US20160103206A1 - Radar device utilizing phase shift - Google Patents

Radar device utilizing phase shift Download PDF

Info

Publication number
US20160103206A1
US20160103206A1 US14/642,012 US201514642012A US2016103206A1 US 20160103206 A1 US20160103206 A1 US 20160103206A1 US 201514642012 A US201514642012 A US 201514642012A US 2016103206 A1 US2016103206 A1 US 2016103206A1
Authority
US
United States
Prior art keywords
phase shift
signal
unit
radar
radar device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/642,012
Other versions
US10006987B2 (en
Inventor
Cristian Pavao-Moreira
Dominique Delbecq
Birama Goumballa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELBECQ, DOMINIQUE, GOUMBALLA, Birama, PAVAO-MOREIRA, Cristian
Assigned to CITIBANK, N.A., AS NOTES COLLATERAL AGENT reassignment CITIBANK, N.A., AS NOTES COLLATERAL AGENT SUPPLEMENT TO IP SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to CITIBANK, N.A., AS NOTES COLLATERAL AGENT reassignment CITIBANK, N.A., AS NOTES COLLATERAL AGENT SUPPLEMENT TO IP SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to CITIBANK, N.A., AS NOTES COLLATERAL AGENT reassignment CITIBANK, N.A., AS NOTES COLLATERAL AGENT SUPPLEMENT TO IP SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. PATENT RELEASE Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS Assignors: CITIBANK, N.A.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS Assignors: CITIBANK, N.A.
Publication of US20160103206A1 publication Critical patent/US20160103206A1/en
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SUPPLEMENT TO THE SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC. reassignment NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP B.V. reassignment NXP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP USA, INC. reassignment NXP USA, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FREESCALE SEMICONDUCTOR INC.
Assigned to NXP USA, INC. reassignment NXP USA, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 040626 FRAME: 0683. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER AND CHANGE OF NAME EFFECTIVE NOVEMBER 7, 2016. Assignors: NXP SEMICONDUCTORS USA, INC. (MERGED INTO), FREESCALE SEMICONDUCTOR, INC. (UNDER)
Publication of US10006987B2 publication Critical patent/US10006987B2/en
Application granted granted Critical
Assigned to NXP B.V. reassignment NXP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP B.V. reassignment NXP B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST. Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC. reassignment NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST. Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • This invention relates to a radar device in which a phase shift is utilized. More in particular, the present invention relates to a radar device comprising at least one transmitter unit and at least one receiver unit, in which the transmitter unit comprises a phase shift unit for producing a phase shift of the radar signal in response to a phase shift signal.
  • a typical radar system transmits an electromagnetic signal and receives reflections of the transmitted signal.
  • the time delay between the transmitted and received signals is indicative of the distance of objects causing the reflections.
  • phase shift also referred to as phase rotation
  • a phase shift of 90° may be used to better detect reflected signals in noise (quadrature detection), as disclosed in U.S. Pat. No. 3,942,178, for example.
  • the phase-shifted transmitter signal is fed directly to the receiver but the transmitted signal is not phase-shifted.
  • a phase shift of 180° may be used to better distinguish reflected signals from transmitted signals.
  • the transmitted signal may be periodically phase shifted.
  • the period is typically chosen such that the phase shift occurs between two time frames of the signal, thus altering the phase every time frame, where a time frame may, for example, correspond with a “chirp” in an FMCW (frequency modulation continuous wave) signal.
  • high pass filters with low cut-off frequencies are often used to attenuate low frequency interferences, for example in automotive applications (the “bumper effect” caused by reflections from car bumpers).
  • low pass filters may be used to limit the effective signal bandwidth to be converted by any analog-digital converters.
  • filters processing the received signal may go into saturation. This is not a problem if this occurs between time frames and if the filters are no longer in saturation when the next time frame starts. However, when a very short inter-frame period is used, the filters may still be in saturation when the next time frame starts, which will impede the proper functioning of the radar device.
  • the present invention provides a radar device, a vehicle radar system, an integrated circuit, a method of operating a radar device and a computer program product as described in the accompanying claims.
  • FIG. 1 schematically shows a first example of an embodiment of a radar device.
  • FIG. 2 schematically shows a second example of an embodiment of a radar device.
  • FIG. 3 schematically shows an example of a set of signals without filter reset.
  • FIG. 4 schematically shows an example of a set of signals with filter reset.
  • FIG. 5 schematically shows an example of part of an embodiment of a radar device.
  • FIG. 6 schematically shows an example of an embodiment of a filter circuit.
  • FIG. 7 shows a computer readable medium comprising a computer program product.
  • circuitry is described in operation. However, it will be apparent that the respective elements are arranged to perform the functions being described as performed by them.
  • the radar device 10 illustrated merely by way of exemplary embodiment in FIG. 1 comprises transmitter units 11 and a receiver units 12 . Although two transmitter units 11 and four receiver units 12 are shown in FIG. 1 , these numbers are not limiting and other numbers are also possible, such as four transmitter units 11 and six receiver units 12 , or a single transmitter unit 11 and/or a single receiver unit 12 .
  • the radar device 10 of FIG. 1 further comprises a phase shift signal generator 13 , a reset control unit 14 , a frequency synthesizer unit 15 and analog/digital (AD) converters 16 .
  • the radar device shown in FIG. 1 further comprises a processing unit 20 , which in the embodiment shown is constituted by a micro-processing unit (MCU).
  • the processing unit 20 may be arranged for signal processing tasks such as, but not limited to, target identification, determination of target distance and target velocity, and generating control signals.
  • the processing unit 20 may for example be configured for generating calibration signals, receiving data signals, receiving sensor signals, generating frequency spectrum shaping signals (such as ramp generation in the case of FMCW radar) and/or state machine signals for RF (radio frequency) circuit enablement sequences.
  • the actual radar device 10 and the processing unit 20 may be constituted by separate integrated circuits (chips). However, embodiments can be envisaged in which the actual radar device 10 and the processing unit 20 are implemented together in a single chip.
  • the phase shift signal generator 13 is configured for repeatedly generating a phase shift signal PSS and may be synchronized with the frequency synthesizer unit 15 so as to produce a phase shift signal PSS between two time frames of the transmitter signal TXF, as illustrated in FIGS. 2 and 3 .
  • the frequency synthesizer unit 15 may comprise at least one oscillator, frequency dividers, frequency doublers, a phase comparator and/or a loop filter or any other phase locked loop (PLL) arrangement, which arrangements are well known in the art.
  • the transmitter units 11 receive an oscillator signal f LO , generated by frequency synthesizer unit 15 , at their input buffers 111 .
  • the signal f LO is then fed to a phase shift unit (or phase rotator) 112 , which shifts the phase of the signal over certain (typically, but not necessarily, predetermined) number of degrees.
  • the phase shift is 180° which is equivalent to ⁇ radians.
  • the timing of the phase shift ⁇ is controlled by the phase shift signal PSS generated by the phase shift signal generator 13 . This will later be further explained with reference to FIGS. 3 and 4 .
  • phase-shifted transmitter signal output by the phase shift unit 112 is fed to an output buffer 113 and from there to a power amplifier (PA) 114 , which amplifies the signal to a level suitable for transmitting by a transmitter antenna unit 18 .
  • PA power amplifier
  • the radar signal transmitted by the antenna units 18 may by reflected by an object, such as a vehicle 30 . Part of the reflected radar signal reaches receiver antenna units 19 .
  • the received (radio frequency) antenna signal f RF1 is fed to a mixer 121 , where it is mixed with the oscillator signal f LO , generated by the frequency synthesizer 15 .
  • the resulting intermediate frequency signal f IF1 is fed to a first high-pass filter (HPF 1 ) 122 .
  • the resulting filtered signal is fed to a first variable gain amplifier (VGA 1 ) 123 which amplifies the signal before feeding it to a second high pass filter (HPF 2 ) 124 .
  • VGA 1 variable gain amplifier
  • This re-filtered signal is fed to a second variable gain amplifier (VGA 2 ) 125 , after which the signal is fed to an analog/digital converter (ADC) 16 and is output by each receiver unit 12 as a digital signal D 1 , D 2 , etc..
  • VGA 2 variable gain amplifier
  • ADC analog/digital converter
  • the transmitted radar signal may have a frequency which is constant, or at least constant during a certain time period, the frequency may also vary.
  • FMCW frequency modulated continuous wave
  • the frequency varies during a time frame.
  • the frequency of an FMCW system linearly increases (or decreases) during the active time frame. Between time frames, the frequency returns to an initial value.
  • the signal TXF represents the transmitter frequency as a function of time.
  • the frequency can be seen to increase, during a time frame T f , from an initial value to a higher, final value. In the time between time frames, the inter-frame period T i , the frequency quickly returns to its original value.
  • the oscillator may be constituted by a voltage-controlled oscillator or a digitally controlled oscillator, which are well known in the art.
  • the transmitted radar signals may be coded.
  • a relatively simple way of coding is reversing the phase of the signal after each time frame T f . It will be understood that other arrangements are also possible, for example reversing the phase every other time frame.
  • the phase shift signal PSS is shown, which is provided by the generator 13 in FIG. 1 . As can be seen, this phase shift signal PSS occurs relatively early in the inter-frame period T i . Under control of the phase shift signal PSS, the phase ⁇ of the signal is shifted (or “rotated”). In the example shown, the phase shift is 180°, although other phase shifts, such as 90°, are also possible.
  • the transmitter signal TXS is shown to have a phase reversal synchronous with the phase shift signal PSS.
  • this signal When this signal is reflected by an object, for example a vehicle 30 as illustrated in FIG. 1 , and is received by a receiver, the phase shift may cause problems as the filters may be driven into saturation.
  • the receiver intermediate signal (RIS) which occurs at the output of the filters 122 and/or 124 of FIG. 1 can be seen to deviate significantly from the transmitted signal TXS due to the saturation of the filters. This makes an accurate detection of the distance and/or velocity of an object very difficult, if not impossible.
  • the saturation of the filters is actively shortened by resetting the filters. This is achieved by feeding a reset signal RST to the filters, which reset signal is derived from the phase shift signal PSS.
  • RST reset signal
  • FIG. 4 which is similar to FIG. 3 , the period during which the filters are in saturation is significantly shortened. What is more, the saturation ends well within the inter-frame period T i . It would be possible to use longer inter-frame periods, thus allowing the filters more time to recover from the saturation state. However, this leaves the radar device inactive for too long; it is often desired to keep the inter-frame periods as short as possible.
  • the saturation of the filter unit is almost instantaneously terminated, thus avoiding signal distortion in the receiver unit.
  • the reset of the filter unit ensures that the filter unit is timely ready for the next time frame of the signal. In other words, the reset is carried out so as to suppress undesired filter states, such as saturation.
  • the reset signal RST may be identical to the phase shift signal PSS, or may be a processed version of the phase shift signal PSS, where the processing may for example involve a delay. It will be understood that in embodiments in which the reset signal RST is identical to the phase shift signal PSS and no time delay is applied, the reset unit 14 may only comprises through connections.
  • the phase shift signal PSS is fed to the reset unit 14 .
  • This reset unit 14 may pass the phase shift signal PSS to the filter units unaltered, or may change its duration and/or voltage, and/or may introduce a delay. Such a delay may serve to take the travel time of the radar signals, from the transmitting antennas via an object to the receiving antennas, into account.
  • FIG. 2 An example of an alternative embodiment of a radar device is schematically illustrated in FIG. 2 .
  • This embodiment of the radar device 10 comprises a single transmitter unit 11 , a single receiver unit 12 and a processing unit 20 , although multiple transmitter and/or receiver units can also be envisaged.
  • the embodiment of FIG. 2 is further shown to comprise an (optional) low-pass filter 40 .
  • the transmitter unit(s) 11 , receiver unit(s) 12 , frequency synthesizer unit 15 and (optional) low-pass filter 40 are preferably implemented on a single integrated circuit (chip) which may also comprise the processing unit (MCU) 20 , although the processing unit 20 may alternatively be implemented on a second, separate integrated circuit which is suitable connected with the first integrated circuit.
  • chips single integrated circuit
  • MCU processing unit
  • the signal processing unit 20 is shown to comprise a digital controller 121 , a digital-analog converter (DAC) 122 , a generator 123 , a random access memory (RAM), a flash memory 125 , a first analog-digital converter (ADC) 126 , a second analog-digital converter 127 and a serial port interface (SPI) 228 .
  • the first analog-digital converter 126 serves to digitize the output signals of the receiver 12 , which in the present embodiment are additionally filtered by the low-pass filter 40 to limit the bandwidth of these signals.
  • the second analog-digital converter 127 serves to digitize sense signals originating from sensors (not shown) in the transmitter unit(s) 11 , the receiver unit(s) 12 and the frequency synthesizer unit 15 .
  • the processing unit 20 of FIG. 1 may also comprise some or most of the functions mentioned above, such as analog-digital converters.
  • a generator 13 is provided as part of the actual radar device 10
  • a generator 123 is shown to be part of the processing unit 20 .
  • the serial port interface (SPI) 228 of the processing unit 20 is an interface for managing registers which store data. Similar registers 118 , 128 and 158 are shown to be present in the transmitter unit 11 , the receiver unit 12 , and the frequency synthesizer unit 15 respectively.
  • FIG. 5 illustrates part of a radar device 10 .
  • the phase shift signal generator 13 is shown to produce the phase shift signal PSS, which is fed to the phase shift unit ( 112 in FIGS. 1 & 2 ).
  • This signal is also fed to the reset unit 14 , which produces reset signals RST which are in turn fed to the filters ( 122 and 124 in FIGS. 1 & 2 ).
  • the reset unit 14 also receives a distance signal DS, produced by a distance calculation unit 17 .
  • This distance calculation unit 17 receives signals from both the transmitter or transmitters ( 11 in FIGS. 1 & 2 ) and the receiver or receivers ( 12 in FIGS. 1 & 2 ) to calculate a distance, based on the time delay of the received signals.
  • the distance calculation unit 17 may also be arranged for calculating the (relative) velocity of the object. In other embodiments, the distance calculation unit 17 may only be arranged for calculating the (relative) velocity of the object, and may be referred to as velocity calculation unit. Determining the distance and (relative) velocity of an object using radar techniques is well known in the art and therefore requires no further explanation.
  • the reset unit 14 may use the distance and/or velocity information to determine a suitable delay for the reset signal. This delay may then be applied to the reset signal RST. In some embodiments, however, this delay may only be applied when this delay is not negligible compared with the inter-frame period T i (see FIG. 3 ). That is, very small distance-related delays may be neglected.
  • the distance calculation unit 17 may be implemented as part of the actual radar device 10 , or may be implemented as part of the processing unit 20 .
  • the reset of the filters may be effected in several ways, for example by connecting a filter input to ground, or to a suitable voltage, using an electronic switch. Alternatively, or additionally, a capacitor of the filter may be short-circuited via a suitable resistor. Irrespective of the method employed, the reset will substantially remove the undesired effects of the phase shift. In the exemplary case of high-pass filters, the reset effectively reduces the low frequency components caused by the phase shift of the signal. It will be understood that resetting is not limited to high-pass filters but may also be applied to low-pass or band-pass filters.
  • FIG. 6 An example of a filter circuit provided with a reset mechanism is schematically illustrated in FIG. 6 .
  • the exemplary filter circuit of FIG. 6 may correspond to the filter 122 and/or the filter 124 in FIGS. 1 & 2 .
  • the example shown is a high-pass filter implemented in hardware, but it will be understood that the same principles can be applied to a low-pass filter, or to a filter implemented in software.
  • the filter circuit shown comprises a capacitor C 1 and a first resistor R 1 , which together constitute a high-pass filter.
  • the signal having the intermediate frequency f IF1 is fed to the filter 122 .
  • a reset circuit comprises a second resistor R 2 and a transistor T 1 , which in the example shown is a FET (Field Effect Transistor). Normally, the transistor T 1 is not conducting, as a result of which no current will flow through the resistor R 2 and the transistor T 1 , and the normal functioning of the filter circuit is not affected. However, when the signal RST goes high, as illustrated in the example of FIG.
  • the transistor T 1 starts conducting, thus connecting the output of the capacitor C 1 to the voltage V 0 , via the resistor R 2 and the transistor T 1 .
  • the second resistor R 2 preferably has a resistance which is significantly lower than the resistance of the first resistor R 1 and may even have a resistance substantially equal to zero.
  • the voltage V 0 is a suitable voltage, for example ground.
  • a merely exemplary non-transitory tangible computer readable storage medium 300 is schematically illustrated in FIG. 7 .
  • the storage medium 300 may be a CD or DVD as illustrated, but may also be constituted by a memory stick, for example.
  • the storage medium contains instructions 310 which allow a processor to carry out the method of operating a radar device as defined herein.
  • the instructions allow a processor to carry out a method of operating a radar device comprising at least one transmitter unit for transmitting a radar signal, at least one receiver unit for receiving a reflected radar signal, the receiver unit comprising at least one filter unit for filtering the received signal, and a phase shift unit for producing a phase shift in the radar signal in response to a phase shift signal, the method comprising providing a reset of the at least one filter unit in response to said phase shift signal.
  • the invention may therefore also be implemented in a computer program for running on a computer system, at least including code portions for performing steps of a method according to the invention when run on a programmable apparatus, such as a computer system or enabling a programmable apparatus to perform functions of a device or system according to the invention.
  • the computer program may for instance include one or more of: a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.
  • FIG. 7 shows a computer readable medium 300 comprising a computer program product 310 , the computer program product 310 comprising instructions for causing a processor apparatus to perform a method of operating a radar device, the method comprising providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states.
  • the computer program product 310 may be embodied on the computer readable medium 300 as physical marks or by means of magnetization of the computer readable medium 300 . However, any other suitable embodiment is conceivable as well. Furthermore, it will be appreciated that, although the computer readable medium 300 is shown in FIG.
  • the computer readable medium 300 may be any suitable computer readable medium, such as a hard disk, solid state memory, flash memory, etc., and may be non-recordable or recordable.
  • the computer readable medium may be a non-transitory tangible computer readable storage medium.
  • a radar device comprising at least one transmitter unit for transmitting a radar signal, at least one receiver unit for receiving a reflected radar signal, the receiver unit comprising at least one filter unit for filtering the received signal, and a phase shift unit for producing a phase shift in the radar signal in response to a phase shift signal, the receiver unit being arranged for providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states.
  • An undesired filter state may be, but is not limited to, saturation of the filter unit due to the phase shift.
  • connections may be any type of connection suitable to transfer signals from or to the respective nodes, units or devices, for example via intermediate devices. Accordingly, unless implied or stated otherwise the connections may for example be direct connections or indirect connections. However, other modifications, variations and alternatives are also possible.
  • the specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
  • the examples have been described with reference to FMCW radar, other types of radar may also be used.
  • the examples are described in the context of vehicle radar systems, these may also be applied to aircraft radar, bicycle radar, patient monitoring systems, etc..
  • Devices functionally forming separate devices may be integrated in a single physical device.
  • the units and circuits may be suitably combined in one or more semiconductor devices. That is, the radar device may be implemented as a single integrated circuit, or as multiple integrated circuits.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim.
  • the terms “a” or “an,” as used herein, are defined as one or more than one.

Abstract

A radar device comprises at least one transmitter unit for transmitting a radar signal, at least one receiver unit for receiving a reflected radar signal, and a phase shift unit for producing a phase shift in the frequency modulated radar signal in response to a phase shift signal. The receiver unit comprises at least one filter unit for filtering the received signal and is arranged for resetting the filter unit in response to said phase shift signal, so as to avoid saturation of the filter unit due to the phase shift.

Description

    FIELD OF THE INVENTION
  • This invention relates to a radar device in which a phase shift is utilized. More in particular, the present invention relates to a radar device comprising at least one transmitter unit and at least one receiver unit, in which the transmitter unit comprises a phase shift unit for producing a phase shift of the radar signal in response to a phase shift signal.
  • BACKGROUND OF THE INVENTION
  • Radar systems and devices are well known. A typical radar system transmits an electromagnetic signal and receives reflections of the transmitted signal. The time delay between the transmitted and received signals is indicative of the distance of objects causing the reflections.
  • In some radar systems, a phase shift (also referred to as phase rotation) is used. A phase shift of 90° may be used to better detect reflected signals in noise (quadrature detection), as disclosed in U.S. Pat. No. 3,942,178, for example. In U.S. Pat. No. 3,942,178, the phase-shifted transmitter signal is fed directly to the receiver but the transmitted signal is not phase-shifted.
  • A phase shift of 180° may be used to better distinguish reflected signals from transmitted signals. In radar systems using such a phase shift, the transmitted signal may be periodically phase shifted. The period is typically chosen such that the phase shift occurs between two time frames of the signal, thus altering the phase every time frame, where a time frame may, for example, correspond with a “chirp” in an FMCW (frequency modulation continuous wave) signal.
  • In radar receivers, high pass filters with low cut-off frequencies are often used to attenuate low frequency interferences, for example in automotive applications (the “bumper effect” caused by reflections from car bumpers). In addition, low pass filters may be used to limit the effective signal bandwidth to be converted by any analog-digital converters.
  • When shifting the phase of the transmitted signal, however, filters processing the received signal may go into saturation. This is not a problem if this occurs between time frames and if the filters are no longer in saturation when the next time frame starts. However, when a very short inter-frame period is used, the filters may still be in saturation when the next time frame starts, which will impede the proper functioning of the radar device.
  • SUMMARY OF THE INVENTION
  • The present invention provides a radar device, a vehicle radar system, an integrated circuit, a method of operating a radar device and a computer program product as described in the accompanying claims.
  • Specific embodiments of the invention are set forth in the dependent claims.
  • These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. In the Figures, elements which correspond to elements already described may have the same reference numerals.
  • FIG. 1 schematically shows a first example of an embodiment of a radar device.
  • FIG. 2 schematically shows a second example of an embodiment of a radar device.
  • FIG. 3 schematically shows an example of a set of signals without filter reset.
  • FIG. 4 schematically shows an example of a set of signals with filter reset.
  • FIG. 5 schematically shows an example of part of an embodiment of a radar device.
  • FIG. 6 schematically shows an example of an embodiment of a filter circuit.
  • FIG. 7 shows a computer readable medium comprising a computer program product.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following, for sake of understanding, the circuitry is described in operation. However, it will be apparent that the respective elements are arranged to perform the functions being described as performed by them.
  • The radar device 10 illustrated merely by way of exemplary embodiment in FIG. 1 comprises transmitter units 11 and a receiver units 12. Although two transmitter units 11 and four receiver units 12 are shown in FIG. 1, these numbers are not limiting and other numbers are also possible, such as four transmitter units 11 and six receiver units 12, or a single transmitter unit 11 and/or a single receiver unit 12. The radar device 10 of FIG. 1 further comprises a phase shift signal generator 13, a reset control unit 14, a frequency synthesizer unit 15 and analog/digital (AD) converters 16.
  • The radar device shown in FIG. 1 further comprises a processing unit 20, which in the embodiment shown is constituted by a micro-processing unit (MCU). The processing unit 20 may be arranged for signal processing tasks such as, but not limited to, target identification, determination of target distance and target velocity, and generating control signals. The processing unit 20 may for example be configured for generating calibration signals, receiving data signals, receiving sensor signals, generating frequency spectrum shaping signals (such as ramp generation in the case of FMCW radar) and/or state machine signals for RF (radio frequency) circuit enablement sequences.
  • When the radar device is implemented as an integrated circuit, the actual radar device 10 and the processing unit 20 may be constituted by separate integrated circuits (chips). However, embodiments can be envisaged in which the actual radar device 10 and the processing unit 20 are implemented together in a single chip.
  • The phase shift signal generator 13 is configured for repeatedly generating a phase shift signal PSS and may be synchronized with the frequency synthesizer unit 15 so as to produce a phase shift signal PSS between two time frames of the transmitter signal TXF, as illustrated in FIGS. 2 and 3. The frequency synthesizer unit 15 may comprise at least one oscillator, frequency dividers, frequency doublers, a phase comparator and/or a loop filter or any other phase locked loop (PLL) arrangement, which arrangements are well known in the art.
  • In the example shown, the transmitter units 11 receive an oscillator signal fLO, generated by frequency synthesizer unit 15, at their input buffers 111. The signal fLO is then fed to a phase shift unit (or phase rotator) 112, which shifts the phase of the signal over certain (typically, but not necessarily, predetermined) number of degrees. In the example shown and as further explained with reference to FIGS. 2 and 3, the phase shift is 180° which is equivalent to π radians. The timing of the phase shift Δφ, as effected by the phase shift unit 112 in the receiver 11, is controlled by the phase shift signal PSS generated by the phase shift signal generator 13. This will later be further explained with reference to FIGS. 3 and 4.
  • The phase-shifted transmitter signal output by the phase shift unit 112 is fed to an output buffer 113 and from there to a power amplifier (PA) 114, which amplifies the signal to a level suitable for transmitting by a transmitter antenna unit 18.
  • The radar signal transmitted by the antenna units 18 may by reflected by an object, such as a vehicle 30. Part of the reflected radar signal reaches receiver antenna units 19. The received (radio frequency) antenna signal fRF1 is fed to a mixer 121, where it is mixed with the oscillator signal fLO, generated by the frequency synthesizer 15. The resulting intermediate frequency signal fIF1 is fed to a first high-pass filter (HPF1) 122. The resulting filtered signal is fed to a first variable gain amplifier (VGA1) 123 which amplifies the signal before feeding it to a second high pass filter (HPF2) 124. This re-filtered signal is fed to a second variable gain amplifier (VGA2) 125, after which the signal is fed to an analog/digital converter (ADC) 16 and is output by each receiver unit 12 as a digital signal D1, D2, etc..
  • Although the transmitted radar signal may have a frequency which is constant, or at least constant during a certain time period, the frequency may also vary. In frequency modulated continuous wave (FMCW) systems, for example, the frequency varies during a time frame. Typically, the frequency of an FMCW system linearly increases (or decreases) during the active time frame. Between time frames, the frequency returns to an initial value.
  • This is schematically illustrated in FIG. 3, where the signal TXF represents the transmitter frequency as a function of time. The frequency can be seen to increase, during a time frame Tf, from an initial value to a higher, final value. In the time between time frames, the inter-frame period Ti, the frequency quickly returns to its original value. It will be understood that such a signal may be generated by an oscillator of the frequency synthesizer unit 15 of FIG. 1, and that for this purpose the oscillator may be constituted by a voltage-controlled oscillator or a digitally controlled oscillator, which are well known in the art.
  • In order to be able, at a receiver, to distinguish transmitted radar signals from reflected radar signals, the transmitted radar signals may be coded. A relatively simple way of coding is reversing the phase of the signal after each time frame Tf. It will be understood that other arrangements are also possible, for example reversing the phase every other time frame. In FIG. 3, the phase shift signal PSS is shown, which is provided by the generator 13 in FIG. 1. As can be seen, this phase shift signal PSS occurs relatively early in the inter-frame period Ti. Under control of the phase shift signal PSS, the phase φ of the signal is shifted (or “rotated”). In the example shown, the phase shift is 180°, although other phase shifts, such as 90°, are also possible. The transmitter signal TXS is shown to have a phase reversal synchronous with the phase shift signal PSS.
  • When this signal is reflected by an object, for example a vehicle 30 as illustrated in FIG. 1, and is received by a receiver, the phase shift may cause problems as the filters may be driven into saturation. The receiver intermediate signal (RIS) which occurs at the output of the filters 122 and/or 124 of FIG. 1 can be seen to deviate significantly from the transmitted signal TXS due to the saturation of the filters. This makes an accurate detection of the distance and/or velocity of an object very difficult, if not impossible.
  • The saturation of the filters is actively shortened by resetting the filters. This is achieved by feeding a reset signal RST to the filters, which reset signal is derived from the phase shift signal PSS. As can be seen in FIG. 4, which is similar to FIG. 3, the period during which the filters are in saturation is significantly shortened. What is more, the saturation ends well within the inter-frame period Ti. It would be possible to use longer inter-frame periods, thus allowing the filters more time to recover from the saturation state. However, this leaves the radar device inactive for too long; it is often desired to keep the inter-frame periods as short as possible.
  • Accordingly, by resetting the at least one filter unit in response to said phase shift signal, the saturation of the filter unit is almost instantaneously terminated, thus avoiding signal distortion in the receiver unit. If the radar signal consist of time frames between which a phase shift is carried out, the reset of the filter unit ensures that the filter unit is timely ready for the next time frame of the signal. In other words, the reset is carried out so as to suppress undesired filter states, such as saturation.
  • The reset signal RST may be identical to the phase shift signal PSS, or may be a processed version of the phase shift signal PSS, where the processing may for example involve a delay. It will be understood that in embodiments in which the reset signal RST is identical to the phase shift signal PSS and no time delay is applied, the reset unit 14 may only comprises through connections.
  • In the embodiment of FIG. 1, the phase shift signal PSS is fed to the reset unit 14. This reset unit 14 may pass the phase shift signal PSS to the filter units unaltered, or may change its duration and/or voltage, and/or may introduce a delay. Such a delay may serve to take the travel time of the radar signals, from the transmitting antennas via an object to the receiving antennas, into account.
  • An example of an alternative embodiment of a radar device is schematically illustrated in FIG. 2. This embodiment of the radar device 10 comprises a single transmitter unit 11, a single receiver unit 12 and a processing unit 20, although multiple transmitter and/or receiver units can also be envisaged. The embodiment of FIG. 2 is further shown to comprise an (optional) low-pass filter 40. The transmitter unit(s) 11, receiver unit(s) 12, frequency synthesizer unit 15 and (optional) low-pass filter 40 are preferably implemented on a single integrated circuit (chip) which may also comprise the processing unit (MCU) 20, although the processing unit 20 may alternatively be implemented on a second, separate integrated circuit which is suitable connected with the first integrated circuit.
  • In the exemplary embodiment of FIG. 2, the signal processing unit 20 is shown to comprise a digital controller 121, a digital-analog converter (DAC) 122, a generator 123, a random access memory (RAM), a flash memory 125, a first analog-digital converter (ADC) 126, a second analog-digital converter 127 and a serial port interface (SPI) 228. The first analog-digital converter 126 serves to digitize the output signals of the receiver 12, which in the present embodiment are additionally filtered by the low-pass filter 40 to limit the bandwidth of these signals. The second analog-digital converter 127 serves to digitize sense signals originating from sensors (not shown) in the transmitter unit(s) 11, the receiver unit(s) 12 and the frequency synthesizer unit 15.
  • It is noted that the processing unit 20 of FIG. 1 may also comprise some or most of the functions mentioned above, such as analog-digital converters. However, in the embodiment of FIG. 1 a generator 13 is provided as part of the actual radar device 10, whereas in the embodiment of FIG. 2 a generator 123 is shown to be part of the processing unit 20. The serial port interface (SPI) 228 of the processing unit 20 is an interface for managing registers which store data. Similar registers 118, 128 and 158 are shown to be present in the transmitter unit 11, the receiver unit 12, and the frequency synthesizer unit 15 respectively.
  • FIG. 5 illustrates part of a radar device 10. The phase shift signal generator 13 is shown to produce the phase shift signal PSS, which is fed to the phase shift unit (112 in FIGS. 1 & 2). This signal is also fed to the reset unit 14, which produces reset signals RST which are in turn fed to the filters (122 and 124 in FIGS. 1 & 2). In the embodiment shown, the reset unit 14 also receives a distance signal DS, produced by a distance calculation unit 17. This distance calculation unit 17 receives signals from both the transmitter or transmitters (11 in FIGS. 1 & 2) and the receiver or receivers (12 in FIGS. 1 & 2) to calculate a distance, based on the time delay of the received signals. In some embodiments, the distance calculation unit 17 may also be arranged for calculating the (relative) velocity of the object. In other embodiments, the distance calculation unit 17 may only be arranged for calculating the (relative) velocity of the object, and may be referred to as velocity calculation unit. Determining the distance and (relative) velocity of an object using radar techniques is well known in the art and therefore requires no further explanation.
  • The reset unit 14 may use the distance and/or velocity information to determine a suitable delay for the reset signal. This delay may then be applied to the reset signal RST. In some embodiments, however, this delay may only be applied when this delay is not negligible compared with the inter-frame period Ti (see FIG. 3). That is, very small distance-related delays may be neglected. The distance calculation unit 17 may be implemented as part of the actual radar device 10, or may be implemented as part of the processing unit 20.
  • The reset of the filters may be effected in several ways, for example by connecting a filter input to ground, or to a suitable voltage, using an electronic switch. Alternatively, or additionally, a capacitor of the filter may be short-circuited via a suitable resistor. Irrespective of the method employed, the reset will substantially remove the undesired effects of the phase shift. In the exemplary case of high-pass filters, the reset effectively reduces the low frequency components caused by the phase shift of the signal. It will be understood that resetting is not limited to high-pass filters but may also be applied to low-pass or band-pass filters.
  • An example of a filter circuit provided with a reset mechanism is schematically illustrated in FIG. 6. The exemplary filter circuit of FIG. 6 may correspond to the filter 122 and/or the filter 124 in FIGS. 1 & 2. The example shown is a high-pass filter implemented in hardware, but it will be understood that the same principles can be applied to a low-pass filter, or to a filter implemented in software.
  • The filter circuit shown comprises a capacitor C1 and a first resistor R1, which together constitute a high-pass filter. In the example of FIGS. 1 & 2, the signal having the intermediate frequency fIF1 is fed to the filter 122. A reset circuit comprises a second resistor R2 and a transistor T1, which in the example shown is a FET (Field Effect Transistor). Normally, the transistor T1 is not conducting, as a result of which no current will flow through the resistor R2 and the transistor T1, and the normal functioning of the filter circuit is not affected. However, when the signal RST goes high, as illustrated in the example of FIG. 3, the transistor T1 starts conducting, thus connecting the output of the capacitor C1 to the voltage V0, via the resistor R2 and the transistor T1. It is noted that the second resistor R2 preferably has a resistance which is significantly lower than the resistance of the first resistor R1 and may even have a resistance substantially equal to zero. It is further noted that the voltage V0 is a suitable voltage, for example ground.
  • It will be understood that resetting filters is known per se. U.S. Pat. No. 6,795,006 (Delight et al.), for example, discloses an integrator (that is, a low-pass filter) with a reset mechanism. U.S. Pat. No. 6,795,006 is herewith in its entirety incorporated by reference in this document.
  • A merely exemplary non-transitory tangible computer readable storage medium 300 is schematically illustrated in FIG. 7. The storage medium 300 may be a CD or DVD as illustrated, but may also be constituted by a memory stick, for example. The storage medium contains instructions 310 which allow a processor to carry out the method of operating a radar device as defined herein. More in particular, the instructions allow a processor to carry out a method of operating a radar device comprising at least one transmitter unit for transmitting a radar signal, at least one receiver unit for receiving a reflected radar signal, the receiver unit comprising at least one filter unit for filtering the received signal, and a phase shift unit for producing a phase shift in the radar signal in response to a phase shift signal, the method comprising providing a reset of the at least one filter unit in response to said phase shift signal.
  • The invention may therefore also be implemented in a computer program for running on a computer system, at least including code portions for performing steps of a method according to the invention when run on a programmable apparatus, such as a computer system or enabling a programmable apparatus to perform functions of a device or system according to the invention. The computer program may for instance include one or more of: a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system. FIG. 7 shows a computer readable medium 300 comprising a computer program product 310, the computer program product 310 comprising instructions for causing a processor apparatus to perform a method of operating a radar device, the method comprising providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states. The computer program product 310 may be embodied on the computer readable medium 300 as physical marks or by means of magnetization of the computer readable medium 300. However, any other suitable embodiment is conceivable as well. Furthermore, it will be appreciated that, although the computer readable medium 300 is shown in FIG. 7 as an optical disc, the computer readable medium 300 may be any suitable computer readable medium, such as a hard disk, solid state memory, flash memory, etc., and may be non-recordable or recordable. The computer readable medium may be a non-transitory tangible computer readable storage medium.
  • In summary, a radar device is provided, comprising at least one transmitter unit for transmitting a radar signal, at least one receiver unit for receiving a reflected radar signal, the receiver unit comprising at least one filter unit for filtering the received signal, and a phase shift unit for producing a phase shift in the radar signal in response to a phase shift signal, the receiver unit being arranged for providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states. An undesired filter state may be, but is not limited to, saturation of the filter unit due to the phase shift.
  • In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the scope of the invention as set forth in the appended claims. For example, the connections may be any type of connection suitable to transfer signals from or to the respective nodes, units or devices, for example via intermediate devices. Accordingly, unless implied or stated otherwise the connections may for example be direct connections or indirect connections. However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
  • Although the examples have been described with reference to FMCW radar, other types of radar may also be used. Furthermore, although the examples are described in the context of vehicle radar systems, these may also be applied to aircraft radar, bicycle radar, patient monitoring systems, etc.. Devices functionally forming separate devices may be integrated in a single physical device. Also, the units and circuits may be suitably combined in one or more semiconductor devices. That is, the radar device may be implemented as a single integrated circuit, or as multiple integrated circuits.
  • In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
  • It will therefore be understood by those skilled in the art that the present invention is not limited to the embodiments described above and that many additions and modifications are possible without departing from the scope of the invention as defined in the appending claims.

Claims (20)

1. A radar device, comprising:
at least one transmitter unit for transmitting a radar signal,
at least one receiver unit for receiving a reflected radar signal, the receiver unit comprising at least one filter unit for filtering the received signal, and
a phase shift unit for producing a phase shift in the transmitted radar signal in response to a phase shift signal,
the receiver unit being arranged for providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states.
2. The radar device according to claim 1, arranged for introducing a delay in the reset of the at least one filter unit.
3. The radar device according to claim 2, arranged to determine a distance to a target, and wherein the delay is varied in dependence on said distance.
4. The radar device according to claim 2, arranged to determine a velocity of a target, and wherein the delay is varied in dependence on said velocity.
5. The radar device according to claim 2, wherein the delay is a fixed delay.
6. The radar device according to claim 1, wherein the phase shift is an 1800 phase shift.
7. The radar device according to claim 1, wherein the transmitter unit is arranged for varying, during time frames, the frequency of the radar signal between an initial value and a final, different value, and for producing the phase shift and the reset between the time frames.
8. The radar device according to claim 1, arranged for frequency modulation continuous wave radar.
9. The radar device according to claim 1, comprising at least two transmitter units and at least two receiver units.
10. The radar device according to claim 1, further comprising a microcontroller unit.
11. An integrated circuit comprising a radar device according to claim 1.
12. A vehicle radar system, comprising at least one transmitter antenna, at least one receiver antenna, and a radar device according to claim 1.
13. A method of operating a radar device comprising:
at least one transmitter unit for transmitting a radar signal,
at least one receiver unit for receiving a reflected radar signal, the receiver unit comprising at least one filter unit for filtering the received signal, and
a phase shift unit for producing a phase shift in the transmitted radar signal in response to a phase shift signal,
the method comprising providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states.
14. The method according to claim 13, arranged for introducing a delay in the reset of the at least one filter unit.
15. The method according to claim 14, further comprising determining a distance to a target, and varying the delay in dependence on said distance.
16. The method according to claim 14, further comprising determining a velocity of a target, and varying the delay in dependence on said velocity.
17. The method according to claim 14, wherein the delay is a fixed delay.
18. The method according to claim 13, further comprising varying, during time frames, the frequency of the radar signal between an initial value and a final, different value, and for producing the phase shift and the reset between the time frames.
19. A computer program product for comprising instructions for causing a programmable apparatus to perform a method of operating a radar device according to claim 13.
20. A non-transitory tangible computer readable storage medium comprising data loadable in a programmable apparatus comprising a device according claim 1, the data representing instructions executable by the programmable apparatus, said instructions comprising:
one or more processor instructions for providing a reset of the at least one filter unit in response to said phase shift signal so as to suppress undesired filter states.
US14/642,012 2014-10-08 2015-03-09 Radar device utilizing phase shift Active 2036-04-27 US10006987B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2014/002472 2014-10-08
WOPCT/IB2014/002472 2014-10-08
IBPCT/IB2014/002472 2014-10-08

Publications (2)

Publication Number Publication Date
US20160103206A1 true US20160103206A1 (en) 2016-04-14
US10006987B2 US10006987B2 (en) 2018-06-26

Family

ID=54252059

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/642,012 Active 2036-04-27 US10006987B2 (en) 2014-10-08 2015-03-09 Radar device utilizing phase shift

Country Status (2)

Country Link
US (1) US10006987B2 (en)
EP (1) EP3006955B1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160109559A1 (en) * 2014-10-17 2016-04-21 Freescale Semiconductor, Inc. Integrated circuit, radar device and method of calibrating a receiver
US20180156890A1 (en) * 2015-02-25 2018-06-07 Infineon Technologies Ag Systems and methods for cascading radar chips having a low leakage buffer
US20180172815A1 (en) * 2016-12-19 2018-06-21 Honeywell International Inc. Moving target identification without special radar mode
US10120064B2 (en) 2015-03-19 2018-11-06 Nxp Usa, Inc. Radar system and method with saturation detection and reset
US10215853B2 (en) 2016-04-07 2019-02-26 Uhnder, Inc. Adaptive transmission and interference cancellation for MIMO radar
US10261179B2 (en) * 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US10324165B2 (en) 2016-04-25 2019-06-18 Uhnder, Inc. PMCW—PMCW interference mitigation
US10418944B2 (en) * 2016-01-27 2019-09-17 Korea Electronics Technology Institute High-efficiency high-integrated receiver
US10527722B2 (en) * 2015-06-09 2020-01-07 Garmin Switzerland Gmbh Radar sensor system providing situational awareness information
US10536529B2 (en) 2016-04-25 2020-01-14 Uhnder Inc. Vehicle radar system with a shared radar and communication system
US20200292663A1 (en) * 2019-03-12 2020-09-17 Semiconductor Components Industries, Llc High resolution mimo radar system
US10877149B2 (en) * 2014-09-25 2020-12-29 Audi Ag Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle
US10935633B2 (en) 2017-02-10 2021-03-02 Uhnder, Inc. Programmable code generation for radar sensing systems
US11086010B2 (en) 2016-04-07 2021-08-10 Uhnder, Inc. Software defined automotive radar systems
US11092683B2 (en) 2019-03-18 2021-08-17 Nxp Usa, Inc. Distributed aperture automotive radar system with alternating master radar devices
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
US11194016B2 (en) 2016-04-25 2021-12-07 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US11269049B2 (en) 2019-03-18 2022-03-08 Nxp Usa, Inc. Distributed aperture automotive radar system
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
US11520030B2 (en) 2019-03-18 2022-12-06 Nxp Usa, Inc. High resolution automotive radar system with forward and backward difference co-array processing
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
US11740323B2 (en) 2016-06-20 2023-08-29 Uhnder, Inc. Power control for improved near-far performance of radar systems
US20230273297A1 (en) * 2019-03-12 2023-08-31 AyDeeKay LLC dba Indie Semiconductor High Resolution MIMO Radar System
US11846696B2 (en) 2017-02-10 2023-12-19 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US11888554B2 (en) 2020-09-23 2024-01-30 Nxp Usa, Inc. Automotive MIMO radar system using efficient difference co-array processor
US11899126B2 (en) 2020-01-13 2024-02-13 Uhnder, Inc. Method and system for multi-chip operation of radar systems
US11977178B2 (en) 2020-03-12 2024-05-07 Uhnder, Inc. Multi-chip synchronization for digital radars

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828535B (en) * 2018-04-12 2021-01-19 中国人民解放军国防科技大学 Radar target characteristic transformation method based on phase modulation surface
EP3940411A1 (en) * 2020-07-14 2022-01-19 NXP USA, Inc. Power control for radar applications and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072947A (en) * 1976-11-11 1978-02-07 Rca Corporation Monotonically ranging FM-CW radar signal processor
US20030090405A1 (en) * 2001-11-02 2003-05-15 Sol Rauch Spread spectrum radar with leak compensation at baseband
US20100070550A1 (en) * 2008-09-12 2010-03-18 Cardinal Health 209 Inc. Method and apparatus of a sensor amplifier configured for use in medical applications
US8471761B1 (en) * 2010-04-23 2013-06-25 Akela, Inc. Wideband radar nulling system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942178A (en) 1974-03-27 1976-03-02 Sontrix, Inc. Intrusion detection system
DE3837348A1 (en) 1988-11-03 1990-05-10 Diehl Gmbh & Co RADAR RECEIVER
DE10047170C2 (en) 2000-09-22 2002-09-19 Siemens Ag PMD system
US6795006B1 (en) 2003-07-18 2004-09-21 Zarlink Semiconductor Ab Integrator reset mechanism
EP2666033A4 (en) 2011-01-21 2015-05-20 Freescale Semiconductor Inc Phased-array receiver, radar system and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072947A (en) * 1976-11-11 1978-02-07 Rca Corporation Monotonically ranging FM-CW radar signal processor
US20030090405A1 (en) * 2001-11-02 2003-05-15 Sol Rauch Spread spectrum radar with leak compensation at baseband
US20100070550A1 (en) * 2008-09-12 2010-03-18 Cardinal Health 209 Inc. Method and apparatus of a sensor amplifier configured for use in medical applications
US8471761B1 (en) * 2010-04-23 2013-06-25 Akela, Inc. Wideband radar nulling system

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10877149B2 (en) * 2014-09-25 2020-12-29 Audi Ag Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle
US9835715B2 (en) * 2014-10-17 2017-12-05 Nxp Usa, Inc. Integrated circuit, radar device and method of calibrating a receiver
US20160109559A1 (en) * 2014-10-17 2016-04-21 Freescale Semiconductor, Inc. Integrated circuit, radar device and method of calibrating a receiver
US20180156890A1 (en) * 2015-02-25 2018-06-07 Infineon Technologies Ag Systems and methods for cascading radar chips having a low leakage buffer
US10830868B2 (en) * 2015-02-25 2020-11-10 Infineon Technologies Ag Systems and methods for cascading radar chips having a low leakage buffer
US10120064B2 (en) 2015-03-19 2018-11-06 Nxp Usa, Inc. Radar system and method with saturation detection and reset
US10527722B2 (en) * 2015-06-09 2020-01-07 Garmin Switzerland Gmbh Radar sensor system providing situational awareness information
US10418944B2 (en) * 2016-01-27 2019-09-17 Korea Electronics Technology Institute High-efficiency high-integrated receiver
US10261179B2 (en) * 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US11614538B2 (en) 2016-04-07 2023-03-28 Uhnder, Inc. Software defined automotive radar
US11821981B2 (en) * 2016-04-07 2023-11-21 Uhnder, Inc. Software defined automotive radar
US11262448B2 (en) * 2016-04-07 2022-03-01 Uhnder, Inc. Software defined automotive radar
US11086010B2 (en) 2016-04-07 2021-08-10 Uhnder, Inc. Software defined automotive radar systems
US10215853B2 (en) 2016-04-07 2019-02-26 Uhnder, Inc. Adaptive transmission and interference cancellation for MIMO radar
US11906620B2 (en) 2016-04-07 2024-02-20 Uhnder, Inc. Software defined automotive radar systems
US11194016B2 (en) 2016-04-25 2021-12-07 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US10536529B2 (en) 2016-04-25 2020-01-14 Uhnder Inc. Vehicle radar system with a shared radar and communication system
US10324165B2 (en) 2016-04-25 2019-06-18 Uhnder, Inc. PMCW—PMCW interference mitigation
US11175377B2 (en) 2016-04-25 2021-11-16 Uhnder, Inc. PMCW-PMCW interference mitigation
US11582305B2 (en) 2016-04-25 2023-02-14 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
US11740323B2 (en) 2016-06-20 2023-08-29 Uhnder, Inc. Power control for improved near-far performance of radar systems
US10473757B2 (en) * 2016-12-19 2019-11-12 Honeywell International Inc. Moving target identification without special radar mode
US20180172815A1 (en) * 2016-12-19 2018-06-21 Honeywell International Inc. Moving target identification without special radar mode
US11726172B2 (en) 2017-02-10 2023-08-15 Uhnder, Inc Programmable code generation for radar sensing systems
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
US11846696B2 (en) 2017-02-10 2023-12-19 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US10935633B2 (en) 2017-02-10 2021-03-02 Uhnder, Inc. Programmable code generation for radar sensing systems
US11867828B2 (en) 2017-12-14 2024-01-09 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
US20230273297A1 (en) * 2019-03-12 2023-08-31 AyDeeKay LLC dba Indie Semiconductor High Resolution MIMO Radar System
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
US11808880B2 (en) * 2019-03-12 2023-11-07 AyDeeKay LLC High resolution MIMO radar system
US20200292663A1 (en) * 2019-03-12 2020-09-17 Semiconductor Components Industries, Llc High resolution mimo radar system
US11555882B2 (en) * 2019-03-12 2023-01-17 Ay Dee Kay Llc High resolution MIMO radar system
US11269049B2 (en) 2019-03-18 2022-03-08 Nxp Usa, Inc. Distributed aperture automotive radar system
US11092683B2 (en) 2019-03-18 2021-08-17 Nxp Usa, Inc. Distributed aperture automotive radar system with alternating master radar devices
US11520030B2 (en) 2019-03-18 2022-12-06 Nxp Usa, Inc. High resolution automotive radar system with forward and backward difference co-array processing
US11899126B2 (en) 2020-01-13 2024-02-13 Uhnder, Inc. Method and system for multi-chip operation of radar systems
US11953615B2 (en) 2020-01-13 2024-04-09 Uhnder Inc. Method and system for antenna array calibration for cross-coupling and gain/phase variations in radar systems
US11977178B2 (en) 2020-03-12 2024-05-07 Uhnder, Inc. Multi-chip synchronization for digital radars
US11888554B2 (en) 2020-09-23 2024-01-30 Nxp Usa, Inc. Automotive MIMO radar system using efficient difference co-array processor

Also Published As

Publication number Publication date
US10006987B2 (en) 2018-06-26
EP3006955B1 (en) 2019-03-20
EP3006955A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
US10006987B2 (en) Radar device utilizing phase shift
EP3070490B1 (en) Radar system and method with saturation detection and reset
US11262436B2 (en) Multi-chip transceiver testing in a radar system
CN106537170B (en) Distributed radar signal processing in radar system
US9485036B2 (en) RF receiver with testing capability
US9182479B2 (en) Radar system and control method thereof
US10061016B2 (en) Phase noise measurement in a cascaded radar system
US20180011181A1 (en) Radar systems and methods thereof
US10278084B2 (en) RF receiver with built-in self-test function
CN111103530B (en) Duty cycle monitor circuit and method for duty cycle monitoring
JP2022521823A (en) Radar system
US10768278B2 (en) Field monitoring of analog signals in a radar system
US8552775B2 (en) Digital phase-locked loop apparatus using frequency shift keying and method of controlling the same
CN109154652B (en) Speed detection device
JP2019039917A (en) Radar frontend with high-frequency oscillator monitoring
US10101439B2 (en) Apparatus and method for controlling power of vehicle radar
US11360185B2 (en) Phase coded FMCW radar
US20170023662A1 (en) Apparatus and method for mitigating interference in a frequency-modulated continuous-wave (fmcw) automotive radar system
US10802134B2 (en) Method and device for processing radar signals
US10505770B2 (en) Reception signal processing device, radar, and object detection method
US11709247B2 (en) Fast chirp synthesis via segmented frequency shifting
US11525885B2 (en) Processing radar signals
IT201800002649A1 (en) OPERATING PROCEDURE OF CORRESPONDING RADAR SENSOR SYSTEMS, CIRCUIT, SYSTEM AND VEHICLE
KR101848729B1 (en) Fmcw radar with multi-frequency bandwidth and controlling method therefor
GB2544753A (en) Transceiver Circuits

Legal Events

Date Code Title Description
AS Assignment

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PAVAO-MOREIRA, CRISTIAN;DELBECQ, DOMINIQUE;GOUMBALLA, BIRAMA;REEL/FRAME:035116/0389

Effective date: 20141009

AS Assignment

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YORK

Free format text: SUPPLEMENT TO IP SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:035571/0080

Effective date: 20150428

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YORK

Free format text: SUPPLEMENT TO IP SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:035571/0112

Effective date: 20150428

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YORK

Free format text: SUPPLEMENT TO IP SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:035571/0095

Effective date: 20150428

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR

Free format text: SUPPLEMENT TO IP SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:035571/0095

Effective date: 20150428

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR

Free format text: SUPPLEMENT TO IP SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:035571/0112

Effective date: 20150428

Owner name: CITIBANK, N.A., AS NOTES COLLATERAL AGENT, NEW YOR

Free format text: SUPPLEMENT TO IP SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:035571/0080

Effective date: 20150428

AS Assignment

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037357/0974

Effective date: 20151207

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037458/0359

Effective date: 20151207

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037458/0341

Effective date: 20151207

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: SUPPLEMENT TO THE SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:039138/0001

Effective date: 20160525

AS Assignment

Owner name: NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040925/0001

Effective date: 20160912

Owner name: NXP, B.V., F/K/A FREESCALE SEMICONDUCTOR, INC., NE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040925/0001

Effective date: 20160912

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:040928/0001

Effective date: 20160622

AS Assignment

Owner name: NXP USA, INC., TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:FREESCALE SEMICONDUCTOR INC.;REEL/FRAME:040626/0683

Effective date: 20161107

AS Assignment

Owner name: NXP USA, INC., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 040626 FRAME: 0683. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER AND CHANGE OF NAME EFFECTIVE NOVEMBER 7, 2016;ASSIGNORS:NXP SEMICONDUCTORS USA, INC. (MERGED INTO);FREESCALE SEMICONDUCTOR, INC. (UNDER);SIGNING DATES FROM 20161104 TO 20161107;REEL/FRAME:041414/0883

Owner name: NXP USA, INC., TEXAS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 040626 FRAME: 0683. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER AND CHANGE OF NAME;ASSIGNOR:FREESCALE SEMICONDUCTOR INC.;REEL/FRAME:041414/0883

Effective date: 20161107

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:050744/0097

Effective date: 20190903

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVEAPPLICATION 11759915 AND REPLACE IT WITH APPLICATION11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITYINTEREST;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:052915/0001

Effective date: 20160622

AS Assignment

Owner name: NXP, B.V. F/K/A FREESCALE SEMICONDUCTOR, INC., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVEAPPLICATION 11759915 AND REPLACE IT WITH APPLICATION11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITYINTEREST;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:052917/0001

Effective date: 20160912

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4