US20160209178A1 - Ballistic armor - Google Patents

Ballistic armor Download PDF

Info

Publication number
US20160209178A1
US20160209178A1 US14/993,808 US201614993808A US2016209178A1 US 20160209178 A1 US20160209178 A1 US 20160209178A1 US 201614993808 A US201614993808 A US 201614993808A US 2016209178 A1 US2016209178 A1 US 2016209178A1
Authority
US
United States
Prior art keywords
wall
internal walls
armor
walls
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/993,808
Inventor
James L. Bailey
Harley C. McDonald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Falcon Power LLC
Original Assignee
Falcon Power LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Falcon Power LLC filed Critical Falcon Power LLC
Priority to US14/993,808 priority Critical patent/US20160209178A1/en
Assigned to Falcon Power, LLC reassignment Falcon Power, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAILEY, JAMES L., MCDONALD, HARLEY C.
Publication of US20160209178A1 publication Critical patent/US20160209178A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0442Layered armour containing metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

According to various embodiments of this disclosure, an armor system includes a front wall and a back wall spaced apart from one another. The armor system also includes a first plurality of internal walls spaced apart from one another and fixed on one end of each internal wall to the front wall and on the other end of each internal wall to the back wall. The internal walls are slanted (i.e., fixed at angles other than ninety degrees) with respect to the front wall and the back wall. In this manner, a projectile passing directly through the front wall will strike at least one of the slanted internal walls before striking the back wall. Thus, the armor system prevents penetration of an underlying structure (e.g., armored vehicle, housing structure, or other enclosure) that is protected by the armor system.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of currently co-pending U.S. Provisional Application No. 62/104,516, entitled “BALLISTIC ARMOR,” and filed on Jan. 16, 2015. U.S. Provisional Application No. 62/104,516 is incorporated herein by reference in its entirety.
  • BACKGROUND
  • In hostile environments, vehicles, marine vessels, aircraft, housing structures, and enclosures are sometimes subject to penetration by projectiles injuring or damaging persons or the contents within. High strength, mass and energy absorbent materials can be used in the manufacture of the outer surface of such vehicles and enclosures, but usually these materials will add significant weight and/or cost to the structure and may only serve to slow down a projectile which may still have sufficient speed and momentum to inflict injury or damage to the persons or contents within. This is particularly the case where armor piercing projectiles are involved.
  • SUMMARY
  • According to various embodiments of this disclosure, an armor system is presented which employs the principle of deflection as well as energy absorption to both redirect the path of the projectile and absorb its momentum and energy in multiple instances preventing it from entering the interior of the enclosure. The armor system includes a front wall and a back wall spaced apart from one another and a first plurality of internal walls spaced apart from one another, fixed on one end of each internal wall to the front wall and on the other end of each internal wall to the back wall. The internal walls are slanted (i.e. fixed at angles other than ninety degrees) with respect to the front wall and the back wall. In this manner a projectile striking the outer wall will have some of its energy absorbed by the strength and mass or structural composition of the outer wall. If this does not stop the projectile, it will then strike at least one of the slanted internal walls where it will be deflected, further reducing the speed and momentum of the projectile before it strikes the back wall where it will again be deflected and its path changed by as much as ninety degrees staying within the front and back wall of the armor system, preventing penetration of the interior of the structure or vehicle and injury to the persons or contents within.
  • In some embodiments, the armor system further includes a second plurality of internal walls spaced apart from one another and angled with respect to the first internal walls. Each second internal wall is angled with respect to an adjacent first internal wall at an angle of about ninety degrees, though other angles may be appropriate. In some embodiments, each second internal wall extends between adjacent first internal walls. For example, a second internal wall can be fixed on one end to a first one of the first internal walls and on the other end to a neighboring one of the first internal walls. In this manner, a projectile passing directly through the front wall will strike at least one of the first internal walls, at least one of the second internal walls, or both, before striking the back wall.
  • In some embodiments, the armor system can be formed from modular armor units. For example, each armor unit can include a front wall portion, a back wall portion, and at least one of the first internal slanted walls (extending from the front wall portion to the back wall portion). In some embodiments, each unit can include a front wall portion, a back wall portion, at least two of the first internal walls (extending from the front wall portion to the back wall portion), and at least one second internal wall (extending from one of the first internal walls to another one of the first internal walls). A top or bottom corner unit of the ballistic armor can also be modular or it can be manufactured as a single structure that has a size and shape allowing it to fit within or receive a modular armor unit at least one end.
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
  • DRAWINGS
  • The Detailed Description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
  • FIG. 1 is a partial cross-sectional side elevation view illustrating a portion of a ballistic armor system in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a partial cross-sectional side elevation view illustrating a portion of a ballistic armor system in accordance with an embodiment of the present disclosure.
  • FIG. 3 is an isometric view illustrating a portion of a ballistic armor system in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a partial cross-sectional side elevation view illustrating side portion of a ballistic armor system in accordance with an embodiment of the present disclosure.
  • FIG. 5 is a partial cross-sectional side elevation view illustrating a top corner unit of a ballistic armor system in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a partial cross-sectional side elevation view illustrating a top corner unit and a side portion of a ballistic armor system, joined together, in accordance with an embodiment of the present disclosure.
  • DETAILED DESCRIPTION Overview
  • A ballistic armor resists the penetration of projectiles (e.g., bullets and the like) by various means of absorbing the projectile energy. For example, some armors capture a bullet in a net-like material, such as a heavy woven cotton vest and/or a KEVLAR vest; absorb the energy from a bullet with a hard strike face material that spreads the energy of a bullet over a wider area, often absorbing the energy in the fracture of the strike face material; or by a combination of both a hard strike face material and a net-like structure. High strength steel is a material that has a hard strike face but is also malleable, with a high resistance to penetration by a bullet. As a bullet penetrates the steel, energy is absorbed in the steel as it deforms under the pressure of the bullet, slowing the bullet.
  • As described herein, deflection can also be used to stop a high energy projectile. For example, when a bullet is traveling at high velocity, the energy required to change its direction is less than the energy required to stop it. When a bullet hits a hard surface at an angle, it is very likely to change its direction or ricochet off the surface at some angle depending on the speed and mass of the bullet and the strength, hardness and angle of the strike face. In doing so, the bullet loses some of its energy. Even where hardened point bullets are used, and the point digs into the strike face surface (e.g., as opposed to ricocheting off the surface), the energy required to deflect an angled shot is generally less than that required to stop a shot normal to the surface of a material.
  • This disclosure describes an armor system that leverages projectile energy loss from deflection at multiple angles to stop or slow projectiles such as high energy, hardened projectiles including, but not limited to: bullets, rockets, cannon balls, missiles, and the like. In some implementations, the armor system also includes on one or more of: a hardened strike face, an energy absorbing material (e.g., energy absorbing foam or other core material), an energy absorbing structural configuration (e.g., a net-like or woven structure), or the like.
  • Example Implementations
  • Various embodiments of a ballistic armor system 100 are illustrated in FIGS. 1 through 6. The ballistic armor system 100 can be implemented in a variety of settings. For example, the ballistic armor system 100 can be used for armored vehicles (e.g., ground vehicles, marine vessels, aircrafts, and the like), housing structures (e.g., dwellings, buildings, storage units, etc.), and other enclosures (e.g., enclosures for electronics, supplies, or sensitive materials such as oxygen, fuel, water, and the like), and may even be used for body armor. In some implementations, the ballistic armor system 100 is placed over walls or other surfaces being protected. In other implementations, the ballistic armor system 100 is used to manufacture the protected walls or surfaces. For example, the protected wall or surface can comprise the ballistic armor system 100.
  • The ballistic armor system 100 includes a front wall 104 and a back wall 102 spaced apart from one another. The armor system 100 also includes a first plurality of internal walls 106 spaced apart from one another and fixed on one end of each internal wall 106 to the front wall 104 and on the other end of each internal wall 106 to the back 102 wall. The internal walls 106 are slanted (i.e., fixed at angles other than ninety degrees) with respect to the front wall 104 and the back wall 102. A projectile passing directly through the front wall 104 will strike at least one of the slanted internal walls 106 before striking the back wall 102 (if the back wall 102 is reached at all). Thus, the armor system 100 prevents damage to the armored structure (e.g., protected wall or other surface of a vehicle, housing structure, or other enclosure) or at least prevents full penetration of the armor system 100 itself (i.e., prevents the projectile from penetrating the back wall 102) because the projectile is at least partially deflected at an angle by the front wall 104 or by one of the internal walls 106. For example, if the projectile trajectory is normal to the front wall 104 and the projectile penetrates through the front wall 104, it will hit at least one of the internal walls 106 at an angle to the normal. If the projectile hits the front wall 104 at an angle, it will be at least partially deflected by the front wall 104 and will also hit at least one of the internal walls 106 and/or the back wall 102 at an angle. The projectile energy is therefore dissipated by deflecting the projectile at one or more angles.
  • FIG. 2 shows an embodiment of the armor system 100 further including a second plurality of internal walls 110 spaced apart from one another and angled with respect to the first internal walls 106. In some implementations, each second internal wall 110 is angled with respect to an adjacent first internal wall 106 at an angle of about ninety degrees, though other angles may be appropriate. Each of the second internal walls 110 may extend between adjacent first internal walls 106. For example, a second internal wall 110 can be fixed on one end to a first one of the first internal walls 106 and on the other end to a neighboring one of the first internal walls 106. In this manner, a projectile passing directly through the front wall 104 will strike at least one of the first internal walls 106, at least one of the second internal walls 110, or both, before striking the back wall 102.
  • An example projectile path 112 is shown in FIG. 2 to illustrate the manner by which the projectile can be deflected at multiple angles by a combination of the front wall 104 and at least one of the first internal walls 106 and/or at least one of the second internal walls 110 before reaching the back wall 102 (if the back wall 102 is reached at all). When a projectile (e.g., a bullet) strikes the front wall 104 of the armor system 100 (e.g., at a normal or near normal angle to the strike face of the front wall 104), if the front wall 104 does not stop it, the projectile will slow and may be deformed (e.g., a point of a bullet may become rounded or otherwise deformed). The projectile may then strike a first angled face of one of the first internal walls 106, where it will be less likely to dig into the face, but instead may be deflected; whereupon the projectile will strike a second angled face of one of the second internal walls 110; and then, if still moving, the projectile may strike the back wall 102 (e.g., at an angle whereupon most of its energy will be spent) and may then stop, unable to penetrate the back wall 102; or the projectile may simply be deflected off the second internal wall 110 without ever reaching the back wall 102. In implementations where the armor system 100 only includes the first plurality of internal walls 106, or where the first and second walls 106 and 110 are present but the projectile does penetrate one of the first internal walls 106 (having an angled/slanted face), the energy required to penetrate the first internal wall 106 will be greater than the energy required to penetrate the front wall 104 (due to the angled face of the first internal wall 106). Thus, even if the projectile penetrates the angled face of the first internal wall 106, the projectile energy will be substantially reduced or dissipated, thereby preventing the projectile from penetrating the back wall 102.
  • At least one of the first internal walls 106 and the second internal walls 110 can be formed from an alloy, a composite material, or a ballistic material. For example, the first internal walls 106 or the second internal walls 110, or both, can be formed from steel or hardened steel, a reinforced plastic, a ceramic composition, DYNEEMA, or KEVLAR. The front wall 104 or the back wall 102, or both, can also be formed from one of the foregoing materials. In some embodiments, at least one of the front wall 104, the back wall 102, the first plurality of internal walls 106, the second plurality of internal walls 110, or a combination thereof, is surfaced with a hardened strike face (e.g., a hardened steel coating or the like).
  • In some embodiments, the spaces 108 between adjacent internal walls (e.g., between adjacent ones of the first internal walls 106 or between a first internal wall 106 and an adjacent second internal wall 110) are left empty. In other embodiments, some or all of these spaces 108 can be filled with a core material such as a foam, woven material, net-like material, or any other material (with a different composition or structure than the wall materials) that has at least one ballistic property configured to absorb or deflect projectile energy.
  • FIGS. 3 and 4 show embodiments where the ballistic armor system 100 comprises a plurality of modular armor units 114 that can be joined together to form an armor wall having any selected length or height. For example, each armor unit 114 can comprise a single structure including a portion of the front wall 104, a portion of the back wall 102, and at least one of the first internal slanted walls 106 (extending from the front wall portion to the back wall portion). In some embodiments, each armor unit 114 can include a portion of the front wall 104, a portion of the back wall 102, at least two of the first internal walls 106 (extending from the front wall portion to the back wall portion), and at least one second internal wall 110 (extending from one of the first internal walls to another one of the first internal walls) as shown in FIGS. 3 and 4. In embodiments, an upper edge 116 of the modular armor unit 114 is mateable with a lower edge 118 of a second modular armor unit 114, such that multiple modular armor units 114 are configured to be mated together to form a ballistic wall of a selected length and/or height.
  • Each modular armor unit 114 can be formed by extruding or pultruding its base material laterally in a direction parallel to a face of one or more of the walls to create a parallelogram section of extended length with one or more internal walls. For example, each modular armor unit 114 can be manufactured to include at least one of the first internal walls 106 between front and back wall portions, or to include at least one first internal wall 106 between front and back wall portions, and at least one second internal wall 110 attached to the first internal wall 106. The front and back wall portions of the parallelogram section are extended out to form the upper edge 116 of the modular armor unit 114. In embodiments, each of the upper edges 116 can be a distance beyond an intersection of the uppermost internal wall (e.g., an uppermost one of the first internal walls 106 for the armor unit 114) with a respective portion of the front wall 104 or the back wall 102. Each of the lower edges 118 of the modular armor unit 114 can be indented inward a distance approximately equal to a wall thickness of a respective portion of the front wall 104 or the back wall 102, or at least a distance equal to a thickness of a respective one of the upper edges 116. Each of the lower edges 116 can also extend for a distance up from an intersection of the lowermost internal wall (e.g., a lowermost one of the first internal walls 106) with a respective portion of the front wall 104 or the back wall 102, such that the extension of each upper edge 116 is approximately equal to the indentation of a respective lower edge 118. The upper edge 116 and lower edge 118 configurations can be reversed (e.g., where the upper edges 116 are indented and the lower edges 118 are extended) or mixed (e.g., where a first upper edge 116 is extended and a respective lower edge 118 is indented, and a second upper edge 116 is indented and a respective lower edge 118 is extended), or otherwise configured to be mated with one another in a similar fashion to that described herein.
  • The modular armor units 114 can be glued, welded, or pressed together to form an armor wall of the armor system 100 having any desired length or height. In some embodiments, at least one of the modular armor units 114 includes a curved or angled portion of the front wall 104 or portion of the back wall 104, or both. In this manner, the modular armor unit 114 can be assembled with other modular armor units that are not curved or angled (e.g., the curved/angled units can be alternated) to produce corners and offsets or segmented round ballistic walls. This creates additional angled surfaces to increase deflection of a projectile striking a portion of the front wall 104, and sometimes also a portion of the back wall 102.
  • FIG. 5 shows a corner (e.g., top or bottom corner) unit 200 for the ballistic armor system 100 that can be modular or it can be manufactured as a single structure that has a size and shape allowing it to fit within or receive a modular armor unit at least one end. For example, the corner unit can include indented or extended edges 210 that are configured to mate with upper edges 116 or lower edges 118 of a modular armor unit 114, as shown in FIG. 6 where a plurality of modular armor units 114 are connected together and an end unit of the modular armor units 114 is connected to the corner unit 200. In embodiments, the corner unit 200 includes an outer wall 208 and an inner wall 206 with at least a first plurality of internal walls 202 fixed in between the outer wall 208 and the inner wall 206 in a similar fashion to the first plurality of internal walls 106 fixed between the front wall 104 and the back wall 102. The corner unit can also include a second plurality of internal walls 204 fixed with respect to the first plurality of internal walls 202 in a similar fashion to the second plurality of internal walls 110 fixed with respect to the first plurality of internal walls 106.
  • It will be understood by those within the art that, in general, terms used herein, and are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
  • In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
  • In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
  • Although particular embodiments of this invention have been illustrated, it is apparent that various modifications and embodiments of the invention may be made by those skilled in the art without departing from the scope and spirit of the foregoing disclosure. Accordingly, the scope of the invention should be limited only by the claims appended hereto.

Claims (20)

What is claimed is:
1. A ballistic armor, comprising:
a front wall;
a back wall spaced apart from the front wall; and
a first plurality of internal walls spaced apart from one another and fixed on one end of each wall of the first plurality of internal walls to the front wall and on the other end of each wall of the first plurality of internal walls to the back wall at angles other than ninety degrees with respect to the front wall and the back wall so that a projectile passing through the front wall will strike at least one of the first plurality of internal walls before being able to reach the back wall.
2. The ballistic armor as recited in claim 1, wherein the first plurality of internal walls are formed from at least one of: an alloy, a composite material, or a ballistic material.
3. The ballistic armor as recited in claim 2, wherein the first plurality of internal walls are formed from at least one of: steel or hardened steel.
4. The ballistic armor as recited in claim 2, wherein the first plurality of internal walls are formed from at least one of: a reinforced plastic, a ceramic composition, DYNEEMA, or KEVLAR.
5. The ballistic armor as recited in claim 1, wherein spaces between adjacent walls of the first plurality of internal walls are empty.
6. The ballistic armor as recited in claim 1, wherein spaces between adjacent walls of the first plurality of internal walls comprise a core material.
7. The ballistic armor as recited in claim 6, wherein the core material has at least one ballistic property configured to absorb or deflect projectile energy.
8. The ballistic armor as recited in claim 1, wherein at least one of the front wall, the back wall, or the first plurality of internal walls is surfaced with a hardened strike face.
9. A ballistic armor, comprising:
a front wall;
a back wall spaced apart from the front wall;
a first plurality of internal walls spaced apart from one another and fixed on one end of each wall of the first plurality of internal walls to the front wall and on the other end of each wall of the first plurality of internal walls to the back wall at angles other than ninety degrees with respect to the front wall and the back wall; and
a second plurality of internal walls spaced apart from one another and angled with respect to the first plurality of internal walls, wherein each wall of the second plurality of internal walls is fixed on one end to a first slanted wall of the first plurality of internal walls and on the other end to a second slanted wall of the first plurality of internal walls so that a projectile passing through the front wall will strike at least one internal wall of the first plurality of internal walls or at least one internal wall of the second plurality of internal walls before being able to reach the back wall.
10. The ballistic armor as recited in claim 9, wherein each wall of the second plurality of internal walls is angled with respect to an adjacent wall of the first plurality of internal walls at an angle of approximately ninety degrees.
11. The ballistic armor as recited in claim 9, wherein the first plurality of internal walls and the second plurality of internal walls are formed from at least one of: an alloy, a composite material, or a ballistic material.
12. The ballistic armor as recited in claim 11, wherein the first plurality of internal walls and the second plurality of internal walls are formed from at least one of: steel, hardened steel, a reinforced plastic, a ceramic composition, DYNEEMA, or KEVLAR.
13. The ballistic armor as recited in claim 9, wherein spaces between adjacent walls of the first plurality of internal walls and the second plurality of internal walls are empty.
14. The ballistic armor as recited in claim 9, wherein spaces between adjacent walls of the first plurality of internal walls and the second plurality of internal walls comprise a core material.
15. The ballistic armor as recited in claim 14, wherein the core material has at least one ballistic property configured to absorb or deflect projectile energy.
16. The ballistic armor as recited in claim 9, wherein at least one of the front wall, the back wall, the first plurality of internal walls, or the second plurality of internal walls is surfaced with a hardened strike face.
17. A modular ballistic armor, comprising:
a front wall;
a back wall spaced apart from the front wall;
a first plurality of internal walls spaced apart from one another and fixed on one end of each wall of the first plurality of internal walls to the front wall and on the other end of each wall of the first plurality of internal walls to the back wall at angles other than ninety degrees with respect to the front wall and the back wall; and
a second plurality of internal walls spaced apart from one another and angled with respect to the first plurality of internal wall,
wherein a portion of the front wall, a portion of the back wall, at least one first slanted wall of the first plurality of internal walls, and at least one second slanted wall of the second plurality of internal walls form a first modular armor unit, wherein an upper edge of at least a second modular armor unit is mateable with a lower edge of the first modular armor unit such that multiple modular armor units are configured to be mated together to form a ballistic wall of a selected length and height.
18. The modular ballistic armor as recited in claim 17, wherein the first modular armor unit is formed by extruding or pultruding a base material to create a parallelogram section of extended length with one or more internal walls, wherein the front and back walls of the parallelogram section are extended on the upper edge a distance beyond an intersection of the uppermost internal wall with the front and back walls, and wherein a lower edge of the first modular armor unit are indented inward a distance approximately equal to a wall thickness of the front and back walls and for a distance up from an intersection of the lowermost internal wall with the front and back walls, such that the extension of the upper edge is approximately equal to the indentation of the lower edge.
19. The modular ballistic armor as recited in claim 17, wherein the modular armor units are glued or welded together.
20. The modular ballistic armor as recited in claim 17, wherein at least one of the modular armor units includes a portion of the front wall and a portion of the back wall that are curved or angled, such that when assembled with other modular armor units that are not curved or angled, corners and offsets or segmented round ballistic walls are created.
US14/993,808 2015-01-16 2016-01-12 Ballistic armor Abandoned US20160209178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/993,808 US20160209178A1 (en) 2015-01-16 2016-01-12 Ballistic armor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562104516P 2015-01-16 2015-01-16
US14/993,808 US20160209178A1 (en) 2015-01-16 2016-01-12 Ballistic armor

Publications (1)

Publication Number Publication Date
US20160209178A1 true US20160209178A1 (en) 2016-07-21

Family

ID=56407616

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/993,808 Abandoned US20160209178A1 (en) 2015-01-16 2016-01-12 Ballistic armor

Country Status (1)

Country Link
US (1) US20160209178A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019063684A1 (en) 2017-09-27 2019-04-04 Innovation Contrôle Système - I.C.S. Ballistic protection brick, brick structure and method of production
WO2019152998A1 (en) * 2018-02-05 2019-08-08 Bailey Robert D Pro-active defense structure
CN114295004A (en) * 2021-12-30 2022-04-08 湖北长平汽车装备有限公司 Modular quick-assembly-disassembly protective wall
US11402177B2 (en) * 2019-12-03 2022-08-02 Michael Cohen Composite grid/slat-armor
US11421962B2 (en) 2018-02-05 2022-08-23 Robert D. Bailey Pro-active defense structure with tensioning member

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787065A (en) * 1902-04-25 1905-04-11 Frank G White Armor-plate.
US3765299A (en) * 1968-09-06 1973-10-16 Us Army Universal applique armor
US4731964A (en) * 1986-04-14 1988-03-22 Phillips Edward H Steel shell building modules
US4957034A (en) * 1989-12-15 1990-09-18 The United States Of America As Represented By The Secretary Of The Army Candy cane configuration for modular armor unit
US5102723A (en) * 1989-11-13 1992-04-07 Pepin John N Structural sandwich panel with energy-absorbing material pierced by rigid rods
US5435226A (en) * 1993-11-22 1995-07-25 Rockwell International Corp. Light armor improvement
US5471905A (en) * 1993-07-02 1995-12-05 Rockwell International Corporation Advanced light armor
US20020058450A1 (en) * 1998-03-20 2002-05-16 The State Of Israel, Ministry Of Defense, Armament Development Authority Lightweight armor against firearm projectiles
US20060283129A1 (en) * 2005-06-02 2006-12-21 Larry Salhaney Modular, structural, element, space frame or truss
US20070089595A1 (en) * 2005-07-21 2007-04-26 Lockheed Martin Corporation Apparatus comprising armor
US7213497B1 (en) * 2004-04-12 2007-05-08 The United States Of America As Represented By The Secretary Of The Navy Inflatable trajectory altering and blast energy absorption system
US7288326B2 (en) * 2002-05-30 2007-10-30 University Of Virginia Patent Foundation Active energy absorbing cellular metals and method of manufacturing and using the same
US7424967B2 (en) * 2002-09-03 2008-09-16 University Of Virginia Patent Foundation Method for manufacture of truss core sandwich structures and related structures thereof
WO2008143662A1 (en) * 2007-05-16 2008-11-27 John Hughes Ballistic construction panel
US20110072960A1 (en) * 2007-11-16 2011-03-31 Composite Technologies Armor shielding
DE102010028933A1 (en) * 2010-05-12 2011-11-17 Sommer Metallbau-Stahlbau Gmbh & Co. Kg Protective wall e.g. concrete wall, has pipe sections arranged between two parallel extending carrier elements and laid adjacently and filled with filling materials, where pipe sections are arranged in vertical direction
US20110283873A1 (en) * 2007-08-16 2011-11-24 University Of Virginia Patent Foundation Hybrid Periodic Cellular Material Structures, Systems, and Methods For Blast and Ballistic Protection
US20120090454A1 (en) * 2010-10-15 2012-04-19 Corvid Technologies Ballistic armor system
US20120144987A1 (en) * 2010-12-09 2012-06-14 Ficht Fahrzeug + Marinetechnik Gmbh & Co. Kg Composite plate and armor having at least one of the composite plates
US20120186424A1 (en) * 2007-10-19 2012-07-26 Tunis George C Armor panel system to deflect incoming projectiles
US20120216670A1 (en) * 2009-11-02 2012-08-30 Bae Systems Plc Armour
US20140013932A1 (en) * 2011-04-01 2014-01-16 Am General Llc Transparent Armor Structure
US20140060305A1 (en) * 2011-12-19 2014-03-06 Howard A. Fromson Armor with Tetrahedral Core
WO2014071306A1 (en) * 2012-11-05 2014-05-08 Gordon Holdings, Inc. High strength, light weight composite structure, method of manufacture and use thereof
US20140373707A1 (en) * 2013-05-25 2014-12-25 Diehl Bgt Defence Gmbh & Co. Kg Arrangement for the protection of an object, especially of a motor vehicle, against approaching projectiles
US20150128793A1 (en) * 2012-05-14 2015-05-14 Nexter Systems Armoured ventilation grille
US20150268005A1 (en) * 2013-03-21 2015-09-24 Plasan Sasa Ltd. Louver armor
US20160053483A1 (en) * 2012-02-16 2016-02-25 Tnp Holdings Llc Explosive blast energy dissipating and carrying building structure

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787065A (en) * 1902-04-25 1905-04-11 Frank G White Armor-plate.
US3765299A (en) * 1968-09-06 1973-10-16 Us Army Universal applique armor
US4731964A (en) * 1986-04-14 1988-03-22 Phillips Edward H Steel shell building modules
US5102723A (en) * 1989-11-13 1992-04-07 Pepin John N Structural sandwich panel with energy-absorbing material pierced by rigid rods
US4957034A (en) * 1989-12-15 1990-09-18 The United States Of America As Represented By The Secretary Of The Army Candy cane configuration for modular armor unit
US5471905A (en) * 1993-07-02 1995-12-05 Rockwell International Corporation Advanced light armor
US5435226A (en) * 1993-11-22 1995-07-25 Rockwell International Corp. Light armor improvement
US20020058450A1 (en) * 1998-03-20 2002-05-16 The State Of Israel, Ministry Of Defense, Armament Development Authority Lightweight armor against firearm projectiles
US7288326B2 (en) * 2002-05-30 2007-10-30 University Of Virginia Patent Foundation Active energy absorbing cellular metals and method of manufacturing and using the same
US7424967B2 (en) * 2002-09-03 2008-09-16 University Of Virginia Patent Foundation Method for manufacture of truss core sandwich structures and related structures thereof
US7213497B1 (en) * 2004-04-12 2007-05-08 The United States Of America As Represented By The Secretary Of The Navy Inflatable trajectory altering and blast energy absorption system
US20060283129A1 (en) * 2005-06-02 2006-12-21 Larry Salhaney Modular, structural, element, space frame or truss
US20070089595A1 (en) * 2005-07-21 2007-04-26 Lockheed Martin Corporation Apparatus comprising armor
WO2008143662A1 (en) * 2007-05-16 2008-11-27 John Hughes Ballistic construction panel
US20110283873A1 (en) * 2007-08-16 2011-11-24 University Of Virginia Patent Foundation Hybrid Periodic Cellular Material Structures, Systems, and Methods For Blast and Ballistic Protection
US20120186424A1 (en) * 2007-10-19 2012-07-26 Tunis George C Armor panel system to deflect incoming projectiles
US20110072960A1 (en) * 2007-11-16 2011-03-31 Composite Technologies Armor shielding
US20120216670A1 (en) * 2009-11-02 2012-08-30 Bae Systems Plc Armour
DE102010028933A1 (en) * 2010-05-12 2011-11-17 Sommer Metallbau-Stahlbau Gmbh & Co. Kg Protective wall e.g. concrete wall, has pipe sections arranged between two parallel extending carrier elements and laid adjacently and filled with filling materials, where pipe sections are arranged in vertical direction
US20120090454A1 (en) * 2010-10-15 2012-04-19 Corvid Technologies Ballistic armor system
US20120144987A1 (en) * 2010-12-09 2012-06-14 Ficht Fahrzeug + Marinetechnik Gmbh & Co. Kg Composite plate and armor having at least one of the composite plates
US20140013932A1 (en) * 2011-04-01 2014-01-16 Am General Llc Transparent Armor Structure
US20140060305A1 (en) * 2011-12-19 2014-03-06 Howard A. Fromson Armor with Tetrahedral Core
US20160053483A1 (en) * 2012-02-16 2016-02-25 Tnp Holdings Llc Explosive blast energy dissipating and carrying building structure
US20150128793A1 (en) * 2012-05-14 2015-05-14 Nexter Systems Armoured ventilation grille
WO2014071306A1 (en) * 2012-11-05 2014-05-08 Gordon Holdings, Inc. High strength, light weight composite structure, method of manufacture and use thereof
US20150268005A1 (en) * 2013-03-21 2015-09-24 Plasan Sasa Ltd. Louver armor
US20140373707A1 (en) * 2013-05-25 2014-12-25 Diehl Bgt Defence Gmbh & Co. Kg Arrangement for the protection of an object, especially of a motor vehicle, against approaching projectiles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019063684A1 (en) 2017-09-27 2019-04-04 Innovation Contrôle Système - I.C.S. Ballistic protection brick, brick structure and method of production
WO2019152998A1 (en) * 2018-02-05 2019-08-08 Bailey Robert D Pro-active defense structure
US10648777B2 (en) 2018-02-05 2020-05-12 Robert D. Bailey Pro-active defense structure
US11085737B2 (en) 2018-02-05 2021-08-10 Proactive Ballistic Systems, Llc Methods of using a defense structure
US11421962B2 (en) 2018-02-05 2022-08-23 Robert D. Bailey Pro-active defense structure with tensioning member
US11402177B2 (en) * 2019-12-03 2022-08-02 Michael Cohen Composite grid/slat-armor
CN114295004A (en) * 2021-12-30 2022-04-08 湖北长平汽车装备有限公司 Modular quick-assembly-disassembly protective wall

Similar Documents

Publication Publication Date Title
US20160209178A1 (en) Ballistic armor
US7987762B2 (en) Apparatus for defeating high energy projectiles
US7827897B2 (en) Light ballistic protection as building elements
US11421963B2 (en) Lightweight enhanced ballistic armor system
US7866248B2 (en) Encapsulated ceramic composite armor
US9733049B1 (en) Reactive armor system and method
US8151685B2 (en) Apparatus for defeating high energy projectiles
US20120017754A1 (en) Armor system and method for defeating high energy projectiles that include metal jets
US11015903B2 (en) Enhanced ballistic protective system
EP2040024B1 (en) Reactive armor module
US8468926B2 (en) Ballistic armor system
US8211814B2 (en) Protective armor panels
US20160320162A1 (en) Armour panels
KR20170081870A (en) Lightweight Armor
US20100011947A1 (en) Passive armor assembly including an armor member made of a brittle material
RU2559434C9 (en) Armour protection
EP3120103B1 (en) Lightweight enhanced ballistic armor system
US20160145865A1 (en) Protective panel
US20240060750A1 (en) Reactive protective armor
US20120222544A1 (en) Protection device against projectile-forming charges
RU2580603C1 (en) Composite armour
CN109099772A (en) Power is armoring

Legal Events

Date Code Title Description
AS Assignment

Owner name: FALCON POWER, LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAILEY, JAMES L.;MCDONALD, HARLEY C.;REEL/FRAME:037468/0675

Effective date: 20160112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION