US20160262728A1 - Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid - Google Patents

Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid Download PDF

Info

Publication number
US20160262728A1
US20160262728A1 US14/966,377 US201514966377A US2016262728A1 US 20160262728 A1 US20160262728 A1 US 20160262728A1 US 201514966377 A US201514966377 A US 201514966377A US 2016262728 A1 US2016262728 A1 US 2016262728A1
Authority
US
United States
Prior art keywords
processing unit
probe
graphics processing
ultrasound
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/966,377
Inventor
Peter G. Barthe
Michael H. Slayton
Paul Jaeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ardent Sound Inc
Original Assignee
Ardent Sound Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ardent Sound Inc filed Critical Ardent Sound Inc
Priority to US14/966,377 priority Critical patent/US20160262728A1/en
Assigned to ARDENT SOUND, INC. reassignment ARDENT SOUND, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARTHE, PETER G., JAEGER, PAUL, SLAYTON, MICHAEL H.
Publication of US20160262728A1 publication Critical patent/US20160262728A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4411Device being modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the present invention relates to imaging and treatment systems, and in particular to an improved ultrasound system for imaging and/or measuring the displacement of moving tissue and fluid.
  • Ultrasound technology is an efficient and accurate way to examine and measure internal body structures and detect bodily abnormalities.
  • Ultrasound technology works by emitting high frequency sound waves into a region of interest. The sound waves are emitted from a probe, strike the region of interest, and then reflect back to the probe. For example, certain sound waves strike tissues or fluid in the region of interest before other sound waves do and are thus reflected back to the probe sooner than other sound waves.
  • the ultrasound machine measures the difference in time for various ultrasonic waves to be emitted and reflected back to the transducer probe and produces a picture of the region of interest based on those time differences.
  • ultrasound is capable of determining the velocity of moving tissue and fluids.
  • an ultrasound user can observe a patient's blood as it flows through the heart, determine the speed or flow rate of the blood's movement, and whether the blood is moving towards or away from the heart.
  • Doppler ultrasound is based upon the Doppler effect. When the object reflecting the sound waves is moving, it changes the frequency of the echoes that are reflected back to the probe. A Doppler ultrasound machine measures the change in frequency of the sound wave echoes and calculates how fast a particular object is moving within the region of interest.
  • Doppler color flow mapping utilizes color to depict the directional movement of tissue and fluid (such as blood) within the region of interest. Color flow mapping produces a two-dimensional image in color with flow towards the probe shown in one color and flow away from the probe shown in another color.
  • Power Doppler imaging is similar to color flow mapping in that is can produce an image that shows the presence or absence of blood flow and the directional movement of the flow. Power Doppler is advantageous because it is up to five times more sensitive in detecting blood flow and other forms of tissue and fluid movement than color mapping. But, power Doppler imaging is not used to determine the velocity of the moving tissue and fluid.
  • Ultrasound equipment used for ultrasound imaging and treatment can be divided into three main components.
  • a peripheral ultrasound system that comprises a probe with a transducer array or a single element for emitting ultrasound waves and equipment that produces and conditions the ultrasound waves for emission from the probe.
  • a host computer system connected to the peripheral ultrasound system serves as to interface with the ultrasound user.
  • the host computer comprises a keyboard or other equipment to help control the ultrasound equipment and a monitor to display the image to the user.
  • known ultrasound equipment comprises a microprocessor within, or connected to, the host computer.
  • the microprocessor is the “brain” of an ultrasound system because it performs all the computing tasks to covert the data collected at the peripheral ultrasound system into the images shown on the monitor to the user. In a Doppler ultrasound system with color flow mapping, the microprocessor will process all the data and generate the velocities of the moving tissues and fluid as well as associated colors to show the directional movement of the tissues and fluid.
  • the microprocessor comprises memory and software.
  • the software utilizes known algorithms to measure the velocity and to chart the color of the tissue and fluid to depict the directional movement of the tissue and fluid.
  • Doppler ultrasound systems have numerous disadvantages. Microprocessors are not capable of quickly processing the vast information obtained during a Doppler ultrasound. Color flow mapping complicates the problem because producing color images requires a large memory and the processing capabilities that are not appropriate for processing by known microprocessors. Another drawback with Doppler ultrasound systems is despite their accuracy, they are relatively slow in producing images.
  • a system and method for ultrasound imaging and/or measurement of displacement of tissue and fluid movement is disclosed.
  • An exemplary embodiment of a system for diagnostic imaging and measurement of displacement of living tissue utilizes a dedicated graphics processing unit to process data obtained by a peripheral ultrasound system. Additionally, the system provides a common interface for connecting the peripheral ultrasound system to the host computer.
  • the dedicated graphics processing unit comprises a dedicated graphics card with an associated video memory and graphics processor configured to process the data obtained by the peripheral ultrasound system.
  • the graphics card further comprises software that utilizes various algorithms to process the data, examples of which include a Doppler shift algorithm and/or a CFM algorithm and the like.
  • the peripheral ultrasound system comprises a transducer probe with a single element or an array to emit ultrasound waves.
  • the peripheral ultrasound system can comprise a beamforming system that focuses the ultrasound beam prior to emission from the transducer probe.
  • the beamforming system also conditions the ultrasound energy prior to emission from the probe by incorporating a conditioning circuit.
  • the peripheral ultrasound system can also comprise a processing device such as a demodulator to process ultrasound waves that have been reflected back to the probe into computer readable data.
  • the peripheral ultrasound system combines Doppler imaging with B-Flow imaging. This combination increases the speed of image production, yet it does not diminish the quality of images produced by the system.
  • a common interface between the host computer and peripheral ultrasound system is provided.
  • the common interface can be any type of interface used on personal computers that enables a personal computer to be connected to the peripheral ultrasound system.
  • a plug-and-play style interface is used, such as a Universal Serial Bus (USB) interface.
  • USB Universal Serial Bus
  • ultrasound energy is conditioned within the beamforming device, transmitting from the transducer probe to the region of interest, reflected back to the transducer probe, demodulated by the demodulator into data readable by the host computer, delivered to the host computer through a USB interface as computer readable data, and processed by the dedicated graphics processing unit to determine the velocity of the moving tissue and fluid.
  • FIG. 1 illustrates a block diagram of an ultrasound system in accordance with an exemplary embodiment of the present invention
  • FIG. 2 illustrates a block diagram of the peripheral ultrasound system, the host computer, and the graphics processing unit in accordance with an exemplary embodiment of the present invention
  • FIG. 3 illustrates a block diagram of the peripheral ultrasound system in accordance with an exemplary embodiment of the present invention
  • FIG. 4 illustrates a block diagram of the host computer in accordance with an exemplary embodiment of the present invention
  • FIG. 5 illustrates a block diagram of the graphics processing unit in accordance with an exemplary embodiment of the present invention.
  • FIG. 6 illustrates the ultrasound system in use in an exemplary embodiment of the present invention.
  • the present invention may be described herein in terms of various functional components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions.
  • the present invention may employ various visual imaging and display devices used for medical treatment which may carry out a variety of functions under the control of one or more control systems or other control devices.
  • the present invention may be practiced in any number of imaging and medical contexts and that the exemplary embodiments relating to an ultrasound system and method as described herein are merely indicative of exemplary applications for the invention.
  • the principles, features and methods discussed may be applied to any imaging or medical application.
  • various aspects of the present invention may be suitably applied to other applications that utilize imaging technology.
  • system 10 is an ultrasound treatment system and comprises a peripheral ultrasound system 12 for emitting and receiving energy that is connected to and in operative communication with a host computer 14 .
  • System 10 further comprises a graphics processing unit 16 that is dedicated to process data obtained by peripheral ultrasound system 12 .
  • peripheral ultrasound system 12 comprises a probe 18 that transmits and receives energy. While a peripheral ultrasound system is specifically mentioned herein, any peripheral system that emits energy can be used and fall within the scope of the present invention.
  • An exemplary energy transmitted and received by probe 18 is ultrasound energy which can be either focused or unfocused.
  • an exemplary probe 18 is a transducer probe that contacts a region of interest 19 on a patient or other subject that the user wishes to scan.
  • Peripheral ultrasound system 12 also comprises beamforming device 20 for focusing the ultrasound energy before it is emitted from probe 18 .
  • a conditioning circuit 22 or other similar conditioning device and a demodulator 24 are part of beamforming device 20 .
  • Demodulator 24 demodulates ultrasound energy received by probe 18 into data that is readable by host computer 14 and processed by graphics processing unit 16 . Therefore, the ultrasound energy's conditioning and demodulation occurs within beamforming device 20 .
  • An exemplary probe 18 can be configured in various manners and comprise a number of reusable or disposable components and parts in various embodiments to facilitate its operation.
  • probe 18 can be configured within any type of probe housing or arrangement for facilitating the contact of probe 18 to the patient's skin at region of interest 19 , with such housing comprising various shapes, contours and configurations.
  • Probe 18 may also comprise cables and connectors; motion mechanisms, motion sensors and encoders; thermal monitoring sensors; or user control and status related switches, and indicators such as LEDs.
  • probe 18 includes a single transduction element mounted within probe 18 .
  • the transduction element can comprise a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, or composite materials, as well as lithium niobate, lead titanate, barium titanate, or lead metaniobate.
  • PZT lead zirconante titanate
  • probe 18 can comprise other materials configured for generating radiation or acoustical energy.
  • probe 18 includes a transducer array.
  • Lenses can also be used in the emission of ultrasound waves from probe 18 .
  • Lenses or other transduction elements can be configured to be concave, convex, or planar.
  • the transduction element is configured to be concave in order to provide focused energy for treatment of region of interest 19 . Additional embodiments are disclosed in U.S. patent application Ser. No. 10/944,500, entitle “Variable Depth Transducer System and Method”, which is herein incorporated by reference.
  • FIG. 3 An exemplary peripheral ultrasound system 12 is depicted in FIG. 3 and shows probe 18 as a separate element from beamforming device 20 and its related components. While probe 18 can be a separate element as shown, it should be noted that beamforming device 20 and its related components can be placed within probe 18 in other exemplary embodiments. Moreover, any type of transducer probe or similar device can be used and fall within the scope of the present invention.
  • Peripheral ultrasound system 12 is connected to host computer 14 by an interface 28 that is described in more detail below and depicted in.
  • Host computer 14 enables the user of system 10 to view images obtained at region of interest 19 , provide estimations of moving tissue and fluid displacement within region of interest 19 , and to control and adjust system 10 .
  • Host computer 14 can be any type of computer system suitable for imaging applications. Exemplary computers include personal computers and laptop computers.
  • host computer 14 comprises a central processing unit (CPU) 30 and a memory 32 . While any type memory 32 can be used, an exemplary memory is a cine memory. Host computer 14 further comprises at least one output device 34 to provide the user of system 10 with an image of region of interest 19 . In addition to displaying an image to the user, output device 34 enables the user to view the directional movement or obtain the velocity of the moving tissue and fluid such as blood within region of interest 19 .
  • An exemplary output 34 device is a color computer monitor that is capable of visually displaying a color flow map of region of interest 19 as described below. Further, in certain exemplary embodiments, multiple output devices 34 can be attached to CPU 30 .
  • host computer 14 further comprises control devices to enable the user to control system 10 .
  • Exemplary control devices include a keyboard 36 and a computer mouse.
  • Other exemplary control devices include joysticks and other similar control devices and systems.
  • host computer 14 is connected to peripheral ultrasound system 12 by interface 28 .
  • a plug-and-play interface 28 is used in an exemplary embodiment.
  • a plug-and-play interface 28 enables the user to quickly connect and disconnect peripheral ultrasound system 12 to host computer 14 .
  • An exemplary plug-and-play interface 28 is known as a “hot-plug capable” interface 28 in that it can enable the user of system 10 to plug peripheral ultrasound system 12 into host computer 14 without having to shut down and reboot host computer 14 .
  • These types of interfaces 28 include a Universal Serial Bus (USB) interface 28 .
  • Exemplary USB interfaces include an A type and B type USB interface.
  • system 10 utilizes a dedicated graphics processing unit 16 to process the data.
  • graphics processing unit 16 is dedicated solely to the function of processing data obtained by peripheral ultrasound system 12 .
  • graphics processing unit can comprise any dedicated processing device or combinations of devices that process data. An exemplary dedicated processing device is depicted in FIG. 5
  • graphics processing unit 16 comprises graphics card 38 .
  • graphics processing unit 16 comprises a physics processing unit (PPU).
  • graphics processing unit 16 could be a combination of a graphics card 38 and a PPU.
  • a PPU performs nearly identical functions as graphics processing unit 16 except that a PPU is capable of processing physics code and removing the load that calculating physics puts on the graphics processing unit 16 and allocate it to the PPU. Therefore, in an exemplary embodiment, graphics processing unit 16 would comprise two devices, one being the graphics card 38 and the other a PPU. Graphics card 38 in combination with the PPU increases the efficiency and accuracy of system 10 .
  • exemplary processing devices include systems that are dedicated to process the graphics data obtained by ultrasound system 12 .
  • a system of a card and processor chip could be an exemplary graphics processing unit 16 .
  • any other dedicated chip, processor, or combination thereof can be utilized as graphics processing unit 16 .
  • graphics processing unit 16 can comprise a graphics card 38 with a processor 40 and a memory 42 .
  • exemplary graphics cards 38 can comprise those produced by the NVIDIA Corporation of Santa Clara, Calif. and/or ATI Technologies, Inc. of Ontario, Canada.
  • multiple graphics cards 38 can be used to process data.
  • the image is split into two portions and a single graphics card 38 is used to process each portion.
  • graphics processing unit 16 processes the data obtained by peripheral ultrasound system 12 by utilizing software with algorithms that are programmed within memory 42 .
  • One exemplary algorithm is the Doppler shift algorithm; however, various other algorithms can also be used.
  • System 10 can utilize certain imaging techniques in addition to or instead of Doppler imaging.
  • Certain exemplary techniques include various decorrelation of frames techniques.
  • One exemplary technique is B-flow imaging.
  • B-flow imaging can be used by itself by system 10 or it can be combined with other techniques such as Doppler imaging.
  • system 10 combines various Doppler techniques with B-flow techniques to increase the speed and accuracy of images produced by system 10 .
  • One advantage of this increase in speed and accuracy is the ability to use a single transduction element within probe 18 .
  • system 10 is used to obtain images of region of interest 19 .
  • ultrasound images can be obtained and an estimation of displacement of moving tissue including fluid is obtained by use of system 10 .
  • graphics processing unit 16 processes the data obtained by peripheral ultrasound system 12 and produces an image displayed on output device 34 that includes the speed of the moving tissue and fluid.
  • the image is shown in traditional gray-scale imaging.
  • ultrasound system 12 produces a color map to show the direction of fluid and tissue movement.
  • the directional movement either towards or away from probe is shown on output device 34 in contrasting colors.
  • tissue and fluid moving towards the probe could be shown in shades of blue and tissue and fluid moving away from probe 18 could be shown in shades of red.
  • system 10 is used to generate an image and obtain and estimation of tissue displacement using power Doppler imaging an image detailing the presence or absence of blood flow is displayed on output device 34 . By viewing that image, the user can determine the directional movement of the blood flow or other moving tissue using the power Doppler imaging technique.
  • B-Flow imaging is combined with power Doppler imaging to increase speed and efficiency.
  • An exemplary process of obtaining an image and measuring displacement of tissue movement begins with a user connecting peripheral ultrasound system 12 to host computer 14 with interface 28 .
  • the user simply plugs one end of a USB connector provided on peripheral ultrasound system 12 into the corresponding USB connector located on host computer 14 .
  • Probe 18 is placed on the patient's skin and the transduction element produces ultrasound energy which is conditioned by conditioning circuit 22 and focused by beamforming device 20 before being emitted from probe 18 .
  • the ultrasound energy waves enter region of interest 19 and are reflected and echoed back to probe 18 .
  • These reflected ultrasound waves are demodulated into computer readable data by demodulator 24 and sent to host computer 14 via interface 28 .
  • graphics processing unit 16 uses an algorithm to generate an image and measure displacement of the tissue or fluid movement, e.g., by producing a color flow map or gray-scale image and/or implementing a power Doppler technique.
  • the image is displayed on output device 34 for the user's viewing. If multiple output devices 34 are used, the image is displayed on all of them. The user can then view the image and obtain an estimate of the moving tissue's displacement.
  • the present invention may be described herein in terms of various functional components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions.
  • the present invention may employ various medical treatment devices, visual imaging and display devices, input terminals and the like, which may carry out a variety of functions under the control of one or more control systems or other control devices.
  • the present invention may be practiced in any number of medical contexts and that the exemplary embodiments relating to a system as described herein are merely indicative of exemplary applications for the invention.
  • the principles, features and methods discussed may be applied to any medical application.
  • various aspects of the present invention may be suitably applied to other applications, such as other medical or industrial applications.

Abstract

A system and method for improved imaging is disclosed. An exemplary system provides a peripheral ultrasound system connected to a host computer with a plug-and-play interface such as a USB. An exemplary system utilizes a dedicated graphics processing unit such as a graphics card to analyze data obtained from a region of interest to produce an image on one or more output units for the user's viewing. Based on the image displayed on the output units, the user can determine the velocity of the moving tissue and fluid. The system of the present invention can be used to produce a Doppler color flow map or for power Doppler imaging.

Description

    FIELD OF INVENTION
  • The present invention relates to imaging and treatment systems, and in particular to an improved ultrasound system for imaging and/or measuring the displacement of moving tissue and fluid.
  • BACKGROUND OF THE INVENTION
  • Ultrasound technology is an efficient and accurate way to examine and measure internal body structures and detect bodily abnormalities. Ultrasound technology works by emitting high frequency sound waves into a region of interest. The sound waves are emitted from a probe, strike the region of interest, and then reflect back to the probe. For example, certain sound waves strike tissues or fluid in the region of interest before other sound waves do and are thus reflected back to the probe sooner than other sound waves. The ultrasound machine measures the difference in time for various ultrasonic waves to be emitted and reflected back to the transducer probe and produces a picture of the region of interest based on those time differences.
  • Besides producing an image of the region of interest, ultrasound is capable of determining the velocity of moving tissue and fluids. For example, an ultrasound user can observe a patient's blood as it flows through the heart, determine the speed or flow rate of the blood's movement, and whether the blood is moving towards or away from the heart.
  • One method of measuring velocity of moving tissue and fluid is the use of Doppler ultrasound with color mapping. Doppler ultrasound is based upon the Doppler effect. When the object reflecting the sound waves is moving, it changes the frequency of the echoes that are reflected back to the probe. A Doppler ultrasound machine measures the change in frequency of the sound wave echoes and calculates how fast a particular object is moving within the region of interest. Doppler color flow mapping utilizes color to depict the directional movement of tissue and fluid (such as blood) within the region of interest. Color flow mapping produces a two-dimensional image in color with flow towards the probe shown in one color and flow away from the probe shown in another color.
  • Another method for measuring the displacement of moving tissue and fluid is power Doppler imaging. Power Doppler imaging is similar to color flow mapping in that is can produce an image that shows the presence or absence of blood flow and the directional movement of the flow. Power Doppler is advantageous because it is up to five times more sensitive in detecting blood flow and other forms of tissue and fluid movement than color mapping. But, power Doppler imaging is not used to determine the velocity of the moving tissue and fluid.
  • Ultrasound equipment used for ultrasound imaging and treatment can be divided into three main components. First, there is a peripheral ultrasound system that comprises a probe with a transducer array or a single element for emitting ultrasound waves and equipment that produces and conditions the ultrasound waves for emission from the probe. Second, a host computer system connected to the peripheral ultrasound system serves as to interface with the ultrasound user. Specifically, the host computer comprises a keyboard or other equipment to help control the ultrasound equipment and a monitor to display the image to the user. Finally, known ultrasound equipment comprises a microprocessor within, or connected to, the host computer.
  • The microprocessor is the “brain” of an ultrasound system because it performs all the computing tasks to covert the data collected at the peripheral ultrasound system into the images shown on the monitor to the user. In a Doppler ultrasound system with color flow mapping, the microprocessor will process all the data and generate the velocities of the moving tissues and fluid as well as associated colors to show the directional movement of the tissues and fluid.
  • To properly process this data, the microprocessor comprises memory and software. The software utilizes known algorithms to measure the velocity and to chart the color of the tissue and fluid to depict the directional movement of the tissue and fluid.
  • Unfortunately, known Doppler ultrasound systems have numerous disadvantages. Microprocessors are not capable of quickly processing the vast information obtained during a Doppler ultrasound. Color flow mapping complicates the problem because producing color images requires a large memory and the processing capabilities that are not appropriate for processing by known microprocessors. Another drawback with Doppler ultrasound systems is despite their accuracy, they are relatively slow in producing images.
  • Another problem with known ultrasound equipment is the interface between the peripheral ultrasound equipment and the host computer. Specifically, known ultrasound machines utilize an uncommon type of interface which requires the user to modify his personal computer to use it as a host computer.
  • SUMMARY OF THE INVENTION
  • A system and method for ultrasound imaging and/or measurement of displacement of tissue and fluid movement is disclosed. An exemplary embodiment of a system for diagnostic imaging and measurement of displacement of living tissue utilizes a dedicated graphics processing unit to process data obtained by a peripheral ultrasound system. Additionally, the system provides a common interface for connecting the peripheral ultrasound system to the host computer.
  • In accordance with an exemplary embodiment, the dedicated graphics processing unit comprises a dedicated graphics card with an associated video memory and graphics processor configured to process the data obtained by the peripheral ultrasound system. The graphics card further comprises software that utilizes various algorithms to process the data, examples of which include a Doppler shift algorithm and/or a CFM algorithm and the like.
  • In accordance with an exemplary embodiment, the peripheral ultrasound system comprises a transducer probe with a single element or an array to emit ultrasound waves. Further, the peripheral ultrasound system can comprise a beamforming system that focuses the ultrasound beam prior to emission from the transducer probe. In this exemplary embodiment, the beamforming system also conditions the ultrasound energy prior to emission from the probe by incorporating a conditioning circuit. The peripheral ultrasound system can also comprise a processing device such as a demodulator to process ultrasound waves that have been reflected back to the probe into computer readable data.
  • In accordance with an exemplary embodiment, the peripheral ultrasound system combines Doppler imaging with B-Flow imaging. This combination increases the speed of image production, yet it does not diminish the quality of images produced by the system.
  • In accordance with an exemplary embodiment, a common interface between the host computer and peripheral ultrasound system is provided. The common interface can be any type of interface used on personal computers that enables a personal computer to be connected to the peripheral ultrasound system. In one exemplary embodiment, a plug-and-play style interface is used, such as a Universal Serial Bus (USB) interface.
  • In accordance with an exemplary embodiment, ultrasound energy is conditioned within the beamforming device, transmitting from the transducer probe to the region of interest, reflected back to the transducer probe, demodulated by the demodulator into data readable by the host computer, delivered to the host computer through a USB interface as computer readable data, and processed by the dedicated graphics processing unit to determine the velocity of the moving tissue and fluid.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter of the invention is particularly pointed out in the concluding portion of the specification. The invention, however, both as to organization and method of operation, may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals.
  • FIG. 1 illustrates a block diagram of an ultrasound system in accordance with an exemplary embodiment of the present invention;
  • FIG. 2 illustrates a block diagram of the peripheral ultrasound system, the host computer, and the graphics processing unit in accordance with an exemplary embodiment of the present invention;
  • FIG. 3 illustrates a block diagram of the peripheral ultrasound system in accordance with an exemplary embodiment of the present invention;
  • FIG. 4 illustrates a block diagram of the host computer in accordance with an exemplary embodiment of the present invention;
  • FIG. 5 illustrates a block diagram of the graphics processing unit in accordance with an exemplary embodiment of the present invention; and
  • FIG. 6 illustrates the ultrasound system in use in an exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION
  • The present invention may be described herein in terms of various functional components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions. For example, the present invention may employ various visual imaging and display devices used for medical treatment which may carry out a variety of functions under the control of one or more control systems or other control devices. In addition, the present invention may be practiced in any number of imaging and medical contexts and that the exemplary embodiments relating to an ultrasound system and method as described herein are merely indicative of exemplary applications for the invention. For example, the principles, features and methods discussed may be applied to any imaging or medical application. Further, various aspects of the present invention may be suitably applied to other applications that utilize imaging technology.
  • An exemplary system for ultrasonic imaging and/or measurement of displacement of moving tissue and fluid denoted throughout as system 10 is provided. The system of the present invention can be used in traditional gray-scale ultrasound imaging or for color-mapping imaging. In an exemplary embodiment, system 10 is an ultrasound treatment system and comprises a peripheral ultrasound system 12 for emitting and receiving energy that is connected to and in operative communication with a host computer 14. System 10 further comprises a graphics processing unit 16 that is dedicated to process data obtained by peripheral ultrasound system 12.
  • With reference to FIG. 3, peripheral ultrasound system 12 comprises a probe 18 that transmits and receives energy. While a peripheral ultrasound system is specifically mentioned herein, any peripheral system that emits energy can be used and fall within the scope of the present invention. An exemplary energy transmitted and received by probe 18 is ultrasound energy which can be either focused or unfocused. Additionally, an exemplary probe 18 is a transducer probe that contacts a region of interest 19 on a patient or other subject that the user wishes to scan. Peripheral ultrasound system 12 also comprises beamforming device 20 for focusing the ultrasound energy before it is emitted from probe 18.
  • Examples of exemplary ultrasound systems are disclosed in U.S. Pat. No. 6,440,071 entitled “Peripheral Ultrasound Imaging System”, U.S. patent application assigned Ser. No. 10/944,499 entitled “Method and System For Ultrasound Treatment With A Multi-Directional Transducer”, U.S. application assigned Ser. No. 10/944,500 entitled “System and Method For Variable Depth Ultrasound Treatment”, and U.S. application assigned Ser. No. 11/163,148 entitled “Method and System For Controlled Thermal Injury of Human Superficial Tissue.” All four of these patents and patent applications are hereby incorporated by reference.
  • In an exemplary embodiment, a conditioning circuit 22 or other similar conditioning device and a demodulator 24 are part of beamforming device 20. Demodulator 24 demodulates ultrasound energy received by probe 18 into data that is readable by host computer 14 and processed by graphics processing unit 16. Therefore, the ultrasound energy's conditioning and demodulation occurs within beamforming device 20.
  • An exemplary probe 18 can be configured in various manners and comprise a number of reusable or disposable components and parts in various embodiments to facilitate its operation. For example, probe 18 can be configured within any type of probe housing or arrangement for facilitating the contact of probe 18 to the patient's skin at region of interest 19, with such housing comprising various shapes, contours and configurations. Probe 18 may also comprise cables and connectors; motion mechanisms, motion sensors and encoders; thermal monitoring sensors; or user control and status related switches, and indicators such as LEDs.
  • In an exemplary embodiment, probe 18 includes a single transduction element mounted within probe 18. The transduction element can comprise a piezoelectrically active material, such as lead zirconante titanate (PZT), or any other piezoelectrically active material, such as a piezoelectric ceramic, crystal, plastic, or composite materials, as well as lithium niobate, lead titanate, barium titanate, or lead metaniobate. In addition to, or instead of, a piezoelectrically active material, probe 18 can comprise other materials configured for generating radiation or acoustical energy. In other exemplary embodiments, probe 18 includes a transducer array.
  • Lenses can also be used in the emission of ultrasound waves from probe 18. Lenses or other transduction elements can be configured to be concave, convex, or planar. For example, in one exemplary embodiment, the transduction element is configured to be concave in order to provide focused energy for treatment of region of interest 19. Additional embodiments are disclosed in U.S. patent application Ser. No. 10/944,500, entitle “Variable Depth Transducer System and Method”, which is herein incorporated by reference.
  • An exemplary peripheral ultrasound system 12 is depicted in FIG. 3 and shows probe 18 as a separate element from beamforming device 20 and its related components. While probe 18 can be a separate element as shown, it should be noted that beamforming device 20 and its related components can be placed within probe 18 in other exemplary embodiments. Moreover, any type of transducer probe or similar device can be used and fall within the scope of the present invention.
  • Peripheral ultrasound system 12 is connected to host computer 14 by an interface 28 that is described in more detail below and depicted in. Host computer 14 enables the user of system 10 to view images obtained at region of interest 19, provide estimations of moving tissue and fluid displacement within region of interest 19, and to control and adjust system 10. Host computer 14 can be any type of computer system suitable for imaging applications. Exemplary computers include personal computers and laptop computers.
  • With additional reference to FIG. 2, host computer 14 comprises a central processing unit (CPU) 30 and a memory 32. While any type memory 32 can be used, an exemplary memory is a cine memory. Host computer 14 further comprises at least one output device 34 to provide the user of system 10 with an image of region of interest 19. In addition to displaying an image to the user, output device 34 enables the user to view the directional movement or obtain the velocity of the moving tissue and fluid such as blood within region of interest 19. An exemplary output 34 device is a color computer monitor that is capable of visually displaying a color flow map of region of interest 19 as described below. Further, in certain exemplary embodiments, multiple output devices 34 can be attached to CPU 30.
  • As shown in FIG. 4, host computer 14 further comprises control devices to enable the user to control system 10. Exemplary control devices include a keyboard 36 and a computer mouse. Other exemplary control devices include joysticks and other similar control devices and systems.
  • As noted above, host computer 14 is connected to peripheral ultrasound system 12 by interface 28. While any type of wired or wireless interface 28 can be used, a plug-and-play interface 28 is used in an exemplary embodiment. A plug-and-play interface 28 enables the user to quickly connect and disconnect peripheral ultrasound system 12 to host computer 14. An exemplary plug-and-play interface 28 is known as a “hot-plug capable” interface 28 in that it can enable the user of system 10 to plug peripheral ultrasound system 12 into host computer 14 without having to shut down and reboot host computer 14. These types of interfaces 28 include a Universal Serial Bus (USB) interface 28. Exemplary USB interfaces include an A type and B type USB interface.
  • Unlike traditional ultrasound systems that rely on a microprocessor to process the data obtained by peripheral ultrasound system 12, system 10 utilizes a dedicated graphics processing unit 16 to process the data. This enables system 10 to have a dedicated processing device for processing the large amount of data collected at peripheral ultrasound system 12 and more efficiently displaying an image on output device 34 than a microprocessor. In an exemplary embodiment, graphics processing unit 16 is dedicated solely to the function of processing data obtained by peripheral ultrasound system 12. It should be noted that while the term “graphics processing unit” can comprise any dedicated processing device or combinations of devices that process data. An exemplary dedicated processing device is depicted in FIG. 5
  • In one exemplary embodiment, graphics processing unit 16 comprises graphics card 38. In another exemplary embodiment, graphics processing unit 16 comprises a physics processing unit (PPU).
  • In another exemplary embodiment, graphics processing unit 16 could be a combination of a graphics card 38 and a PPU. A PPU performs nearly identical functions as graphics processing unit 16 except that a PPU is capable of processing physics code and removing the load that calculating physics puts on the graphics processing unit 16 and allocate it to the PPU. Therefore, in an exemplary embodiment, graphics processing unit 16 would comprise two devices, one being the graphics card 38 and the other a PPU. Graphics card 38 in combination with the PPU increases the efficiency and accuracy of system 10.
  • Other exemplary processing devices include systems that are dedicated to process the graphics data obtained by ultrasound system 12. For example, a system of a card and processor chip could be an exemplary graphics processing unit 16. Alternatively, any other dedicated chip, processor, or combination thereof can be utilized as graphics processing unit 16.
  • In accordance with an exemplary embodiment, graphics processing unit 16 can comprise a graphics card 38 with a processor 40 and a memory 42. For example, exemplary graphics cards 38 can comprise those produced by the NVIDIA Corporation of Santa Clara, Calif. and/or ATI Technologies, Inc. of Ontario, Canada. In an exemplary embodiment, multiple graphics cards 38 can be used to process data. In one embodiment, the image is split into two portions and a single graphics card 38 is used to process each portion.
  • In an exemplary embodiment, graphics processing unit 16 processes the data obtained by peripheral ultrasound system 12 by utilizing software with algorithms that are programmed within memory 42. One exemplary algorithm is the Doppler shift algorithm; however, various other algorithms can also be used.
  • System 10 can utilize certain imaging techniques in addition to or instead of Doppler imaging. Certain exemplary techniques include various decorrelation of frames techniques. One exemplary technique is B-flow imaging. B-flow imaging can be used by itself by system 10 or it can be combined with other techniques such as Doppler imaging. In an exemplary embodiment, system 10 combines various Doppler techniques with B-flow techniques to increase the speed and accuracy of images produced by system 10. One advantage of this increase in speed and accuracy is the ability to use a single transduction element within probe 18.
  • Turning now to FIG. 6, system 10 is used to obtain images of region of interest 19. In exemplary embodiments, ultrasound images can be obtained and an estimation of displacement of moving tissue including fluid is obtained by use of system 10.
  • When system 10 is used for Doppler color flow mapping, the user can determine the velocity of the moving tissue and fluid as well as obtain an image of region of interest 19. Specifically, graphics processing unit 16 processes the data obtained by peripheral ultrasound system 12 and produces an image displayed on output device 34 that includes the speed of the moving tissue and fluid. In certain exemplary embodiments, the image is shown in traditional gray-scale imaging.
  • In other exemplary embodiments, ultrasound system 12 produces a color map to show the direction of fluid and tissue movement. The directional movement either towards or away from probe is shown on output device 34 in contrasting colors. In an exemplary embodiment, tissue and fluid moving towards the probe could be shown in shades of blue and tissue and fluid moving away from probe 18 could be shown in shades of red.
  • If system 10 is used to generate an image and obtain and estimation of tissue displacement using power Doppler imaging an image detailing the presence or absence of blood flow is displayed on output device 34. By viewing that image, the user can determine the directional movement of the blood flow or other moving tissue using the power Doppler imaging technique. In an exemplary embodiment, B-Flow imaging is combined with power Doppler imaging to increase speed and efficiency.
  • An exemplary process of obtaining an image and measuring displacement of tissue movement begins with a user connecting peripheral ultrasound system 12 to host computer 14 with interface 28. In an exemplary embodiment, the user simply plugs one end of a USB connector provided on peripheral ultrasound system 12 into the corresponding USB connector located on host computer 14.
  • Probe 18 is placed on the patient's skin and the transduction element produces ultrasound energy which is conditioned by conditioning circuit 22 and focused by beamforming device 20 before being emitted from probe 18. The ultrasound energy waves enter region of interest 19 and are reflected and echoed back to probe 18. These reflected ultrasound waves are demodulated into computer readable data by demodulator 24 and sent to host computer 14 via interface 28.
  • Once the computer data has arrived at host computer 14, it is processed by graphics processing unit 16. Specifically, graphics processing unit 16 uses an algorithm to generate an image and measure displacement of the tissue or fluid movement, e.g., by producing a color flow map or gray-scale image and/or implementing a power Doppler technique. The image is displayed on output device 34 for the user's viewing. If multiple output devices 34 are used, the image is displayed on all of them. The user can then view the image and obtain an estimate of the moving tissue's displacement.
  • The present invention may be described herein in terms of various functional components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions. For example, the present invention may employ various medical treatment devices, visual imaging and display devices, input terminals and the like, which may carry out a variety of functions under the control of one or more control systems or other control devices. In addition, the present invention may be practiced in any number of medical contexts and that the exemplary embodiments relating to a system as described herein are merely indicative of exemplary applications for the invention. For example, the principles, features and methods discussed may be applied to any medical application. Further, various aspects of the present invention may be suitably applied to other applications, such as other medical or industrial applications.

Claims (21)

1. A system for diagnostic imaging and estimation of displacement of moving tissue and fluid comprising:
a probe that transmits and receives energy; and
a dedicated graphics processing unit comprising a memory and configured with algorithms to estimate tissue and fluid movement from energy received by the probe.
2. The system according to claim 1, further comprising a demodulator for processing energy received by the probe.
3. The system according to claim 1 further comprising a beamforming device for focusing and conditioning the energy emitted from the probe.
4. The system according to claim 3 wherein the beamforming device further comprises a conditioning circuit.
5. The system according to claim 3 further comprising a host computer connected to the beamforming device and in communication with the dedicated graphics processing unit for displaying an image and displacement of moving tissue to a user.
6. The system according to claim 5 wherein the host computer is connected to the beamforming device by a plug-and-play interface.
7. The system according to claim 6 wherein the plug-and-play interface is a USB.
8. The system according to claim 1 wherein the probe comprises a single element to deliver energy to a region of interest.
9. The system according to claim 1 wherein the dedicated graphics processing unit comprises a physics processing unit.
10. The system according to claim 1 wherein the dedicated graphics processing unit is a graphics card.
11. A system for diagnostic imaging and estimation of displacement of moving tissue and fluid comprising:
a peripheral ultrasound system for obtaining data from a region of interest comprising,
a probe that transmits and receives ultrasound energy,
a demodulator processing the ultrasound energy received by the probe,
a beamforming device for focusing and conditioning the ultrasound energy before it is emitted from the probe;
a graphics processing unit for processing the data obtained at the region of interest comprising a memory, a processor, and software configured with algorithms to estimate tissue displacement; and
a host computer in operative communication with the peripheral ultrasound system and the graphics processing unit for providing data processed by the graphics processing unit to the user and enabling the user to control the system.
12. The system according to claim 11 further comprising a plug-and-play interface to connect the host computer to the peripheral ultrasound system.
13. The system according to claim 12 wherein the plug-and-play interface is a USB.
14. The system according to claim 11 wherein the graphics processing unit utilizes an algorithm to determine a directional movement of tissue.
15. The system according to claim 11 wherein the graphics processing unit utilizes an algorithm to determine velocity of tissue displacement.
16. The system according to claim 11 wherein the graphics processing unit utilizes a Doppler shift algorithm to estimate tissue displacement.
17. The system according to claim 11 wherein the system utilizes a B-flow imaging technique to estimate tissue displacement.
18. The system according to claim 11 wherein the system combines a B-flow imaging technique with a Doppler shift algorithm to estimate tissue displacement.
19. The system according to claim 11 wherein the host computer further comprises at least two output devices to relay information about the region of interest to a user.
20. The system according to claim 19 wherein the at least two output devices are monitors that display an image.
21-39. (canceled)
US14/966,377 2006-10-04 2015-12-11 Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid Abandoned US20160262728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/966,377 US20160262728A1 (en) 2006-10-04 2015-12-11 Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/538,794 US9241683B2 (en) 2006-10-04 2006-10-04 Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US14/966,377 US20160262728A1 (en) 2006-10-04 2015-12-11 Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/538,794 Continuation US9241683B2 (en) 2006-10-04 2006-10-04 Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid

Publications (1)

Publication Number Publication Date
US20160262728A1 true US20160262728A1 (en) 2016-09-15

Family

ID=39275516

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/538,794 Active 2029-04-06 US9241683B2 (en) 2006-10-04 2006-10-04 Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US14/966,377 Abandoned US20160262728A1 (en) 2006-10-04 2015-12-11 Ultrasound System and Method for Imaging and/or Measuring Displacement of Moving Tissue and Fluid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/538,794 Active 2029-04-06 US9241683B2 (en) 2006-10-04 2006-10-04 Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid

Country Status (1)

Country Link
US (2) US9241683B2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US20030013972A1 (en) 2001-05-29 2003-01-16 Makin Inder Raj. S. Treatment of lung lesions using ultrasound
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US7806839B2 (en) 2004-06-14 2010-10-05 Ethicon Endo-Surgery, Inc. System and method for ultrasound therapy using grating lobes
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
EP1879502A2 (en) 2004-10-06 2008-01-23 Guided Therapy Systems, L.L.C. Method and system for cosmetic enhancement
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
PT2409728T (en) 2004-10-06 2017-11-16 Guided Therapy Systems Llc System for ultrasound tissue treatment
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
JP4695188B2 (en) 2005-04-25 2011-06-08 アーデント サウンド, インコーポレイテッド Method and apparatus for improving the safety of computer peripherals
WO2008009044A1 (en) * 2006-07-17 2008-01-24 Signostics Pty Ltd Improved medical diagnostic device
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US9241683B2 (en) 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
PT2152167T (en) 2007-05-07 2018-12-10 Guided Therapy Systems Llc Methods and systems for coupling and focusing acoustic energy using a coupler member
TWI526233B (en) 2007-05-07 2016-03-21 指導治療系統股份有限公司 Methods and systems for modulating medicants using acoustic energy
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
PL3058875T3 (en) 2008-06-06 2022-11-21 Ulthera, Inc. A system for cosmetic treatment and imaging
CA2748362A1 (en) 2008-12-24 2010-07-01 Michael H. Slayton Methods and systems for fat reduction and/or cellulite treatment
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
KR101117202B1 (en) * 2010-07-07 2012-03-16 한국전기연구원 USB type of Doppler ultrasonic apparatus
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
KR102068724B1 (en) 2011-07-10 2020-01-21 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for improving an outside appearance of skin using ultrasound as an energy source
KR20190080967A (en) 2011-07-11 2019-07-08 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for coupling an ultrasound source to tissue
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
WO2013170053A1 (en) 2012-05-09 2013-11-14 The Regents Of The University Of Michigan Linear magnetic drive transducer for ultrasound imaging
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
CN102940507A (en) * 2012-11-14 2013-02-27 苏州中加医疗科技有限公司 Micro color ultrasound
CN113648552A (en) 2013-03-08 2021-11-16 奥赛拉公司 Apparatus and method for multi-focal ultrasound therapy
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
BR112016023889B1 (en) 2014-04-18 2023-02-07 Ulthera, Inc ULTRASOUND TRANSDUCTION SYSTEM FOR LINEAR FOCUSING ULTRASOUND
US11026655B2 (en) 2014-09-26 2021-06-08 Samsung Electronics Co., Ltd. Ultrasound diagnostic apparatus and method of generating B-flow ultrasound image with single transmission and reception event
KR101649274B1 (en) * 2014-09-26 2016-08-18 삼성전자주식회사 Ultrasonic diagnosis apparatus and method of generating ultrasonic image
EP3220828B1 (en) 2014-11-18 2021-12-22 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
WO2016081321A2 (en) 2014-11-18 2016-05-26 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
WO2017035838A1 (en) * 2015-09-06 2017-03-09 深圳迈瑞生物医疗电子股份有限公司 Ultrasound gray-scale imaging system and method
KR20230175327A (en) 2016-01-18 2023-12-29 얼테라, 인크 Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
CN109562279B (en) 2016-08-16 2022-03-15 奥赛拉公司 System and method for cosmetic ultrasound treatment of skin
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041563A1 (en) * 2002-05-15 2004-03-04 Lewin Jonathan S. Method to correct magnetic field/phase variations in proton resonance frequency shift thermometry in magnetic resonance imaging
US6733449B1 (en) * 2003-03-20 2004-05-11 Siemens Medical Solutions Usa, Inc. System and method for real-time streaming of ultrasound data to a diagnostic medical ultrasound streaming application
US20050110793A1 (en) * 2003-11-21 2005-05-26 Steen Erik N. Methods and systems for graphics processing in a medical imaging system
US20050122333A1 (en) * 2003-12-05 2005-06-09 Siemens Medical Solutions Usa, Inc. Graphics processing unit for simulation or medical diagnostic imaging
US20060161062A1 (en) * 2003-06-12 2006-07-20 Bracco Research Sa Blood flow estimates through replenishment curve fitting in ultrasound contrast imaging

Family Cites Families (301)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2190364B1 (en) * 1972-07-04 1975-06-13 Patru Marcel
FR2214378A5 (en) * 1973-01-16 1974-08-09 Commissariat Energie Atomique
FR2254030B1 (en) * 1973-12-10 1977-08-19 Philips Massiot Mat Medic
US3965455A (en) * 1974-04-25 1976-06-22 The United States Of America As Represented By The Secretary Of The Navy Focused arc beam transducer-reflector
US4059098A (en) * 1975-07-21 1977-11-22 Stanford Research Institute Flexible ultrasound coupling system
JPS5353393A (en) * 1976-10-25 1978-05-15 Matsushita Electric Ind Co Ltd Ultrasonic probe
US4213344A (en) * 1978-10-16 1980-07-22 Krautkramer-Branson, Incorporated Method and apparatus for providing dynamic focussing and beam steering in an ultrasonic apparatus
US4276491A (en) * 1979-10-02 1981-06-30 Ausonics Pty. Limited Focusing piezoelectric ultrasonic medical diagnostic system
US4343301A (en) * 1979-10-04 1982-08-10 Robert Indech Subcutaneous neural stimulation or local tissue destruction
US4325381A (en) * 1979-11-21 1982-04-20 New York Institute Of Technology Ultrasonic scanning head with reduced geometrical distortion
US4315514A (en) * 1980-05-08 1982-02-16 William Drewes Method and apparatus for selective cell destruction
US4381787A (en) * 1980-08-15 1983-05-03 Technicare Corporation Ultrasound imaging system combining static B-scan and real-time sector scanning capability
US4372296A (en) * 1980-11-26 1983-02-08 Fahim Mostafa S Treatment of acne and skin disorders and compositions therefor
US4484569A (en) * 1981-03-13 1984-11-27 Riverside Research Institute Ultrasonic diagnostic and therapeutic transducer assembly and method for using
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
EP0068961A3 (en) * 1981-06-26 1983-02-02 Thomson-Csf Apparatus for the local heating of biological tissue
US4409839A (en) * 1981-07-01 1983-10-18 Siemens Ag Ultrasound camera
US4397314A (en) * 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4441486A (en) * 1981-10-27 1984-04-10 Board Of Trustees Of Leland Stanford Jr. University Hyperthermia system
DE3300121A1 (en) 1982-01-07 1983-07-14 Technicare Corp., 80112 Englewood, Col. METHOD AND DEVICE FOR IMAGING AND THERMALLY TREATING TISSUE BY MEANS OF ULTRASOUND
US4528979A (en) * 1982-03-18 1985-07-16 Kievsky Nauchno-Issledovatelsky Institut Otolaringologii Imeni Professora A.S. Kolomiiobenka Cryo-ultrasonic surgical instrument
US4452084A (en) * 1982-10-25 1984-06-05 Sri International Inherent delay line ultrasonic transducer and systems
EP0111386B1 (en) * 1982-10-26 1987-11-19 University Of Aberdeen Ultrasound hyperthermia unit
US4513749A (en) * 1982-11-18 1985-04-30 Board Of Trustees Of Leland Stanford University Three-dimensional temperature probe
US4527550A (en) * 1983-01-28 1985-07-09 The United States Of America As Represented By The Department Of Health And Human Services Helical coil for diathermy apparatus
FR2543437B1 (en) * 1983-03-30 1987-07-10 Duraffourd Alain COMPOSITION FOR REGENERATING COLLAGEN OF CONNECTIVE TISSUE OF THE SKIN AND METHOD FOR PREPARING SAME
US4601296A (en) * 1983-10-07 1986-07-22 Yeda Research And Development Co., Ltd. Hyperthermia apparatus
US5150711A (en) 1983-12-14 1992-09-29 Edap International, S.A. Ultra-high-speed extracorporeal ultrasound hyperthermia treatment device
US5143074A (en) 1983-12-14 1992-09-01 Edap International Ultrasonic treatment device using a focussing and oscillating piezoelectric element
US4567895A (en) * 1984-04-02 1986-02-04 Advanced Technology Laboratories, Inc. Fully wetted mechanical ultrasound scanhead
DE3447440A1 (en) * 1984-12-27 1986-07-03 Siemens AG, 1000 Berlin und 8000 München SHOCK SHAFT PIPE FOR THE CRUSHING OF CONCRETE
JPS61209643A (en) * 1985-03-15 1986-09-17 株式会社東芝 Ultrasonic diagnostic and medical treatment apparatus
JPH0678460B2 (en) * 1985-05-01 1994-10-05 株式会社バイオマテリアル・ユニバース Porous transparent polyvinyl alcohol gel
US4865042A (en) * 1985-08-16 1989-09-12 Hitachi, Ltd. Ultrasonic irradiation system
US4976709A (en) * 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5304169A (en) * 1985-09-27 1994-04-19 Laser Biotech, Inc. Method for collagen shrinkage
JPS6323126A (en) * 1986-02-13 1988-01-30 Bio Material Yunibaasu:Kk Soft contact lens and its production
JPS62249644A (en) 1986-04-22 1987-10-30 日石三菱株式会社 Dummy living body structure
US4875487A (en) * 1986-05-02 1989-10-24 Varian Associates, Inc. Compressional wave hyperthermia treating method and apparatus
US4807633A (en) * 1986-05-21 1989-02-28 Indianapolis Center For Advanced Research Non-invasive tissue thermometry system and method
US4867169A (en) * 1986-07-29 1989-09-19 Kaoru Machida Attachment attached to ultrasound probe for clinical application
US4865041A (en) * 1987-02-04 1989-09-12 Siemens Aktiengesellschaft Lithotripter having an ultrasound locating system integrated therewith
BG46024A1 (en) 1987-05-19 1989-10-16 Min Na Narodnata Otbrana Method and device for treatment of bone patology
USD306965S (en) 1987-09-04 1990-04-03 Mark Jaworski Dispenser for soap, lotions, or condiments
US4860732A (en) * 1987-11-25 1989-08-29 Olympus Optical Co., Ltd. Endoscope apparatus provided with endoscope insertion aid
US4917096A (en) * 1987-11-25 1990-04-17 Laboratory Equipment, Corp. Portable ultrasonic probe
US5163421A (en) 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
US5143063A (en) 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
US5036855A (en) 1988-03-02 1991-08-06 Laboratory Equipment, Corp. Localization and therapy system for treatment of spatially oriented focal disease
US5054470A (en) 1988-03-02 1991-10-08 Laboratory Equipment, Corp. Ultrasonic treatment transducer with pressurized acoustic coupling
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4955365A (en) 1988-03-02 1990-09-11 Laboratory Equipment, Corp. Localization and therapy system for treatment of spatially oriented focal disease
US4858613A (en) * 1988-03-02 1989-08-22 Laboratory Equipment, Corp. Localization and therapy system for treatment of spatially oriented focal disease
US4947046A (en) 1988-05-27 1990-08-07 Konica Corporation Method for preparation of radiographic image conversion panel and radiographic image conversion panel thereby
US4966953A (en) 1988-06-02 1990-10-30 Takiron Co., Ltd. Liquid segment polyurethane gel and couplers for ultrasonic diagnostic probe comprising the same
US4938216A (en) * 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Mechanically scanned line-focus ultrasound hyperthermia system
US4893624A (en) * 1988-06-21 1990-01-16 Massachusetts Institute Of Technology Diffuse focus ultrasound hyperthermia system
US4938217A (en) 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Electronically-controlled variable focus ultrasound hyperthermia system
US4896673A (en) * 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US5265614A (en) 1988-08-30 1993-11-30 Fujitsu Limited Acoustic coupler
FR2643770B1 (en) 1989-02-28 1991-06-21 Centre Nat Rech Scient MICROECHOGRAPHIC ULTRASONIC COLLIMATION PROBE THROUGH A DEFORMABLE SURFACE
US5057104A (en) * 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
US5435311A (en) 1989-06-27 1995-07-25 Hitachi, Ltd. Ultrasound therapeutic system
US5115814A (en) 1989-08-18 1992-05-26 Intertherapy, Inc. Intravascular ultrasonic imaging probe and methods of using same
US4973096A (en) * 1989-08-21 1990-11-27 Joyce Patrick H Shoe transporting device
AU650845B2 (en) 1989-08-28 1994-07-07 K. Michael Sekins Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids
US5156144A (en) * 1989-10-20 1992-10-20 Olympus Optical Co., Ltd. Ultrasonic wave therapeutic device
JPH03136642A (en) 1989-10-20 1991-06-11 Olympus Optical Co Ltd Ultrasonic treatment device
EP0427358B1 (en) 1989-11-08 1996-03-27 George S. Allen Mechanical arm for and interactive image-guided surgical system
US5209720A (en) 1989-12-22 1993-05-11 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
US5012797A (en) 1990-01-08 1991-05-07 Montefiore Hospital Association Of Western Pennsylvania Method for removing skin wrinkles
US5191880A (en) 1990-07-31 1993-03-09 Mcleod Kenneth J Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue
US5174929A (en) 1990-08-31 1992-12-29 Ciba-Geigy Corporation Preparation of stable polyvinyl alcohol hydrogel contact lens
DE4029175C2 (en) 1990-09-13 1993-10-28 Lauerer Friedrich Electrical protection device
US5117832A (en) 1990-09-21 1992-06-02 Diasonics, Inc. Curved rectangular/elliptical transducer
US5150714A (en) 1991-05-10 1992-09-29 Sri International Ultrasonic inspection method and apparatus with audible output
JP3095835B2 (en) 1991-10-30 2000-10-10 株式会社町田製作所 Gravity direction indicator for endoscopes
CA2126080A1 (en) 1991-12-20 1993-07-08 Jean-Yves Chapelon Ultrasound therapy apparatus delivering ultrasound waves having thermal and cavitation effects
US5230334A (en) 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
AU3727993A (en) * 1992-02-21 1993-09-13 Diasonics Inc. Ultrasound intracavity system for imaging therapy planning and treatment of focal disease
US5269297A (en) 1992-02-27 1993-12-14 Angiosonics Inc. Ultrasonic transmission apparatus
WO1993019705A1 (en) 1992-03-31 1993-10-14 Massachusetts Institute Of Technology Apparatus and method for acoustic heat generation and hyperthermia
US5295484A (en) 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
US5321520A (en) * 1992-07-20 1994-06-14 Automated Medical Access Corporation Automated high definition/resolution image storage, retrieval and transmission system
DE4229817C2 (en) * 1992-09-07 1996-09-12 Siemens Ag Method for the non-destructive and / or non-invasive measurement of a temperature change in the interior of a living object in particular
US5687737A (en) * 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
JP3224286B2 (en) 1992-11-02 2001-10-29 株式会社日本自動車部品総合研究所 Temperature measurement device using ultrasonic waves
DE4241161C2 (en) 1992-12-07 1995-04-13 Siemens Ag Acoustic therapy facility
DE4302538C1 (en) * 1993-01-29 1994-04-07 Siemens Ag Ultrasonic therapy device for tumour treatment lithotripsy or osteorestoration - with ultrasonic imaging and ultrasonic treatment modes using respective acoustic wave frequencies
US5267985A (en) 1993-02-11 1993-12-07 Trancell, Inc. Drug delivery by multiple frequency phonophoresis
DE4318237A1 (en) * 1993-06-01 1994-12-08 Storz Medical Ag Device for the treatment of biological tissue and body concretions
US5380280A (en) 1993-11-12 1995-01-10 Peterson; Erik W. Aspiration system having pressure-controlled and flow-controlled modes
US20020169394A1 (en) 1993-11-15 2002-11-14 Eppstein Jonathan A. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
US5371483A (en) 1993-12-20 1994-12-06 Bhardwaj; Mahesh C. High intensity guided ultrasound source
JPH07184907A (en) 1993-12-28 1995-07-25 Toshiba Corp Ultrasonic treating device
US5507790A (en) * 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
US5492126A (en) 1994-05-02 1996-02-20 Focal Surgery Probe for medical imaging and therapy using ultrasound
US5458596A (en) * 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5496256A (en) * 1994-06-09 1996-03-05 Sonex International Corporation Ultrasonic bone healing device for dental application
US5487388A (en) 1994-11-01 1996-01-30 Interspec. Inc. Three dimensional ultrasonic scanning devices and techniques
US5520188A (en) * 1994-11-02 1996-05-28 Focus Surgery Inc. Annular array transducer
US5873902A (en) 1995-03-31 1999-02-23 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
US5660836A (en) 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US6425912B1 (en) 1995-05-05 2002-07-30 Thermage, Inc. Method and apparatus for modifying skin surface and soft tissue structure
US6430446B1 (en) 1995-05-05 2002-08-06 Thermage, Inc. Apparatus for tissue remodeling
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US6241753B1 (en) * 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US5558092A (en) * 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
US6248073B1 (en) * 1995-06-29 2001-06-19 Teratech Corporation Ultrasound scan conversion with spatial dithering
US6135971A (en) 1995-11-09 2000-10-24 Brigham And Women's Hospital Apparatus for deposition of ultrasound energy in body tissue
US7473251B2 (en) 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US20040000316A1 (en) 1996-01-05 2004-01-01 Knowlton Edward W. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7115123B2 (en) 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US6350276B1 (en) 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US20030212393A1 (en) 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US5715823A (en) * 1996-02-27 1998-02-10 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
US5603323A (en) * 1996-02-27 1997-02-18 Advanced Technology Laboratories, Inc. Medical ultrasonic diagnostic system with upgradeable transducer probes and other features
US6190323B1 (en) * 1996-03-13 2001-02-20 Agielnt Technologies Direct contact scanner and related method
US5676692A (en) 1996-03-28 1997-10-14 Indianapolis Center For Advanced Research, Inc. Focussed ultrasound tissue treatment method
US5984882A (en) 1996-08-19 1999-11-16 Angiosonics Inc. Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy
US5971949A (en) 1996-08-19 1999-10-26 Angiosonics Inc. Ultrasound transmission apparatus and method of using same
US6605041B2 (en) 1996-08-22 2003-08-12 Synthes (U.S.A.) 3-D ultrasound recording device
US5795297A (en) * 1996-09-12 1998-08-18 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with personal computer architecture
IL120079A (en) 1997-01-27 2001-03-19 Technion Res & Dev Foundation Ultrasound system and cosmetic methods utilizing same
US5904659A (en) 1997-02-14 1999-05-18 Exogen, Inc. Ultrasonic treatment for wounds
US5853367A (en) * 1997-03-17 1998-12-29 General Electric Company Task-interface and communications system and method for ultrasound imager control
US5840032A (en) * 1997-05-07 1998-11-24 General Electric Company Method and apparatus for three-dimensional ultrasound imaging using transducer array having uniform elevation beamwidth
TW480172B (en) 1997-05-15 2002-03-21 Matsushita Electric Works Ltd Ultrasonic device
US5931805A (en) * 1997-06-02 1999-08-03 Pharmasonics, Inc. Catheters comprising bending transducers and methods for their use
JP3783339B2 (en) 1997-06-13 2006-06-07 松下電工株式会社 Ultrasonic beauty device
US6093883A (en) 1997-07-15 2000-07-25 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
TW370458B (en) 1997-08-11 1999-09-21 Matsushita Electric Works Ltd Ultrasonic facial apparatus
US20020169442A1 (en) 1997-08-12 2002-11-14 Joseph Neev Device and a method for treating skin conditions
US6113558A (en) 1997-09-29 2000-09-05 Angiosonics Inc. Pulsed mode lysis method
US6623430B1 (en) * 1997-10-14 2003-09-23 Guided Therapy Systems, Inc. Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system
US6050943A (en) * 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US6071239A (en) 1997-10-27 2000-06-06 Cribbs; Robert W. Method and apparatus for lipolytic therapy using ultrasound energy
US6007499A (en) 1997-10-31 1999-12-28 University Of Washington Method and apparatus for medical procedures using high-intensity focused ultrasound
US6113559A (en) * 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
US20060184071A1 (en) 1997-12-29 2006-08-17 Julia Therapeutics, Llc Treatment of skin with acoustic energy
US20020040199A1 (en) 1997-12-29 2002-04-04 Klopotek Peter J. Method and apparatus for therapeutic treatment of skin
US6325769B1 (en) * 1998-12-29 2001-12-04 Collapeutics, Llc Method and apparatus for therapeutic treatment of skin
US6171244B1 (en) * 1997-12-31 2001-01-09 Acuson Corporation Ultrasonic system and method for storing data
DE19800416C2 (en) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound
US20020055702A1 (en) 1998-02-10 2002-05-09 Anthony Atala Ultrasound-mediated drug delivery
US6101407A (en) * 1998-02-13 2000-08-08 Eastman Kodak Company Method and system for remotely viewing and configuring output from a medical imaging device
WO1999049788A1 (en) 1998-03-30 1999-10-07 Focus Surgery, Inc. Ablation system
US6685640B1 (en) 1998-03-30 2004-02-03 Focus Surgery, Inc. Ablation system
US7494488B2 (en) 1998-05-28 2009-02-24 Pearl Technology Holdings, Llc Facial tissue strengthening and tightening device and methods
US6077294A (en) 1998-06-11 2000-06-20 Cynosure, Inc. Method for non-invasive wrinkle removal and skin treatment
US6443914B1 (en) 1998-08-10 2002-09-03 Lysonix, Inc. Apparatus and method for preventing and treating cellulite
IL126236A0 (en) 1998-09-16 1999-05-09 Ultra Cure Ltd A method device and system for skin peeling
US6302848B1 (en) 1999-07-01 2001-10-16 Sonotech, Inc. In vivo biocompatible acoustic coupling media
IL126505A0 (en) 1998-10-09 1999-08-17 Ultra Cure Ltd A method and device for hair removal
US6948843B2 (en) 1998-10-28 2005-09-27 Covaris, Inc. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
US6159150A (en) * 1998-11-20 2000-12-12 Acuson Corporation Medical diagnostic ultrasonic imaging system with auxiliary processor
WO2000030554A1 (en) 1998-11-20 2000-06-02 Jones Joie P Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound
US6676655B2 (en) 1998-11-30 2004-01-13 Light Bioscience L.L.C. Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen
JP4089058B2 (en) 1998-12-10 2008-05-21 ソニー株式会社 Cleaning device and cleaning method for printing screen
US6428532B1 (en) 1998-12-30 2002-08-06 The General Hospital Corporation Selective tissue targeting by difference frequency of two wavelengths
US6296619B1 (en) 1998-12-30 2001-10-02 Pharmasonics, Inc. Therapeutic ultrasonic catheter for delivering a uniform energy dose
US6200308B1 (en) 1999-01-29 2001-03-13 Candela Corporation Dynamic cooling of tissue for radiation treatment
US6210327B1 (en) * 1999-04-28 2001-04-03 General Electric Company Method and apparatus for sending ultrasound image data to remotely located device
US20030060736A1 (en) 1999-05-14 2003-03-27 Martin Roy W. Lens-focused ultrasonic applicator for medical applications
US6217530B1 (en) 1999-05-14 2001-04-17 University Of Washington Ultrasonic applicator for medical applications
US6666835B2 (en) 1999-05-14 2003-12-23 University Of Washington Self-cooled ultrasonic applicator for medical applications
US20040015079A1 (en) * 1999-06-22 2004-01-22 Teratech Corporation Ultrasound probe with integrated electronics
US6287257B1 (en) * 1999-06-29 2001-09-11 Acuson Corporation Method and system for configuring a medical diagnostic ultrasound imaging system
JP2005512671A (en) 1999-06-30 2005-05-12 サーメイジ インコーポレイテッド Fluid dosing device
US20030216795A1 (en) 1999-07-07 2003-11-20 Yoram Harth Apparatus and method for high energy photodynamic therapy of acne vulgaris, seborrhea and other skin disorders
US6451007B1 (en) 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US20020173721A1 (en) * 1999-08-20 2002-11-21 Novasonics, Inc. User interface for handheld imaging devices
JP2003512103A (en) 1999-10-18 2003-04-02 フォーカス サージェリー,インコーポレイテッド Split beam converter
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
US6325540B1 (en) * 1999-11-29 2001-12-04 General Electric Company Method and apparatus for remotely configuring and servicing a field replaceable unit in a medical diagnostic system
US6356780B1 (en) * 1999-12-22 2002-03-12 General Electric Company Method and apparatus for managing peripheral devices in a medical imaging system
CA2394892A1 (en) 1999-12-23 2001-06-28 Therus Corporation Ultrasound transducers for imaging and therapy
US6699237B2 (en) 1999-12-30 2004-03-02 Pearl Technology Holdings, Llc Tissue-lifting device
US6595934B1 (en) 2000-01-19 2003-07-22 Medtronic Xomed, Inc. Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6692450B1 (en) * 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US6409720B1 (en) 2000-01-19 2002-06-25 Medtronic Xomed, Inc. Methods of tongue reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6413254B1 (en) 2000-01-19 2002-07-02 Medtronic Xomed, Inc. Method of tongue reduction by thermal ablation using high intensity focused ultrasound
US6361531B1 (en) 2000-01-21 2002-03-26 Medtronic Xomed, Inc. Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
AU2001257328A1 (en) 2000-04-28 2001-11-12 Focus Surgery, Inc. Ablation system with visualization
AU2001255724A1 (en) 2000-04-29 2001-11-12 Focus Surgery, Inc. Non-invasive tissue characterization
US6312385B1 (en) * 2000-05-01 2001-11-06 Ge Medical Systems Global Technology Company, Llc Method and apparatus for automatic detection and sizing of cystic objects
WO2002009813A1 (en) 2000-07-31 2002-02-07 El. En. S.P.A. Method and device for epilation by ultrasound
JP2002078764A (en) 2000-09-06 2002-03-19 Purotec Fuji:Kk Portable cosmetic massage machine
EP1339311A4 (en) 2000-09-19 2008-04-30 Focus Surgery Inc Tissue treatment method and apparatus
US6910139B2 (en) 2000-10-02 2005-06-21 Fujitsu Limited Software processing apparatus with a switching processing unit for displaying animation images in an environment operating base on type of power supply
WO2002036013A1 (en) 2000-10-18 2002-05-10 Paieon Inc. Method and system for positioning a device in a tubular organ
GB0030449D0 (en) * 2000-12-13 2001-01-24 Deltex Guernsey Ltd Improvements in or relating to doppler haemodynamic monitors
US6746444B2 (en) 2000-12-18 2004-06-08 Douglas J. Key Method of amplifying a beneficial selective skin response to light energy
US6626854B2 (en) * 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
EP1700573A3 (en) 2000-12-28 2010-12-01 Palomar Medical Technologies, Inc. Apparatus for therapeutic EMR treatment of the skin
US6540679B2 (en) 2000-12-28 2003-04-01 Guided Therapy Systems, Inc. Visual imaging system for ultrasonic probe
US7347855B2 (en) 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
US6607498B2 (en) 2001-01-03 2003-08-19 Uitra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
JP2002248153A (en) 2001-02-23 2002-09-03 Matsushita Electric Works Ltd Ultrasonic cosmetic device
US6804327B2 (en) 2001-04-03 2004-10-12 Lambda Physik Ag Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays
US20020165529A1 (en) 2001-04-05 2002-11-07 Danek Christopher James Method and apparatus for non-invasive energy delivery
US6478754B1 (en) 2001-04-23 2002-11-12 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
WO2002087692A1 (en) 2001-04-26 2002-11-07 The Procter & Gamble Company A method and apparatus for the treatment of cosmetic skin conditioins
GB0111440D0 (en) 2001-05-10 2001-07-04 Procter & Gamble Method and kit for the treatment or prevention of cosmetic skin conditions
JP3937755B2 (en) 2001-05-28 2007-06-27 松下電工株式会社 Ultrasonic beauty device
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US6659956B2 (en) 2001-06-29 2003-12-09 Barzell-Whitmore Maroon Bells, Inc. Medical instrument positioner
JP2003050298A (en) 2001-08-06 2003-02-21 Fuji Photo Film Co Ltd Radiographic image conversion panel and its manufacturing method
US7018396B2 (en) 2001-08-07 2006-03-28 New England Medical Center Hospitals, Inc. Method of treating acne
US20030032900A1 (en) 2001-08-08 2003-02-13 Engii (2001) Ltd. System and method for facial treatment
DE10140064A1 (en) 2001-08-16 2003-03-13 Rainer Weismueller Cosmetic or medical treatment of the skin using ultrasound waves, e.g. permanent hair removal using a simple device comprising a mechanical oscillator and focussing lenses with a spacer for varying the distance to the skin
US7094252B2 (en) 2001-08-21 2006-08-22 Cooltouch Incorporated Enhanced noninvasive collagen remodeling
US6638226B2 (en) * 2001-09-28 2003-10-28 Teratech Corporation Ultrasound imaging system
CA2406684A1 (en) * 2001-10-05 2003-04-05 Queen's University At Kingston Ultrasound transducer array
US7115093B2 (en) * 2001-11-21 2006-10-03 Ge Medical Systems Global Technology Company, Llc Method and system for PDA-based ultrasound system
US6746402B2 (en) 2002-01-02 2004-06-08 E. Tuncay Ustuner Ultrasound system and method
JP2003204982A (en) 2002-01-09 2003-07-22 Byeong Gon Kim Abdomen warming and vibrating belt
US7674233B2 (en) 2002-01-29 2010-03-09 Michael John Radley Young Method and apparatus for focussing ultrasonic energy
WO2003070105A1 (en) 2002-02-20 2003-08-28 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
US6824516B2 (en) 2002-03-11 2004-11-30 Medsci Technologies, Inc. System for examining, mapping, diagnosing, and treating diseases of the prostate
IL148791A0 (en) 2002-03-20 2002-09-12 Yoni Iger Method and apparatus for altering activity of tissue layers
US7534211B2 (en) * 2002-03-29 2009-05-19 Sonosite, Inc. Modular apparatus for diagnostic ultrasound
US6887239B2 (en) 2002-04-17 2005-05-03 Sontra Medical Inc. Preparation for transmission and reception of electrical signals
US7000126B2 (en) 2002-04-18 2006-02-14 Intel Corporation Method for media content presentation in consideration of system power
DE10219217B3 (en) 2002-04-29 2004-02-12 Creative-Line Gmbh Object with picture built up from lines, e.g. for decoration, has line pattern eroded into main surface
US20030236487A1 (en) 2002-04-29 2003-12-25 Knowlton Edward W. Method for treatment of tissue with feedback
US20030212129A1 (en) 2002-05-13 2003-11-13 Liu Kay Miyakawa System and method for revitalizing human skin
WO2003096883A2 (en) 2002-05-16 2003-11-27 Barbara Ann Karmanos Cancer Institute Combined diagnostic and therapeutic ultrasound system
US6958043B2 (en) 2002-05-21 2005-10-25 Medtronic Xomed, Inc. Apparatus and method for displacing the partition between the middle ear and the inner ear using a manually powered device
US7179238B2 (en) 2002-05-21 2007-02-20 Medtronic Xomed, Inc. Apparatus and methods for directly displacing the partition between the middle ear and inner ear at an infrasonic frequency
CA2484515A1 (en) 2002-05-30 2003-12-11 University Of Washington Solid hydrogel coupling for ultrasound imaging and therapy
JP2005535370A (en) 2002-06-19 2005-11-24 パロマー・メディカル・テクノロジーズ・インコーポレイテッド Method and apparatus for treating skin and subcutaneous conditions
WO2004000116A1 (en) 2002-06-25 2003-12-31 Ultrashape Inc. Devices and methodologies useful in body aesthetics
US20040001809A1 (en) 2002-06-26 2004-01-01 Pharmasonics, Inc. Methods and apparatus for enhancing a response to nucleic acid vaccines
JP3728283B2 (en) * 2002-08-30 2005-12-21 キヤノン株式会社 Recording device
US6709392B1 (en) 2002-10-10 2004-03-23 Koninklijke Philips Electronics N.V. Imaging ultrasound transducer temperature control system and method using feedback
US6921371B2 (en) 2002-10-14 2005-07-26 Ekos Corporation Ultrasound radiating members for catheter
AU2003278424A1 (en) * 2002-11-06 2004-06-07 Koninklijke Philips Electronics N.V. Phased array acoustic system for 3d imaging of moving parts_____
US20040143297A1 (en) 2003-01-21 2004-07-22 Maynard Ramsey Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment
US20030191396A1 (en) 2003-03-10 2003-10-09 Sanghvi Narendra T Tissue treatment method and apparatus
CA2518206C (en) 2003-03-13 2012-10-23 Alfatech Medical Systems Ltd. Cellulite ultrasound treatment
JP2006521902A (en) 2003-03-31 2006-09-28 ライポソニックス, インコーポレイテッド Vortex transducer
US20040206365A1 (en) 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US9149322B2 (en) 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
DE602004017248D1 (en) 2003-05-19 2008-12-04 Ust Inc Geometrically shaped hydrogel coupling bodies for high intensity focused ultrasound treatment
WO2004103183A2 (en) 2003-05-21 2004-12-02 Dietrich Rene H Ultrasound coupling medium for use in medical diagnostics
JP4041014B2 (en) 2003-06-06 2008-01-30 オリンパス株式会社 Ultrasonic surgical device
US7074218B2 (en) 2003-06-30 2006-07-11 Ethicon, Inc. Multi-modality ablation device
US20050070961A1 (en) 2003-07-15 2005-03-31 Terumo Kabushiki Kaisha Energy treatment apparatus
JP4472395B2 (en) 2003-08-07 2010-06-02 オリンパス株式会社 Ultrasonic surgery system
US20050080469A1 (en) 2003-09-04 2005-04-14 Larson Eugene A. Treatment of cardiac arrhythmia utilizing ultrasound
DE20314479U1 (en) 2003-09-13 2004-02-12 Peter Krauth Gmbh Low frequency ultrasound treatment unit for wet use has electronic unit with detachable connection to sealed titanium or stainless steel membrane ultrasound head
US20050074407A1 (en) 2003-10-01 2005-04-07 Sonotech, Inc. PVP and PVA as in vivo biocompatible acoustic coupling medium
US20050113689A1 (en) * 2003-11-21 2005-05-26 Arthur Gritzky Method and apparatus for performing multi-mode imaging
US20050137656A1 (en) 2003-12-23 2005-06-23 American Environmental Systems, Inc. Acoustic-optical therapeutical devices and methods
JP4722860B2 (en) 2003-12-30 2011-07-13 ライポソニックス, インコーポレイテッド System and method for destruction of adipose tissue
US20050154308A1 (en) 2003-12-30 2005-07-14 Liposonix, Inc. Disposable transducer seal
BRPI0417907A (en) 2003-12-30 2007-04-10 Liposonix Inc ultrasound head, energy applicator, means for maneuvering it, and method for distributing ultrasound energy to a body surface
WO2005065408A2 (en) 2003-12-30 2005-07-21 Liposonix, Inc. Component ultrasound transducer
US20050154332A1 (en) 2004-01-12 2005-07-14 Onda Methods and systems for removing hair using focused acoustic energy
ATE479895T1 (en) 2004-03-12 2010-09-15 Univ Virginia ELECTRON TRANSFER DISSOCIATION FOR BIOPOLYMER SEQUENCE ANALYSIS
US20050228281A1 (en) * 2004-03-31 2005-10-13 Nefos Thomas P Handheld diagnostic ultrasound system with head mounted display
BRPI0509744A (en) 2004-04-09 2007-09-25 Palomar Medical Tech Inc methods and products for producing emr-treated islet lattices in fabrics and their uses
JP4100372B2 (en) 2004-05-10 2008-06-11 松下電工株式会社 Ultrasonic beauty equipment
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US7837675B2 (en) 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US7310928B2 (en) 2004-08-24 2007-12-25 Curry Janine V Retractable spurs
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US7530958B2 (en) 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
TR201821337T4 (en) 2004-10-06 2019-01-21 Guided Therapy Systems Llc System for controlled thermal treatment of superficial human tissue.
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
EP1879502A2 (en) 2004-10-06 2008-01-23 Guided Therapy Systems, L.L.C. Method and system for cosmetic enhancement
PT2409728T (en) 2004-10-06 2017-11-16 Guided Therapy Systems Llc System for ultrasound tissue treatment
US7530356B2 (en) 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US20060079868A1 (en) 2004-10-07 2006-04-13 Guided Therapy Systems, L.L.C. Method and system for treatment of blood vessel disorders
US20060089688A1 (en) 2004-10-25 2006-04-27 Dorin Panescu Method and apparatus to reduce wrinkles through application of radio frequency energy to nerves
US20060122509A1 (en) 2004-11-24 2006-06-08 Liposonix, Inc. System and methods for destroying adipose tissue
CN100542635C (en) 2005-01-10 2009-09-23 重庆海扶(Hifu)技术有限公司 High intensity focused ultrasound therapy device and method
US7553284B2 (en) 2005-02-02 2009-06-30 Vaitekunas Jeffrey J Focused ultrasound for pain reduction
US20060241440A1 (en) 2005-02-07 2006-10-26 Yoram Eshel Non-thermal acoustic tissue modification
US7771418B2 (en) 2005-03-09 2010-08-10 Sunnybrook Health Sciences Centre Treatment of diseased tissue using controlled ultrasonic heating
JP4695188B2 (en) 2005-04-25 2011-06-08 アーデント サウンド, インコーポレイテッド Method and apparatus for improving the safety of computer peripherals
US7330578B2 (en) * 2005-06-23 2008-02-12 Accuray Inc. DRR generation and enhancement using a dedicated graphics device
WO2007019365A2 (en) 2005-08-03 2007-02-15 Massachusetts Eye & Ear Infirmary Targeted muscle ablation for reducing signs of aging
US20070088346A1 (en) 2005-10-14 2007-04-19 Mirizzi Michael S Method and apparatus for varicose vein treatment using acoustic hemostasis
JP3123559U (en) 2006-05-10 2006-07-20 ニチハ株式会社 Makeup corner material
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
WO2008036773A1 (en) 2006-09-19 2008-03-27 Guided Therapy Systems, Llc Method and system for treating muscle, tendon, ligament and cartilage tissue
US9241683B2 (en) 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
PT2152167T (en) 2007-05-07 2018-12-10 Guided Therapy Systems Llc Methods and systems for coupling and focusing acoustic energy using a coupler member
TWI526233B (en) 2007-05-07 2016-03-21 指導治療系統股份有限公司 Methods and systems for modulating medicants using acoustic energy
JP7080087B2 (en) 2018-03-30 2022-06-03 太平洋セメント株式会社 Ridge creation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041563A1 (en) * 2002-05-15 2004-03-04 Lewin Jonathan S. Method to correct magnetic field/phase variations in proton resonance frequency shift thermometry in magnetic resonance imaging
US6733449B1 (en) * 2003-03-20 2004-05-11 Siemens Medical Solutions Usa, Inc. System and method for real-time streaming of ultrasound data to a diagnostic medical ultrasound streaming application
US20060161062A1 (en) * 2003-06-12 2006-07-20 Bracco Research Sa Blood flow estimates through replenishment curve fitting in ultrasound contrast imaging
US20050110793A1 (en) * 2003-11-21 2005-05-26 Steen Erik N. Methods and systems for graphics processing in a medical imaging system
US20050122333A1 (en) * 2003-12-05 2005-06-09 Siemens Medical Solutions Usa, Inc. Graphics processing unit for simulation or medical diagnostic imaging

Also Published As

Publication number Publication date
US9241683B2 (en) 2016-01-26
US20080086054A1 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US9241683B2 (en) Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
CN102028498B (en) Ultrasonic diagnosis apparatus and ultrasonic image processing apparatus
US20120116218A1 (en) Method and system for displaying ultrasound data
CN106539596B (en) Ultrasonic probe, ultrasonic imaging apparatus including the same, and control method thereof
US6110114A (en) Flexible beam sequencing for 3-dimensional ultrasound imaging
US8351666B2 (en) Portable imaging system having a seamless form factor
US20070038090A1 (en) Ultrasound system for displaying an elastic image
JP2010227568A (en) System and method for functional ultrasound imaging
JP7232237B2 (en) Automated blood pool identification system and method of operation
US11532084B2 (en) Gating machine learning predictions on medical ultrasound images via risk and uncertainty quantification
WO2020002445A1 (en) Shear wave detection of anatomical viscosity and associated devices, systems, and methods
JP5063216B2 (en) Ultrasonic diagnostic apparatus and processing program
US20180028161A1 (en) Diagnostic guidance systems and methods
WO2008029728A1 (en) Ultrasonograph
US8062040B2 (en) Apparatus and method for electrical connection clamping
JP2015054007A (en) Ultrasonic measurement device, ultrasonic imaging device and control method of ultrasonic measurement device
JP2004033765A (en) Measuring instrument for measuring characteristics of elasticity of medium with ultrasonic images
KR20180087698A (en) Ultrasound diagnostic apparatus for displaying shear wave data of the object and method for operating the same
CN113100824A (en) System and method for automatic lesion characterization
EP4344652A1 (en) Ultrasonography apparatus, image processing apparatus, ultrasound image capturing method, and ultrasound image capturing program
EP4344649A1 (en) Ultrasound diagnostic apparatus and control method for ultrasound diagnostic apparatus
US20230263501A1 (en) Determining heart rate based on a sequence of ultrasound images
WO2022064868A1 (en) Ultrasonic system and method for controlling ultrasonic system
KR101060386B1 (en) Ultrasound system and method for forming elastic images
US20210169453A1 (en) Thermoacoustic method and system configured to interface with an ultrasound system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARDENT SOUND, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SLAYTON, MICHAEL H.;BARTHE, PETER G.;JAEGER, PAUL;SIGNING DATES FROM 20151211 TO 20151215;REEL/FRAME:037295/0684

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION