US20160314242A1 - Sample indexing methods and compositions for sequencing applications - Google Patents

Sample indexing methods and compositions for sequencing applications Download PDF

Info

Publication number
US20160314242A1
US20160314242A1 US15/135,858 US201615135858A US2016314242A1 US 20160314242 A1 US20160314242 A1 US 20160314242A1 US 201615135858 A US201615135858 A US 201615135858A US 2016314242 A1 US2016314242 A1 US 2016314242A1
Authority
US
United States
Prior art keywords
sample index
oligonucleotides
sample
sets
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/135,858
Inventor
Michael Schnall-Levin
Lawrence Greenfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
10X Genomics Inc
Original Assignee
10X Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 10X Genomics Inc filed Critical 10X Genomics Inc
Priority to US15/135,858 priority Critical patent/US20160314242A1/en
Assigned to 10X GENOMICS, INC. reassignment 10X GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREENFIELD, LAWRENCE, SCHNALL-LEVIN, MICHAEL
Publication of US20160314242A1 publication Critical patent/US20160314242A1/en
Priority to US17/002,641 priority patent/US20210217489A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G06F19/22
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation

Definitions

  • Nucleic acid sequencing has made unprecedented advancements over the past decade, bringing high throughput, relatively low cost DNA sequence information to researchers, diagnosticians and health care professionals. Despite increased throughput of modern sequencing technology, there are always challenges in further multiplexing the analytical process, in order to be able to analyze more sequences and more samples.
  • fragments of an overall sample nucleic acid are sequenced and re-assembled to provide the sequence of the original sample nucleic acid.
  • the fragments from each different sample are provided with a unique oligonucleotide sequence appended to one end of the sequence, which identifies the sample of origin from the sequences obtained from the pooled samples. This unique sequence is read during the sequencing process, providing an index for a given read that attributes that read to a given starting sample.
  • this limitation does put significant constraints on the use of any common sequence elements in significant portions of the disparate sequences being analyzed, such as primer sequences, index sequences and the like.
  • this limitation does significantly impact the selection of sample index sequences that one may use in performing multiplexed sample sequencing, by requiring that a given sample include multiple sample indices that are selected so that there are reduced overlapping sequence elements. This has the effect of providing limits on the sample multiplex level for a sequencing reaction.
  • Described herein are processes, compositions and systems for use in multiplexed sequence analysis of diverse sets of sample nucleic acids.
  • provided herein are universal sample index sets and libraries that provide sequence diversity as between index sequences in a given set and as between different sets of index sequences, allowing a greater ability to multiplex sequence analysis.
  • the present disclosure provides a universal sample index library that includes a plurality of sets of sample index oligonucleotides, where each of the plurality of sets of sample index oligonucleotides includes a plurality of individual sample index oligonucleotide sequences.
  • the sample index oligonucleotides in each of the plurality of sets of sample index oligonucleotides are different from sample index oligonucleotides in each other set of sample index oligonucleotides.
  • each sample index oligonucleotide sequence within a set of sample index oligonucleotides includes a different nucleotide sequence from each other sample index oligonucleotide in the same set of sample index oligonucleotides.
  • the present disclosure provides a method of sample indexing oligonucleotides for nucleic acid sequencing that includes the steps of (i) providing a plurality of sequencing libraries of oligonucleotides, each of the plurality of sequencing libraries being prepared from a different sample and (ii) attaching sets of sample index oligonucleotides to each of the plurality of sequencing libraries of oligonucleotides.
  • sample index oligonucleotides in each of the plurality of sets of sample index oligonucleotides are different from sample index oligonucleotides in each other set of sample index oligonucleotides; and each sample index oligonucleotide sequence within a set of sample index oligonucleotides comprises a different nucleotide sequence from each other sample index oligonucleotide in the set of sample index oligonucleotides.
  • the sequencing libraries of oligonucleotides are pooled together and subjected to a sequencing process.
  • each set of sample index oligonucleotides includes at least three, four, five, six, seven, eight, nine, or ten different sample index oligonucleotides.
  • the plurality of sets of sample index oligonucleotides comprises at least about 10 sets, 20 sets, 50 sets, or 100 sets.
  • each of the plurality of sets of sample index oligonucleotides has complete diversity from other sets of the plurality.
  • each sample index oligonucleotide within a set of sample index oligonucleotides comprises a different nucleotide at each sequence position from each other sample index oligonucleotide in the set of sample index oligonucleotides.
  • each sample index oligonucleotide within a set of sample index oligonucleotides does not share a common 4-mer sequence with any other sample index oligonucleotide within that same set of sample index oligonucleotides.
  • the sample index oligonucleotides within a set have less than 80% common bases at common sequence positions with other sample index oligonucleotides within the same set.
  • sample index oligonucleotides are from about 4 to about 10 bases in length.
  • the sample index library further includes adapter sequences containing additional sequence elements.
  • the sample index oligonucleotides are integrated into the adapter sequences.
  • sample indexing compositions, methods and systems that alleviate the informatics problems associated with current indexing systems.
  • the presence of excessive amounts of common sequences in certain next generation sequencer runs can lead to a failure of the data processing systems, and particularly to the base calling software. This is particularly problematic where common sequences are introduced into significant portions of the sequences in a given sequencing run.
  • sample index sequences where a common sample index is typically tagged with a single short, common, sequence tag of from about 4 to about 10 nucleotides in length, and typically from 6 to 8 nucleotides in length. Introduction of this common sequence across a large number of the sequence fragments being run in a given analysis run can lead to the failures described above.
  • each set is used to index a library of oligonucleotides for sequencing from a given individual sample.
  • each set is used to index a library of oligonucleotides for sequencing from a given individual sample.
  • each set is a plurality of different sample index oligonucleotides that differ from each other at every nucleotide within their sequence, or a significant portion of the nucleotides within the sequence. For example, assuming a first sample index set having a first 8-mer having the sequence:
  • the set may also include one or more of sample index sequences that vary at one or more positions. For example, as shown below, a set is illustrated which varies at each and every position:
  • sample index sequences will typically be from about 4 to about 10 bases in length, and preferably are from about 6 to about 8 bases in length, inclusive, though such index sequences can be varied in length outside of these ranges as desired, depending upon the number of different samples that are desired to be analyzed simultaneously, and the sequence read-length requirements of the given analysis.
  • longer index sequences may reduce the length of the sequence reads that may apply to the sample sequence portion of the analysis.
  • a given set of sample index sequences may include fewer than 4 sequences or may include additional index sequences that vary at each position or a sufficient number of positions.
  • index sequences in a given set there will be a common base at a common position no more than 70% of the time, no more than 60% of the time, no more than 50% of the time, no more than 40% of the time, no more than 30% of the time, no more than 20% of the time, no more than 10% of the time.
  • no sequence positions will share a common base.
  • the different indexes in the set may have overlap, or common bases at the same position at 6 bases or fewer, at 5 bases or fewer, at 4 bases or fewer, at 3 bases or fewer, at 2 bases or fewer, at 1 base or fewer, and in certain cases, will vary at each and every base.
  • index sequences of from about 6 to about 10 bases in length, this may result in sequences that do not have common bases in 2, 3, 4, 5, 6, and as the case may be, 7, 8, 9 or 10 common sequence locations within the index sequences in a set.
  • the index sequences in a given set will not share a common 4-mer sequence, i.e., in the same positions, will not share a common 3-mer sequence, or will not share a common 2-mer sequence of bases within the index sequences, while in other cases, such common n-mer sequences will be present in fewer than 20% of the index sequences in the set, fewer than 10% of the index sequences in the set or fewer than 5% of the index sequences in the set.
  • n-mer as used herein is meant a series of “n” contiguous bases within the index sequence.
  • the sequences will also vary such that all index sequences in a first set will be different from all index sequences in a second set.
  • the level of difference between sets will typically provide sample indices at different clusters that have common nucleotides at common positions less than 80% of the time, preferably, less than 70% of the time, less than 60% of the time, less than 50% of the time, less than 40% of the time, less than 30% of the time, less than 20% of the time, less than 10% of the time, and in some cases, will differ at each and every base in the index sequences present in the different sets.
  • the different sets of sample indices present in a sequencing run would typically have overlap, or common bases at the same position at 6 bases or fewer, at 5 bases or fewer, at 4 bases or fewer, at 3 bases or fewer, at 2 bases or fewer, at 1 base or fewer, and in certain cases, will vary at each and every base.
  • index sequences of from about 6 to about 10 bases in length, this may result in sequences that do not have common bases in 2, 3, 4, 5, 6, and as the case may be, 7, 8, 9 or 10 common sequence locations as between the index sequences in different sets.
  • sample index sequences By virtue of providing sequence variability within a given set of sample index sequences used for a given sample, one alleviates the need to mix and match sample index sequences to reduce data analysis problems.
  • a ready made, universal set of diverse sample index sequences is provided for use with each given sample, with diversity that is tailored for the analysis, including, e.g., complete diversity, i.e., variation at each base of the sample index sequences.
  • a given sample index set will preferably have 2, 3, 4 or more diverse index sequences included therein.
  • a given set or group of sets may be selected from a library of sets that may vary depending upon the given analysis, and as described above.
  • the number of sets in the library of sets of sample index sequences will typically include at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 2500, 3000 or more different sets of sample index sequences, and in many cases will be between the above described numbers of sets and up to 10,000 different sets or even more.
  • a given sample index set may be used in identifying a single discrete nucleic acid sample, e.g., from a single patient, a single tissue sample, a single cell, or the like.
  • Different samples would be identified using a discrete set of sample index sequences.
  • attribution of the sequence information obtained to the originating sample would be carried out by identifying the set from which the index sequence belongs.
  • identifying a single index sequence as being attributed to a given starting sample e.g., patient, tissue sample, cell, etc.
  • sample index sequences described herein are typically provided within the context of larger adapter sequences that include additional sequence elements that permit the appending of the adapter sequence to sequencing library elements, and that provide additional sequence elements necessary for the sequencing process, e.g., flow cell attachment sequences, sequencing primer sequences, and the like.
  • the index sequence will typically be positioned at a sequenced location, e.g., located downstream, or 5′, of the relevant sequencing primer sequence for a given sequence read, so that the index sequence will be included with the overall sequence data.
  • sample index sets described herein may be readily integrated into the adapter sequences used in a conventional sequencing library workflow.
  • these workflows typically provide fragments of nucleic acids from a given sample. These fragments are processed to append appropriate sequence segments on one or both ends of the sample nucleic acid fragments.
  • these sequence segments can include the sequencer functional elements, such as attachment sequences and sequencing primer recognition sequences (also referred to herein as primer sequences).
  • Sample index sequences are also typically appended to one or both ends of the nucleic acid fragments from a given sample. Upon sequencing, the sequence of the sample nucleic acid fragment is determined along with the sequence of the appended sample index sequence, which allows attribution of the sample nucleic acid sequence data back to the particular sample.
  • sample index sets may be integrated into the adapter sets used in the Illumina TruSeq® DNA Sample Preparation kits used in the Illumina sequencing processes, where dual index adapters are ligated to opposing ends of double stranded sample nucleic acid fragments.
  • sample index sequence sets may be integrated into other adapter sequences used in any other sample index workflow step for other sequencing library preparation processes where a greater diversity of the index sequences is desired.
  • sample index sequence compositions that include sets of oligonucleotides that include a sample index sequence where each oligonucleotide in the set differs from each other oligonucleotide in the set within at least the sample index sequence portion.
  • each sample index sequence within a set will differ from each other sample index within the set at every nucleotide within their sequence or a significant portion of the nucleotides within the sequence as described elsewhere herein, and preferably will vary at each and every base within the sample index sequence.
  • the sets of oligonucleotides may comprise adapter sequences that include additional functional sequences as described above, where the index portions are oriented within the oligonucleotides such that they will be subjected to sequence determination in a sequencing process, e.g., downstream of a sequencing primer sequence for a given sequence read.
  • compositions described herein may be provided in a kitted format as a portion of sequence library preparation kits or systems, or as kits for sample indexing in their own right.
  • kits may include the compositions described herein as sample index sequences, as adapter sequences, or the like, so that they may be integrated into workflows for use in analysis, e.g., in sequencing protocols.
  • the kits described herein may also include additional reagents used in the library preparation process, e.g., as provided in TruSeq sample preparation kits available from Illumina, Inc., or in sequence library preparation systems, e.g., as described in U.S. patent application Ser. No. 14/316,398, filed Jun. 26, 2014, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medical Informatics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Compositions, processes and systems are provided for preparing and analyzing sample indexing of nucleic acid libraries for multiplexed sequencing analysis of diverse sample sets.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 62/151,867, filed Apr. 23, 2015, which is hereby incorporated by reference in its entirety for all purposes.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • Not Applicable.
  • BACKGROUND OF THE INVENTION
  • Nucleic acid sequencing has made unprecedented advancements over the past decade, bringing high throughput, relatively low cost DNA sequence information to researchers, diagnosticians and health care professionals. Despite increased throughput of modern sequencing technology, there are always challenges in further multiplexing the analytical process, in order to be able to analyze more sequences and more samples.
  • By way of example, in current sequencers, shorter fragments of an overall sample nucleic acid, are sequenced and re-assembled to provide the sequence of the original sample nucleic acid. In order to sequence larger numbers of different samples, it is useful to pool samples in a single sequencing run. However, in order to do this without sequence information from different samples confounding the analysis of each other, the fragments from each different sample are provided with a unique oligonucleotide sequence appended to one end of the sequence, which identifies the sample of origin from the sequences obtained from the pooled samples. This unique sequence is read during the sequencing process, providing an index for a given read that attributes that read to a given starting sample.
  • While this sample indexing process has proven effective, a difficulty arises in some of the sequence data processing systems associated with available short read sequencing systems. In particular, these processing systems often fail when the sequence data includes multiple disparate sequences having identical nucleotides at a given position. In particular, where a significant percentage of the discrete sequences being read in a given sequencing run, e.g., at different oligonucleotide clusters within a given flow-cell, have identical nucleotides at the same sequence position, it can result in analytical failures of the base calling software for these systems. In particular, the systems are unable to process data where a significant number of the clusters share the same nucleotides at the same position, and as a result, render the bases at those positions un-callable. Given the complexity of the genome and the numbers of sequences typically analyzed in a given sequencing run, this failure mode is not routinely encountered in the analysis of sample sequences.
  • However, this limitation does put significant constraints on the use of any common sequence elements in significant portions of the disparate sequences being analyzed, such as primer sequences, index sequences and the like. By way of example, this limitation does significantly impact the selection of sample index sequences that one may use in performing multiplexed sample sequencing, by requiring that a given sample include multiple sample indices that are selected so that there are reduced overlapping sequence elements. This has the effect of providing limits on the sample multiplex level for a sequencing reaction.
  • Provided herein are solutions to these and other shortcomings of current sequencing processes.
  • BRIEF SUMMARY OF THE INVENTION
  • Described herein are processes, compositions and systems for use in multiplexed sequence analysis of diverse sets of sample nucleic acids. In particular, provided herein are universal sample index sets and libraries that provide sequence diversity as between index sequences in a given set and as between different sets of index sequences, allowing a greater ability to multiplex sequence analysis.
  • In one aspect, the present disclosure provides a universal sample index library that includes a plurality of sets of sample index oligonucleotides, where each of the plurality of sets of sample index oligonucleotides includes a plurality of individual sample index oligonucleotide sequences. In some aspects, the sample index oligonucleotides in each of the plurality of sets of sample index oligonucleotides are different from sample index oligonucleotides in each other set of sample index oligonucleotides. In further aspects, each sample index oligonucleotide sequence within a set of sample index oligonucleotides includes a different nucleotide sequence from each other sample index oligonucleotide in the same set of sample index oligonucleotides.
  • In a further aspect, the present disclosure provides a method of sample indexing oligonucleotides for nucleic acid sequencing that includes the steps of (i) providing a plurality of sequencing libraries of oligonucleotides, each of the plurality of sequencing libraries being prepared from a different sample and (ii) attaching sets of sample index oligonucleotides to each of the plurality of sequencing libraries of oligonucleotides. In a further exemplary aspect, the sample index oligonucleotides in each of the plurality of sets of sample index oligonucleotides are different from sample index oligonucleotides in each other set of sample index oligonucleotides; and each sample index oligonucleotide sequence within a set of sample index oligonucleotides comprises a different nucleotide sequence from each other sample index oligonucleotide in the set of sample index oligonucleotides. In an exemplary embodiment, after the attaching step, the sequencing libraries of oligonucleotides are pooled together and subjected to a sequencing process.
  • In a further embodiment, and in accordance with any of the above, each set of sample index oligonucleotides includes at least three, four, five, six, seven, eight, nine, or ten different sample index oligonucleotides.
  • In a still further embodiment, and in accordance with any of the above, the plurality of sets of sample index oligonucleotides comprises at least about 10 sets, 20 sets, 50 sets, or 100 sets.
  • In a yet further embodiment, and in accordance with any of the above, each of the plurality of sets of sample index oligonucleotides has complete diversity from other sets of the plurality.
  • In a still further embodiment, and in accordance with any of the above, each sample index oligonucleotide within a set of sample index oligonucleotides comprises a different nucleotide at each sequence position from each other sample index oligonucleotide in the set of sample index oligonucleotides.
  • In a further embodiment, and in accordance with any of the above, each sample index oligonucleotide within a set of sample index oligonucleotides does not share a common 4-mer sequence with any other sample index oligonucleotide within that same set of sample index oligonucleotides.
  • In a still further embodiment, and in accordance with any of the above, the sample index oligonucleotides within a set have less than 80% common bases at common sequence positions with other sample index oligonucleotides within the same set.
  • In a yet further embodiment, and in accordance with any of the above, the sample index oligonucleotides are from about 4 to about 10 bases in length.
  • In a still further embodiment, and in accordance with any of the above, the sample index library further includes adapter sequences containing additional sequence elements. In a further exemplary embodiment, the sample index oligonucleotides are integrated into the adapter sequences.
  • DETAILED DESCRIPTION OF THE INVENTION I. General
  • Provided herein are improved sample indexing compositions, methods and systems that alleviate the informatics problems associated with current indexing systems. As described above, the presence of excessive amounts of common sequences in certain next generation sequencer runs, can lead to a failure of the data processing systems, and particularly to the base calling software. This is particularly problematic where common sequences are introduced into significant portions of the sequences in a given sequencing run. Of particular note are sample index sequences where a common sample index is typically tagged with a single short, common, sequence tag of from about 4 to about 10 nucleotides in length, and typically from 6 to 8 nucleotides in length. Introduction of this common sequence across a large number of the sequence fragments being run in a given analysis run can lead to the failures described above.
  • As described herein, provided are sets of sample index oligonucleotides, where each set is used to index a library of oligonucleotides for sequencing from a given individual sample. Within each set are a plurality of different sample index oligonucleotides that differ from each other at every nucleotide within their sequence, or a significant portion of the nucleotides within the sequence. For example, assuming a first sample index set having a first 8-mer having the sequence:
  • INDEX 1: GAACGTAC
  • The set may also include one or more of sample index sequences that vary at one or more positions. For example, as shown below, a set is illustrated which varies at each and every position:
  • INDEX 1 G A A C G T A C
    INDEX 2 A T T G A C T G
    INDEX 3 T C C A T G C A
    INDEX 4 C G G T C A G T
  • Although illustrated as an 8-mer, it will be appreciated that the sample index sequences will typically be from about 4 to about 10 bases in length, and preferably are from about 6 to about 8 bases in length, inclusive, though such index sequences can be varied in length outside of these ranges as desired, depending upon the number of different samples that are desired to be analyzed simultaneously, and the sequence read-length requirements of the given analysis. In particular, using a short read sequencing technology, longer index sequences may reduce the length of the sequence reads that may apply to the sample sequence portion of the analysis.
  • Although illustrated above as 4 discrete sample index sequences in a set, a given set of sample index sequences may include fewer than 4 sequences or may include additional index sequences that vary at each position or a sufficient number of positions. In certain cases, it will be desired that as between index sequences in a given set, e.g., applied to a single sample, there will be a common base at a common position no more than 80% of the time (e.g., with respect to a given sequence position in a set of index sequences, 80% or less of those positions may include a common base). In many cases, as between index sequences in a given set, there will be a common base at a common position no more than 70% of the time, no more than 60% of the time, no more than 50% of the time, no more than 40% of the time, no more than 30% of the time, no more than 20% of the time, no more than 10% of the time. In still further cases, in some sample index sets, as between different sequences in that set, no sequence positions will share a common base. By way of example, for an 8-mer sample index, as between sample indices in a given set of sample index sequences, the different indexes in the set may have overlap, or common bases at the same position at 6 bases or fewer, at 5 bases or fewer, at 4 bases or fewer, at 3 bases or fewer, at 2 bases or fewer, at 1 base or fewer, and in certain cases, will vary at each and every base. Rephrased, with respect to index sequences of from about 6 to about 10 bases in length, this may result in sequences that do not have common bases in 2, 3, 4, 5, 6, and as the case may be, 7, 8, 9 or 10 common sequence locations within the index sequences in a set.
  • In still further cases, the index sequences in a given set will not share a common 4-mer sequence, i.e., in the same positions, will not share a common 3-mer sequence, or will not share a common 2-mer sequence of bases within the index sequences, while in other cases, such common n-mer sequences will be present in fewer than 20% of the index sequences in the set, fewer than 10% of the index sequences in the set or fewer than 5% of the index sequences in the set. By “n-mer” as used herein is meant a series of “n” contiguous bases within the index sequence.
  • As between different sets of sample indices being applied to a given sequencing run, e.g., applied to different samples run on a single flow cell, the sequences will also vary such that all index sequences in a first set will be different from all index sequences in a second set. The level of difference between sets will typically provide sample indices at different clusters that have common nucleotides at common positions less than 80% of the time, preferably, less than 70% of the time, less than 60% of the time, less than 50% of the time, less than 40% of the time, less than 30% of the time, less than 20% of the time, less than 10% of the time, and in some cases, will differ at each and every base in the index sequences present in the different sets. By way of example, for an 8-mer sample index, as between sample indices in a given sequencing run, the different sets of sample indices present in a sequencing run would typically have overlap, or common bases at the same position at 6 bases or fewer, at 5 bases or fewer, at 4 bases or fewer, at 3 bases or fewer, at 2 bases or fewer, at 1 base or fewer, and in certain cases, will vary at each and every base. Rephrased, with respect to index sequences of from about 6 to about 10 bases in length, this may result in sequences that do not have common bases in 2, 3, 4, 5, 6, and as the case may be, 7, 8, 9 or 10 common sequence locations as between the index sequences in different sets.
  • By virtue of providing sequence variability within a given set of sample index sequences used for a given sample, one alleviates the need to mix and match sample index sequences to reduce data analysis problems. In particular, a ready made, universal set of diverse sample index sequences is provided for use with each given sample, with diversity that is tailored for the analysis, including, e.g., complete diversity, i.e., variation at each base of the sample index sequences.
  • As noted above, a given sample index set will preferably have 2, 3, 4 or more diverse index sequences included therein. Likewise, a given set or group of sets may be selected from a library of sets that may vary depending upon the given analysis, and as described above. Generally, the number of sets in the library of sets of sample index sequences will typically include at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 2500, 3000 or more different sets of sample index sequences, and in many cases will be between the above described numbers of sets and up to 10,000 different sets or even more.
  • In use, a given sample index set may be used in identifying a single discrete nucleic acid sample, e.g., from a single patient, a single tissue sample, a single cell, or the like. Different samples would be identified using a discrete set of sample index sequences. Upon sequencing of a pooled set of samples, attribution of the sequence information obtained to the originating sample would be carried out by identifying the set from which the index sequence belongs. As such, rather than identifying a single index sequence as being attributed to a given starting sample, e.g., patient, tissue sample, cell, etc., one would identify a given set of unique sample index sequences as being attributable to a given starting sample.
  • The sample index sequences described herein are typically provided within the context of larger adapter sequences that include additional sequence elements that permit the appending of the adapter sequence to sequencing library elements, and that provide additional sequence elements necessary for the sequencing process, e.g., flow cell attachment sequences, sequencing primer sequences, and the like. In such cases, the index sequence will typically be positioned at a sequenced location, e.g., located downstream, or 5′, of the relevant sequencing primer sequence for a given sequence read, so that the index sequence will be included with the overall sequence data.
  • For example, the sample index sets described herein may be readily integrated into the adapter sequences used in a conventional sequencing library workflow. Briefly, these workflows typically provide fragments of nucleic acids from a given sample. These fragments are processed to append appropriate sequence segments on one or both ends of the sample nucleic acid fragments. Typically, these sequence segments can include the sequencer functional elements, such as attachment sequences and sequencing primer recognition sequences (also referred to herein as primer sequences). Sample index sequences are also typically appended to one or both ends of the nucleic acid fragments from a given sample. Upon sequencing, the sequence of the sample nucleic acid fragment is determined along with the sequence of the appended sample index sequence, which allows attribution of the sample nucleic acid sequence data back to the particular sample. By appending different index sequences to different samples, it allows pooling of multiple discrete samples onto a single sequencing run, while allowing attribution of the resulting sample sequence information to a given sample. As described herein, different sets of sample index sequences would be appended to the nucleic acids from each sample.
  • By way of example, these sample index sets may be integrated into the adapter sets used in the Illumina TruSeq® DNA Sample Preparation kits used in the Illumina sequencing processes, where dual index adapters are ligated to opposing ends of double stranded sample nucleic acid fragments. Likewise, these sample index sequence sets may be integrated into other adapter sequences used in any other sample index workflow step for other sequencing library preparation processes where a greater diversity of the index sequences is desired. In an additional example, those sequence library preparation processes described in, e.g., U.S. patent application Ser. No. 14/316,383, filed Jun. 26, 2014, Ser. No. 14/752,589, filed Jun. 26, 2015, and U.S. patent application Ser. No. 14/990,276, filed Jan. 7, 2016, the full disclosures of which are incorporated herein by reference in their entirety for all purposes, may employ the index sequence sets described herein in the adapter sequences appended to barcoded sequence libraries along with the additional sequence components appended to those library elements, e.g., attachment sequences and sequencing primer sequences.
  • Thus, in some cases, provided herein are sample index sequence compositions that include sets of oligonucleotides that include a sample index sequence where each oligonucleotide in the set differs from each other oligonucleotide in the set within at least the sample index sequence portion. In particular, each sample index sequence within a set will differ from each other sample index within the set at every nucleotide within their sequence or a significant portion of the nucleotides within the sequence as described elsewhere herein, and preferably will vary at each and every base within the sample index sequence.
  • As noted previously the sets of oligonucleotides may comprise adapter sequences that include additional functional sequences as described above, where the index portions are oriented within the oligonucleotides such that they will be subjected to sequence determination in a sequencing process, e.g., downstream of a sequencing primer sequence for a given sequence read.
  • The compositions described herein may be provided in a kitted format as a portion of sequence library preparation kits or systems, or as kits for sample indexing in their own right. Such kits may include the compositions described herein as sample index sequences, as adapter sequences, or the like, so that they may be integrated into workflows for use in analysis, e.g., in sequencing protocols. The kits described herein may also include additional reagents used in the library preparation process, e.g., as provided in TruSeq sample preparation kits available from Illumina, Inc., or in sequence library preparation systems, e.g., as described in U.S. patent application Ser. No. 14/316,398, filed Jun. 26, 2014, the full disclosure of which is incorporated herein by reference in its entirety for all purposes.
  • While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be clear to one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention. For example, all the techniques and apparatus described above can be used in various combinations. For example, any of the sample index sequences described herein can be used in conjunction with any sequencing platforms described herein and known in the art. All publications, patents, patent applications, and/or other documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, and/or other document were individually and separately indicated to be incorporated by reference for all purposes.

Claims (20)

What is claimed is:
1. A universal sample index library, comprising a plurality of sets of sample index oligonucleotides, each of the plurality of sets of sample index oligonucleotides comprises a plurality of individual sample index oligonucleotide sequences, wherein:
the sample index oligonucleotides in each of the plurality of sets of sample index oligonucleotides are different from sample index oligonucleotides in each other set of sample index oligonucleotides; and
each sample index oligonucleotide sequence within a set of sample index oligonucleotides comprises a different nucleotide sequence from each other sample index oligonucleotide in the same set of sample index oligonucleotides.
2. The library of claim 1, wherein each set of sample index oligonucleotides comprises at least three, four, five, six, seven, eight, nine, or ten different sample index oligonucleotides.
3. The library of claim 1, wherein the plurality of sets of sample index oligonucleotides comprises at least about 10 sets, 20 sets, 50 sets, or 100 sets.
4. The library of claim 3, wherein each of the plurality of sets of sample index oligonucleotides has complete diversity from other sets of the plurality.
5. The library of claim 1, wherein each sample index oligonucleotide within a set of sample index oligonucleotides comprises a different nucleotide at each sequence position from each other sample index oligonucleotide in the set of sample index oligonucleotides.
6. The library of claim 1, wherein each sample index oligonucleotide within a set of sample index oligonucleotides does not share a common 4-mer sequence with any other sample index oligonucleotide within that same set of sample index oligonucleotides.
7. The library of claim 1, wherein sample index oligonucleotides within a set have less than 80% common bases at common sequence positions with other sample index oligonucleotides within the same set.
8. The library of claim 1, wherein the sample index oligonucleotides are from about 4 to about 10 bases in length.
9. The library of claim 1, wherein the sample index library further comprises adapter sequences containing additional sequence elements.
10. The library of claim 8, wherein the sample index oligonucleotides are integrated into the adapter sequences.
11. A method of sample indexing oligonucleotides for nucleic acid sequencing, comprising:
providing a plurality of sequencing libraries of oligonucleotides, each of the plurality of sequencing libraries being prepared from a different sample;
attaching sets of sample index oligonucleotides to each of the plurality of sequencing libraries of oligonucleotides, wherein
the sample index oligonucleotides in each of the plurality of sets of sample index oligonucleotides are different from sample index oligonucleotides in each other set of sample index oligonucleotides; and
each sample index oligonucleotide sequence within a set of sample index oligonucleotides comprises a different nucleotide sequence from each other sample index oligonucleotide in the set of sample index oligonucleotides.
12. The method of claim 11, wherein each sample index oligonucleotide sequence within a set of sample index oligonucleotide sequences comprises a different nucleotide at each sequence position from each other sample index oligonucleotide in the set of sample index oligonucleotides.
13. The method of claim 11, wherein the sets of sample index oligonucleotides comprise at least about 10 sets, 20 sets, 50 sets, or 100 sets.
14. The method of claim 11, wherein each set of sample index oligonucleotides has complete diversity from the other sets of sample index oligonucleotides.
15. The method of claim 11, wherein each sample index oligonucleotide within a set of sample index oligonucleotides does not share a common 4-mer sequence with any other sample index oligonucleotide within that same set of sample index oligonucleotides.
16. The method of claim 11, wherein sample index oligonucleotides within a set have less than 80% common bases at common sequence positions with other sample index oligonucleotides within the same set.
17. The method of claim 11, wherein the sample index oligonucleotides are from about 4 to about 10 bases in length.
18. The method of claim 17, wherein sample index oligonucleotides of different sets have different lengths.
19. The method of claim 11, wherein subsequent to the attaching step, the sequencing libraries of oligonucleotides are pooled together and subjected to a sequencing process.
20. The method of claim 11, wherein the sample index oligonucleotide sequences are further integrated into adapter sequences comprising additional sequence elements.
US15/135,858 2015-04-23 2016-04-22 Sample indexing methods and compositions for sequencing applications Abandoned US20160314242A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/135,858 US20160314242A1 (en) 2015-04-23 2016-04-22 Sample indexing methods and compositions for sequencing applications
US17/002,641 US20210217489A1 (en) 2015-04-23 2020-08-25 Sample indexing methods and compositions for sequencing applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562151867P 2015-04-23 2015-04-23
US15/135,858 US20160314242A1 (en) 2015-04-23 2016-04-22 Sample indexing methods and compositions for sequencing applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/002,641 Continuation US20210217489A1 (en) 2015-04-23 2020-08-25 Sample indexing methods and compositions for sequencing applications

Publications (1)

Publication Number Publication Date
US20160314242A1 true US20160314242A1 (en) 2016-10-27

Family

ID=57147832

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/135,858 Abandoned US20160314242A1 (en) 2015-04-23 2016-04-22 Sample indexing methods and compositions for sequencing applications
US17/002,641 Abandoned US20210217489A1 (en) 2015-04-23 2020-08-25 Sample indexing methods and compositions for sequencing applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/002,641 Abandoned US20210217489A1 (en) 2015-04-23 2020-08-25 Sample indexing methods and compositions for sequencing applications

Country Status (1)

Country Link
US (2) US20160314242A1 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018237209A1 (en) * 2017-06-21 2018-12-27 Bluedot Llc Systems and methods for identification of nucleic acids in a sample
US10345219B2 (en) 2011-08-01 2019-07-09 Celsee Diagnostics, Inc. Cell capture system and method of use
US10350601B2 (en) 2013-03-13 2019-07-16 Celsee Diagnostics, Inc. System and method for capturing and analyzing cells
US10357771B2 (en) 2017-08-22 2019-07-23 10X Genomics, Inc. Method of producing emulsions
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10391492B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US10509022B2 (en) 2013-03-13 2019-12-17 Celsee Diagnostics, Inc. System for imaging captured cells
US10533229B2 (en) 2013-05-31 2020-01-14 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
KR20200005607A (en) * 2017-11-06 2020-01-15 일루미나, 인코포레이티드 Nucleic acid indexing technology
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
US10669583B2 (en) 2012-08-14 2020-06-02 10X Genomics, Inc. Method and systems for processing polynucleotides
US10676789B2 (en) 2012-12-14 2020-06-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10718007B2 (en) 2013-01-26 2020-07-21 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10725027B2 (en) 2018-02-12 2020-07-28 10X Genomics, Inc. Methods and systems for analysis of chromatin
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752950B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10900032B2 (en) 2019-05-07 2021-01-26 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US11030276B2 (en) 2013-12-16 2021-06-08 10X Genomics, Inc. Methods and apparatus for sorting data
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11186836B2 (en) 2016-06-16 2021-11-30 Haystack Sciences Corporation Oligonucleotide directed and recorded combinatorial synthesis of encoded probe molecules
US11193122B2 (en) 2017-01-30 2021-12-07 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US11193121B2 (en) 2013-02-08 2021-12-07 10X Genomics, Inc. Partitioning and processing of analytes and other species
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US11365438B2 (en) 2017-11-30 2022-06-21 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
US11414688B2 (en) 2015-01-12 2022-08-16 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11473138B2 (en) 2012-12-14 2022-10-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
US11584953B2 (en) 2019-02-12 2023-02-21 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11584954B2 (en) 2017-10-27 2023-02-21 10X Genomics, Inc. Methods and systems for sample preparation and analysis
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
US11660601B2 (en) 2017-05-18 2023-05-30 10X Genomics, Inc. Methods for sorting particles
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US11724256B2 (en) 2019-06-14 2023-08-15 Bio-Rad Laboratories, Inc. System and method for automated single cell processing and analyses
US11725231B2 (en) 2017-10-26 2023-08-15 10X Genomics, Inc. Methods and systems for nucleic acid preparation and chromatin analysis
US11795580B2 (en) 2017-05-02 2023-10-24 Haystack Sciences Corporation Molecules for verifying oligonucleotide directed combinatorial synthesis and methods of making and using the same
US11833515B2 (en) 2017-10-26 2023-12-05 10X Genomics, Inc. Microfluidic channel networks for partitioning
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11873530B1 (en) 2018-07-27 2024-01-16 10X Genomics, Inc. Systems and methods for metabolome analysis
US11920183B2 (en) 2019-03-11 2024-03-05 10X Genomics, Inc. Systems and methods for processing optically tagged beads
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11952626B2 (en) 2021-02-23 2024-04-09 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053519A1 (en) * 1990-12-06 2001-12-20 Fodor Stephen P.A. Oligonucleotides
US20070255053A1 (en) * 2000-11-28 2007-11-01 Rosetta Inpharmatics Llc Random-primed reverse transcriptase - in vitro transcription method for rna amplification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053519A1 (en) * 1990-12-06 2001-12-20 Fodor Stephen P.A. Oligonucleotides
US20070255053A1 (en) * 2000-11-28 2007-11-01 Rosetta Inpharmatics Llc Random-primed reverse transcriptase - in vitro transcription method for rna amplification

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300496B2 (en) 2011-08-01 2022-04-12 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US11946855B2 (en) 2011-08-01 2024-04-02 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10914672B2 (en) 2011-08-01 2021-02-09 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US11275015B2 (en) 2011-08-01 2022-03-15 Bio-Rad Laboratories, Inc. System and method for retrieving and analyzing particles
US11635365B2 (en) 2011-08-01 2023-04-25 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10794817B1 (en) 2011-08-01 2020-10-06 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10921237B2 (en) 2011-08-01 2021-02-16 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10401277B2 (en) 2011-08-01 2019-09-03 Celsee Diagnostics, Inc. Cell capture system and method of use
US10408737B1 (en) 2011-08-01 2019-09-10 Celsee Diagnostics, Inc. Cell capture system and method of use
US10408736B1 (en) 2011-08-01 2019-09-10 Celsee Diagnostics, Inc. Cell capture system and method of use
US10416070B1 (en) 2011-08-01 2019-09-17 Celsee Diagnostics, Inc. Cell capture system and method of use
US10436700B1 (en) 2011-08-01 2019-10-08 Celsee Diagnostics, Inc. Cell capture system and method of use
US10746648B2 (en) 2011-08-01 2020-08-18 Bio-Rad Laboratories, Inc. Cell capture and method of use
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US10481077B1 (en) 2011-08-01 2019-11-19 Celsee Diagnostics, Inc. Cell capture system and method of use
US11237096B2 (en) 2011-08-01 2022-02-01 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10641700B2 (en) 2011-08-01 2020-05-05 Celsee Diagnostics, Inc. Cell capture system and method of use
US11073468B2 (en) 2011-08-01 2021-07-27 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10533936B1 (en) 2011-08-01 2020-01-14 Celsee Diagnostics, Inc. Cell capture system and method of use
US10591404B1 (en) 2011-08-01 2020-03-17 Celsee Diagnostics, Inc. Cell capture system and method of use
US10782226B1 (en) 2011-08-01 2020-09-22 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US10345219B2 (en) 2011-08-01 2019-07-09 Celsee Diagnostics, Inc. Cell capture system and method of use
US10564090B2 (en) 2011-08-01 2020-02-18 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
US11231355B2 (en) 2011-08-01 2022-01-25 Bio-Rad Laboratories, Inc. Cell capture system and method of use
US11021749B2 (en) 2012-08-14 2021-06-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10669583B2 (en) 2012-08-14 2020-06-02 10X Genomics, Inc. Method and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US10752950B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11359239B2 (en) 2012-08-14 2022-06-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11035002B2 (en) 2012-08-14 2021-06-15 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11441179B2 (en) 2012-08-14 2022-09-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11473138B2 (en) 2012-12-14 2022-10-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11421274B2 (en) 2012-12-14 2022-08-23 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10676789B2 (en) 2012-12-14 2020-06-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10718007B2 (en) 2013-01-26 2020-07-21 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US10975422B2 (en) 2013-01-26 2021-04-13 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US11345951B2 (en) 2013-01-26 2022-05-31 Bio-Rad Laboratories, Inc. System and method for capturing and analyzing cells
US11193121B2 (en) 2013-02-08 2021-12-07 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10509022B2 (en) 2013-03-13 2019-12-17 Celsee Diagnostics, Inc. System for imaging captured cells
US10350601B2 (en) 2013-03-13 2019-07-16 Celsee Diagnostics, Inc. System and method for capturing and analyzing cells
US10690650B2 (en) 2013-03-13 2020-06-23 Bio-Rad Laboratories, Inc. System for imaging captured cells
US11199532B2 (en) 2013-03-13 2021-12-14 Bio-Rad Laboratories, Inc. System for imaging captured cells
US11052396B2 (en) 2013-05-31 2021-07-06 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10851426B2 (en) 2013-05-31 2020-12-01 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11358147B2 (en) 2013-05-31 2022-06-14 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10533229B2 (en) 2013-05-31 2020-01-14 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10512914B2 (en) 2013-05-31 2019-12-24 Celsee Diagnostics, Inc. System for isolating and analyzing cells in a single-cell format
US10449543B2 (en) 2013-05-31 2019-10-22 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11030276B2 (en) 2013-12-16 2021-06-08 10X Genomics, Inc. Methods and apparatus for sorting data
US11853389B2 (en) 2013-12-16 2023-12-26 10X Genomics, Inc. Methods and apparatus for sorting data
US11713457B2 (en) 2014-06-26 2023-08-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11414688B2 (en) 2015-01-12 2022-08-16 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11186836B2 (en) 2016-06-16 2021-11-30 Haystack Sciences Corporation Oligonucleotide directed and recorded combinatorial synthesis of encoded probe molecules
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10793905B2 (en) 2016-12-22 2020-10-06 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10954562B2 (en) 2016-12-22 2021-03-23 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10858702B2 (en) 2016-12-22 2020-12-08 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11732302B2 (en) 2016-12-22 2023-08-22 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11248267B2 (en) 2016-12-22 2022-02-15 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11180805B2 (en) 2016-12-22 2021-11-23 10X Genomics, Inc Methods and systems for processing polynucleotides
US11193122B2 (en) 2017-01-30 2021-12-07 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
US11795580B2 (en) 2017-05-02 2023-10-24 Haystack Sciences Corporation Molecules for verifying oligonucleotide directed combinatorial synthesis and methods of making and using the same
US11660601B2 (en) 2017-05-18 2023-05-30 10X Genomics, Inc. Methods for sorting particles
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
WO2018237209A1 (en) * 2017-06-21 2018-12-27 Bluedot Llc Systems and methods for identification of nucleic acids in a sample
US10610865B2 (en) 2017-08-22 2020-04-07 10X Genomics, Inc. Droplet forming devices and system with differential surface properties
US11565263B2 (en) 2017-08-22 2023-01-31 10X Genomics, Inc. Droplet forming devices and system with differential surface properties
US10357771B2 (en) 2017-08-22 2019-07-23 10X Genomics, Inc. Method of producing emulsions
US10766032B2 (en) 2017-08-22 2020-09-08 10X Genomics, Inc. Devices having a plurality of droplet formation regions
US10583440B2 (en) 2017-08-22 2020-03-10 10X Genomics, Inc. Method of producing emulsions
US10549279B2 (en) 2017-08-22 2020-02-04 10X Genomics, Inc. Devices having a plurality of droplet formation regions
US10898900B2 (en) 2017-08-22 2021-01-26 10X Genomics, Inc. Method of producing emulsions
US10821442B2 (en) 2017-08-22 2020-11-03 10X Genomics, Inc. Devices, systems, and kits for forming droplets
US10391492B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11504714B2 (en) 2017-08-29 2022-11-22 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US11865542B2 (en) 2017-08-29 2024-01-09 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10391493B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11358146B2 (en) 2017-08-29 2022-06-14 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10821440B2 (en) 2017-08-29 2020-11-03 Bio-Rad Laboratories, Inc. System and method for isolating and analyzing cells
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US11884964B2 (en) 2017-10-04 2024-01-30 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US10590244B2 (en) 2017-10-04 2020-03-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US11441172B2 (en) 2017-10-04 2022-09-13 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
US11725231B2 (en) 2017-10-26 2023-08-15 10X Genomics, Inc. Methods and systems for nucleic acid preparation and chromatin analysis
US11833515B2 (en) 2017-10-26 2023-12-05 10X Genomics, Inc. Microfluidic channel networks for partitioning
US11584954B2 (en) 2017-10-27 2023-02-21 10X Genomics, Inc. Methods and systems for sample preparation and analysis
JP7091372B2 (en) 2017-11-06 2022-06-27 イルミナ インコーポレイテッド Nucleic acid indexing technology
JP2022126742A (en) * 2017-11-06 2022-08-30 イルミナ インコーポレイテッド Nucleic acid indexing techniques
JP2020528741A (en) * 2017-11-06 2020-10-01 イルミナ インコーポレイテッド Nucleic acid indexing technology
KR20200005607A (en) * 2017-11-06 2020-01-15 일루미나, 인코포레이티드 Nucleic acid indexing technology
WO2019090251A3 (en) * 2017-11-06 2020-01-16 Illumina, Inc. Nucleic acid indexing techniques
EP4289996A3 (en) * 2017-11-06 2024-01-17 Illumina Inc. Nucleic acid indexing techniques
KR102500210B1 (en) * 2017-11-06 2023-02-15 일루미나, 인코포레이티드 Nucleic Acid Indexing Technology
US11891600B2 (en) 2017-11-06 2024-02-06 Illumina, Inc. Nucleic acid indexing techniques
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
US11884962B2 (en) 2017-11-15 2024-01-30 10X Genomics, Inc. Functionalized gel beads
US10876147B2 (en) 2017-11-15 2020-12-29 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US11365438B2 (en) 2017-11-30 2022-06-21 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
US11739440B2 (en) 2018-02-12 2023-08-29 10X Genomics, Inc. Methods and systems for analysis of chromatin
US11131664B2 (en) 2018-02-12 2021-09-28 10X Genomics, Inc. Methods and systems for macromolecule labeling
US10725027B2 (en) 2018-02-12 2020-07-28 10X Genomics, Inc. Methods and systems for analysis of chromatin
US11255847B2 (en) 2018-02-12 2022-02-22 10X Genomics, Inc. Methods and systems for analysis of cell lineage
US11002731B2 (en) 2018-02-12 2021-05-11 10X Genomics, Inc. Methods and systems for antigen screening
US10816543B2 (en) 2018-02-12 2020-10-27 10X Genomics, Inc. Methods and systems for analysis of major histocompatability complex
US10928386B2 (en) 2018-02-12 2021-02-23 10X Genomics, Inc. Methods and systems for characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
US11852628B2 (en) 2018-02-22 2023-12-26 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US11873530B1 (en) 2018-07-27 2024-01-16 10X Genomics, Inc. Systems and methods for metabolome analysis
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
US11584953B2 (en) 2019-02-12 2023-02-21 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
US11920183B2 (en) 2019-03-11 2024-03-05 10X Genomics, Inc. Systems and methods for processing optically tagged beads
US11814671B2 (en) 2019-04-16 2023-11-14 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US11866766B2 (en) 2019-04-16 2024-01-09 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US10947581B2 (en) 2019-04-16 2021-03-16 Bio-Rad Laboratories, Inc. System and method for leakage control in a particle capture system
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US11833507B2 (en) 2019-05-07 2023-12-05 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
US10900032B2 (en) 2019-05-07 2021-01-26 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11578322B2 (en) 2019-05-07 2023-02-14 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11724256B2 (en) 2019-06-14 2023-08-15 Bio-Rad Laboratories, Inc. System and method for automated single cell processing and analyses
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
US11952626B2 (en) 2021-02-23 2024-04-09 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins

Also Published As

Publication number Publication date
US20210217489A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US20210217489A1 (en) Sample indexing methods and compositions for sequencing applications
US11817180B2 (en) Systems and methods for analyzing nucleic acid sequences
US20210173842A1 (en) Systems and Methods for Annotating Biomolecule Data
US20210108264A1 (en) Systems and methods for identifying sequence variation
Wong et al. Multiplex Illumina sequencing using DNA barcoding
US20200027527A1 (en) Systems and methods for identifying sequence variation
CA2925335C (en) Methods and systems for detecting sequence variants
KR102500210B1 (en) Nucleic Acid Indexing Technology
US20110257031A1 (en) Nucleic acid, biomolecule and polymer identifier codes
CN107075571B (en) Systems and methods for detecting structural variants
US9334532B2 (en) Complexity reduction method
AU2010329825B2 (en) RNA analytics method
US20170132359A1 (en) Systems and methods for identifying somatic mutations
US20150120204A1 (en) Transcriptome assembly method and system
US20180298424A1 (en) Systems and methods for validation of sequencing results
WO2017009718A1 (en) Automatic processing selection based on tagged genomic sequences
Deng et al. R2C2+ UMI: Combining concatemeric consensus sequencing with unique molecular identifiers enables ultra-accurate sequencing of amplicons on Oxford Nanopore Technologies sequencers
CN113614832A (en) Method for detecting chaperone unknown gene fusions
US20230105122A1 (en) Error corrected method mitigates systematic error via sequencing DNA data of the surrounding flow cells of the variants on Patterned Flow Cell
Silva et al. Transcriptome Analysis Using RNA-seq and scRNA-seq
Kabza et al. Accurate long-read transcript discovery and quantification at single-cell resolution with Isosceles
Chuang et al. GABOLA: A Reliable Gap-Filling Strategy for de novo Chromosome-Level Assembly
Andrews et al. Genome Map Assembly from NanoChannel Array Data for Structural Variation Detection in the Human Genome and Finishing in Tribolium
WO2005076945A2 (en) Method for identifying dna sequences from multi-trace of a sequencing reaction

Legal Events

Date Code Title Description
AS Assignment

Owner name: 10X GENOMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNALL-LEVIN, MICHAEL;GREENFIELD, LAWRENCE;SIGNING DATES FROM 20160420 TO 20160421;REEL/FRAME:038353/0097

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

STCC Information on status: application revival

Free format text: WITHDRAWN ABANDONMENT, AWAITING EXAMINER ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION