for example, that may have predefined fields. The commands are received by the data interface 150 and converted into action. Thus, the interface is positioned in the burner system 100 to control the fuel source 110 in response to a command from the control system 102. Similarly, commands directed to the burner (e.g., related to fuel mixing, air flow, or the like) may be converted to action by the data interface 150. The data interface 150 may interpret commands, route commands, augment commands with additional instructions, modify commands, pass commands unmodified, the like, or any combination thereof.
  • In an embodiment, a communication line 122 may pass commands to the burner components 120 and to the electrodynamic components 118. One or more embodiments may allow incorporation of the electrodynamic components 118 into a legacy burner system without the need of separate control systems. The data interface 150 may generate commands for the electrodynamic components 118, which may be at least partially based on commands by the control system 102 issued to the burner components 120.
  • For instance, a command to reduce fuel flow may be modified by the data interface 150 to include a command to the electrodes 104 and/or the charger 106 that may be at least partially based on the command issued to the burner components 120. More generally, a command to the burner components 120 typically has a certain effect on the flame 116. The data interface 150 may issue commands to the electrodynamic components 118 that are consistent with such anticipated effect on the flame 116 (from the commands issued to the burner components 120). For example, a command to shut off the fuel flow may result in an additional command to shut off application of voltage to the electrodes 104.
  • In another example, a command directed to the electrodes 104 (e.g., changing a potential of an electrode, changing a direction or strength of an electric field) or a command directed to the charger 106 (e.g., controlling an amount of injected charge) may be sent on the line 122, which also may be used by the control system 102 for issuing commands to the burner components 120. The data interface 150 enables the same communication line to the control system 102 to be used for all components of the burner system 100 and may prevent commands that would not be understood or accepted by a particular component from reaching that component.
  • FIG. 1B illustrates a block diagram of an embodiment of a retrofit flame control system that may be integrated with or incorporated into a burner system. For example, in the burner system 100 (FIG. 1A), each of the electrodes 104, the optional charger 106, the burner 108, and the fuel source 110 may each be associated with their own controllers as illustrated in FIG. 1B. For instance, the data interface 150 may have an interface to the control system 102 and an interface to each of an electrode controller 152, a charger controller 154, a burner controller 156, and a fuel source controller 158. Commands from the control system 102 may be interpreted by the data interface 150 and distributed to the appropriate controller (e.g., to the electrode controller 152, charger controller 154, burner controller 156, or fuel source controller 158).
  • Thus, the data interface 150 may use existing communication line 122 (FIG. 1A) as well as existing communication lines to the burner 108 and the fuel source 110. The data interface 150 may have multiple input and output (“I/O”) ports, such that multiple components may be electrically connected one to another in a manner illustrated in FIG. 1A or 1B.
  • The data interface 150 may include a connection configured to connect to one or more upline components such as the control system 102. The data interface 150 may also include a connection configured to connect to one or more downline components such as component controllers.
  • The data interface 150 may be embodied as a hardware device and/or as software programmed and/or stored on the hardware control system 102. The data interface 150 receives all data that originates upline. The data interface 150 may then pass data to one or more of the intended components, such as to fuel control components. The data may be reviewed prior to being passed, such that other correlated commands may be generated and sent downline to the electrodynamic control components. In some embodiments, the data interface 150 may have a multi-task operating system that may operate multiple controllers or that may control multiple components.
  • FIG. 2 illustrates an embodiment of a data interface 250 that may be incorporated into a burner system. Except as otherwise described herein, the data interface 250 and a burner system 200 and their respective components or elements may be similar to or the same as the data interface 150 and the burner system 100 (FIG. 1A) and their respective components and elements. In at least one embodiment, the data interface 250 may be integrated with a legacy system and use communication lines that may be already included in the legacy system. The data interface 250 also may facilitate integration or incorporation of additional components, which may be controlled using some of the same communication lines.
  • The data interface 250 may include a processor 210 and a lookup table (LUT) 208. The LUT 208 may be stored in a memory and may be updated over time. The data interface 250 also may include other circuitry and components that cooperate to receive/transmit data/signals in upline and downline directions. Additionally or alternatively, the data interface 250 may be configured to access the LUT 208, which may be stored and/or located remotely from the data interface 250.
  • The LUT 208 may be a database or table that stores information related to the control of the burner system 200. For instance, the LUT 208 may include one or more fields that may include information or parameters that may correlate one command with another. Hence, the LUT 208 may be accessed to prepare one or more commands at least partially based on the information contained in one or more other commands. Moreover, the LUT 208 may include specific information for preparing each new command at least partially based on the one or more other commands.
  • In an embodiment, the LUT 208 may be accessed based on an original command 202 received over a communication line 218 that is connected to a port 212. The LUT 208 may include other commands that correspond to the original command 202. For example, when the command 202 is received by the data interface 250 and processed by the processor 210, the LUT 208 may be accessed to obtain information or parameters from preparing one or more commands that may be based on or related to the original command 202. For instance, commands 204 and 206 may be associated with and/or based on the original command 202. In one or more embodiments, the data interface 250 may generate and/or transmit both the command 204 and the command 206 in response to receiving the command 202.
  • For instance, the command 202 may be a command to change a pressurization of the fuel source and may be intended for the fuel source 110 or the fuel source controller 158 (FIG. 1A). In an embodiment, the data interface 250 may transmit the command 204 that is similar or identical to the command 202. Furthermore, the data interface 250 may transmit the command 206 to the electrodes. As a result, the data interface 250 may facilitate control of the electrodes 104 in a manner that is consistent with the original command 202, which was intended for the fuel source in this example.
  • If the change in pressurization was to increase the fuel pressure, then the command 206 to the electrodes may have been made to ensure that the flame height did not change. This enables an increase in heat without changing the flame height. Other commands may be similarly implemented.
  • The contents of the LUT 208 may be changed as necessary or suitable. For instance, new data may be entered into the LUT 208. The LUT 208 may be configured such that the appropriate actions are taken in response to an initial command (e.g., a command that may be provided by a user). This advantageously relieves the user of having to control each component of the burner system 200 individually. In addition, the control of the burner system 200 may be more consistent or predictable.
  • The command 202 may have a format that may be interpreted by the data interface 250. The command 202, for example, may identify the component to control, the specific burner affected, a value to implement, a time stamp, other information, or combination thereof. In any event, the data interface 250 may receive the command 202 and may, at least partially based on the LUT 208, prepare new commands 204, 206 at least partially based on the command 202. It should be also appreciated that the data interface 250 may receive any number of commands and may prepare and send any number of commands that may be based at least in part on the received commands. Moreover, any of the sent commands may be similar to or the same as the received commands. In other words, the data interface 250 may generate additional commands (e.g., command 206) at least partially based on the information provided in the original command (e.g., command 202).
  • The LUT 208 enables the data interface 250 to coordinate control of the components in the burner system 200. The LUT 208 allows the data interface 250 to generate and transmit commands to components that may not be included in the original command. The LUT 208 may be arranged in a table format that may be indexed according to all available commands. Associated portions of the table may then identify the commands that may be generated and transmitted based on the command that was received.
  • For example, commands that affect the fuel or the fuel flow may be correlated with commands to the charger or electrodes that have a corresponding impact on what the original command intended to achieve. A command to shut off the valve may result in the electrodes and charger being turned off. A command to increase fuel flow rate or flow pressure may result in commands that change the magnitude and/or direction of the electric field or of the amount of charge injected into the flame area.
  • The LUT 208 also may include routing instructions, which may indicate the destination of the command. Hence, in some embodiments, the LUT 208 may be used to determine which component should receive the command 202. For example, the LUT 208 may contain one or more fields that may be identified using information contained in the command 202, and which may include instructions for routing the command 202 to a component and/or to a port of a component.
  • The data interface 250 may include multiple ports, illustrated as portions 212, 214, and 216. The port 212 is an input port that is connected to the communication line 218. Advantageously, the same line 218 may be used for communicating commands to all components of the burner system 200. The ports 214 and 216 are examples of output ports and are connected to respective lines 220 and 222. The data interface 250 may include more or fewer ports in other embodiments. As a result, the data interface 250 may be scalable and may accommodate as many components as may be necessary or suitable for a particular application or burner system. The data interface 250 also may facilitate control of multiple burner systems.
  • For a given command 202, the number of commands output may vary and may depend on the information in the LUT 208. In an embodiment, the data interface 250 may simply pass the command 202 directly through the data interface as the command 204. Alternatively, the command 202 may be changed into two commands, illustrated as the command 204 and the command 206. The lines 218, 220, and 222 may support unidirectional or bi-directional communication. This enables, for example, feedback to be received by the data interface 250 from the various components of the burner system 200.
  • FIG. 3 illustrates a block diagram of a control system for a burner system according to an embodiment. In FIG. 3, the control system 102 a includes a data interface 350, which may be implemented as hardware, software, firmware, or combinations thereof. Except as otherwise described herein the control system 102 a and its elements or components may be similar to or the same as the control system 102 (FIG. 1A) and its respective elements and components. In an embodiment, a single set of wires or communication lines (illustrated as lines 302, 304, and 306) are provided. One, some, or all of the commands to the fuel component control 352 or the electrodynamic component control 354 may be transmitted on the same lines. Each line or link may be unidirectional or bi-directional. In an embodiment, the data interface 350 may be associated with an output port 308 and an input port 310 (they may be the same port in one embodiment). Outgoing communications may proceed on the line 304 to the electrodynamic component control 354, then to the fuel component control 352 on the line 306 and, if necessary, back to the data interface 350 via the line 302.
  • In an embodiment, commands to the fuel component control 352 may be simply passed through by the electrodynamic component control 354 or vice versa if the commands travel in the other direction. The fuel component control 352 may recognize commands that are intended for the components 356 and cause the appropriate action (e.g., may send such commands to the electrodynamic component control 354). Similarly, the electrodynamic component control 354 may recognize commands that are intended for the components 358 and cause the appropriate action (e.g., may send such commands to the fuel component control 352).
  • The data interface 350 may have access to a LUT as previously described such that any command generated by the control system 102 may be correlated to the appropriate commands for the components 356 and/or the components 358. In this example, the electrodynamic component control 354 may pass a data stream to the fuel component control 352 while picking out the appropriate commands for the components 358. The fuel component control 352 may similarly pick out the appropriate commands for the components 356. Feedback from the electrodynamic component control 354 may be passed back to the data interface 350 through the fuel component control 352.
  • The foregoing description illustrates that a single set of wires or lines may be used to convey commands to all components in a burner system and ensure that each component receives the appropriate commands. It should be appreciated that embodiments may include any suitable number of sets of wires, which may vary from one embodiment to the next. Hence, additional or alternative embodiments may include multiple sets of wires, some of which may be dedicated to transmitting data between certain ones of one or more controls and/or one or more components.
  • Generally, the data interface may be viewed as a wedge data interface that, in an embodiment, may be inserted into legacy systems. The existing communication lines may be used to convey commands while providing a way to control new components that may be added to the system. In addition, the interface may facilitate new components to be properly controlled with legacy commands and/or with commands particular to the new components. For instance, as previously described, the LUT may ensure that commands to a fuel source results in additional commands to the electrodes or charger such that the intended result is achieved by all of the components operating appropriately in the context of the original command.
  • FIG. 4 illustrates an embodiment of a method for controlling a burner system. The method may include an act 402 of receiving a command. The command may be received, for example, from a control system or from a user via a user interface (e.g., via a graphical user interface). In an act 404, the data interface may correlate the received command with other commands. The data interface may access memory to identify commands that are correlated with the originally received command. The correlated commands may relate to other components of the burner system that, when performed, may cause the various components to work together to achieve an intent of the original command.
  • In an act 406, new commands (e.g., commands that correlate with the original command) may be generated. The new commands may include the original command as well as other additional commands. For example, the intent of an original command that is achieved by controlling a fuel source may be implemented with commands to the fuel source and other components that are operated to achieve the same intent as discussed herein. Moreover, in the act 406, the new commands may be transmitted to the appropriate components.
  • The embodiments disclosed herein, including the control system and/or the data interface, may comprise a special purpose or general-purpose computer including various computer hardware or other hardware including duplexers, amplifiers, or the like, as discussed in greater detail below.
  • Embodiments disclosed herein also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media may be any available media that may be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to carry or store desired program code means in the form of computer-executable instructions or data structures and which may be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
  • Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
  • While various aspects and embodiments have been disclosed, other aspects and embodiments may be contemplated. The various aspects and embodiments disclosed here are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (20)

What is claimed is:
1. A burner system, comprising:
one or more burner components configured to control at least one of supply of fuel to a flame area or fuel mixture for forming the flame in the flame area;
one or more electrodynamic components including one or more electrodes configured to control one or more characteristics of the flame; and
a data interface configured to receive a first command for controlling the burner components and to prepare a second command for controlling at least one of the one or more electrodynamic components, the second command being at least partially based on the first command.
2. The burner system of claim 1, wherein the data interface is configured to access a lookup table containing information for preparing the second command at least partially based on the first command.
3. The burner system of claim 2, wherein the lookup table includes a database.
4. The burner system of claim 1, wherein the data interface is configured to send the second command to at least one of the one or more electrodynamic components.
5. The burner system of claim 4, wherein the data interface is configured to send the first command to at least one of the one or more burner components.
6. The burner system of claim 4, wherein the data interface is configured to prepare a third command that is the same as the first command and to send the third command to at least one of the one or more burner components.
7. The burner system of claim 1, wherein the burner components include one or more of a fuel source or a burner.
8. The burner system of claim 1, wherein the first command is received from a control system.
9. The burner system of claim 1, wherein the one or more burner components include a fuel source and the first command is configured to control the fuel source and the second command is configured to control the one or more electrodes.
10. The burner system of claim 1, further comprising a single line for sending commands to the one or more burner components and to the one or more electrodynamic components.
11. The burner system of claim 4, wherein the data interface includes at least one input port and at least one output port, wherein the command to the fuel source is transmitted over a first output port and the command to the one or more electrodynamic control components is transmitted over a second output port.
12. The burner system of claim 1, wherein the one or more electrodes of the one or more electrodynamic components include a charger configured to inject charge into a flame area.
13. The burner system of claim 1, wherein the one or more electrodes are configured to generate an electric field and the one or more characteristics of the flame include a flame geometry.
14. The burner system of claim 13, wherein the flame geometry includes a flame height.
15. The burner system of claim 1, wherein the data interface is configured to perform at least one of route commands received from a control system, pass commands received from the control system, modify commands received from the control system, or generate additional commands at least partially based on received commands.
16. A retrofit flame control system, comprising:
one or more electrodynamic components configured for integration with an existing burner system capable of producing a flame, the one or more electrodynamic components including:
one or more electrodes configured to generate an electric field for controlling one or more characteristics of the flame; and
one or more chargers configured to charge the flame;
a data interface configured to receive a first command for controlling the burner components and prepare a second command for controlling the one or more electrodynamic components, the second command being at least partially based on the first command.
17. The retrofit flame control system of claim 16, further comprising one or more of a fuel component control connected to the existing burner system or an electrodynamic component control connected to at least one of the one or more electrodynamic components or the fuel component control, and wherein the electrodynamic component control being configured to receive commands from the data interface.
18. The retrofit flame control system of claim 17, wherein:
the fuel component control is configured to identify and send commands intended for the existing burner system to one or more components of the existing burner system; and
the electrodynamic component control is configured to identify and send commands intended for one or more of the electrodynamic components to the one or more of the electrodynamic components.
19. The retrofit flame control system of claim 18, wherein:
the fuel component control is further configured to identify and send commands intended for the one or more electrodynamic components to the electrodynamic component control; and
the electrodynamic component control is configured to identify and send commands intended for the one or more components of the existing burner system to the fuel component control.
20. A method for controlling a flame of a burner system, the method comprising:
receiving a first command from a control system, the first command including information for controlling one or more of a burner or a fuel source;
preparing a second command at least partially based on the first command, the second command including information for controlling one or more electrodynamic components that include at least one of one or more electrodes or a charger; and
transmitting the second command to the one or more electrodynamic components.
US14/206,919 2010-04-01 2014-03-12 Electrodynamic control in a burner system Expired - Fee Related US9732958B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/206,919 US9732958B2 (en) 2010-04-01 2014-03-12 Electrodynamic control in a burner system
US15/654,026 US20170314782A1 (en) 2010-04-01 2017-07-19 Electrodynamic control in a burner system
US16/296,623 US11073280B2 (en) 2010-04-01 2019-03-08 Electrodynamic control in a burner system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/753,047 US8851882B2 (en) 2009-04-03 2010-04-01 System and apparatus for applying an electric field to a combustion volume
US201361806480P 2013-03-29 2013-03-29
US14/206,919 US9732958B2 (en) 2010-04-01 2014-03-12 Electrodynamic control in a burner system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/753,047 Continuation-In-Part US8851882B2 (en) 2009-04-03 2010-04-01 System and apparatus for applying an electric field to a combustion volume

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/654,026 Division US20170314782A1 (en) 2010-04-01 2017-07-19 Electrodynamic control in a burner system

Publications (3)

Publication Number Publication Date
US20140295360A1 US20140295360A1 (en) 2014-10-02
US20170191659A9 true US20170191659A9 (en) 2017-07-06
US9732958B2 US9732958B2 (en) 2017-08-15

Family

ID=51621195

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/206,919 Expired - Fee Related US9732958B2 (en) 2010-04-01 2014-03-12 Electrodynamic control in a burner system
US15/654,026 Abandoned US20170314782A1 (en) 2010-04-01 2017-07-19 Electrodynamic control in a burner system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/654,026 Abandoned US20170314782A1 (en) 2010-04-01 2017-07-19 Electrodynamic control in a burner system

Country Status (1)

Country Link
US (2) US9732958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316262A1 (en) * 2014-05-02 2015-11-05 Air Products And Chemical, Inc. Remote Burner Monitoring System and Method

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073280B2 (en) 2010-04-01 2021-07-27 Clearsign Technologies Corporation Electrodynamic control in a burner system
US9371994B2 (en) 2013-03-08 2016-06-21 Clearsign Combustion Corporation Method for Electrically-driven classification of combustion particles
US9696031B2 (en) 2012-03-27 2017-07-04 Clearsign Combustion Corporation System and method for combustion of multiple fuels
US9702550B2 (en) 2012-07-24 2017-07-11 Clearsign Combustion Corporation Electrically stabilized burner
CN104755842B (en) 2012-09-10 2016-11-16 克利尔赛恩燃烧公司 Use the electronic Combustion System of current limliting electrical equipment
US9513006B2 (en) 2012-11-27 2016-12-06 Clearsign Combustion Corporation Electrodynamic burner with a flame ionizer
US20140162198A1 (en) 2012-11-27 2014-06-12 Clearsign Combustion Corporation Multistage ionizer for a combustion system
WO2014105990A1 (en) 2012-12-26 2014-07-03 Clearsign Combustion Corporation Combustion system with a grid switching electrode
US9441834B2 (en) 2012-12-28 2016-09-13 Clearsign Combustion Corporation Wirelessly powered electrodynamic combustion control system
US10364984B2 (en) 2013-01-30 2019-07-30 Clearsign Combustion Corporation Burner system including at least one coanda surface and electrodynamic control system, and related methods
US11460188B2 (en) 2013-02-14 2022-10-04 Clearsign Technologies Corporation Ultra low emissions firetube boiler burner
US10119704B2 (en) 2013-02-14 2018-11-06 Clearsign Combustion Corporation Burner system including a non-planar perforated flame holder
US10386062B2 (en) 2013-02-14 2019-08-20 Clearsign Combustion Corporation Method for operating a combustion system including a perforated flame holder
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
EP2956717B1 (en) 2013-02-14 2020-07-08 ClearSign Technologies Corporation Fuel combustion system with a perforated reaction holder
CN107448943B (en) 2013-02-14 2020-11-06 美一蓝技术公司 Perforated flame holder and burner comprising a perforated flame holder
US9664386B2 (en) 2013-03-05 2017-05-30 Clearsign Combustion Corporation Dynamic flame control
WO2014160836A1 (en) 2013-03-27 2014-10-02 Clearsign Combustion Corporation Electrically controlled combustion fluid flow
CN105026840B (en) 2013-05-10 2017-06-23 克利尔赛恩燃烧公司 For the combustion system and method for electric assistant starting
ITPD20130186A1 (en) * 2013-07-02 2015-01-03 Sit La Precisa S P A Con Socio Uni Co METHOD OF MONITORING THE OPERATION OF A BURNER
US9574767B2 (en) 2013-07-29 2017-02-21 Clearsign Combustion Corporation Combustion-powered electrodynamic combustion system
WO2015017084A1 (en) 2013-07-30 2015-02-05 Clearsign Combustion Corporation Combustor having a nonmetallic body with external electrodes
WO2015038245A1 (en) 2013-09-13 2015-03-19 Clearsign Combustion Corporation Transient control of a combustion reaction
WO2015042566A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Control of combustion reaction physical extent
WO2015054323A1 (en) 2013-10-07 2015-04-16 Clearsign Combustion Corporation Pre-mixed fuel burner with perforated flame holder
WO2015057740A1 (en) 2013-10-14 2015-04-23 Clearsign Combustion Corporation Flame visualization control for electrodynamic combustion control
WO2015070188A1 (en) 2013-11-08 2015-05-14 Clearsign Combustion Corporation Combustion system with flame location actuation
CN105960565B (en) 2014-01-24 2019-11-12 克利尔赛恩燃烧公司 Low NOxMultitubular boiler
US10174938B2 (en) 2014-06-30 2019-01-08 Clearsign Combustion Corporation Low inertia power supply for applying voltage to an electrode coupled to a flame
US10458647B2 (en) 2014-08-15 2019-10-29 Clearsign Combustion Corporation Adaptor for providing electrical combustion control to a burner
US9702547B2 (en) 2014-10-15 2017-07-11 Clearsign Combustion Corporation Current gated electrode for applying an electric field to a flame
US10006715B2 (en) 2015-02-17 2018-06-26 Clearsign Combustion Corporation Tunnel burner including a perforated flame holder
WO2016133934A1 (en) 2015-02-17 2016-08-25 Clearsign Combustion Corporation Methods of upgrading a conventional combustion system to include a perforated flame holder
US10801723B2 (en) 2015-02-17 2020-10-13 Clearsign Technologies Corporation Prefabricated integrated combustion assemblies and methods of installing the same into a combustion system
US10514165B2 (en) 2016-07-29 2019-12-24 Clearsign Combustion Corporation Perforated flame holder and system including protection from abrasive or corrosive fuel
US10619845B2 (en) 2016-08-18 2020-04-14 Clearsign Combustion Corporation Cooled ceramic electrode supports

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604936A (en) 1946-01-15 1952-07-29 Metal Carbides Corp Method and apparatus for controlling the generation and application of heat
US3416870A (en) * 1965-11-01 1968-12-17 Exxon Research Engineering Co Apparatus for the application of an a.c. electrostatic field to combustion flames
US5049063A (en) * 1988-12-29 1991-09-17 Toyota Jidosha Kabushiki Kaisha Combustion control apparatus for burner
NO180315C (en) * 1994-07-01 1997-03-26 Torfinn Johnsen Combustion chamber with equipment to improve combustion and reduce harmful substances in the exhaust gas
DE19542918A1 (en) * 1995-11-17 1997-05-22 Asea Brown Boveri Device for damping thermoacoustic pressure vibrations
JP3054596B2 (en) 1996-10-28 2000-06-19 照夫 新井 burner
US6205765B1 (en) * 1999-10-06 2001-03-27 General Electric Co. Apparatus and method for active control of oscillations in gas turbine combustors
DE10137683C2 (en) 2001-08-01 2003-05-28 Siemens Ag Method and device for influencing combustion processes in fuels
US6880390B2 (en) * 2001-11-07 2005-04-19 Bell Sea Marine Systems Fuel meter for outboard engines
ATE335167T1 (en) 2002-03-22 2006-08-15 Pyroplasma Kg FUEL COMBUSTION DEVICE
US7277978B2 (en) * 2003-09-16 2007-10-02 Micron Technology, Inc. Runtime flash device detection and configuration for flash data management software
US7111102B2 (en) * 2003-10-06 2006-09-19 Cisco Technology, Inc. Port adapter for high-bandwidth bus
US7243496B2 (en) 2004-01-29 2007-07-17 Siemens Power Generation, Inc. Electric flame control using corona discharge enhancement
DE102004061300B3 (en) * 2004-12-20 2006-07-13 Siemens Ag Method and device for influencing combustion processes
US7421348B2 (en) * 2005-03-18 2008-09-02 Swanson Brian G Predictive emissions monitoring method
US8851882B2 (en) 2009-04-03 2014-10-07 Clearsign Combustion Corporation System and apparatus for applying an electric field to a combustion volume
JP2013517453A (en) 2010-01-13 2013-05-16 クリアサイン コンバスチョン コーポレイション Method and apparatus for electrical control of heat transfer
US20110211612A1 (en) * 2010-02-18 2011-09-01 Branecky Brian T Temperature sensor array and method of analyzing a condition of water in a tank of a water heating system
WO2012109496A2 (en) 2011-02-09 2012-08-16 Clearsign Combustion Corporation Method and apparatus for electrodynamically driving a charged gas or charged particles entrained in a gas
EP2798270A4 (en) 2011-12-30 2015-08-26 Clearsign Comb Corp Method and apparatus for enhancing flame radiation
US9284886B2 (en) 2011-12-30 2016-03-15 Clearsign Combustion Corporation Gas turbine with Coulombic thermal protection
US20140208758A1 (en) 2011-12-30 2014-07-31 Clearsign Combustion Corporation Gas turbine with extended turbine blade stream adhesion
US20130260321A1 (en) 2012-02-22 2013-10-03 Clearsign Combustion Corporation Cooled electrode and burner system including a cooled electrode
CN104169725B (en) 2012-03-01 2018-04-17 克利尔赛恩燃烧公司 It is configured to the inert electrode interacted electronic with flame and system
US9377195B2 (en) 2012-03-01 2016-06-28 Clearsign Combustion Corporation Inertial electrode and system configured for electrodynamic interaction with a voltage-biased flame
US9366427B2 (en) 2012-03-27 2016-06-14 Clearsign Combustion Corporation Solid fuel burner with electrodynamic homogenization
US9371994B2 (en) 2013-03-08 2016-06-21 Clearsign Combustion Corporation Method for Electrically-driven classification of combustion particles
US9267680B2 (en) 2012-03-27 2016-02-23 Clearsign Combustion Corporation Multiple fuel combustion system and method
US9289780B2 (en) 2012-03-27 2016-03-22 Clearsign Combustion Corporation Electrically-driven particulate agglomeration in a combustion system
WO2013166060A1 (en) 2012-04-30 2013-11-07 Clearsign Combustion Corporation High velocity combustor
CN104334970A (en) 2012-05-31 2015-02-04 克利尔赛恩燃烧公司 Burner with flame position electrode array
US20130323661A1 (en) 2012-06-01 2013-12-05 Clearsign Combustion Corporation Long flame process heater
US20130336352A1 (en) 2012-06-15 2013-12-19 Clearsign Combustion Corporation Electrically stabilized down-fired flame reactor
US20130333279A1 (en) 2012-06-19 2013-12-19 Clearsign Combustion Corporation Flame enhancement for a rotary kiln
CN104428591B (en) 2012-06-29 2017-12-12 克利尔赛恩燃烧公司 Combustion system with corona electrode
US9702550B2 (en) 2012-07-24 2017-07-11 Clearsign Combustion Corporation Electrically stabilized burner
US9310077B2 (en) * 2012-07-31 2016-04-12 Clearsign Combustion Corporation Acoustic control of an electrodynamic combustion system
US8911699B2 (en) 2012-08-14 2014-12-16 Clearsign Combustion Corporation Charge-induced selective reduction of nitrogen
US20140051030A1 (en) 2012-08-16 2014-02-20 Clearsign Combustion Corporation System and sacrificial electrode for applying electricity to a combustion reaction
WO2014036039A1 (en) 2012-08-27 2014-03-06 Clearsign Combustion Corporation Electrodynamic combustion system with variable gain electrodes
CN104755842B (en) 2012-09-10 2016-11-16 克利尔赛恩燃烧公司 Use the electronic Combustion System of current limliting electrical equipment
US20140080070A1 (en) 2012-09-18 2014-03-20 Clearsign Combustion Corporation Close-coupled step-up voltage converter and electrode for a combustion system
US20140076212A1 (en) 2012-09-20 2014-03-20 Clearsign Combustion Corporation Method and apparatus for treating a combustion product stream
US20150079524A1 (en) 2012-10-23 2015-03-19 Clearsign Combustion Corporation LIFTED FLAME LOW NOx BURNER WITH FLAME POSITION CONTROL
US20140162195A1 (en) 2012-10-23 2014-06-12 Clearsign Combustion Corporation System for safe power loss for an electrodynamic burner
WO2014085720A1 (en) 2012-11-27 2014-06-05 Clearsign Combustion Corporation Multijet burner with charge interaction
US20170009985A9 (en) 2012-11-27 2017-01-12 Clearsign Combustion Corporation Charged ion flows for combustion control
US20140162198A1 (en) 2012-11-27 2014-06-12 Clearsign Combustion Corporation Multistage ionizer for a combustion system
US9513006B2 (en) 2012-11-27 2016-12-06 Clearsign Combustion Corporation Electrodynamic burner with a flame ionizer
US9562681B2 (en) 2012-12-11 2017-02-07 Clearsign Combustion Corporation Burner having a cast dielectric electrode holder
US20140170576A1 (en) 2012-12-12 2014-06-19 Clearsign Combustion Corporation Contained flame flare stack
US20140170569A1 (en) 2012-12-12 2014-06-19 Clearsign Combustion Corporation Electrically controlled combustion system with contact electrostatic charge generation
US20140170571A1 (en) 2012-12-13 2014-06-19 Clearsign Combustion Corporation Combustion control electrode assemblies, systems, and methods of manufacturing and use
US20140170575A1 (en) 2012-12-14 2014-06-19 Clearsign Combustion Corporation Ionizer for a combustion system, including foam electrode structure
CN104854407A (en) 2012-12-21 2015-08-19 克利尔赛恩燃烧公司 Electrical combustion control system including a complementary electrode pair
WO2014105990A1 (en) 2012-12-26 2014-07-03 Clearsign Combustion Corporation Combustion system with a grid switching electrode
US9441834B2 (en) 2012-12-28 2016-09-13 Clearsign Combustion Corporation Wirelessly powered electrodynamic combustion control system
US9469819B2 (en) 2013-01-16 2016-10-18 Clearsign Combustion Corporation Gasifier configured to electrodynamically agitate charged chemical species in a reaction region and related methods
US20140196368A1 (en) 2013-01-16 2014-07-17 Clearsign Combustion Corporation Gasifier having at least one charge transfer electrode and methods of use thereof
US10364984B2 (en) 2013-01-30 2019-07-30 Clearsign Combustion Corporation Burner system including at least one coanda surface and electrodynamic control system, and related methods
US20140216401A1 (en) 2013-02-04 2014-08-07 Clearsign Combustion Corporation Combustion system configured to generate and charge at least one series of fuel pulses, and related methods
US20140227649A1 (en) 2013-02-12 2014-08-14 Clearsign Combustion Corporation Method and apparatus for delivering a high voltage to a flame-coupled electrode
US20140227646A1 (en) 2013-02-13 2014-08-14 Clearsign Combustion Corporation Combustion system including at least one fuel flow equalizer
US20140227645A1 (en) 2013-02-14 2014-08-14 Clearsign Combustion Corporation Burner systems configured to control at least one geometric characteristic of a flame and related methods
US20160348901A1 (en) * 2013-02-14 2016-12-01 Clearsign Combustion Corporation Electrically heated burner
CN107448943B (en) 2013-02-14 2020-11-06 美一蓝技术公司 Perforated flame holder and burner comprising a perforated flame holder
US9377188B2 (en) 2013-02-21 2016-06-28 Clearsign Combustion Corporation Oscillating combustor
US9696034B2 (en) 2013-03-04 2017-07-04 Clearsign Combustion Corporation Combustion system including one or more flame anchoring electrodes and related methods
US9664386B2 (en) 2013-03-05 2017-05-30 Clearsign Combustion Corporation Dynamic flame control
US20140255856A1 (en) 2013-03-06 2014-09-11 Clearsign Combustion Corporation Flame control in the buoyancy-dominated fluid dynamics region
US20140272731A1 (en) 2013-03-15 2014-09-18 Clearsign Combustion Corporation Flame control in the momentum-dominated fluid dynamics region
US20150276211A1 (en) 2013-03-18 2015-10-01 Clearsign Combustion Corporation Flame control in the flame-holding region
US20160040872A1 (en) 2013-03-20 2016-02-11 Clearsign Combustion Corporation Electrically stabilized swirl-stabilized burner
US20140287368A1 (en) 2013-03-23 2014-09-25 Clearsign Combustion Corporation Premixed flame location control
US20140295094A1 (en) 2013-03-26 2014-10-02 Clearsign Combustion Corporation Combustion deposition systems and methods of use
WO2014160836A1 (en) 2013-03-27 2014-10-02 Clearsign Combustion Corporation Electrically controlled combustion fluid flow
US9739479B2 (en) 2013-03-28 2017-08-22 Clearsign Combustion Corporation Battery-powered high-voltage converter circuit with electrical isolation and mechanism for charging the battery
CN105026840B (en) 2013-05-10 2017-06-23 克利尔赛恩燃烧公司 For the combustion system and method for electric assistant starting
US20140335460A1 (en) 2013-05-13 2014-11-13 Clearsign Combustion Corporation Electrically enhanced combustion control system with multiple power sources and method of operation
US9574767B2 (en) 2013-07-29 2017-02-21 Clearsign Combustion Corporation Combustion-powered electrodynamic combustion system
WO2015017084A1 (en) 2013-07-30 2015-02-05 Clearsign Combustion Corporation Combustor having a nonmetallic body with external electrodes
WO2015038245A1 (en) 2013-09-13 2015-03-19 Clearsign Combustion Corporation Transient control of a combustion reaction
WO2015042566A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Control of combustion reaction physical extent
WO2015051136A1 (en) 2013-10-02 2015-04-09 Clearsign Combustion Corporation Electrical and thermal insulation for a combustion system
WO2015051377A1 (en) 2013-10-04 2015-04-09 Clearsign Combustion Corporation Ionizer for a combustion system
WO2015057740A1 (en) 2013-10-14 2015-04-23 Clearsign Combustion Corporation Flame visualization control for electrodynamic combustion control
WO2015070188A1 (en) 2013-11-08 2015-05-14 Clearsign Combustion Corporation Combustion system with flame location actuation
WO2015089306A1 (en) 2013-12-11 2015-06-18 Clearsign Combustion Corporation Process material electrode for combustion control
US20150226424A1 (en) 2013-12-14 2015-08-13 Clearsign Combustion Corporation Method and apparatus for shaping a flame
WO2015103436A1 (en) 2013-12-31 2015-07-09 Clearsign Combustion Corporation Method and apparatus for extending flammability limits in a combustion reaction
WO2015123683A1 (en) 2014-02-14 2015-08-20 Clearsign Combustion Corporation Application of an electric field to a combustion reaction supported by a perforated flame holder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316262A1 (en) * 2014-05-02 2015-11-05 Air Products And Chemical, Inc. Remote Burner Monitoring System and Method
US10508807B2 (en) * 2014-05-02 2019-12-17 Air Products And Chemicals, Inc. Remote burner monitoring system and method

Also Published As

Publication number Publication date
US9732958B2 (en) 2017-08-15
US20170314782A1 (en) 2017-11-02
US20140295360A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US20170314782A1 (en) Electrodynamic control in a burner system
US10364984B2 (en) Burner system including at least one coanda surface and electrodynamic control system, and related methods
US10808925B2 (en) Method for electrically controlled combustion fluid flow
US9746180B2 (en) Multijet burner with charge interaction
US20170023242A1 (en) Method for precombustion ionization
US9513006B2 (en) Electrodynamic burner with a flame ionizer
US9371994B2 (en) Method for Electrically-driven classification of combustion particles
US20170009985A9 (en) Charged ion flows for combustion control
US20140162195A1 (en) System for safe power loss for an electrodynamic burner
US20130230810A1 (en) Inertial electrode and system configured for electrodynamic interaction with a flame
US11073280B2 (en) Electrodynamic control in a burner system
MXPA03011294A (en) Horizontal fuel cell tube systems and methods.
CN100591189C (en) Alternating-current plasma gun and its fire-lighting device
CA2826938A1 (en) System and method for flattening a flame
CN101561148B (en) Boiler combustion control system and method
CN110881239B (en) Multi-arc plasma reactor introducing external magnetic field and operation method
EP2017930A3 (en) Plasma ignition system
CN103133144A (en) On-duty flame device
US10145337B2 (en) Electrode ignition and control of electrically operated propellants
Ducati et al. Recent progress in high specific impulse thermo-ionic acceleration
CN206234822U (en) A kind of high purity nanometer alumina production burner
CN109896050A (en) A kind of automatically controlled vectored thrust electric propulsion device
CN204187619U (en) A kind of low nitrogen gas burner and gas fired-boiler
CN105487415B (en) Intelligence control system, charging equipment, intelligent terminal and intelligent control method
CN106704131A (en) On-orbit synergy and stabilization method based on electron source heat regulation for Hall thruster

Legal Events

Date Code Title Description
AS Assignment

Owner name: CLEARSIGN COMBUSTION CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIKLOF, CHRISTOPHER A;REEL/FRAME:032571/0785

Effective date: 20140319

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210815