US20160218278A1 - Magnetic tunnel junction structure for mram device - Google Patents

Magnetic tunnel junction structure for mram device Download PDF

Info

Publication number
US20160218278A1
US20160218278A1 US15/093,367 US201615093367A US2016218278A1 US 20160218278 A1 US20160218278 A1 US 20160218278A1 US 201615093367 A US201615093367 A US 201615093367A US 2016218278 A1 US2016218278 A1 US 2016218278A1
Authority
US
United States
Prior art keywords
layer
thickness
nanometers
approximately
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/093,367
Inventor
Mustafa Pinarbasi
Bartek Kardasz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spin Memory Inc
Original Assignee
Spin Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spin Memory Inc filed Critical Spin Memory Inc
Priority to US15/093,367 priority Critical patent/US20160218278A1/en
Publication of US20160218278A1 publication Critical patent/US20160218278A1/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Spin Transfer Technologies, Inc.
Assigned to SPIN MEMORY, INC. reassignment SPIN MEMORY, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: Spin Transfer Technologies, Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H01L43/08
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01L43/02
    • H01L43/10
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/933Spintronics or quantum computing
    • Y10S977/935Spin dependent tunnel, SDT, junction, e.g. tunneling magnetoresistance, TMR

Definitions

  • the present patent document relates generally to spin-transfer torque magnetic random access memory and, more particularly, to a magnetic tunnel junction layer stack with an orthogonally magnetized layer that provides a final magnetic state of the storage layer deterministically defined by the current polarity.
  • Magnetoresistive random-access memory is a non-volatile memory technology that stores data through magnetic storage elements. These elements are two ferromagnetic plates or electrodes that can hold a magnetic field and are separated by a non-magnetic material, such as a nonmagnetic metal or insulator. In general, one of the plates has its magnetization pinned (i.e., a “reference layer”), meaning that this layer has a higher coercivity than the other layer and requires a larger magnetic field or spin-polarized current to change the orientation of its magnetization. The second plate is typically referred to as the free layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer.
  • a reference layer typically referred to as the free layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer.
  • MRAM devices store information by changing the orientation of the magnetic moment of the free layer. In particular, based on whether the free layer is in a parallel or anti-parallel alignment relative to the reference layer, either a “1” or a “0” can be stored in each MRAM cell. Due to the spin-polarized electron tunneling effect, the electrical resistance of the cell change due to the orientation of the magnetic fields of the two layers. The cell's resistance will be different for the parallel and anti-parallel states and thus the cell's resistance can be used to distinguish between a “1” and a “0”.
  • MRAM devices are non-volatile memory devices, since they maintain the information even when the power is off.
  • the two plates can be sub-micron in lateral size and the magnetization can still be stable with respect to thermal fluctuations.
  • polarized spin-aligned
  • electrons possess a spin, a quantized number of angular momentum intrinsic to the electron.
  • An electrical current is generally unpolarized, i.e., it consists of 50% spin up and 50% spin down electrons. Passing a current through a magnetic layer polarizes electrons with the spin orientation corresponding to the magnetization direction of the magnetic layer (i.e., polarizer), thus produces a spin-polarized current.
  • FIG. 1 illustrates a magnetic tunnel junction (“MTJ”) stack 100 for a conventional MRAM device.
  • stack 100 includes one or more seed layers 110 provided at the bottom of stack 100 to initiate a desired crystalline growth in the above-deposited layers.
  • a pinning layer 112 is disposed on top of seed layers 110 and a synthetic antiferromagnetic layer (“SAF layer”) 120 is disposed on top of the pinning layer 112 .
  • SAF layer synthetic antiferromagnetic layer
  • MTJ 130 is deposited on top of SAF layer 120 .
  • MTJ 130 includes the reference layer 132 , a barrier layer (i.e., the insulator) 134 , and the free layer 136 .
  • reference layer 132 is actually part of SAF layer 120 , but forms one of the ferromagnetic plates of MTJ 130 when the barrier layer 134 and free layer 136 are formed on reference layer 132 .
  • the first magnetic layer in the synthetic antiferromagnetic structure 120 is exchange coupled to the pinning layer 112 , which causes, through antiferromagnetic coupling, the magnetization of the reference layer 132 to be fixed.
  • a nonmagnetic spacer 140 is disposed on top of MTJ 130 and a perpendicular polarizer 150 is disposed on top of the nonmagnetic spacer 140 .
  • Perpendicular polarizer 150 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ structure 100 . Further, one or more capping layers 160 can be provided on top of perpendicular polarizer 150 to protect the layers below on MTJ stack 100 . Finally, a hard mask 170 is deposited over capping layers 160 and is provided to pattern the underlying layers of the MTJ structure 100 , using a reactive ion etch (RIE) process.
  • RIE reactive ion etch
  • MRAM products having MTJ structures such as stack 100 illustrated in FIG. 1
  • MTJ structures are already being used in large data storage devices.
  • the storage layer i.e., the free layer
  • MTJ structures utilize perpendicular polarizers whose magnetization is orthogonal to the storage layer.
  • One critical limitation with such designs is that the final magnetic vector state of the storage layer cannot be controlled.
  • One proposed solution to control the final magnetic vector state is to have a first current polarity to start the magnetization reversal process and a second current polarity to stop the magnetization precession of the free layer at a defined magnetization state.
  • implementation of this technique/design is not yet possible due to technological limitations of pulse control, i.e., in the range of 100 picoseconds.
  • the non-magnetic conductor layers in the conventional MTJ designs are inadequate to obtain high tunneling magnetoresistance value (“TMR”) and to achieve the switching characteristics that are required from such devices.
  • Another proposed solution to control the final magnetic state of the storage layer is to have the spin torque from the reference layer be greater than the spin torque from the polarizer.
  • this design is only theoretical in nature and has not been successfully manufactured to date.
  • FIG. 2 illustrates a table comparing the TMR value versus thickness of a CoFeB free layer for a conventional MTJ structure with a copper (Cu) nonmagnetic spacer 140 .
  • the MTR value for a conventional MTJ structure with a 2.3 nm CoFeB free layer is approximately 80%.
  • the TMR value rapidly decreases, for example, to a TMR value of 9% for a CoFeB free layer thickness of 1.5 nm.
  • even a CoFeB free layer having a thickness of 1.8 nm provides a device with a TMR value of approximately 38%.
  • TMR values are completely inadequate for MRAM applications.
  • a TMR value of approximately 120% or greater is required to meet the MRAM requirements and specifications.
  • Prior art OST-MTJ structures simply cannot achieve this high TMR and also have inferior switching characteristics due to: (i) the spacer layers used (such as Cu) between the free layer and the polarizer (i.e., a nonmagnetic spacer 140 of FIG. 1 ); and (ii) poor free layer magnetic properties.
  • the MRAM device disclosed herein overcomes the limitations of the prior art designs by providing an MTJ structure with a significantly improved TMR value and optimized free layer magnetic properties, especially effective magnetization (Mm) values.
  • the MTJ structure includes an MTJ layer stack with an orthogonally magnetized layer (polarizer) that provides a final magnetic vector state of the storage layer deterministically defined by the current polarity.
  • polarizer orthogonally magnetized layer
  • the MTJ structure balances the spin torque from the polarizer and the reference layers to achieve the deterministic characteristic of switching.
  • the MTJ structure disclosed herein includes nonmagnetic spacer layers (between the storage/free layer and the polarizer layer) comprised of magnesium oxide (MgO) and tantalum nitride (TaN) materials that balances the spin torques acting on the free layer.
  • the tantalum nitride layer has alpha phase crystalline structure with low resistance. This design enables a deterministic final state for the storage layer and significantly improves the TMR and switching characteristics of the MTJ for MRAM applications.
  • an exemplary embodiment provides a magnetic device including an antiferromagnetic structure including a reference layer; a barrier layer disposed on the reference layer; a free layer disposed on the barrier layer; a nonmagnetic spacer layer disposed on the free layer, the nonmagnetic spacer including a layer of tantalum nitride capping material; and a polarizer disposed on the nonmagnetic spacer.
  • the nonmagnetic spacer layer further comprises a layer of magnesium oxide.
  • the layer of magnesium oxide comprises a thickness of approximately 0.3 nanometers.
  • the layer of tantalum nitride capping material comprises a thickness between 1.0 and 5.0 nanometers.
  • the layer of tantalum nitride capping material comprises a thickness of approximately 1.0 nanometers.
  • the layer of tantalum nitride capping material comprises a thickness of approximately 5.0 nanometers.
  • the magnetic device is an orthogonal spin transfer torque structure.
  • the reference layer and the free layer each comprise a CoFeB thin film layer having a thickness of approximately 2.3 nanometers and 1.85 nanometers, respectively.
  • the nonmagnetic spacer layer further comprises a copper layer having a thickness of approximately 5.0 nanometers and the thickness of the layer of tantalum nitride capping material is approximately 1.0-5.0 nanometers.
  • the nonmagnetic spacer layer further comprises a copper layer having a thickness of approximately 10 nanometers, and wherein the layer of tantalum nitride capping material has a thickness of approximately 1.0 nanometers.
  • the exemplary magnetic device forms a bit cell of a memory array.
  • FIG. 1 illustrates a conventional MTJ stack for an MRAM device.
  • FIG. 2 illustrates a table comparing the TMR value versus thickness of a CoFeB free layer for a conventional MTJ structure with a copper nonmagnetic spacer.
  • FIG. 3 illustrates an MTJ layer stack in accordance with an exemplary embodiment of the new MTJ layer stack described herein.
  • FIG. 4 illustrates a chart that compares magnetic characteristics for a conventional design with the exemplary embodiment of the MTJ structure disclosed herein having the polarizer deposited on an MgO/TaN spacer.
  • FIGS. 5 and 6 illustrate graphs comparing free layer coercivity of the conventional design with the exemplary embodiment of the MTJ structure disclosed herein having a nonmagnetic spacer composed of MgO and TaN.
  • FIG. 7 illustrates a table comparing TMR values for conventional MTJ structures with those of the exemplary embodiment of the MTJ structure disclosed herein.
  • FIG. 8 illustrates a table of the TMR values with a varying TaN thickness according to an exemplary embodiment of the MTJ structure disclosed herein.
  • FIG. 9A illustrates the switching behavior for an MTJ device with no polarizer and FIG. 9B illustrates the same data for an MTJ device with a polarizer.
  • a magnetic tunnel junction (“MTJ”) layer stack is disclosed herein.
  • MTJ magnetic tunnel junction
  • Each of the features and teachings disclosed herein can be utilized separately or in conjunction with other features and teachings. Representative examples utilizing many of these additional features and teachings, both separately and in combination, are described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the claims. Therefore, combinations of features disclosed in the following detailed description may not be necessary to practice the teachings in the broadest sense, and are instead taught merely to describe particularly representative examples of the present teachings.
  • the MTJ structure disclosed herein includes an MTJ layer stack with an orthogonally magnetized layer (polarizer) that provides a final magnetic vector state of the storage layer deterministically defined by the current polarity.
  • the MTJ structure balances the spin torque from the polarizer and the reference layers to achieve the deterministic characteristic of switching.
  • the MTJ structure includes nonmagnetic spacer layers (between the storage/free layer and the polarizer layer) comprised of MgO and TaN materials that balance the spin torques acting on the free layer. This design enables a deterministic final state for the storage layer and significantly improves the TMR and switching characteristics of the MTJ for MRAM applications.
  • MTJ layer stack 200 is shown in accordance with an exemplary embodiment.
  • MTJ stack 200 is an improved design of MTJ stack 100 illustrated in FIG. 1 .
  • each of the layers in the MTJ stack 200 are formed in an x,y plane and each have a thickness in the z-axis direction.
  • the MTJ stack 200 includes one or more seed layers 210 provided at the bottom of stack 200 to initiate a desired crystalline growth in the above-deposited layers (discussed below).
  • the seed layers 210 can be 3 Ta/40 CuN/5 Ta laminate (as used herein a “slash,” /, indicates a laminated structure starting with the layers at the bottom of the structure beginning from the left of the “slash,” /.), such that the seed layers include a 3 nm layer of tantalum, a 40 nm layer of copper nitride, and a 5 nm layer of tantalum.
  • pinning layer 212 is platinum manganese PtMn alloy preferably with a thickness of approximately 22 nm.
  • the SAF structure 220 is composed of three layers, layer 222 , layer 224 and the reference layer 232 (discussed below).
  • layer 222 is a cobalt iron alloy preferably with a thickness of approximately 2.1 nm
  • layer 224 is a ruthenium metal preferably with a thickness of approximately 0.90 nm.
  • An MTJ structure 230 is formed on top of the SAF structure 220 .
  • the MTJ structure 230 includes three separate layers, namely, reference layer 232 formed in the SAF structure 220 , barrier layer 234 , and free layer 236 .
  • reference layer 232 and free layer 236 are cobalt-iron-boron (Co—Fe—B) alloy thin films, with CoFeB reference layer 232 having a thickness of approximately 2.3 nm and CoFeB free layer 236 having a thickness of approximately 1.85 nm.
  • the interlayer electronic exchange coupling between pinned layer 222 and pinning layer 212 pins the magnetization of the pinned layer 222 in a fixed direction as discussed above.
  • barrier layer 234 is formed from an oxide of magnesium MgO. As shown, the MgO barrier layer 234 is disposed between the reference layer 232 and free layer 236 and serves as the tunnel barrier between the two layers.
  • the MgO barrier layer 234 preferably has a thickness of approximately 1.02 nm. Preferably, the thickness of MgO barrier layer 234 is thin enough that a current through it can be established by quantum mechanical tunneling of the spin polarized electrons.
  • MTJ stack 200 includes a nonmagnetic spacer 240 disposed on the free layer 236 that is composed of a thin MgO layer 242 , preferably a 0.3 nm layer, and a thin layer of tantalum nitride TaN capping material 244 on top of the MgO layer 242 .
  • the thickness of the TaN capping material is between 1.0 and 5.0 nm. It should be appreciated to one skilled in the art that the desired thickness of MgO layer 242 and TaN layer 244 can vary slightly due to manufacturing variations.
  • MTJ stack 200 includes a polarizer 250 disposed on the nonmagnetic spacer 240 .
  • Polarizer 250 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ stack 200 , which in turn can help to change the magnetization orientation of free layer in 236 of the MTJ stack 200 by the torque exerted on free layer 236 from polarized electrons carrying angular momentum perpendicular to the magnetization direction of the free layer 236 .
  • the nonmagnetic spacer 240 is provided to magnetically isolate the polarizer 250 from MTJ structure 230 .
  • polarizer 250 is comprised of two laminate layer 252 , 254 .
  • the first layer 252 is a laminate layer of 0.3 Co/[0.6 Ni/0.09 Co] ⁇ 3 and the second layer 254 is a laminate layer composed of 0.21 Co/[0.9 Pd/0.3 Co] ⁇ 6.
  • capping layers 260 are provided on top of polarizer 250 to protect the layers below of MTJ stack 200 .
  • capping layers 260 can be composed of a first laminate layer 262 , preferably of 5 nm TaN layer, and a second laminate layer 264 , preferably of 7 nm Ru.
  • a hard mask 270 is deposited over capping layers 260 and may comprise a metal such as tantalum Ta, for example, although alternatively hard mask 270 may comprise other materials.
  • the Ta hard mask 270 has a thickness of approximately 70 nm.
  • Hard mask 270 is opened or patterned and is provided to pattern the underlying layers of the MTJ stack 200 , using a reactive ion etch (RIE) process, for example.
  • RIE reactive ion etch
  • a feature of the MTJ stack 200 of the exemplary embodiment is the deposition of a nonmagnetic spacer 240 disposed on the free layer 236 that is composed of a thin MgO layer 242 and a thin layer of tantalum nitride TaN capping material 244 on top of the MgO layer 242 .
  • different materials such as copper (Cu) have been used for the nonmagnetic spacer disposed on the free layer of the MTJ structure.
  • Cu copper
  • FIG. 4 illustrates a chart that compares magnetic characteristics when the polarizer is deposited on a copper spacer and when the polarizer is deposited on the MgO/TaN spacer according to an exemplary embodiment.
  • the conventional design with a perpendicular polarizer deposited on a 0.3 nm MgO/10 nm copper spacer has poor polarizer magnetics whereas the design disclosed herein having the polarizer deposited on a 0.3 nm MgO/5.0 TaN spacer has significantly improved polarizer coercivity.
  • the hysteresis loop indicates that the polarizer deposited on a 0.3 nm MgO/5.0 TaN spacer has higher and well-defined perpendicular magnetic anisotropy (PMA).
  • PMA perpendicular magnetic anisotropy
  • FIGS. 5 and 6 illustrate graphs comparing free layer coercivity of the conventional design with the design disclosed herein having a nonmagnetic spacer composed of MgO and TaN.
  • the saturation magnetization (M s ) is significantly lowered for the design of the exemplary embodiment when compared with conventional designs having a nonmagnetic spacer composed of a 10 nm copper spacer disposed on the free layer.
  • FIG. 6 illustrates the design having the MgO/TaN nonmagnetic spacer with improved MTJ characteristics.
  • FIG. 7 illustrates a table comparing the TMR values for conventional MTJ structures with those of the exemplary embodiment disclosed herein. It should be appreciated that this figure compares the illustration of FIG. 2 for a conventional MTJ structure with a copper (Cu) nonmagnetic spacer with a thickness of 1.5 nm, 1.8 nm or 2.3 nm, with the exemplary design having a MgO/TaN nonmagnetic spacer with a thickness of approximately 1.8 nm. As should be appreciated, FIG. 7 illustrates significant improvement in the TMR (approximately 4 times) from a TMR of about 38% for the conventional design to a TMR of about 160% for the exemplary embodiment.
  • Cu copper
  • the thickness of the MgO layer of the nonmagnetic spacer is less than 10 angstroms, and preferably less than 5 angstroms, such that it provides the desired interface with the CoFeB free layer, yet will not increase the full MTJ resistance.
  • FIG. 8 illustrates a table of the TMR values with a varying TaN thickness according to an exemplary embodiment. Since TaN is a spin diffuser layer, a MTJ designer can adjust the spin torque of the exemplary design arising from the polarizer by adjusting the TaN thickness, for example, from 1 nm to 2 nm to 5 nm. Advantageously, FIG. 8 illustrates that the polarizer spin torque can be tuned by adjusting the thickness range of the TaN layer of the nonmagnetic spacer without affecting the value of the TMR.
  • Table 1 compares performance parameters of the prior art OST-MTJ design and the MTJ design of the exemplary embodiment.
  • Table 1 illustrates a comparison of the performance parameters between a 10 nm copper nonmagnetic spacer for a conventional MTJ structure and the inventive structure of a MgO/TaN nonmagnetic spacer disposed on the free layer 236 in accordance with the exemplary embodiment described herein.
  • Table 1 illustrates data for the MgO layer 242 having a thickness of 0.3 nm and the TaN layer 244 having a thickness of either 1.0 nm, 2.0 nm or 5.0 nm.
  • the saturation magnetization (M s ) is significantly lowered by approximately 40%
  • the effective magnetization M eff i.e., in-plane magnetization
  • the damping constant is reduced by over 50%.
  • Table 1 illustrates that the properties of the free layer are independent of the thickness of the TaN layer 244 .
  • the TMR is 162%-163% when the TaN layer has a thickness of either 1.0 nm, 2.0 nm or 5.0 nm.
  • the exemplary embodiment advantageously facilitates tuning of the polarizer spin torque without impacting the free layer properties and the TMR values of the MTJ structure.
  • FIG. 9A illustrates the switching behavior for an MTJ device with no polarizer.
  • FIG. 9B illustrates the same data for an MTJ device with a polarizer. As shown in FIG. 9B , the switching is deterministic, meaning that the negative and positive polarity sets the final magnetization states as in the collinear case of FIG. 9A .
  • Table 2 illustrates a comparison of the performance parameters of alternative embodiments of the present disclosure herein.
  • Each of these structures are similar in design to the MTJ structure illustrated in FIG. 3 with variations to the nonmagnetic spacer disposed on the free layer 236 .
  • the four columns of Table 2 illustrates MTJ characteristics with variations of the layers of the nonmagnetic spacer 240 , including: (i) a 1 nm TaN/5 nm Cu spacer; (ii) 3 nm TaN/5 nm Cu spacer; (iii) 5 nm TaN/5 nm Cu spacer; and (iv) a 0.3 MgO/2.0 nm TaN/10 nm Cu spacer.
  • These structures also extend the anti-ferromagnet annealing temperature of the MTJ structure to 350 C to 400 C.
  • each of these exemplary designs are compared with the conventional MTJ structure having a nonmagnetic spacer of a 10 nm copper layer (see, e.g., Table 1), these alternative designs exhibit improved MTJ characteristics.
  • each of these designs achieve a lowered saturation magnetization (M s ), a decreased effective magnetization M eff (i.e., in-plane magnetization), and a reduced damping constant.
  • the TMR value remains significantly higher than the conventional design as discussed above.
  • the present disclosure provide an MTJ structure that includes a spacer structure between free layer and polarizer that facilitates the tuning of the polarizer spin torque acting on the free layer.
  • the exemplary MTJ structure maximizes the reference layer spin torque and promotes: (i) a low effective magnetization (M eff ) of the free layer; (ii) a low damping constant; (iii) a sharp interface with the free layer so as to eliminate a magnetically dead layer; (iv) a high TMR ratio with thinner CoFeB layers; and/or (v) does not significantly increase the resistance of the full MTJ structure.
  • the MTJ structure provides a storage layer magnetization direction that is defined by the current polarity.
  • the thin film sputter deposition system can include the necessary physical vapor deposition (PVD) chambers, each having one or more targets, an oxidation chamber and a sputter cleaning chamber.
  • PVD physical vapor deposition
  • the sputter deposition process involves a sputter gas (e.g., oxygen, argon, or the like) with an ultra-high vacuum and the targets can be made of the metal or metal alloys to be deposited on the substrate.
  • each MTJ stack 200 can be manufactured and provided as respective bit cells of an STT-MRAM device.
  • each MTJ stack 200 can be implemented as a bit cell for a memory array having a plurality of bit cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A magnetic tunnel junction stack is provided that includes nonmagnetic spacer layers between the free layer and the polarizer layer formed from magnesium oxide and tantalum nitride materials that balance the spin torques acting on the free layer. The design provided enables a deterministic final state for the storage layer and significantly improves the tunneling magnetoresistance value and switching characteristics of the magnetic tunnel junction for MRAM applications.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional application and claims the benefit of U.S. patent application Ser. No. 14/492,943, filed Sep. 22, 2014, now issued as U.S. Pat. No. ______. U.S. patent application Ser. No. 14/492,943 is hereby incorporated herein by reference in its entirety.
  • FIELD
  • The present patent document relates generally to spin-transfer torque magnetic random access memory and, more particularly, to a magnetic tunnel junction layer stack with an orthogonally magnetized layer that provides a final magnetic state of the storage layer deterministically defined by the current polarity.
  • BACKGROUND
  • Magnetoresistive random-access memory (“MRAM”) is a non-volatile memory technology that stores data through magnetic storage elements. These elements are two ferromagnetic plates or electrodes that can hold a magnetic field and are separated by a non-magnetic material, such as a nonmagnetic metal or insulator. In general, one of the plates has its magnetization pinned (i.e., a “reference layer”), meaning that this layer has a higher coercivity than the other layer and requires a larger magnetic field or spin-polarized current to change the orientation of its magnetization. The second plate is typically referred to as the free layer and its magnetization direction can be changed by a smaller magnetic field or spin-polarized current relative to the reference layer.
  • MRAM devices store information by changing the orientation of the magnetic moment of the free layer. In particular, based on whether the free layer is in a parallel or anti-parallel alignment relative to the reference layer, either a “1” or a “0” can be stored in each MRAM cell. Due to the spin-polarized electron tunneling effect, the electrical resistance of the cell change due to the orientation of the magnetic fields of the two layers. The cell's resistance will be different for the parallel and anti-parallel states and thus the cell's resistance can be used to distinguish between a “1” and a “0”. One important feature of MRAM devices is that they are non-volatile memory devices, since they maintain the information even when the power is off. The two plates can be sub-micron in lateral size and the magnetization can still be stable with respect to thermal fluctuations.
  • A newer technique, spin transfer torque or spin transfer switching, uses spin-aligned (“polarized”) electrons to change the magnetization orientation of the free layer in the magnetic tunnel junction. In general, electrons possess a spin, a quantized number of angular momentum intrinsic to the electron. An electrical current is generally unpolarized, i.e., it consists of 50% spin up and 50% spin down electrons. Passing a current through a magnetic layer polarizes electrons with the spin orientation corresponding to the magnetization direction of the magnetic layer (i.e., polarizer), thus produces a spin-polarized current. If a spin-polarized current is passed to the magnetic region of a free layer in the magnetic tunnel junction device, the electrons will transfer a portion of their spin-angular momentum to the magnetization layer to produce a torque on the magnetization of the free layer. Thus, torque can switch the magnetization of the free layer, which, in effect, writes either a “1” or a “0” based on whether the free layer is in the parallel or anti-parallel states relative to the reference layer.
  • FIG. 1 illustrates a magnetic tunnel junction (“MTJ”) stack 100 for a conventional MRAM device. As shown, stack 100 includes one or more seed layers 110 provided at the bottom of stack 100 to initiate a desired crystalline growth in the above-deposited layers. A pinning layer 112 is disposed on top of seed layers 110 and a synthetic antiferromagnetic layer (“SAF layer”) 120 is disposed on top of the pinning layer 112. Furthermore, MTJ 130 is deposited on top of SAF layer 120. MTJ 130 includes the reference layer 132, a barrier layer (i.e., the insulator) 134, and the free layer 136. It should be understood that reference layer 132 is actually part of SAF layer 120, but forms one of the ferromagnetic plates of MTJ 130 when the barrier layer 134 and free layer 136 are formed on reference layer 132. The first magnetic layer in the synthetic antiferromagnetic structure 120 is exchange coupled to the pinning layer 112, which causes, through antiferromagnetic coupling, the magnetization of the reference layer 132 to be fixed. Furthermore, a nonmagnetic spacer 140 is disposed on top of MTJ 130 and a perpendicular polarizer 150 is disposed on top of the nonmagnetic spacer 140. Perpendicular polarizer 150 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ structure 100. Further, one or more capping layers 160 can be provided on top of perpendicular polarizer 150 to protect the layers below on MTJ stack 100. Finally, a hard mask 170 is deposited over capping layers 160 and is provided to pattern the underlying layers of the MTJ structure 100, using a reactive ion etch (RIE) process.
  • MRAM products having MTJ structures, such as stack 100 illustrated in FIG. 1, are already being used in large data storage devices. In order to instantaneously initiate the magnetization reversal of the storage layer (i.e., the free layer), such MTJ structures utilize perpendicular polarizers whose magnetization is orthogonal to the storage layer. One critical limitation with such designs is that the final magnetic vector state of the storage layer cannot be controlled.
  • One proposed solution to control the final magnetic vector state is to have a first current polarity to start the magnetization reversal process and a second current polarity to stop the magnetization precession of the free layer at a defined magnetization state. However, implementation of this technique/design is not yet possible due to technological limitations of pulse control, i.e., in the range of 100 picoseconds. In addition, the non-magnetic conductor layers in the conventional MTJ designs are inadequate to obtain high tunneling magnetoresistance value (“TMR”) and to achieve the switching characteristics that are required from such devices. Another proposed solution to control the final magnetic state of the storage layer is to have the spin torque from the reference layer be greater than the spin torque from the polarizer. However, this design is only theoretical in nature and has not been successfully manufactured to date.
  • In addition, effective MTJ structures require large switching currents that limit their commercial applicability. There are at least two critical parameters that control the required size of the switching current: effective magnetization Meff and the damping constant for the free layer structure. Some existing designs have attempted to lower the required switching current by reducing the thickness of the free layer structure. While such a design facilitates a perpendicular component of the magnetization that effectively lowers the Meff, the measurable reduction of Meff only occurs when the free layer is very thin (e.g., 1 nanometer). However, such a thin free layer has severe consequences including: (1) a significant reduction of tunneling magnetoresistance value (“TMR”); (2) a lower thermal stability; and (3) an increased damping constant for the free layer.
  • FIG. 2 illustrates a table comparing the TMR value versus thickness of a CoFeB free layer for a conventional MTJ structure with a copper (Cu) nonmagnetic spacer 140. As shown, the MTR value for a conventional MTJ structure with a 2.3 nm CoFeB free layer is approximately 80%. As is readily apparent, when the thickness of the free layer decreases to decrease the switching current, the TMR value rapidly decreases, for example, to a TMR value of 9% for a CoFeB free layer thickness of 1.5 nm. As further shown, even a CoFeB free layer having a thickness of 1.8 nm provides a device with a TMR value of approximately 38%.
  • These TMR values are completely inadequate for MRAM applications. In practice, a TMR value of approximately 120% or greater is required to meet the MRAM requirements and specifications. Prior art OST-MTJ structures simply cannot achieve this high TMR and also have inferior switching characteristics due to: (i) the spacer layers used (such as Cu) between the free layer and the polarizer (i.e., a nonmagnetic spacer 140 of FIG. 1); and (ii) poor free layer magnetic properties.
  • SUMMARY
  • Accordingly, the MRAM device disclosed herein overcomes the limitations of the prior art designs by providing an MTJ structure with a significantly improved TMR value and optimized free layer magnetic properties, especially effective magnetization (Mm) values. The MTJ structure includes an MTJ layer stack with an orthogonally magnetized layer (polarizer) that provides a final magnetic vector state of the storage layer deterministically defined by the current polarity. The MTJ structure balances the spin torque from the polarizer and the reference layers to achieve the deterministic characteristic of switching.
  • According to an exemplary embodiment, the MTJ structure disclosed herein includes nonmagnetic spacer layers (between the storage/free layer and the polarizer layer) comprised of magnesium oxide (MgO) and tantalum nitride (TaN) materials that balances the spin torques acting on the free layer. The tantalum nitride layer has alpha phase crystalline structure with low resistance. This design enables a deterministic final state for the storage layer and significantly improves the TMR and switching characteristics of the MTJ for MRAM applications.
  • More particular, an exemplary embodiment provides a magnetic device including an antiferromagnetic structure including a reference layer; a barrier layer disposed on the reference layer; a free layer disposed on the barrier layer; a nonmagnetic spacer layer disposed on the free layer, the nonmagnetic spacer including a layer of tantalum nitride capping material; and a polarizer disposed on the nonmagnetic spacer.
  • In another embodiment, the nonmagnetic spacer layer further comprises a layer of magnesium oxide.
  • In another embodiment, the layer of magnesium oxide comprises a thickness of approximately 0.3 nanometers.
  • In another embodiment, the layer of tantalum nitride capping material comprises a thickness between 1.0 and 5.0 nanometers.
  • In another embodiment, the layer of tantalum nitride capping material comprises a thickness of approximately 1.0 nanometers.
  • In another embodiment, the layer of tantalum nitride capping material comprises a thickness of approximately 5.0 nanometers.
  • In another embodiment, the magnetic device is an orthogonal spin transfer torque structure.
  • In another embodiment, the reference layer and the free layer each comprise a CoFeB thin film layer having a thickness of approximately 2.3 nanometers and 1.85 nanometers, respectively.
  • In another embodiment, the nonmagnetic spacer layer further comprises a copper layer having a thickness of approximately 5.0 nanometers and the thickness of the layer of tantalum nitride capping material is approximately 1.0-5.0 nanometers.
  • In another embodiment, the nonmagnetic spacer layer further comprises a copper layer having a thickness of approximately 10 nanometers, and wherein the layer of tantalum nitride capping material has a thickness of approximately 1.0 nanometers.
  • In another embodiment, the exemplary magnetic device forms a bit cell of a memory array.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included as part of the present specification, illustrate the presently preferred embodiments and, together with the general description given above and the detailed description given below, serve to explain and teach the principles of the MTJ devices described herein.
  • FIG. 1 illustrates a conventional MTJ stack for an MRAM device.
  • FIG. 2 illustrates a table comparing the TMR value versus thickness of a CoFeB free layer for a conventional MTJ structure with a copper nonmagnetic spacer.
  • FIG. 3 illustrates an MTJ layer stack in accordance with an exemplary embodiment of the new MTJ layer stack described herein.
  • FIG. 4 illustrates a chart that compares magnetic characteristics for a conventional design with the exemplary embodiment of the MTJ structure disclosed herein having the polarizer deposited on an MgO/TaN spacer.
  • FIGS. 5 and 6 illustrate graphs comparing free layer coercivity of the conventional design with the exemplary embodiment of the MTJ structure disclosed herein having a nonmagnetic spacer composed of MgO and TaN.
  • FIG. 7 illustrates a table comparing TMR values for conventional MTJ structures with those of the exemplary embodiment of the MTJ structure disclosed herein.
  • FIG. 8 illustrates a table of the TMR values with a varying TaN thickness according to an exemplary embodiment of the MTJ structure disclosed herein.
  • FIG. 9A illustrates the switching behavior for an MTJ device with no polarizer and FIG. 9B illustrates the same data for an MTJ device with a polarizer.
  • The figures are not necessarily drawn to scale and the elements of similar structures or functions are generally represented by like reference numerals for illustrative purposes throughout the figures. The figures are only intended to facilitate the description of the various embodiments described herein; the figures do not describe every aspect of the teachings disclosed herein and do not limit the scope of the claims.
  • DETAILED DESCRIPTION
  • A magnetic tunnel junction (“MTJ”) layer stack is disclosed herein. Each of the features and teachings disclosed herein can be utilized separately or in conjunction with other features and teachings. Representative examples utilizing many of these additional features and teachings, both separately and in combination, are described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the claims. Therefore, combinations of features disclosed in the following detailed description may not be necessary to practice the teachings in the broadest sense, and are instead taught merely to describe particularly representative examples of the present teachings.
  • In the following description, for purposes of explanation only, specific nomenclature is set forth to provide a thorough understanding of the MTJ structure described herein. However, it will be apparent to one skilled in the art that these specific details are only exemplary.
  • The various features of the representative examples and the dependent claims may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings. It is also expressly noted that all value ranges or indications of groups of entities disclose every possible intermediate value or intermediate entity for the purpose of original disclosure, as well as for the purpose of restricting the claimed subject matter. It is also expressly noted that the dimensions and the shapes of the components shown in the figures are designed to help to understand how the present teachings are practiced, but not intended to limit the dimensions and the shapes shown in the examples.
  • The MTJ structure disclosed herein includes an MTJ layer stack with an orthogonally magnetized layer (polarizer) that provides a final magnetic vector state of the storage layer deterministically defined by the current polarity. The MTJ structure balances the spin torque from the polarizer and the reference layers to achieve the deterministic characteristic of switching. As will be described in detail below, the MTJ structure includes nonmagnetic spacer layers (between the storage/free layer and the polarizer layer) comprised of MgO and TaN materials that balance the spin torques acting on the free layer. This design enables a deterministic final state for the storage layer and significantly improves the TMR and switching characteristics of the MTJ for MRAM applications.
  • In particular, referring to FIG. 3, an MTJ layer stack 200 is shown in accordance with an exemplary embodiment. MTJ stack 200 is an improved design of MTJ stack 100 illustrated in FIG. 1. For illustrative purposes, each of the layers in the MTJ stack 200 are formed in an x,y plane and each have a thickness in the z-axis direction.
  • MTJ stack 200 includes one or more seed layers 210 provided at the bottom of stack 200 to initiate a desired crystalline growth in the above-deposited layers (discussed below). In the exemplary embodiment, the seed layers 210 can be 3 Ta/40 CuN/5 Ta laminate (as used herein a “slash,” /, indicates a laminated structure starting with the layers at the bottom of the structure beginning from the left of the “slash,” /.), such that the seed layers include a 3 nm layer of tantalum, a 40 nm layer of copper nitride, and a 5 nm layer of tantalum.
  • Above the seed layers 210 is a pinning layer 212 and a synthetic antiferromagnetic (“SAF”) structure 220. According to an exemplary embodiment, pinning layer 212 is platinum manganese PtMn alloy preferably with a thickness of approximately 22 nm. In the exemplary embodiment, the SAF structure 220 is composed of three layers, layer 222, layer 224 and the reference layer 232 (discussed below). Preferably, layer 222 is a cobalt iron alloy preferably with a thickness of approximately 2.1 nm, and layer 224 is a ruthenium metal preferably with a thickness of approximately 0.90 nm.
  • An MTJ structure 230 is formed on top of the SAF structure 220. The MTJ structure 230 includes three separate layers, namely, reference layer 232 formed in the SAF structure 220, barrier layer 234, and free layer 236. In the exemplary embodiment, reference layer 232 and free layer 236 are cobalt-iron-boron (Co—Fe—B) alloy thin films, with CoFeB reference layer 232 having a thickness of approximately 2.3 nm and CoFeB free layer 236 having a thickness of approximately 1.85 nm. The interlayer electronic exchange coupling between pinned layer 222 and pinning layer 212 pins the magnetization of the pinned layer 222 in a fixed direction as discussed above. The magnetization of the reference layer 232 is fixed through the synthetic anti-ferromagnetic coupling via ruthenium layer 224 to the pinned layer 222. Furthermore, in the exemplary embodiment, barrier layer 234 is formed from an oxide of magnesium MgO. As shown, the MgO barrier layer 234 is disposed between the reference layer 232 and free layer 236 and serves as the tunnel barrier between the two layers. The MgO barrier layer 234 preferably has a thickness of approximately 1.02 nm. Preferably, the thickness of MgO barrier layer 234 is thin enough that a current through it can be established by quantum mechanical tunneling of the spin polarized electrons.
  • Conventionally, for MTJ structures, a copper (Cu) nonmagnetic spacer is disposed on the free layer as described above with respect to FIG. 1. In the exemplary embodiment, MTJ stack 200 includes a nonmagnetic spacer 240 disposed on the free layer 236 that is composed of a thin MgO layer 242, preferably a 0.3 nm layer, and a thin layer of tantalum nitride TaN capping material 244 on top of the MgO layer 242. In the exemplary embodiment, the thickness of the TaN capping material is between 1.0 and 5.0 nm. It should be appreciated to one skilled in the art that the desired thickness of MgO layer 242 and TaN layer 244 can vary slightly due to manufacturing variations.
  • Furthermore, according to the exemplary embodiment, an orthogonal spin torque structure that employs a spin-polarizing layer magnetized perpendicularly to free layer 236 to achieve an initial spin-transfer torques is described. As shown, MTJ stack 200 includes a polarizer 250 disposed on the nonmagnetic spacer 240. Polarizer 250 is provided to polarize a current of electrons (“spin-aligned electrons”) applied to MTJ stack 200, which in turn can help to change the magnetization orientation of free layer in 236 of the MTJ stack 200 by the torque exerted on free layer 236 from polarized electrons carrying angular momentum perpendicular to the magnetization direction of the free layer 236. Furthermore, the nonmagnetic spacer 240 is provided to magnetically isolate the polarizer 250 from MTJ structure 230.
  • In the exemplary embodiment, polarizer 250 is comprised of two laminate layer 252, 254. Preferably, the first layer 252 is a laminate layer of 0.3 Co/[0.6 Ni/0.09 Co]×3 and the second layer 254 is a laminate layer composed of 0.21 Co/[0.9 Pd/0.3 Co]×6.
  • As further shown in FIG. 3, one or more capping layers 260 are provided on top of polarizer 250 to protect the layers below of MTJ stack 200. In the exemplary embodiment, capping layers 260 can be composed of a first laminate layer 262, preferably of 5 nm TaN layer, and a second laminate layer 264, preferably of 7 nm Ru.
  • A hard mask 270 is deposited over capping layers 260 and may comprise a metal such as tantalum Ta, for example, although alternatively hard mask 270 may comprise other materials. Preferably, the Ta hard mask 270 has a thickness of approximately 70 nm. Hard mask 270 is opened or patterned and is provided to pattern the underlying layers of the MTJ stack 200, using a reactive ion etch (RIE) process, for example.
  • As noted above, a feature of the MTJ stack 200 of the exemplary embodiment is the deposition of a nonmagnetic spacer 240 disposed on the free layer 236 that is composed of a thin MgO layer 242 and a thin layer of tantalum nitride TaN capping material 244 on top of the MgO layer 242. Conventionally, different materials, such as copper (Cu) have been used for the nonmagnetic spacer disposed on the free layer of the MTJ structure. However, such conventional designs have failed to provide improvement in the performance parameters of the free layer of the MTJ structure while also decreasing the required switching current for optimal operation.
  • Tests have been conducted comparing the performance parameters of the MTJ structures described herein with conventional design configurations of the prior art. FIG. 4 illustrates a chart that compares magnetic characteristics when the polarizer is deposited on a copper spacer and when the polarizer is deposited on the MgO/TaN spacer according to an exemplary embodiment. As shown, the conventional design with a perpendicular polarizer deposited on a 0.3 nm MgO/10 nm copper spacer has poor polarizer magnetics whereas the design disclosed herein having the polarizer deposited on a 0.3 nm MgO/5.0 TaN spacer has significantly improved polarizer coercivity. In addition, the hysteresis loop indicates that the polarizer deposited on a 0.3 nm MgO/5.0 TaN spacer has higher and well-defined perpendicular magnetic anisotropy (PMA).
  • Similarly, FIGS. 5 and 6 illustrate graphs comparing free layer coercivity of the conventional design with the design disclosed herein having a nonmagnetic spacer composed of MgO and TaN. As shown in FIG. 5, the saturation magnetization (Ms) is significantly lowered for the design of the exemplary embodiment when compared with conventional designs having a nonmagnetic spacer composed of a 10 nm copper spacer disposed on the free layer. Similarly, FIG. 6 illustrates the design having the MgO/TaN nonmagnetic spacer with improved MTJ characteristics.
  • FIG. 7 illustrates a table comparing the TMR values for conventional MTJ structures with those of the exemplary embodiment disclosed herein. It should be appreciated that this figure compares the illustration of FIG. 2 for a conventional MTJ structure with a copper (Cu) nonmagnetic spacer with a thickness of 1.5 nm, 1.8 nm or 2.3 nm, with the exemplary design having a MgO/TaN nonmagnetic spacer with a thickness of approximately 1.8 nm. As should be appreciated, FIG. 7 illustrates significant improvement in the TMR (approximately 4 times) from a TMR of about 38% for the conventional design to a TMR of about 160% for the exemplary embodiment. In the exemplary embodiment, the thickness of the MgO layer of the nonmagnetic spacer is less than 10 angstroms, and preferably less than 5 angstroms, such that it provides the desired interface with the CoFeB free layer, yet will not increase the full MTJ resistance.
  • FIG. 8 illustrates a table of the TMR values with a varying TaN thickness according to an exemplary embodiment. Since TaN is a spin diffuser layer, a MTJ designer can adjust the spin torque of the exemplary design arising from the polarizer by adjusting the TaN thickness, for example, from 1 nm to 2 nm to 5 nm. Advantageously, FIG. 8 illustrates that the polarizer spin torque can be tuned by adjusting the thickness range of the TaN layer of the nonmagnetic spacer without affecting the value of the TMR.
  • Table 1 compares performance parameters of the prior art OST-MTJ design and the MTJ design of the exemplary embodiment. In particular, Table 1 illustrates a comparison of the performance parameters between a 10 nm copper nonmagnetic spacer for a conventional MTJ structure and the inventive structure of a MgO/TaN nonmagnetic spacer disposed on the free layer 236 in accordance with the exemplary embodiment described herein. Table 1 illustrates data for the MgO layer 242 having a thickness of 0.3 nm and the TaN layer 244 having a thickness of either 1.0 nm, 2.0 nm or 5.0 nm.
  • TABLE 1
    0.3 nm 0.3 nm 0.3 nm
    MgO + MgO + MgO +
    10 nm 1.0 nm 2.0 nm 5.0 nm
    Performance Cu αTaN αTaN αTaN FL
    Parameter Units Cap FL Cap FL Cap Cap
    Ms, Free layer *t [μemu/cm2] 315 200 188 196
    Hc, Free layer [mT] 1.25 1.37 1.45 1.25
    4πMeff [T] [T] 1.01 0.78 0.67 0.68
    Free layer
    Meff/Ms [ ] 0.56 0.43 0.37 0.38
    Hshift, Free layer [mT] 3.0 3.0 3.0 3.0
    Damping [ ] 0.017 0.009 0.008 0.008
    Constant (α)
    HC, Polarizer [T] 0.26 0.09 0.12 0.17
    TMR % 84 160 162 163
    RA [Ohm μm2] 4.3 10.2 10.3 10.5
  • As shown, significant improvements in important characteristics for an MTJ structure are achieved by the exemplary embodiment. For example, the saturation magnetization (Ms) is significantly lowered by approximately 40%, the effective magnetization Meff (i.e., in-plane magnetization) is decreased by over 35%, and the damping constant is reduced by over 50%. Moreover, Table 1 illustrates that the properties of the free layer are independent of the thickness of the TaN layer 244. In particular, the TMR is 162%-163% when the TaN layer has a thickness of either 1.0 nm, 2.0 nm or 5.0 nm. As a result and described above, the exemplary embodiment advantageously facilitates tuning of the polarizer spin torque without impacting the free layer properties and the TMR values of the MTJ structure.
  • FIG. 9A illustrates the switching behavior for an MTJ device with no polarizer. In contrast, FIG. 9B illustrates the same data for an MTJ device with a polarizer. As shown in FIG. 9B, the switching is deterministic, meaning that the negative and positive polarity sets the final magnetization states as in the collinear case of FIG. 9A.
  • Table 2 illustrates a comparison of the performance parameters of alternative embodiments of the present disclosure herein. Each of these structures are similar in design to the MTJ structure illustrated in FIG. 3 with variations to the nonmagnetic spacer disposed on the free layer 236. In particular, the four columns of Table 2 illustrates MTJ characteristics with variations of the layers of the nonmagnetic spacer 240, including: (i) a 1 nm TaN/5 nm Cu spacer; (ii) 3 nm TaN/5 nm Cu spacer; (iii) 5 nm TaN/5 nm Cu spacer; and (iv) a 0.3 MgO/2.0 nm TaN/10 nm Cu spacer. These structures also extend the anti-ferromagnet annealing temperature of the MTJ structure to 350 C to 400 C.
  • TABLE 2
    1.0 nm 3.0 nm 5.0 nm 0.3 nm MgO +
    TaN + TaN + TaN + 2.0 nm TaN +
    Performance 5.0 nm 5.0 nm 5.0 nm 10.0 nm
    Parameter Units Cu Cu Cu Cu
    Ms, Free layer *t [μemu/cm2] 269 242 250 262
    Hc, Free layer [mT] 0.75 0.88 0.86 0.65
    4πMeff [T] [T] 0.76 0.77 0.78 0.85
    Free layer
    Meff/Ms [ ] 0.42 0.43 0.43 0.47
    Hshift, Free layer [mT] 5.0 4.2 4.2 2.8
    Damping 0.011 0.008
    Constant (α)
    HC, Polarizer [T] 0.33 0.4 0.35 0.30
    TMR % 124 126 127 138
    RA [Ohm μm2] 4.5 5.0 5.0 7.8
  • It should be appreciated that when each of these exemplary designs are compared with the conventional MTJ structure having a nonmagnetic spacer of a 10 nm copper layer (see, e.g., Table 1), these alternative designs exhibit improved MTJ characteristics. In particular, each of these designs achieve a lowered saturation magnetization (Ms), a decreased effective magnetization Meff (i.e., in-plane magnetization), and a reduced damping constant. Moreover, the TMR value remains significantly higher than the conventional design as discussed above.
  • As described above, the present disclosure provide an MTJ structure that includes a spacer structure between free layer and polarizer that facilitates the tuning of the polarizer spin torque acting on the free layer. Further, the exemplary MTJ structure maximizes the reference layer spin torque and promotes: (i) a low effective magnetization (Meff) of the free layer; (ii) a low damping constant; (iii) a sharp interface with the free layer so as to eliminate a magnetically dead layer; (iv) a high TMR ratio with thinner CoFeB layers; and/or (v) does not significantly increase the resistance of the full MTJ structure. As a result, a lower switching current and a faster magnetization reversal process is achieved by combining a higher TMR, a low damping constant, a low effective magnetization for the free layer with yet a high thermal stability by having a high Ms(or Ms/Meff ratio). Moreover, the MTJ structure provides a storage layer magnetization direction that is defined by the current polarity.
  • It is further contemplated that all of the layers of MTJ stack 200 illustrated in FIG. 3 can be formed by a thin film sputter deposition system as would be appreciated by one skilled in the art. The thin film sputter deposition system can include the necessary physical vapor deposition (PVD) chambers, each having one or more targets, an oxidation chamber and a sputter cleaning chamber. The sputter deposition process involves a sputter gas (e.g., oxygen, argon, or the like) with an ultra-high vacuum and the targets can be made of the metal or metal alloys to be deposited on the substrate.
  • Furthermore, it should be appreciated to one skilled in the art that a plurality of MTJ stacks 200 (as shown in FIG. 3) can be manufactured and provided as respective bit cells of an STT-MRAM device. In other words, each MTJ stack 200 can be implemented as a bit cell for a memory array having a plurality of bit cells.
  • The above description and drawings are only to be considered illustrative of specific embodiments, which achieve the features and advantages described herein. Modifications and substitutions to specific process conditions can be made. Accordingly, the embodiments in this patent document are not considered as being limited by the foregoing description and drawings.

Claims (12)

What is claimed is:
1. A memory array comprising:
at least one bit cell including:
an antiferromagnetic structure including a reference layer;
a barrier layer disposed over the reference layer;
a free layer having a free layer magnetization direction disposed on the barrier layer, the reference layer, the barrier layer and the free layer forming a magnetic tunnel junction;
a nonmagnetic spacer layer disposed on the free layer;
a polarizer disposed on the magnetic spacer layer, the polarizer layer having a magnetization direction that is perpendicular to the free layer magnetization direction,
wherein the nonmagnetic spacer layer is disposed between the free layer of the magnetic tunnel junction and the polarizer, the nonmagnetic spacer layer comprising a thin layer of magnesium oxide (MgO) on the free layer and a layer of tantalum nitride (TaN) capping material on the thin layer of MgO.
2. The magnetic device according to claim 1, wherein the thin layer of magnesium oxide comprises a thickness of approximately 0.3 nanometers.
3. The magnetic device according to claim 2, wherein the layer of tantalum nitride capping material comprises a thickness between 1.0 and 5.0 nanometers.
4. The magnetic device according to claim 3, wherein the layer of tantalum nitride capping material comprises a thickness of approximately 1.0 nanometers.
5. The magnetic device according to claim 3, wherein the layer of tantalum nitride capping material comprises a thickness of approximately 5.0 nanometers.
6. The magnetic device according to claim 1, wherein the magnetic device is an orthogonal spin torque structure.
7. The magnetic device according to claim 1, wherein the reference layer and the free layer each comprise a CoFeB thin film layer having a thickness of approximately 2.3 nanometers and 1.85 nanometers, respectively.
8. The magnetic device according to claim 1, wherein the nonmagnetic spacer layer further comprises a copper layer having a thickness of approximately 5.0 nanometers.
9. The magnetic device according to claim 8, wherein the thickness of the layer of tantalum nitride capping material is approximately 1.0 nanometers.
10. The magnetic device according to claim 8, wherein the thickness of the layer of tantalum nitride capping material is approximately 3.0 nanometers.
11. The magnetic device according to claim 8, wherein the thickness of the layer of tantalum nitride capping material is approximately 5.0 nanometers.
12. The magnetic device according to claim 2, wherein the nonmagnetic spacer layer further comprises a copper layer having a thickness of approximately 10 nanometers, and wherein the layer of tantalum nitride capping material has a thickness of approximately 1.0 nanometers.
US15/093,367 2014-09-22 2016-04-07 Magnetic tunnel junction structure for mram device Abandoned US20160218278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/093,367 US20160218278A1 (en) 2014-09-22 2016-04-07 Magnetic tunnel junction structure for mram device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/492,943 US9337412B2 (en) 2014-09-22 2014-09-22 Magnetic tunnel junction structure for MRAM device
US15/093,367 US20160218278A1 (en) 2014-09-22 2016-04-07 Magnetic tunnel junction structure for mram device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/492,943 Division US9337412B2 (en) 2014-09-22 2014-09-22 Magnetic tunnel junction structure for MRAM device

Publications (1)

Publication Number Publication Date
US20160218278A1 true US20160218278A1 (en) 2016-07-28

Family

ID=55526553

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/492,943 Active US9337412B2 (en) 2014-09-22 2014-09-22 Magnetic tunnel junction structure for MRAM device
US15/093,367 Abandoned US20160218278A1 (en) 2014-09-22 2016-04-07 Magnetic tunnel junction structure for mram device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/492,943 Active US9337412B2 (en) 2014-09-22 2014-09-22 Magnetic tunnel junction structure for MRAM device

Country Status (5)

Country Link
US (2) US9337412B2 (en)
JP (1) JP2017532752A (en)
KR (1) KR20170062418A (en)
CN (1) CN106062979B (en)
WO (1) WO2016048603A1 (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
WO2018125085A1 (en) * 2016-12-28 2018-07-05 Intel Corporation Perpendicular spin transfer torque magnetic mechanism
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10366775B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Memory device using levels of dynamic redundancy registers for writing a data word that failed a write operation
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10529915B2 (en) 2018-03-23 2020-01-07 Spin Memory, Inc. Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102287755B1 (en) 2014-11-18 2021-08-09 삼성전자주식회사 Method of Fabricating MRAM
US9590010B1 (en) * 2016-03-24 2017-03-07 Qualcomm Incorporated Perpendicular magnetic tunnel junction (pMTJ) devices employing a thin pinned layer stack and providing a transitioning start to a body-centered cubic (BCC) crystalline / amorphous structure below an upper anti-parallel (AP) layer
US11119936B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Error cache system with coarse and fine segments for power optimization
US11119910B2 (en) 2016-09-27 2021-09-14 Spin Memory, Inc. Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments
US11151042B2 (en) 2016-09-27 2021-10-19 Integrated Silicon Solution, (Cayman) Inc. Error cache segmentation for power reduction
US10628316B2 (en) 2016-09-27 2020-04-21 Spin Memory, Inc. Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register
US9853205B1 (en) 2016-10-01 2017-12-26 International Business Machines Corporation Spin transfer torque magnetic tunnel junction with off-centered current flow
WO2019005157A1 (en) * 2017-06-30 2019-01-03 Intel Corporation Perpendicular spin transfer torque memory (psttm) devices with enhanced stability and high tunneling magnetoresistance ratio and methods to form the same
US10255935B2 (en) * 2017-07-21 2019-04-09 Applied Materials, Inc. Magnetic tunnel junctions suitable for high temperature thermal processing
CN109841645A (en) * 2017-11-27 2019-06-04 上海磁宇信息科技有限公司 A kind of magnetic RAM for superconducting computer
US10679685B2 (en) 2017-12-27 2020-06-09 Spin Memory, Inc. Shared bit line array architecture for magnetoresistive memory
US10516094B2 (en) 2017-12-28 2019-12-24 Spin Memory, Inc. Process for creating dense pillars using multiple exposures for MRAM fabrication
US11264557B2 (en) * 2017-12-30 2022-03-01 Integrated Silicon Solution, (Cayman) Inc. High retention storage layer using ultra-low RA MgO process in perpendicular magnetic tunnel junctions for MRAM devices
US10388861B1 (en) 2018-03-08 2019-08-20 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US10636964B2 (en) * 2018-03-30 2020-04-28 Applied Materials, Inc. Magnetic tunnel junctions with tunable high perpendicular magnetic anisotropy
WO2021011144A1 (en) * 2019-07-16 2021-01-21 Applied Materials, Inc. Magnetic tunnel junction stack with data retention
CN112736192B (en) * 2019-10-14 2023-04-18 上海磁宇信息科技有限公司 Magnetic tunnel junction structure with double barrier layers and magnetic random access memory
CN110676288A (en) * 2019-10-21 2020-01-10 上海磁宇信息科技有限公司 Magnetic tunnel junction structure and magnetic random access memory
CN112864306A (en) * 2019-11-12 2021-05-28 上海磁宇信息科技有限公司 Magnetic tunnel junction structure with symmetrical double barrier layers and magnetic random access memory

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020105827A1 (en) * 2000-12-07 2002-08-08 Commissariat A L'energie Atomique Three-layered stacked magnetic spin polarisation device with memory, using such a device
US20050104101A1 (en) * 2003-11-19 2005-05-19 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US20050174702A1 (en) * 2004-02-11 2005-08-11 Hitachi Global Storage Technologies Self-pinned double tunnel junction head
US7502249B1 (en) * 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US7598555B1 (en) * 2003-08-22 2009-10-06 International Business Machines Corporation MgO tunnel barriers and method of formation
US20120155156A1 (en) * 2009-08-10 2012-06-21 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US341801A (en) 1886-05-11 Appaeatus foe peepaeing geain foe mashing
US5597437A (en) 1995-01-12 1997-01-28 Procter & Gamble Zero scrap absorbent core formation process
US5541868A (en) 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
US5654566A (en) 1995-04-21 1997-08-05 Johnson; Mark B. Magnetic spin injected field effect transistor and method of operation
US5629549A (en) 1995-04-21 1997-05-13 Johnson; Mark B. Magnetic spin transistor device, logic gate & method of operation
US6140838A (en) 1995-04-21 2000-10-31 Johnson; Mark B. High density and high speed magneto-electronic logic family
US5896252A (en) 1995-08-11 1999-04-20 Fujitsu Limited Multilayer spin valve magneto-resistive effect magnetic head with free magnetic layer including two sublayers and magnetic disk drive including same
JP3207094B2 (en) 1995-08-21 2001-09-10 松下電器産業株式会社 Magnetoresistance effect element and memory element
US5695864A (en) 1995-09-28 1997-12-09 International Business Machines Corporation Electronic device using magnetic components
US6124711A (en) 1996-01-19 2000-09-26 Fujitsu Limited Magnetic sensor using tunnel resistance to detect an external magnetic field
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JP3327375B2 (en) 1996-04-26 2002-09-24 富士通株式会社 Magnetoresistive transducer, method of manufacturing the same, and magnetic recording apparatus
JP3447468B2 (en) 1996-06-17 2003-09-16 シャープ株式会社 Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
US5732016A (en) 1996-07-02 1998-03-24 Motorola Memory cell structure in a magnetic random access memory and a method for fabricating thereof
US5768069A (en) 1996-11-27 1998-06-16 International Business Machines Corporation Self-biased dual spin valve sensor
JP3557078B2 (en) 1997-06-27 2004-08-25 株式会社東芝 Nonvolatile semiconductor memory device
JP4066477B2 (en) 1997-10-09 2008-03-26 ソニー株式会社 Nonvolatile random access memory device
US5966323A (en) 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
US6055179A (en) 1998-05-19 2000-04-25 Canon Kk Memory device utilizing giant magnetoresistance effect
JPH11352867A (en) 1998-06-05 1999-12-24 Nippon Telegr & Teleph Corp <Ntt> Server client type learning assistance system, method and recording medium storing learning assistance program
US6130814A (en) 1998-07-28 2000-10-10 International Business Machines Corporation Current-induced magnetic switching device and memory including the same
US6172902B1 (en) 1998-08-12 2001-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Non-volatile magnetic random access memory
US6097579A (en) 1998-08-21 2000-08-01 International Business Machines Corporation Tunnel junction head structure without current shunting
US6016269A (en) 1998-09-30 2000-01-18 Motorola, Inc. Quantum random address memory with magnetic readout and/or nano-memory elements
JP3766565B2 (en) 1999-05-31 2006-04-12 Tdk株式会社 Magnetoresistive film and magnetoresistive head
JP3589346B2 (en) 1999-06-17 2004-11-17 松下電器産業株式会社 Magnetoresistance effect element and magnetoresistance effect storage element
WO2001001396A1 (en) 1999-06-29 2001-01-04 Fujitsu Limited Magnetoresistive head and device for information reproduction
US6292389B1 (en) 1999-07-19 2001-09-18 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US6134138A (en) 1999-07-30 2000-10-17 Honeywell Inc. Method and apparatus for reading a magnetoresistive memory
JP3793669B2 (en) 1999-08-26 2006-07-05 株式会社日立グローバルストレージテクノロジーズ Giant magnetoresistive head, thin film magnetic head, and magnetic recording / reproducing apparatus
US6611405B1 (en) 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
KR100373473B1 (en) 1999-09-24 2003-02-25 가부시끼가이샤 도시바 Magnetoresistance device, magnetoresistance head, magnetoreproducing device, and magnetic stacked body
JP3891540B2 (en) 1999-10-25 2007-03-14 キヤノン株式会社 Magnetoresistive memory, method for recording / reproducing information recorded in magnetoresistive memory, and MRAM
US6447935B1 (en) 1999-11-23 2002-09-10 Read-Rite Corporation Method and system for reducing assymetry in a spin valve having a synthetic pinned layer
US6233172B1 (en) 1999-12-17 2001-05-15 Motorola, Inc. Magnetic element with dual magnetic states and fabrication method thereof
US6272036B1 (en) 1999-12-20 2001-08-07 The University Of Chicago Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage
TW504713B (en) 2000-04-28 2002-10-01 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
US6570139B1 (en) 2000-04-28 2003-05-27 The Holmes Group, Inc. Electronic control circuit
US6522137B1 (en) 2000-06-28 2003-02-18 Schlumberger Technology Corporation Two-dimensional magnetic resonance imaging in a borehole
US6493259B1 (en) 2000-08-14 2002-12-10 Micron Technology, Inc. Pulse write techniques for magneto-resistive memories
DE10050076C2 (en) 2000-10-10 2003-09-18 Infineon Technologies Ag Method for producing a ferromagnetic structure and ferromagnetic component
US6385082B1 (en) 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
FR2817998B1 (en) 2000-12-07 2003-01-10 Commissariat Energie Atomique SPIN POLARIZATION MAGNETIC DEVICE WITH MAGNIFICATION ROTATION, MEMORY AND WRITING METHOD USING THE DEVICE
WO2002050924A1 (en) 2000-12-21 2002-06-27 Fujitsu Limited Magnetoresistive device, magnetic head, and magnetic disk player
US6713195B2 (en) 2001-01-05 2004-03-30 Nve Corporation Magnetic devices using nanocomposite materials
JP3576111B2 (en) 2001-03-12 2004-10-13 株式会社東芝 Magnetoresistance effect element
US6653154B2 (en) 2001-03-15 2003-11-25 Micron Technology, Inc. Method of forming self-aligned, trenchless mangetoresistive random-access memory (MRAM) structure with sidewall containment of MRAM structure
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6566246B1 (en) 2001-05-21 2003-05-20 Novellus Systems, Inc. Deposition of conformal copper seed layers by control of barrier layer morphology
JP2002357489A (en) 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Stress sensor
US6347049B1 (en) 2001-07-25 2002-02-12 International Business Machines Corporation Low resistance magnetic tunnel junction device with bilayer or multilayer tunnel barrier
US6902807B1 (en) 2002-09-13 2005-06-07 Flex Products, Inc. Alignable diffractive pigment flakes
US6777730B2 (en) 2001-08-31 2004-08-17 Nve Corporation Antiparallel magnetoresistive memory cells
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
FR2832542B1 (en) 2001-11-16 2005-05-06 Commissariat Energie Atomique MAGNETIC DEVICE WITH MAGNETIC TUNNEL JUNCTION, MEMORY AND METHODS OF WRITING AND READING USING THE DEVICE
US6750491B2 (en) 2001-12-20 2004-06-15 Hewlett-Packard Development Company, L.P. Magnetic memory device having soft reference layer
JP3583102B2 (en) 2001-12-27 2004-10-27 株式会社東芝 Magnetic switching element and magnetic memory
US6773515B2 (en) 2002-01-16 2004-08-10 Headway Technologies, Inc. FeTa nano-oxide layer as a capping layer for enhancement of giant magnetoresistance in bottom spin valve structures
JP3769241B2 (en) 2002-03-29 2006-04-19 株式会社東芝 Magnetoresistive element and magnetic memory
JP3954573B2 (en) 2002-04-22 2007-08-08 松下電器産業株式会社 Magnetoresistive element, magnetic head, magnetic memory and magnetic recording apparatus using the same
JP2003318461A (en) 2002-04-22 2003-11-07 Matsushita Electric Ind Co Ltd Magnetoresistance effect element, magnetic head, magnetic memory and magnetic recorder employing it
US6879512B2 (en) 2002-05-24 2005-04-12 International Business Machines Corporation Nonvolatile memory device utilizing spin-valve-type designs and current pulses
US7005958B2 (en) 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor
US7095646B2 (en) 2002-07-17 2006-08-22 Freescale Semiconductor, Inc. Multi-state magnetoresistance random access cell with improved memory storage density
US6654278B1 (en) 2002-07-31 2003-11-25 Motorola, Inc. Magnetoresistance random access memory
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6785159B2 (en) 2002-08-29 2004-08-31 Micron Technology, Inc. Combination etch stop and in situ resistor in a magnetoresistive memory and methods for fabricating same
US6838740B2 (en) * 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6956257B2 (en) 2002-11-18 2005-10-18 Carnegie Mellon University Magnetic memory element and memory device including same
WO2004055906A1 (en) * 2002-12-13 2004-07-01 Japan Science And Technology Agency Spin injection device, magnetic device using the same, magnetic thin film used in the same
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
GB2415304B (en) 2003-02-10 2006-11-15 Massachusetts Inst Technology Magnetic memory elements using 360 degree walls
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6677165B1 (en) 2003-03-20 2004-01-13 Micron Technology, Inc. Magnetoresistive random access memory (MRAM) cell patterning
JP3546238B1 (en) 2003-04-23 2004-07-21 学校法人慶應義塾 Magnetic ring unit and magnetic memory device
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US7006375B2 (en) 2003-06-06 2006-02-28 Seagate Technology Llc Hybrid write mechanism for high speed and high density magnetic random access memory
US7054119B2 (en) 2003-06-18 2006-05-30 Hewlett-Packard Development Company, L.P. Coupled ferromagnetic systems having modified interfaces
US7041598B2 (en) 2003-06-25 2006-05-09 Hewlett-Packard Development Company, L.P. Directional ion etching process for patterning self-aligned via contacts
KR100512180B1 (en) 2003-07-10 2005-09-02 삼성전자주식회사 Magnetic tunnel junction in magnetic random access memory device and method for forming the same
JP4142993B2 (en) * 2003-07-23 2008-09-03 株式会社東芝 Method for manufacturing magnetic memory device
US6980469B2 (en) 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7573737B2 (en) 2003-08-19 2009-08-11 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7911832B2 (en) 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US8755222B2 (en) 2003-08-19 2014-06-17 New York University Bipolar spin-transfer switching
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6984529B2 (en) 2003-09-10 2006-01-10 Infineon Technologies Ag Fabrication process for a magnetic tunnel junction device
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US20050128842A1 (en) 2003-11-07 2005-06-16 Alexander Wei Annular magnetic nanostructures
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
JP2005150482A (en) 2003-11-18 2005-06-09 Sony Corp Magnetoresistance effect element and magnetic memory device
US6969895B2 (en) 2003-12-10 2005-11-29 Headway Technologies, Inc. MRAM cell with flat topography and controlled bit line to free layer distance and method of manufacture
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
TWI365989B (en) 2003-12-23 2012-06-11 Eliposki Remote Ltd L L C Semiconductor device and method for manufacturing the same
US6936479B2 (en) 2004-01-15 2005-08-30 Hewlett-Packard Development Company, L.P. Method of making toroidal MRAM cells
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7203129B2 (en) 2004-02-16 2007-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Segmented MRAM memory array
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7045368B2 (en) 2004-05-19 2006-05-16 Headway Technologies, Inc. MRAM cell structure and method of fabrication
US7449345B2 (en) 2004-06-15 2008-11-11 Headway Technologies, Inc. Capping structure for enhancing dR/R of the MTJ device
US7098494B2 (en) 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements
US7576956B2 (en) 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7149106B2 (en) * 2004-10-22 2006-12-12 Freescale Semiconductor, Inc. Spin-transfer based MRAM using angular-dependent selectivity
JP4682585B2 (en) 2004-11-01 2011-05-11 ソニー株式会社 Memory element and memory
JP4575136B2 (en) 2004-12-20 2010-11-04 株式会社東芝 Magnetic recording element, magnetic recording apparatus, and information recording method
JP4693450B2 (en) 2005-03-22 2011-06-01 株式会社東芝 Magnetoresistive element and magnetic memory
US20070019337A1 (en) 2005-07-19 2007-01-25 Dmytro Apalkov Magnetic elements having improved switching characteristics and magnetic memory devices using the magnetic elements
FR2888994B1 (en) 2005-07-21 2007-10-12 Commissariat Energie Atomique RADIOFREQUENCY DEVICE WITH MAGNETIC ELEMENT AND METHOD FOR MANUFACTURING SUCH A MAGNETIC ELEMENT
JP4959717B2 (en) 2005-12-31 2012-06-27 中国科学院物理研究所 Magnetic memory cell, magnetic random access memory, and access storage method thereof
US8535952B2 (en) 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US8084835B2 (en) 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
TWI320929B (en) 2006-04-18 2010-02-21 Ind Tech Res Inst Structure and access method for magnetic memory cell structure and circuit of magnetic memory
US7502253B2 (en) * 2006-08-28 2009-03-10 Everspin Technologies, Inc. Spin-transfer based MRAM with reduced critical current density
WO2008115291A2 (en) 2006-11-03 2008-09-25 New York University Electronic devices based on current induced magnetization dynamics in single magnetic layers
FR2910716B1 (en) 2006-12-26 2010-03-26 Commissariat Energie Atomique MULTILAYER MAGNETIC DEVICE, METHOD FOR PRODUCING THE SAME, MAGNETIC FIELD SENSOR, MAGNETIC MEMORY AND LOGIC HOLDER USING SUCH A DEVICE
US8542524B2 (en) 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
AU2008219354B2 (en) 2007-09-19 2014-02-13 Viavi Solutions Inc. Anisotropic magnetic flakes
US8008095B2 (en) 2007-10-03 2011-08-30 International Business Machines Corporation Methods for fabricating contacts to pillar structures in integrated circuits
JP5236244B2 (en) 2007-10-16 2013-07-17 株式会社日立製作所 Method for manufacturing magnetic recording medium
FR2925725B1 (en) 2007-12-21 2011-03-25 Commissariat Energie Atomique METHOD FOR MODELING SPIN POLARIZED CURRENT WIRE MAGNETIC TUNNEL JUNCTION
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
GB2465369B (en) 2008-11-13 2011-01-12 Ingenia Holdings Magnetic data storage device and method
JP5470602B2 (en) 2009-04-01 2014-04-16 ルネサスエレクトロニクス株式会社 Magnetic storage
US7936598B2 (en) * 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
WO2010133576A1 (en) 2009-05-18 2010-11-25 Imec Patterning and contacting of magnetic layers
FR2946183B1 (en) 2009-05-27 2011-12-23 Commissariat Energie Atomique MAGNETIC DEVICE WITH POLARIZATION OF SPIN.
US8334213B2 (en) 2009-06-05 2012-12-18 Magic Technologies, Inc. Bottom electrode etching process in MRAM cell
JP5529648B2 (en) 2009-08-04 2014-06-25 キヤノンアネルバ株式会社 Magnetic sensor laminate, film formation method thereof, film formation control program, and recording medium
US8169821B1 (en) 2009-10-20 2012-05-01 Avalanche Technology, Inc. Low-crystallization temperature MTJ for spin-transfer torque magnetic random access memory (SSTTMRAM)
US8362580B2 (en) * 2009-12-08 2013-01-29 Qualcomm Incorporated Spin-transfer switching magnetic element utilizing a composite free layer comprising a superparamagnetic layer
US8981502B2 (en) * 2010-03-29 2015-03-17 Qualcomm Incorporated Fabricating a magnetic tunnel junction storage element
US9070855B2 (en) 2010-12-10 2015-06-30 Avalanche Technology, Inc. Magnetic random access memory having perpendicular enhancement layer
KR101559216B1 (en) * 2010-11-17 2015-10-13 뉴욕 유니버시티 Bipolar spin-transfer switching
US9196332B2 (en) * 2011-02-16 2015-11-24 Avalanche Technology, Inc. Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
KR101811315B1 (en) 2011-05-24 2017-12-27 삼성전자주식회사 Magnetic memory devices and methods of fabricating the same
US8686484B2 (en) * 2011-06-10 2014-04-01 Everspin Technologies, Inc. Spin-torque magnetoresistive memory element and method of fabricating same
JP5740225B2 (en) 2011-06-29 2015-06-24 株式会社東芝 Method of manufacturing resistance change memory
JP2013016587A (en) 2011-07-01 2013-01-24 Toshiba Corp Magnetoresistive effect element and manufacturing method therefor
US8830736B2 (en) 2011-07-20 2014-09-09 Avalanche Technology, Inc. Initialization method of a perpendicular magnetic random access memory (MRAM) device with a stable reference cell
JP5767925B2 (en) 2011-09-21 2015-08-26 株式会社東芝 Magnetic storage element and nonvolatile storage device
US8617408B2 (en) 2011-10-18 2013-12-31 HGST Netherlands B.V. Method for manufacturing a magnetic read sensor with narrow track width using amorphous carbon as a hard mask and localized CMP
US8574928B2 (en) 2012-04-10 2013-11-05 Avalanche Technology Inc. MRAM fabrication method with sidewall cleaning
US20130270661A1 (en) * 2012-04-16 2013-10-17 Ge Yi Magnetoresistive random access memory cell design
US8883520B2 (en) 2012-06-22 2014-11-11 Avalanche Technology, Inc. Redeposition control in MRAM fabrication process
US8860156B2 (en) 2012-09-11 2014-10-14 Headway Technologies, Inc. Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US20150279904A1 (en) 2014-04-01 2015-10-01 Spin Transfer Technologies, Inc. Magnetic tunnel junction for mram device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020105827A1 (en) * 2000-12-07 2002-08-08 Commissariat A L'energie Atomique Three-layered stacked magnetic spin polarisation device with memory, using such a device
US7598555B1 (en) * 2003-08-22 2009-10-06 International Business Machines Corporation MgO tunnel barriers and method of formation
US20050104101A1 (en) * 2003-11-19 2005-05-19 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US20050174702A1 (en) * 2004-02-11 2005-08-11 Hitachi Global Storage Technologies Self-pinned double tunnel junction head
US7502249B1 (en) * 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US20120155156A1 (en) * 2009-08-10 2012-06-21 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734574B2 (en) 2015-04-21 2020-08-04 Spin Memory, Inc. Method of manufacturing high annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US10615335B2 (en) 2015-04-21 2020-04-07 Spin Memory, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10147872B2 (en) 2015-04-21 2018-12-04 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US10026892B2 (en) 2015-06-16 2018-07-17 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US10553787B2 (en) 2015-06-16 2020-02-04 Spin Memory, Inc. Precessional spin current structure for MRAM
US10777736B2 (en) 2015-07-30 2020-09-15 Spin Memory, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10347314B2 (en) 2015-08-14 2019-07-09 Spin Memory, Inc. Method and apparatus for bipolar memory write-verify
US10643680B2 (en) 2016-01-28 2020-05-05 Spin Memory, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10381553B2 (en) 2016-01-28 2019-08-13 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
US10366775B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Memory device using levels of dynamic redundancy registers for writing a data word that failed a write operation
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10424393B2 (en) 2016-09-27 2019-09-24 Spin Memory, Inc. Method of reading data from a memory device using multiple levels of dynamic redundancy registers
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10991410B2 (en) 2016-09-27 2021-04-27 Spin Memory, Inc. Bi-polar write scheme
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
WO2018125085A1 (en) * 2016-12-28 2018-07-05 Intel Corporation Perpendicular spin transfer torque magnetic mechanism
US11437567B2 (en) 2016-12-28 2022-09-06 Intel Corporation Perpendicular spin transfer torque magnetic mechanism
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US11271149B2 (en) 2017-02-28 2022-03-08 Integrated Silicon Solution, (Cayman) Inc. Precessional spin current structure with nonmagnetic insertion layer for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US11355699B2 (en) 2017-02-28 2022-06-07 Integrated Silicon Solution, (Cayman) Inc. Precessional spin current structure for MRAM
US10032978B1 (en) 2017-06-27 2018-07-24 Spin Transfer Technologies, Inc. MRAM with reduced stray magnetic fields
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10930332B2 (en) 2017-12-28 2021-02-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10236047B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM
US10236048B1 (en) 2017-12-29 2019-03-19 Spin Memory, Inc. AC current write-assist in orthogonal STT-MRAM
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10270027B1 (en) 2017-12-29 2019-04-23 Spin Memory, Inc. Self-generating AC current assist in orthogonal STT-MRAM
US10199083B1 (en) 2017-12-29 2019-02-05 Spin Transfer Technologies, Inc. Three-terminal MRAM with ac write-assist for low read disturb
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10236439B1 (en) 2017-12-30 2019-03-19 Spin Memory, Inc. Switching and stability control for perpendicular magnetic tunnel junction device
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10255962B1 (en) 2017-12-30 2019-04-09 Spin Memory, Inc. Microwave write-assist in orthogonal STT-MRAM
US10229724B1 (en) 2017-12-30 2019-03-12 Spin Memory, Inc. Microwave write-assist in series-interconnected orthogonal STT-MRAM devices
US10141499B1 (en) 2017-12-30 2018-11-27 Spin Transfer Technologies, Inc. Perpendicular magnetic tunnel junction device with offset precessional spin current layer
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10529915B2 (en) 2018-03-23 2020-01-07 Spin Memory, Inc. Bit line structures for three-dimensional arrays with magnetic tunnel junction devices including an annular free magnetic layer and a planar reference magnetic layer
US10734573B2 (en) 2018-03-23 2020-08-04 Spin Memory, Inc. Three-dimensional arrays with magnetic tunnel junction devices including an annular discontinued free magnetic layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10615337B2 (en) 2018-05-30 2020-04-07 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture

Also Published As

Publication number Publication date
WO2016048603A1 (en) 2016-03-31
CN106062979A (en) 2016-10-26
JP2017532752A (en) 2017-11-02
KR20170062418A (en) 2017-06-07
CN106062979B (en) 2019-09-27
US20160087193A1 (en) 2016-03-24
US9337412B2 (en) 2016-05-10

Similar Documents

Publication Publication Date Title
US9337412B2 (en) Magnetic tunnel junction structure for MRAM device
US10615335B2 (en) Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10734574B2 (en) Method of manufacturing high annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US11355699B2 (en) Precessional spin current structure for MRAM
US10643680B2 (en) Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US20150279904A1 (en) Magnetic tunnel junction for mram device
US10032978B1 (en) MRAM with reduced stray magnetic fields

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:SPIN TRANSFER TECHNOLOGIES, INC.;REEL/FRAME:042981/0819

Effective date: 20170609

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

AS Assignment

Owner name: SPIN MEMORY, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:SPIN TRANSFER TECHNOLOGIES, INC.;REEL/FRAME:048075/0550

Effective date: 20181108

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION