US20170170879A1 - Slip Ring With High Data Rate Sensors - Google Patents

Slip Ring With High Data Rate Sensors Download PDF

Info

Publication number
US20170170879A1
US20170170879A1 US15/375,260 US201615375260A US2017170879A1 US 20170170879 A1 US20170170879 A1 US 20170170879A1 US 201615375260 A US201615375260 A US 201615375260A US 2017170879 A1 US2017170879 A1 US 2017170879A1
Authority
US
United States
Prior art keywords
solid state
contactless connectivity
state contactless
transmitter
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/375,260
Inventor
David Wesley Weaver
Thomas Knight Tolman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceaneering International Inc
Original Assignee
Oceaneering International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceaneering International Inc filed Critical Oceaneering International Inc
Priority to US15/375,260 priority Critical patent/US20170170879A1/en
Publication of US20170170879A1 publication Critical patent/US20170170879A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0025Near field system adaptations
    • H04B5/0037Near field system adaptations for power transfer
    • H04B5/72
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3604Rotary joints allowing relative rotational movement between opposing fibre or fibre bundle ends
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/08Slip-rings
    • H01R39/12Slip-rings using bearing or shaft surface as contact surface
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • H04B5/79
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04W4/008
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture

Definitions

  • Underwater vehicles can collect large amounts of data during the time they are deployed. Download this data typically requires plugging in an external connector or the data recorder has to be removed and the data downloaded elsewhere. Either approach can take a long time and negatively impacts the available operational time. Further, wet mate underwater connectors are expensive and prone to failure.
  • ROV remotely operated vehicle
  • AUV autonomously operated vehicle
  • AUV is battery powered and spending a long period of time downloading data has an impact on its operational time.
  • FIG. 1 is a block diagram of an exemplary connector
  • FIG. 2 is a block diagram of an exemplary system
  • FIG. 3 is a block diagram of a first exemplary slip ring system
  • FIG. 4 is a block diagram of a second exemplary slip ring system.
  • pinless connector 1 for subsea data communications comprises contactless connectivity data transmitter coupler 10 and contactless connectivity data receiver coupler 20 which can allow for rapid collection and/or download data from subsea vehicles or sensors without having to plug in an external connector or physically remove the data recorder from the unit.
  • Contactless connectivity data transmitter coupler 10 typically comprises first environmentally sealed housing 11 which has no exposed metal.
  • First solid state contactless connectivity data transmitter 14 which may be a transceiver, is typically at least partially disposed within first environmentally sealed housing 11 .
  • first solid state contactless connectivity data transmitter 14 is configured to be operative at a low power level, e.g. less than or around 50 milliwatts, at an extremely high data transfer rate.
  • Contactless connectivity data receiver coupler 20 typically comprises second environmentally sealed housing 21 which has no exposed metal.
  • First solid state contactless connectivity data receiver 24 which may be a transceiver, is disposed at least partially within second environmentally sealed housing 21 and is typically configured to be operative at the low power level and at the extremely high data transfer rate when the first solid state contactless connectivity data transmitter is disposed proximate the first housing, typically at a distance of no more than around 1 meter from the first solid state contactless connectivity data transmitter.
  • first environmentally sealed housing 11 and second environmentally sealed housing 21 are in contact, although first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 need not be.
  • First environmentally sealed housing 11 and second environmentally sealed housing 21 are configured for use subsea, which can include being configured for use at depths of up to around 12000 feet or at full ocean depth, and each typically comprises a material suitable for use subsea, e.g. first environmentally sealed housing 11 comprises a first material and second environmentally sealed housing 21 comprises a second material which may be the same as the first material.
  • the first and second materials suitable for use subsea may comprise a plastic, rubber, ceramic, glass, or the like, or a combination thereof.
  • first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 are adapted to exchange data using a point to point data communications pathway.
  • Keyssa, Inc. of Campbell, Caifornia makes exemplary solid state contactless connectivity data transmitters and solid state contactless connectivity data receivers.
  • first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 are adapted to exchange data without requiring critical alignment of first solid state contactless connectivity data transmitter 14 with the first solid state contactless connectivity data receiver 24 .
  • the extremely high data transfer rate may be around 5 Gbits/second.
  • first environmentally sealed housing 11 and second environmentally sealed housing 21 are configured to mate cooperatively but do not have mate at all, i.e., in various embodiments first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 are operative to transfer data without being in physical contact with each other. However, in other contemplated embodiments first environmentally sealed housing 11 and second environmentally sealed housing 21 are configured to allow the first solid state contactless connectivity data transmitter 14 and the first solid state contactless connectivity data receiver 24 to come into physical contact with each other.
  • first solid state contactless connectivity data transmitter 14 may comprise a plurality of first solid state contactless connectivity data transmitters 14 a , 14 b and/or first solid state contactless connectivity receiver 24 may comprise a plurality of first solid state contactless connectivity receivers 24 a , 24 b .
  • the plurality of first solid state contactless connectivity receivers 24 a , 24 b are operatively coupled to corresponding first solid state contactless connectivity data transmitters 14 a , 14 b of the plurality of first solid state contactless connectivity data transmitters and do not required critical alignment between the plurality of first solid state contactless connectivity data transmitters 14 a , 14 b and the first solid state contactless connectivity receivers 24 a , 24 b .
  • Use of a plurality of first solid state contactless connectivity data transmitters 14 a , 14 b and a plurality of first solid state contactless connectivity receivers 24 a , 24 b can allow data to be downloaded quicker by using multiple transmit/receive devices at the same time, either independently or cooperatively.
  • a subsea system comprises first subsea device 100 and second subsea device 200 .
  • These devices can include structures such as blowout preventers, manifolds, Christmas trees, remotely operated vehicles, autonomously operated vehicles, or the like, or a combination thereof.
  • Current subsea connectors are expensive due to the high tolerance required to ensure a watertight seal and are also the primary source of equipment failure due to water intrusion, misalignment, and the like.
  • First subsea device 100 comprises one or more first data collectors 12 and contactless connectivity data transmitter coupler 10 , which is as described above.
  • Second subsea device 200 comprises contactless connectivity data receiver coupler 20 which is as described above and which may be operatively in communication with second data collector 22 .
  • a data collector may comprise a sensor, a data logger, other electrical and/or optic devices, or the like, or a combination thereof.
  • first electromagnetic inductive signal transmitter 15 which may be a resonant electromagnetic inductive signal transmitter, may be disposed at least partially within contactless connectivity data transmitter coupler 10 and a complimentary first electromagnetic inductive signal receiver 25 , which may be a resonant electromagnetic inductive signal receiver, may be disposed at least partially within contactless connectivity data receiver coupler 20 .
  • First electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 are typically operative to unidirectionally or bidirectionally transmit a signal such as a power signal when contactless connectivity data transmitter coupler 10 is disposed proximate contactless connectivity data receiver coupler 20 . It will be understood by one or ordinary skill in electromechanical arts that bidirectional transmission requires first electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 to effectively be electromagnetic inductive signal transceivers.
  • current subsea fiber optic connectors are very expensive due to the high tolerance required to ensure alignment of the fibers. Alignment of fibers is critical and any misalignment can cause failure or significantly lower the operating capacity of the connector. These connectors have a limited number of mate and de-mate cycles.
  • current cables used in subsea applications can be molded or pressure balanced oil filled (PBOF). Making each cable can be time consuming and expensive to ensure there is no water intrusion when submerged. Cables can deteriorate due to age, exceeding the bend radius, etc. causing equipment failures and requiring replacement which can be costly.
  • the subsea system may comprise one or more physical data pathways 30 which are operatively disposed intermediate first solid state data transmitter 14 and first solid state data receiver 24 where the one or more physical data pathways 30 are configured to provide a data communication path between first solid state data transmitter 14 and first solid state contactless connectivity receiver 24 at the extremely high data rate at a distance of no more than around one meter subsea.
  • Each physical data pathway 30 may comprise a subsea fiber optic pathway, a subsea copper pathway, a plastic cable configured to act as a wave guide for a high frequency radio frequency signal, or the like, or a combination thereof.
  • cable 30 including plastic cable 30 , acts as a wave guide for the high frequency RF signals being transmitted and may only need to be jacketed to prevent the RF signal from leaking off or being interfered with by the environment.
  • plastic cable 30 may be used with one or more plastic connectors to provide a low cost method for providing high speed data transmission from point to point.
  • Plastic cable 30 may also be used to replace the fiber optic cable used in umbilicals/tethers on subsea vehicles. If a plastic cable is used, it typically comprises a jacket configured to prevent a radio frequency data signal from leaking off or being interfered with by the subsea environment.
  • physical data pathway 30 is configured to provide a data communication path between first solid state data transmitter 14 a , 14 b and first solid state contactless connectivity receiver 24 a , 24 b without requiring physical contact between physical data pathway 30 and at least one of first solid state data transmitter 14 a , 14 b and first solid state contactless connectivity receiver 24 a , 24 b .
  • first solid state data transmitter 14 a , 14 b may be one or more first solid state data transmitters 14 and first solid state contactless connectivity receiver 24 a , 24 b may be one or more first solid state contactless connectivity receivers 24 as described herein.
  • fiber optic connectors may be replaced with similar connectors having the same advantages as copper based signal connector. These can further operate to eliminate fiber optic connections and loss issues. Additionally, 100% plastic wet cabling and connectors may be for communications, e.g. plastic core cable used as waveguide to carry signal. Use of this technology and the connectors can allow use of extremely fast data ports and provide for rapid downloading of data to or from AUVs and remote sensors.
  • slip ring system 300 comprises one or more first solid state contactless connectivity transmitters 214 mounted to or on one or more rotatable rings 322 and one or more non-contact stationary sensors, e.g. first solid state contactless connectivity receivers 324 .
  • Slip rings which are widely used in numerous applications winches, cable reels, alternators, and the like, are an electromechanical device that allows the transmission of power and electrical signals from a stationary structure to which a stationary non-contact sensor may be fixed, to a rotating structure.
  • a slip ring typically consists of a stationary contact point that rubs against the outside diameter of a rotating metal ring. Also known as rotary joints, slip rings are used in any electromechanical system that needs to rotate while transmitting power or signals.
  • fiber-optic slip rings may be replaced with slip ring 300 which can provide a non-contact method to transmit data between stationary part 310 and moving part 320 .
  • slip ring 300 which can provide a non-contact method to transmit data between stationary part 310 and moving part 320 .
  • slip ring 322 is fabricated without any contact parts to fail or wear out as well as the ability to rapidly transfer gigabyte amounts of data from an AUV or remote sensor in just seconds.
  • Each rotatable ring 320 typically comprises one or more sensor triggers and first solid state contactless connectivity transmitters 324 , which can be transceivers, operatively coupled to one or more sensor triggers and configured to be operative at an extremely high data transfer rate.
  • Each non-contact stationary sensor can comprise one or more first solid state contactless connectivity receivers 324 which are typically responsive to one or more sensor triggers 312 and disposed at a predetermined position proximate an outside diameter of rotatable ring 320 .
  • a non-contact stationary sensor comprises one or more first solid state contactless connectivity receivers 324 configured to exchange data, either uni- or bidirectionally, with one or more first solid state contactless connectivity transmitters 314 at a low power level, typically less than or around 50 milliwatts, at the extremely high data transfer rate when disposed proximate to first solid state contactless connectivity transmitter 314 without the first solid state contactless connectivity transmitter having to physically contact the first solid state contactless connectivity receiver.
  • a plurality of first solid state contactless connectivity transmitters 314 may be disposed about shaft 320 and associated with one or more stationary mounted first solid state contactless connectivity receivers 324 .
  • data may be obtained from one or more subsea data collector by disposing first subsea device 100 and second subsea device 200 subsea, where each is as described above.
  • First subsea device 100 and second subsea device 200 are maneuvered into a position closely proximate each other subsea and contactless connectivity data transmitter coupler 10 positioned proximate contactless connectivity data receiver coupler 20 at a separation distance of not more than around one meter subsea.
  • first environmentally sealed housing 11 may be selectively and cooperatively mated with second environmentally sealed housing 21 , but need not be.
  • first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 24 may be placed into physical contact.
  • first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 14 are used to communicate data at the extremely high data transfer rate, such as by using a point to point data communication pathway which can include a physical pathway such as physical data pathway 30 .
  • first solid state contactless connectivity data transmitter 14 may comprise a plurality of first solid state contactless connectivity data transmitters 14 a , 14 b ( FIG. 2 ) and first solid state contactless connectivity receiver may comprise a plurality of solid state contactless connectivity receivers 24 a , 24 b ( FIG. 2 ).
  • first solid state contactless connectivity receivers 24 a , 24 b may be operatively coupled to corresponding ones of the plurality of first solid state contactless connectivity data transmitters 14 a , 14 b .
  • the plurality of first solid state contactless connectivity data transmitters 14 a , 14 b and the plurality of first solid state contactless connectivity receivers 24 a , 24 b may be used to unidirectionally or bidirectionally exchange data, whether synchronously or concurrently or independently, without a need for critically aligning the plurality of first solid state contactless connectivity data transmitters 14 a , 14 b and the plurality of first solid state contactless connectivity receivers 24 a , 24 b .
  • Data communication may comprise using an industry standard data exchange protocol such as at an extremely high frequency data rate of around 5 Gbits/second.
  • first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 34 are configured to connect automatically when they are in close proximity to one another and to and disconnect when the separation distance exceeds a maximum separation distance, e.g. more than around one meter.
  • first electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 are present, a signal such as a power signal may be exchanged between first electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 , either uni- or bi-directionally, when contactless connectivity data transmitter coupler 10 is disposed proximate contactless connectivity data receiver coupler 20 at a separation distance of not more than around one meter subsea.
  • a signal may be transmitted from a relatively stationary device, e.g. housing 310 , to a rotating ring such as slip ring 320 , by disposing a rotatable ring, e.g. one or more first solid state contactless connectivity transmitters 314 , on rotatable member 320 such that rotation of rotatable member 320 creates a corresponding rotation of first solid state contactless connectivity transmitters 324 operatively coupled to one or more sensor triggers 312 and operative at an extremely high data transfer rate.
  • Sensor trigger 312 is as described herein and comprises one or more first solid state contactless connectivity transmitters 324 at a predetermined relatively stationary position proximate an outside diameter of rotatable shaft 320 .
  • First solid state contactless connectivity transmitter 314 and first solid state contactless connectivity receiver 324 are used to transmit a signal such as a data signal between the non-contact sensor and rotatable ring using a point-to-point connection at the extremely high data transfer rate, e.g. around 5 GBits per second, without first solid state contactless connectivity transmitter 314 having to physically contact first solid state contactless connectivity receiver 324 .
  • Transmission of the signal may comprise using an industry standard data exchange protocol.
  • first solid state contactless connectivity transmitter 314 and first solid state contactless connectivity receiver 324 connect and disconnect automatically when they are in close proximity to one another.

Abstract

A pinless connector for subsea data communications comprises contactless connectivity data transmitter coupler, comprising one or more first solid state contactless connectivity data transmitters, and contactless connectivity data receiver coupler, comprising one or more first solid state contactless connectivity data receivers, which can allow for rapid collection and/or download data from subsea vehicles or sensors without having to plug in an external connector or physically remove the data recorder from the unit. Typically, these are operative at a low power level, e.g. less than or around 50 milliwatts, at an extremely high data transfer rate or around 5 GBits/second. The connectors may be incorporated into a subsea system comprising two subsea devices. A slip ring system may similarly comprise one or more first solid state contactless connectivity data transmitters and one or more first solid state contactless connectivity data receivers.

Description

    RELATIONSHIP TO PRIOR APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application 62/266,267 filed on Dec. 11, 2016.
  • BACKGROUND
  • Underwater vehicles can collect large amounts of data during the time they are deployed. Download this data typically requires plugging in an external connector or the data recorder has to be removed and the data downloaded elsewhere. Either approach can take a long time and negatively impacts the available operational time. Further, wet mate underwater connectors are expensive and prone to failure.
  • Moreover, underwater sensors that are not connected to a surface recorder or collector need to have their data downloaded. A remotely operated vehicle (ROV) or autonomously operated vehicle (AUV) can be used, but depending on the volume of data to be downloaded, it may take an inordinate amount of time. While a ROV is not powered limited, the AUV is battery powered and spending a long period of time downloading data has an impact on its operational time.
  • FIGURES
  • The various drawings supplied herein describe and are representative of exemplary embodiments of the invention and are described as follows:
  • FIG. 1 is a block diagram of an exemplary connector;
  • FIG. 2 is a block diagram of an exemplary system;
  • FIG. 3 is a block diagram of a first exemplary slip ring system; and
  • FIG. 4 is a block diagram of a second exemplary slip ring system.
  • BRIEF DESCRIPTION OF EMBODIMENTS
  • Referring now to FIG. 1, in a first embodiment pinless connector 1 for subsea data communications comprises contactless connectivity data transmitter coupler 10 and contactless connectivity data receiver coupler 20 which can allow for rapid collection and/or download data from subsea vehicles or sensors without having to plug in an external connector or physically remove the data recorder from the unit.
  • Contactless connectivity data transmitter coupler 10 typically comprises first environmentally sealed housing 11 which has no exposed metal. First solid state contactless connectivity data transmitter 14, which may be a transceiver, is typically at least partially disposed within first environmentally sealed housing 11. Typically, first solid state contactless connectivity data transmitter 14 is configured to be operative at a low power level, e.g. less than or around 50 milliwatts, at an extremely high data transfer rate.
  • Contactless connectivity data receiver coupler 20 typically comprises second environmentally sealed housing 21 which has no exposed metal. First solid state contactless connectivity data receiver 24, which may be a transceiver, is disposed at least partially within second environmentally sealed housing 21 and is typically configured to be operative at the low power level and at the extremely high data transfer rate when the first solid state contactless connectivity data transmitter is disposed proximate the first housing, typically at a distance of no more than around 1 meter from the first solid state contactless connectivity data transmitter. Typically, however, first environmentally sealed housing 11 and second environmentally sealed housing 21 are in contact, although first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 need not be.
  • First environmentally sealed housing 11 and second environmentally sealed housing 21 are configured for use subsea, which can include being configured for use at depths of up to around 12000 feet or at full ocean depth, and each typically comprises a material suitable for use subsea, e.g. first environmentally sealed housing 11 comprises a first material and second environmentally sealed housing 21 comprises a second material which may be the same as the first material. The first and second materials suitable for use subsea may comprise a plastic, rubber, ceramic, glass, or the like, or a combination thereof.
  • In certain embodiments, first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 are adapted to exchange data using a point to point data communications pathway. Keyssa, Inc. of Campbell, Caifornia makes exemplary solid state contactless connectivity data transmitters and solid state contactless connectivity data receivers. In most configurations, first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 are adapted to exchange data without requiring critical alignment of first solid state contactless connectivity data transmitter 14 with the first solid state contactless connectivity data receiver 24.
  • As used herein, the extremely high data transfer rate may be around 5 Gbits/second.
  • In certain embodiments, first environmentally sealed housing 11 and second environmentally sealed housing 21 are configured to mate cooperatively but do not have mate at all, i.e., in various embodiments first solid state contactless connectivity data transmitter 14 and first solid state contactless connectivity data receiver 24 are operative to transfer data without being in physical contact with each other. However, in other contemplated embodiments first environmentally sealed housing 11 and second environmentally sealed housing 21 are configured to allow the first solid state contactless connectivity data transmitter 14 and the first solid state contactless connectivity data receiver 24 to come into physical contact with each other.
  • Referring additionally to FIG. 2, in certain embodiments, first solid state contactless connectivity data transmitter 14 may comprise a plurality of first solid state contactless connectivity data transmitters 14 a,14 b and/or first solid state contactless connectivity receiver 24 may comprise a plurality of first solid state contactless connectivity receivers 24 a,24 b. Typically, the plurality of first solid state contactless connectivity receivers 24 a,24 b are operatively coupled to corresponding first solid state contactless connectivity data transmitters 14 a,14 b of the plurality of first solid state contactless connectivity data transmitters and do not required critical alignment between the plurality of first solid state contactless connectivity data transmitters 14 a,14 b and the first solid state contactless connectivity receivers 24 a,24 b. Use of a plurality of first solid state contactless connectivity data transmitters 14 a,14 b and a plurality of first solid state contactless connectivity receivers 24 a,24 b can allow data to be downloaded quicker by using multiple transmit/receive devices at the same time, either independently or cooperatively.
  • Referring still to FIG. 2, in a further embodiment a subsea system comprises first subsea device 100 and second subsea device 200. These devices can include structures such as blowout preventers, manifolds, Christmas trees, remotely operated vehicles, autonomously operated vehicles, or the like, or a combination thereof. Current subsea connectors are expensive due to the high tolerance required to ensure a watertight seal and are also the primary source of equipment failure due to water intrusion, misalignment, and the like.
  • First subsea device 100 comprises one or more first data collectors 12 and contactless connectivity data transmitter coupler 10, which is as described above.
  • Second subsea device 200 comprises contactless connectivity data receiver coupler 20 which is as described above and which may be operatively in communication with second data collector 22. As used herein, a data collector may comprise a sensor, a data logger, other electrical and/or optic devices, or the like, or a combination thereof.
  • In certain embodiments, first electromagnetic inductive signal transmitter 15, which may be a resonant electromagnetic inductive signal transmitter, may be disposed at least partially within contactless connectivity data transmitter coupler 10 and a complimentary first electromagnetic inductive signal receiver 25, which may be a resonant electromagnetic inductive signal receiver, may be disposed at least partially within contactless connectivity data receiver coupler 20. First electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 are typically operative to unidirectionally or bidirectionally transmit a signal such as a power signal when contactless connectivity data transmitter coupler 10 is disposed proximate contactless connectivity data receiver coupler 20. It will be understood by one or ordinary skill in electromechanical arts that bidirectional transmission requires first electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 to effectively be electromagnetic inductive signal transceivers.
  • Referring still to FIG. 2, current subsea fiber optic connectors are very expensive due to the high tolerance required to ensure alignment of the fibers. Alignment of fibers is critical and any misalignment can cause failure or significantly lower the operating capacity of the connector. These connectors have a limited number of mate and de-mate cycles. In addition, current cables used in subsea applications can be molded or pressure balanced oil filled (PBOF). Making each cable can be time consuming and expensive to ensure there is no water intrusion when submerged. Cables can deteriorate due to age, exceeding the bend radius, etc. causing equipment failures and requiring replacement which can be costly.
  • In a further embodiment, in addition to first subsea device 100 and second subsea device 200, which are as described above, the subsea system may comprise one or more physical data pathways 30 which are operatively disposed intermediate first solid state data transmitter 14 and first solid state data receiver 24 where the one or more physical data pathways 30 are configured to provide a data communication path between first solid state data transmitter 14 and first solid state contactless connectivity receiver 24 at the extremely high data rate at a distance of no more than around one meter subsea.
  • Each physical data pathway 30 may comprise a subsea fiber optic pathway, a subsea copper pathway, a plastic cable configured to act as a wave guide for a high frequency radio frequency signal, or the like, or a combination thereof. Typically, cable 30, including plastic cable 30, acts as a wave guide for the high frequency RF signals being transmitted and may only need to be jacketed to prevent the RF signal from leaking off or being interfered with by the environment.
  • If plastic cable 30 is used to transmit data signals, plastic cable 30 may be used with one or more plastic connectors to provide a low cost method for providing high speed data transmission from point to point. Plastic cable 30 may also be used to replace the fiber optic cable used in umbilicals/tethers on subsea vehicles. If a plastic cable is used, it typically comprises a jacket configured to prevent a radio frequency data signal from leaking off or being interfered with by the subsea environment.
  • In embodiments, physical data pathway 30 is configured to provide a data communication path between first solid state data transmitter 14 a,14 b and first solid state contactless connectivity receiver 24 a,24 b without requiring physical contact between physical data pathway 30 and at least one of first solid state data transmitter 14 a,14 b and first solid state contactless connectivity receiver 24 a,24 b. It is understood that first solid state data transmitter 14 a,14 b may be one or more first solid state data transmitters 14 and first solid state contactless connectivity receiver 24 a,24 b may be one or more first solid state contactless connectivity receivers 24 as described herein.
  • In embodiments, fiber optic connectors may be replaced with similar connectors having the same advantages as copper based signal connector. These can further operate to eliminate fiber optic connections and loss issues. Additionally, 100% plastic wet cabling and connectors may be for communications, e.g. plastic core cable used as waveguide to carry signal. Use of this technology and the connectors can allow use of extremely fast data ports and provide for rapid downloading of data to or from AUVs and remote sensors.
  • Referring now to FIGS. 3 and 4, in a further embodiment slip ring system 300 comprises one or more first solid state contactless connectivity transmitters 214 mounted to or on one or more rotatable rings 322 and one or more non-contact stationary sensors, e.g. first solid state contactless connectivity receivers 324. Slip rings, which are widely used in numerous applications winches, cable reels, alternators, and the like, are an electromechanical device that allows the transmission of power and electrical signals from a stationary structure to which a stationary non-contact sensor may be fixed, to a rotating structure. A slip ring typically consists of a stationary contact point that rubs against the outside diameter of a rotating metal ring. Also known as rotary joints, slip rings are used in any electromechanical system that needs to rotate while transmitting power or signals.
  • In embodiments fiber-optic slip rings may be replaced with slip ring 300 which can provide a non-contact method to transmit data between stationary part 310 and moving part 320. By not having to use any direct contact method there are no parts to wear out which will greatly improve the reliability and overall performance of the slip ring.
  • Typically, slip ring 322 is fabricated without any contact parts to fail or wear out as well as the ability to rapidly transfer gigabyte amounts of data from an AUV or remote sensor in just seconds.
  • Each rotatable ring 320 typically comprises one or more sensor triggers and first solid state contactless connectivity transmitters 324, which can be transceivers, operatively coupled to one or more sensor triggers and configured to be operative at an extremely high data transfer rate.
  • Each non-contact stationary sensor can comprise one or more first solid state contactless connectivity receivers 324 which are typically responsive to one or more sensor triggers 312 and disposed at a predetermined position proximate an outside diameter of rotatable ring 320. A non-contact stationary sensor comprises one or more first solid state contactless connectivity receivers 324 configured to exchange data, either uni- or bidirectionally, with one or more first solid state contactless connectivity transmitters 314 at a low power level, typically less than or around 50 milliwatts, at the extremely high data transfer rate when disposed proximate to first solid state contactless connectivity transmitter 314 without the first solid state contactless connectivity transmitter having to physically contact the first solid state contactless connectivity receiver. As illustrated in FIG. 4, a plurality of first solid state contactless connectivity transmitters 314 may be disposed about shaft 320 and associated with one or more stationary mounted first solid state contactless connectivity receivers 324.
  • In the operation of exemplary embodiments, referring generally to FIG. 2, data may be obtained from one or more subsea data collector by disposing first subsea device 100 and second subsea device 200 subsea, where each is as described above. First subsea device 100 and second subsea device 200 are maneuvered into a position closely proximate each other subsea and contactless connectivity data transmitter coupler 10 positioned proximate contactless connectivity data receiver coupler 20 at a separation distance of not more than around one meter subsea. When positioned, first environmentally sealed housing 11 may be selectively and cooperatively mated with second environmentally sealed housing 21, but need not be. Typically, data may be exchanged between first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 24 without requiring physical contact between first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 24. However, in contemplated embodiments first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 24 may be placed into physical contact.
  • Once positioned, first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 14 are used to communicate data at the extremely high data transfer rate, such as by using a point to point data communication pathway which can include a physical pathway such as physical data pathway 30.
  • As described above, first solid state contactless connectivity data transmitter 14 may comprise a plurality of first solid state contactless connectivity data transmitters 14 a,14 b (FIG. 2) and first solid state contactless connectivity receiver may comprise a plurality of solid state contactless connectivity receivers 24 a,24 b (FIG. 2). In these embodiments, once positioned the plurality of solid state contactless connectivity receivers 24 a,24 b may be operatively coupled to corresponding ones of the plurality of first solid state contactless connectivity data transmitters 14 a,14 b. The plurality of first solid state contactless connectivity data transmitters 14 a,14 b and the plurality of first solid state contactless connectivity receivers 24 a,24 b may be used to unidirectionally or bidirectionally exchange data, whether synchronously or concurrently or independently, without a need for critically aligning the plurality of first solid state contactless connectivity data transmitters 14 a,14 b and the plurality of first solid state contactless connectivity receivers 24 a,24 b. Data communication may comprise using an industry standard data exchange protocol such as at an extremely high frequency data rate of around 5 Gbits/second.
  • In certain embodiments, first solid state contactless connectivity transmitter 14 and first solid state contactless connectivity receiver 34 are configured to connect automatically when they are in close proximity to one another and to and disconnect when the separation distance exceeds a maximum separation distance, e.g. more than around one meter.
  • Where first electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25 are present, a signal such as a power signal may be exchanged between first electromagnetic inductive signal transmitter 15 and first electromagnetic inductive signal receiver 25, either uni- or bi-directionally, when contactless connectivity data transmitter coupler 10 is disposed proximate contactless connectivity data receiver coupler 20 at a separation distance of not more than around one meter subsea.
  • Referring to FIGS. 3 and 4, a signal may be transmitted from a relatively stationary device, e.g. housing 310, to a rotating ring such as slip ring 320, by disposing a rotatable ring, e.g. one or more first solid state contactless connectivity transmitters 314, on rotatable member 320 such that rotation of rotatable member 320 creates a corresponding rotation of first solid state contactless connectivity transmitters 324 operatively coupled to one or more sensor triggers 312 and operative at an extremely high data transfer rate. Sensor trigger 312 is as described herein and comprises one or more first solid state contactless connectivity transmitters 324 at a predetermined relatively stationary position proximate an outside diameter of rotatable shaft 320. First solid state contactless connectivity transmitter 314 and first solid state contactless connectivity receiver 324 are used to transmit a signal such as a data signal between the non-contact sensor and rotatable ring using a point-to-point connection at the extremely high data transfer rate, e.g. around 5 GBits per second, without first solid state contactless connectivity transmitter 314 having to physically contact first solid state contactless connectivity receiver 324. Transmission of the signal may comprise using an industry standard data exchange protocol.
  • In embodiments, first solid state contactless connectivity transmitter 314 and first solid state contactless connectivity receiver 324 connect and disconnect automatically when they are in close proximity to one another.
  • It will be understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated above in order to explain the nature of this invention may be made by those skilled in the art without departing from the principle and scope of the invention as recited in the appended claims.

Claims (12)

What is claimed is:
1. A slip ring system, comprising:
a. a rotatable ring comprising:
i. a sensor trigger; and
ii. a first solid state contactless connectivity transmitter operatively coupled to the sensor trigger and configured to be operative at an extremely high data transfer rate; and
b. a non-contact stationary sensor responsive to the sensor trigger and disposed at a predetermined position proximate an outside diameter of the rotatable ring, the non-contact stationary sensor comprising a first solid state contactless connectivity receiver configured to exchange data with the first solid state contactless connectivity transmitter at a low power level at the extremely high data transfer rate when disposed proximate to the first solid state contactless connectivity transmitter.
2. The slip ring system if claim 1, wherein the rotatable ring comprises a plurality of rotatable rings, each rotatable ring comprising:
i. a sensor trigger; and
ii. a first solid state contactless connectivity transmitter operatively coupled to the sensor trigger and configured to be operative at an extremely high data transfer rate.
3. The slip ring system if claim 1, wherein the non-contact stationary sensor comprises a plurality of non-contact stationary sensors.
4. The slip ring system of claim 1, wherein:
a. the first solid state contactless connectivity transmitter comprises a first solid state contactless connectivity transceiver; and
b. the first solid state contactless connectivity receiver comprises a second solid state contactless connectivity transceiver.
5. The slip ring system of claim 1, wherein the lower power level is less than or around 50 milliwatts.
6. The slip ring system of claim 1, wherein data are transmitted without the first solid state contactless connectivity transmitter having to physically contact the first solid state contactless connectivity receiver.
7. A method of transmitting a signal from a relatively stationary device to a rotating ring, comprising:
a. disposing a rotatable ring on a rotatable member of a relatively stationary device such that rotation of the rotatable member creates a corresponding rotation of the rotatable ring, the rotatable ring comprising a first solid state contactless connectivity transmitter operatively coupled to a sensor trigger and operative at an extremely high data transfer rate;
b. disposing a non-contact sensor at a predetermined relatively stationary position proximate an outside diameter of the rotatable member, the non-contact sensor comprising a first solid state contactless connectivity receiver configured to exchange data with the first solid state contactless connectivity transmitter at a low power level at the extremely high data transfer rate when disposed proximate to the first solid state contactless connectivity transmitter; and
c. using the first solid state contactless connectivity transmitter and the first solid state contactless connectivity receiver to transmit a signal from the sensor trigger between the non-contact sensor and rotatable ring using a point-to-point connection at the extremely high data transfer rate without the first solid state contactless connectivity transmitter having to physically contact the first solid state contactless connectivity receiver.
8. The method of method of transmitting a signal from a relatively stationary device to a rotating ring of claim 7, further comprising fixing the stationary non-contact sensor to a structure.
9. The method of method of transmitting a signal from a relatively stationary device to a rotating ring of claim 7, wherein transmission of the signal from the sensor trigger between the non-contact sensor and rotatable ring comprises an industry standard data exchange protocol.
10. The method of method of transmitting a signal from a relatively stationary device to a rotating ring of claim 7, wherein the extremely high data transfer rate is around 5 GBits per second.
11. The method of method of transmitting a signal from a relatively stationary device to a rotating ring of claim 7, wherein the first solid state contactless connectivity transmitter and the first solid state contactless connectivity receiver connect and disconnect automatically when they are in close proximity to one another.
12. The method of method of transmitting a signal from a relatively stationary device to a rotating ring of claim 7, wherein the low power level is less than or around 50 milliwatts.
US15/375,260 2015-12-11 2016-12-12 Slip Ring With High Data Rate Sensors Abandoned US20170170879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/375,260 US20170170879A1 (en) 2015-12-11 2016-12-12 Slip Ring With High Data Rate Sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562266267P 2015-12-11 2015-12-11
US15/375,260 US20170170879A1 (en) 2015-12-11 2016-12-12 Slip Ring With High Data Rate Sensors

Publications (1)

Publication Number Publication Date
US20170170879A1 true US20170170879A1 (en) 2017-06-15

Family

ID=59014370

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/375,260 Abandoned US20170170879A1 (en) 2015-12-11 2016-12-12 Slip Ring With High Data Rate Sensors
US15/375,250 Active 2036-12-15 US10128909B2 (en) 2015-12-11 2016-12-12 Subsea contactless connector system and method with extremely high data transfer rate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/375,250 Active 2036-12-15 US10128909B2 (en) 2015-12-11 2016-12-12 Subsea contactless connector system and method with extremely high data transfer rate

Country Status (3)

Country Link
US (2) US20170170879A1 (en)
EP (2) EP3391395A4 (en)
WO (2) WO2017100735A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170876A1 (en) * 2015-12-11 2017-06-15 Oceaneering International, Inc. Extremely high speed data transfer and communications
US20210211014A1 (en) * 2020-01-06 2021-07-08 Kiryl Nikolaevich CHYKEYUK Rotary connector module for device forming quasi three-dimentional image
WO2021139867A1 (en) * 2020-01-06 2021-07-15 ЧИКЕЮК, Кирилл Rotary connector module for a display device
US11143823B2 (en) * 2020-01-14 2021-10-12 Princetel, Inc. Fiber optic slip ring with through bore
US20220140653A1 (en) * 2019-01-31 2022-05-05 Mobile Tech, Inc. Methods and Apparatuses for Wireless and Non-Conductive Power and Data Transfers with Electronic Devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108514186B (en) 2018-05-09 2020-08-11 温州中熙进出口有限公司 Production method of antibacterial damping shoes
CN110719138B (en) * 2018-07-13 2022-04-01 中兴通讯股份有限公司 Transmission rate determining method, device, transmission equipment and storage medium
US11391096B2 (en) 2019-12-20 2022-07-19 Halliburton Energy Services, Inc. Inductive coupling for electric power transfer to electric submersible motor
US20210241972A1 (en) * 2020-01-30 2021-08-05 Intuitive Surgical Operations, Inc. Configurations for shielding electric field emissions from a transmitter coil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050754A1 (en) * 2000-10-27 2002-05-02 Ntn Corporation Bearing with noncontact signal transfer mechanism
US20020132589A1 (en) * 2001-03-16 2002-09-19 Tamagawa Seiki Kabushiki Kaisha Rotary non-contact connector and non-rotary non-contact connector

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3538035A1 (en) * 1985-10-25 1987-04-30 Siemens Ag ROTATING DATA TRANSFER DEVICE
US5577026A (en) * 1993-12-28 1996-11-19 Analogic Corporation Apparatus for transferring data to and from a moving device
US5794701A (en) * 1996-06-12 1998-08-18 Oceaneering International, Inc. Subsea connection
US5676576A (en) * 1996-08-22 1997-10-14 The United States Of America As Represented By The Secretary Of The Navy Submarine deployed sea-state sensor
US6803681B2 (en) * 1998-02-26 2004-10-12 Anorad Corporation Path module for a linear motor, modular linear motor system and method to control same
US6327327B1 (en) * 1999-09-27 2001-12-04 Picker International, Inc. Multi-channel segmented slip ring
US7103344B2 (en) * 2000-06-08 2006-09-05 Menard Raymond J Device with passive receiver
DE10122185A1 (en) * 2001-05-08 2002-11-14 Gutehoffnungshuette Radsatz Loose wheel assembly for rail vehicles has support element to accommodate stationary components of three functional units, while wheel provides mountings for associated rotating components
US7256505B2 (en) * 2003-03-05 2007-08-14 Microstrain, Inc. Shaft mounted energy harvesting for wireless sensor operation and data transmission
US6871840B2 (en) * 2002-10-03 2005-03-29 Oceaneering International, Inc. System and method for motion compensation utilizing an underwater sensor
US6934167B2 (en) * 2003-05-01 2005-08-23 Delta Electronics, Inc. Contactless electrical energy transmission system having a primary side current feedback control and soft-switched secondary side rectifier
US8284075B2 (en) * 2003-06-13 2012-10-09 Baker Hughes Incorporated Apparatus and methods for self-powered communication and sensor network
GB0428046D0 (en) * 2004-12-22 2005-01-26 Artimi Ltd Contactless connector systems
WO2006093834A1 (en) * 2005-02-28 2006-09-08 Teledyne Rd Instruments, Inc. System and method for underwater data communication
CN101516265A (en) * 2005-10-04 2009-08-26 成象诊断系统公司 Laser imaging apparatus with variable power, orbit time and beam diameter
US8953944B2 (en) * 2011-01-05 2015-02-10 Woods Hole Oceanographic Institution Systems and methods for establishing an underwater optical communication network
JP4404057B2 (en) * 2006-02-10 2010-01-27 ソニー株式会社 Non-contact switch and recording medium and operation member using the same
WO2007099300A1 (en) * 2006-02-28 2007-09-07 Wireless Fibre Systems Ltd Underwater electrically insulated connection
GB0615435D0 (en) * 2006-08-03 2006-09-13 Wireless Fibre Systems Ltd Underwater communications
US8062919B2 (en) * 2006-08-11 2011-11-22 Cornell Research Foundation, Inc. Monolithic silicon-based photonic receiver
DE102006044660B3 (en) * 2006-09-21 2008-04-30 Siemens Ag Method and device for transmitting a large number of parallel data between relatively moving units
US7633048B2 (en) * 2007-04-19 2009-12-15 Simon John Doran Fast laser scanning optical CT apparatus
US8260019B2 (en) * 2007-08-17 2012-09-04 General Electric Company Methods and apparatus for data communication across a slip ring
US8102276B2 (en) * 2007-08-31 2012-01-24 Pathfinder Energy Sevices, Inc. Non-contact capacitive datalink for a downhole assembly
US9960820B2 (en) * 2008-12-23 2018-05-01 Keyssa, Inc. Contactless data transfer systems and methods
GB0823436D0 (en) * 2008-12-23 2009-01-28 Rhodes Mark Inductively coupled memory transfer system
US20100224356A1 (en) * 2009-03-06 2010-09-09 Smith International, Inc. Apparatus for electrical power and/or data transfer between rotating components in a drill string
US20100314106A1 (en) * 2009-05-11 2010-12-16 Paulo Tubel Low cost rigless intervention and production system
US20110076940A1 (en) * 2009-09-25 2011-03-31 Mark Rhodes Underwater wireless communications hotspot
CA2717533C (en) * 2009-10-13 2019-02-26 Cynetic Designs Ltd. Soldier system wireless power and data transmission
US8406537B2 (en) * 2009-12-17 2013-03-26 General Electric Company Computed tomography system with data compression and transfer
US20110287712A1 (en) * 2010-05-18 2011-11-24 Gareth Conway System for wireless communications through sea vessel hull
US8725330B2 (en) * 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
EP2580944A1 (en) * 2010-06-09 2013-04-17 Energy Focus Inc. Light-powered transmitter assembly
US8482250B2 (en) * 2010-08-06 2013-07-09 Cynetic Designs Ltd. Inductive transmission of power and data through ceramic armor panels
GB2483374A (en) * 2010-09-03 2012-03-07 Wfs Technologies Ltd Transferring power between a fixed unit and a rotating unit using a rotary transformer, and also transferring data
US8946941B2 (en) * 2010-09-14 2015-02-03 Monterey Bay Aquarium Research Institute Wireless power and data transfer device for harsh and extreme environments
US20120105246A1 (en) * 2010-10-29 2012-05-03 General Electric Company Contactless underwater communication device
JP6074368B2 (en) * 2011-02-21 2017-02-01 ワイサブ アーエス Underwater connector device
EP2581994B1 (en) * 2011-10-13 2014-03-05 Tyco Electronics Nederland B.V. Contactless plug connector and contactless plug connector system
US9437967B2 (en) * 2011-12-30 2016-09-06 Bedrock Automation Platforms, Inc. Electromagnetic connector for an industrial control system
EP2828993B1 (en) * 2012-03-22 2020-05-06 Keyssa, Inc. Contactless data transfer systems and methods
US20140170982A1 (en) * 2012-12-14 2014-06-19 Waveconnex, Inc. Contactless digital rights management data transfer systems and methods
US9281906B2 (en) * 2012-12-31 2016-03-08 Hydril USA Distribution LLC Subsea power and data communication apparatus and related methods
US20140218242A1 (en) * 2013-02-01 2014-08-07 NanoSatisfi Inc. Computerized nano-satellite platform for large ocean vessel tracking
US9490911B2 (en) * 2013-03-15 2016-11-08 Fairfield Industries Incorporated High-bandwidth underwater data communication system
US9301258B2 (en) * 2013-04-10 2016-03-29 Cgg Services Sa Geophysical data acquisition and power transfer method apparatus and system
US9753174B2 (en) * 2013-09-25 2017-09-05 Cgg Services Sas Geophysical survey node rolling method and system
US9304657B2 (en) * 2013-12-31 2016-04-05 Abbyy Development Llc Audio tagging
EP3092733A4 (en) * 2014-01-07 2017-06-28 Oceaneering International Inc. Data transmission and control over power conductors
US9869998B2 (en) * 2014-01-09 2018-01-16 Oceaneering International, Inc. Wireless data communications between a remotely operated vehicle and a remote location
US20150296553A1 (en) * 2014-04-11 2015-10-15 Thalmic Labs Inc. Systems, devices, and methods that establish proximity-based wireless connections
US9595833B2 (en) * 2014-07-24 2017-03-14 Seabed Geosolutions B.V. Inductive power for seismic sensor node
US9794737B2 (en) * 2014-09-08 2017-10-17 The United States Of America, As Represented By The Secretary Of The Army Underwater signal conversion
GB201515492D0 (en) * 2015-07-29 2015-10-14 Rolls Royce Apparatus and methods of controlling transmission of data
WO2017100735A1 (en) * 2015-12-11 2017-06-15 Oceaneering International, Inc. Extremely high speed data transfer and communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050754A1 (en) * 2000-10-27 2002-05-02 Ntn Corporation Bearing with noncontact signal transfer mechanism
US20020132589A1 (en) * 2001-03-16 2002-09-19 Tamagawa Seiki Kabushiki Kaisha Rotary non-contact connector and non-rotary non-contact connector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170170876A1 (en) * 2015-12-11 2017-06-15 Oceaneering International, Inc. Extremely high speed data transfer and communications
US10128909B2 (en) * 2015-12-11 2018-11-13 Oceaneering International, Inc. Subsea contactless connector system and method with extremely high data transfer rate
US20220140653A1 (en) * 2019-01-31 2022-05-05 Mobile Tech, Inc. Methods and Apparatuses for Wireless and Non-Conductive Power and Data Transfers with Electronic Devices
US11695450B2 (en) * 2019-01-31 2023-07-04 Mobile Tech, Inc. Methods and apparatuses for wireless and non-conductive power and data transfers with electronic devices
US20210211014A1 (en) * 2020-01-06 2021-07-08 Kiryl Nikolaevich CHYKEYUK Rotary connector module for device forming quasi three-dimentional image
WO2021139867A1 (en) * 2020-01-06 2021-07-15 ЧИКЕЮК, Кирилл Rotary connector module for a display device
US11770045B2 (en) * 2020-01-06 2023-09-26 Kiryl Nikolaevich CHYKEYUK Rotary connector module for device forming quasi three-dimentional image
US11143823B2 (en) * 2020-01-14 2021-10-12 Princetel, Inc. Fiber optic slip ring with through bore

Also Published As

Publication number Publication date
EP3387218A4 (en) 2019-07-17
US20170170876A1 (en) 2017-06-15
US10128909B2 (en) 2018-11-13
EP3387218A1 (en) 2018-10-17
WO2017100736A1 (en) 2017-06-15
WO2017100735A1 (en) 2017-06-15
EP3391395A4 (en) 2019-06-19
EP3391395A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
US10128909B2 (en) Subsea contactless connector system and method with extremely high data transfer rate
US9490521B2 (en) Underwater connector arrangement
US8049506B2 (en) Wired pipe with wireless joint transceiver
US8581741B2 (en) Communication system for a hydrocarbon extraction plant
US9820017B2 (en) Subsea connector with data collection and communication system and method
BR102017012763A2 (en) LONG DISTANCE SUBMARINE CAN BUS DISTRIBUTION SYSTEM
TWI821652B (en) System and method for transmitting free space optical signals and high bandwidth underwater electrical connector
JP2017535019A5 (en)
US20110304218A1 (en) Signal coupling system
NO20110859A1 (en) Contactless power transmission system
CA2909934C (en) Connecting fiber optic cables
EP3510615B1 (en) Wireless electrical feedthrough wetmate connector
GB2579737A (en) Offshore downhole telemetry using sea floor cable
CN106936477A (en) A kind of magnetic coupling connector
KR20160107977A (en) Apparatus for sending sensing data of a sensor buried underground, system having the same
CA3031635C (en) Optical wireless rotary joint
Thomas et al. Extending the reach of cabled ocean observatories

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION