US20160017213A1 - Aqueous slurry for particulates transportation - Google Patents

Aqueous slurry for particulates transportation Download PDF

Info

Publication number
US20160017213A1
US20160017213A1 US14/801,619 US201514801619A US2016017213A1 US 20160017213 A1 US20160017213 A1 US 20160017213A1 US 201514801619 A US201514801619 A US 201514801619A US 2016017213 A1 US2016017213 A1 US 2016017213A1
Authority
US
United States
Prior art keywords
particulates
slurry composition
polymer
aqueous
hydrophobizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/801,619
Inventor
Kewei Zhang
Julius Xaver HEIDLAS
Chuanzhong Wang
Weibing Lu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trican Well Service Ltd
Original Assignee
Trican Well Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trican Well Service Ltd filed Critical Trican Well Service Ltd
Assigned to TRICAN WELL SERVICE LTD. reassignment TRICAN WELL SERVICE LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEIDLAS, JULIUS XAVER, LU, WEIBING, WANG, CHUANZHONG, ZHANG, KEWEI
Assigned to COMPUTERSHARE TRUST COMPANY OF CANADA reassignment COMPUTERSHARE TRUST COMPANY OF CANADA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRICAN WELL SERVICE LTD.
Publication of US20160017213A1 publication Critical patent/US20160017213A1/en
Priority to US15/361,156 priority Critical patent/US10202542B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Definitions

  • This disclosure relates to an aqueous slurry composition for transporting particulates and to a method of making such a composition.
  • Aqueous slurries which basically comprise an aqueous medium and particulates, are commonly used in the oil and gas industry to transport particulates through a pipe or tube, either on ground, or from the surface to a subterranean formation or from a subterranean formation to the surface.
  • the most commonly used particulates include sand, ceramic particulates, glass spheres, bauxite (aluminum oxide) particulates, resin coated particulates and synthetic particulates.
  • the particulates usually range in size from about 10 to about 100 U.S. mesh, i.e., about 150 to 2000 ⁇ m in diameter and normally have significantly higher density than water.
  • the density of sand is typically about 2.6 g/cm 3 while the density of water is 1 g/cm 3 .
  • Aqueous slurries are widely used in petroleum industry, which include hydraulic fracturing and drilling operations. To make a relatively stable slurry, the particulates must be suspended in a liquid medium for a lengthy period of time at static and/or dynamic conditions, and therefore the viscosity or viscoelasticity of the fluid must be sufficiently high in order to be able to suspend particulates.
  • the most commonly used method for increasing viscosity or viscoelasticity of an aqueous liquid is by adding a viscosifier (for example, a natural or synthetic polymer) or a viscoelastic surfactant to the liquid.
  • Hydraulic fracturing is a technology commonly used in the petroleum industry to enhance oil and gas production from a subterranean formation.
  • a fracturing fluid is injected through a wellbore into a subterranean formation at a pressure sufficient to initiate fractures in the formation.
  • the fracturing fluid comprises particulates, commonly known as proppants, suspended in the fluid and transported as a slurry into the fractures. For example, following the initiation of the fractures the slurry transports the particulates into the fractures.
  • proppant packs to prevent fractures from closing after pressure is released (i.e., the particulates “prop” open the fractures).
  • the proppant packs provide highly conductive channels that allow the hydrocarbons (e.g., oil and/or gas) to seep through the formation to the wellbore more efficiently.
  • Proppants including sands, ceramic particulates, bauxite particulates, glass spheres, resin coated sands, synthetic particulates and the like, are known in the industry. Among them sands are by far the most commonly used proppants. As noted above, the proppants normally range in size from about 10 to 100 U.S. mesh, which is about 150 to 2000 ⁇ m in diameter.
  • Fracturing fluids in common use include various aqueous-based and non-aqueous based (i.e., hydrocarbon-based) fluids. Due to their low cost and high versatility, aqueous-based fluids are preferred and most commonly used.
  • water-soluble viscosifiers such as polymers (i.e., linear or cross-linked polymers) or viscoelastic surfactants are added to increase fluid viscosity.
  • a polymer such as guar gum or its derivatives, is added into an aqueous liquid wherein the physical entanglement of polymer chains increases the fluid viscosity and thus its suspension capability.
  • Viscoelastic fluids are the fluids that exhibit both viscous and elastic characteristics when being subjected to stress and are widely used to make aqueous slurries to transport particulates. Basically, the viscosity of the fluid works to slow down the rate of particulate settling out of suspension, while the elasticity helps to suspend the particulates. Under dynamic conditions, agitation or turbulence further help stabilize the slurry. Therefore, conventional methods of making stable particulate slurries focus on manipulating the rheological properties of the fluid by adding sufficient amounts of a viscosifier, such as a water-soluble polymer, to the slurry. It is not unusual that a polymer is used together with a foaming agent to improve the rheology and reduce the cost.
  • a viscosifier such as a water-soluble polymer
  • compositions and methods of making slurries that will form a stable proppant pack in the fracture formations and resist flowing back to the surface, while at the same time being cost-effective and operationally simple.
  • aqueous-based drilling fluids When drilling subterranean formations for oil and gas, aqueous-based drilling fluids are normally used. During the drilling process large amounts of particulates, called cuttings, are generated. Cuttings have different sizes ranging from fines to pebbles.
  • the drilling fluid is circulated through the wellbore to make a slurry with the cuttings in situ and subsequently transport them out of wellbore.
  • polymers as well as clays are added to the drilling fluids to increase their viscosity/viscoelasticity in order to transport the cuttings efficiently.
  • polymers and clay fines can easily penetrate into pores or thin fractures in the formation and significantly reduce formation permeability, especially at near wellbore. Reduced formation permeability impedes oil and/or gas production.
  • U.S. Pat. Nos. 7,723,274 and 8,105,986 disclose a different way of enhancing particulate transportation using a slurry. Unlike the conventional way, which focuses on improving fluid rheology (as discussed above), these patents teach that by rendering the particulate surfaces sufficiently hydrophobic, gas bubbles become attached to the particulate surfaces, thus buoying the particulates, and consequently resulting in the formation of stable slurry without requiring viscosifying of the fluid. Moreover, the spontaneous attachment of bubbles to different particulates bridges the particulates together resulting in particulate agglomeration (aggregation). This is also known as gas bridging in the scientific literature. The slurry can be used to effectively transport particulates in different applications, particularly in hydraulic fracturing operation.
  • an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic and a hydrophobic polymer. Also provided is a method of making such an aqueous slurry composition.
  • the aqueous slurry composition is a fracturing fluid.
  • the particulates are proppants.
  • an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and a gas. Also provided is a method of making such an aqueous slurry composition.
  • the aqueous slurry composition is a fracturing fluid.
  • the particulates are proppants.
  • an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and a frother. Also provided is a method of making such an aqueous slurry composition.
  • the aqueous slurry composition is a fracturing fluid.
  • the particulates are proppants.
  • an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and an oil. Also provided is a method of making such an aqueous slurry composition.
  • the aqueous slurry composition is a fracturing fluid.
  • the particulates are proppants.
  • a method of treating proppants in a hydraulic fracturing operation by contacting the proppants with a hydrophobizing agent which renders the particulate surfaces hydrophobic and a hydrophobic polymer, before or during the hydraulic fracturing operation.
  • a method of treating proppants in a hydraulic fracturing operation by contacting the proppants with a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and a frother, before or during the hydraulic fracturing operation.
  • a method of treating proppants in a hydraulic fracturing operation by contacting the proppants with a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and an oil before or during such hydraulic fracturing operation.
  • a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and an oil before or during such hydraulic fracturing operation.
  • a well service slurry composition including a fracturing fluid composition, comprising:
  • the one or more hydrophobic polymers may be a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • the one or more hydrophobizing agents may be an amine hydrophobizing agent, or a silicon or fluorinated hydrophobizing agent.
  • the slurry composition may further comprise a frother, a gas, an oil, or a combination of these agents.
  • the slurry composition is a fracturing fluid and wherein the particulates are proppants. In one embodiment the particulates are sand proppants. In one embodiment the aqueous liquid is flowback water from a previous fracturing operation.
  • a method of preparing an aqueous slurry composition including a fracturing fluid composition, comprising the step of mixing an aqueous liquid, particulates, a hydrophobic polymer and a hydrophobizing agent together to form a mixture.
  • the method further comprises the step of mixing the particulates and the hydrophobizing agent together before adding the hydrophobic polymer to the mixture.
  • the hydrophobic polymer is a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • the hydrophobizing agent is an amine hydrophobizing agent. In one embodiment the hydrophobizing agent is a silicon or fluorinated hydrophobizing agent.
  • the method further comprises the step of adding a frother, an oil, a gas, or combination of same, to the mixture.
  • the aqueous slurry composition is a fracturing fluid and wherein the particulates are proppants.
  • the fracturing fluid is formed simultaneously while it is being pumped into a formation.
  • the aqueous liquid is flowback water from a previous fracturing operation.
  • a well service slurry composition including a fracturing fluid composition, comprising the steps of:
  • the liquid medium may be an aqueous or a non-aqueous medium.
  • the hydrophobic polymer may be a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • the hydrophobizing agent may be an amine hydrophobizing agent or a silicon or fluorinated hydrophobizing agent.
  • the method may further comprise the step of adding a frother and/or a gas and/or an oil to the aqueous slurry composition.
  • the aqueous slurry composition is a fracturing fluid and the particulates are proppants.
  • the aqueous liquid is flowback water from a previous fracturing operation.
  • a well service slurry composition including a fracturing fluid composition, comprising the steps of:
  • the liquid medium may be an aqueous or a non-aqueous medium.
  • the hydrophobic polymer may be a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • the hydrophobizing agent may be an amine hydrophobizing agent or a silicon or fluorinated hydrophobizing agent.
  • the method may further comprise the step of adding a frother and/or a gas and/or an oil to the aqueous slurry composition.
  • the aqueous slurry composition is a fracturing fluid and the particulates are proppants.
  • the aqueous liquid is flowback water from a previous fracturing operation.
  • hydrophobic polymer is used herein to mean any polymer that is non-wetting to water and typically has a water contact angle approximately equal to or greater than 90°.
  • hydrophobic polymers include: (a) polyolefins, which is a class of polymers or copolymers synthesized from a simple olefin as a monomer including, polyethylene, poly(isobutene), poly(isoprene), poly(4-methyl-1-pentene), polypropylene, ethylene propylene copolymers, ethylene-propylene-hexadiene copolymers, and ethylene-vinyl acetate copolymers; (b) styrene polymers, including poly(styrene), poly(2-methylstyrene), styrene-acrylonitrile copolymers having less than about 20 mole-percent acrylonitrile; (a) polyolefins, which is a class of polymers or copolymers synthe
  • the hydrophobizing agent used herein includes amine hydrophobizing agents and silicon or fluorinated hydrophobizing agents.
  • amine hydrophobizing agent is used herein to mean long carbon chain hydrocarbon amines (i.e., containing no silicon or fluoro-based groups in the molecules). Such compounds contain at least fourteen, preferably at least sixteen, carbon atoms, which render the surface of the particulates hydrophobic.
  • Examples include the condensate of diethylenetetraamine and tallow oil fatty acid, tetradecyloxypropyl amine, octadecyloxypropyl amine, hexadecyloxypropyl amine, hexadecyl-1,3-propanediamine, tallow-1,3-propanediamine, hexadecyl amine, tallow amine, soyaalkylamine, erucyl amine, hydrogenated erucyl amine, ethoxylated erucyl amine, rapeseed amine, hydrogenated rapeseed amine, ethoxylated rapeseed amine, ethoxylated oleylamine, hydrogenated oleylamine, ethoxylated hexadecyl amine, octadecylamine, ethoxylated octadecylamine, ditallow
  • silicon or fluorinated hydrophobizing agents is used herein to mean the hydrophobizing agents disclosed, for example, in U.S. Pat. No. 7,723,274, which include different organosilanes, organosiloxanes and polysiloxanes modified with different functional groups, including cationic, amphoteric as well as anionic groups, fluorinated silanes, fluorinated siloxanes and fluorinated hydrocarbon compounds.
  • organosilanes are compounds containing silicon to carbon bonds.
  • Organosiloxanes are compounds containing Si—O—Si bonds.
  • Polysiloxanes are compounds in which the elements silicon and oxygen alternate in the molecular skeleton, i.e., Si—O—Si bonds are repeated.
  • the simplest polysiloxanes are polydimethylsiloxanes.
  • Polysiloxane compounds can be modified by various organic substitutes having different numbers of carbons, which may contain N, S, or P moieties that impart desired characteristics.
  • cationic polysiloxanes are compounds in which one or more organic cationic groups are attached to the polysiloxane chain, either at the middle or the end or both at the same time.
  • organic cationic groups are organic amine derivatives including primary, secondary, tertiary and quaternary amines (for example, quaternary polysiloxanes including, quaternary polysiloxanes including mono-as well as di-quaternary polysiloxanes, amido quaternary polysiloxanes, imidazoline quaternary polysiloxanes and carboxy quaternary polysiloxanes).
  • the polysiloxane can be modified by organic amphoteric groups, where one or more organic amphoteric groups are attached to the polysiloxane chain, either at the middle or the end or both, and include betaine polysiloxanes and phosphobetaine polysiloxanes.
  • organic amphoteric groups where one or more organic amphoteric groups are attached to the polysiloxane chain, either at the middle or the end or both, and include betaine polysiloxanes and phosphobetaine polysiloxanes.
  • organosiloxane compounds which are useful for the present compositions and methods are polysiloxanes modified with organic amphoteric or cationic groups including organic betaine polysiloxanes and organic amino or quaternary polysiloxanes as examples.
  • betaine polysiloxane or quaternary polysiloxane is represented by the formula
  • each of the groups R 1 to R 6 , and R 8 to R 10 represents an alkyl containing 1-6 carbon atoms, typically a methyl group
  • R 7 represents an organic betaine group for betaine polysiloxane, or an organic quaternary group for quaternary polysiloxane, and have different numbers of carbon atoms, and may contain a hydroxyl group or other functional groups containing N, P or S, and m and n are from 1 to 200.
  • R 7 is represented by the group
  • R 1 , R 2 , R 3 are alkyl groups with 1 to 22 carbon atoms or alkenyl groups with 2 to 22 carbon atoms.
  • R 4 , R 5 , R 7 are alkyl groups with 1 to 22 carbon atoms or alkenyl groups with 2 to 22 carbon atoms;
  • R 6 is —O— or the NR 8 group, R 8 being an alkyl or hydroxyalkyl group with 1 to 4 carbon atoms or a hydrogen group;
  • Z is a bivalent hydrocarbon group, which may have a hydroxyl group and may be interrupted by an oxygen atom, an amino group or an amide group;
  • x is 2 to 4;
  • the R 1 , R 2 , R 3 , R 4 , R 5 , R 7 may be the same or different, and
  • X ⁇ is an inorganic or organic anion including Cl ⁇ and CH 3 COO ⁇ .
  • organic quaternary groups include [R—N + (CH 3 ) 2 —CH 2 CH(OH)CH 2 —O—(CH 2 ) 3 —] (CH 3 COO ⁇ ), wherein R is an alkyl group containing from 1-22 carbons or a benzyl radical and CH 3 COO ⁇ an anion.
  • organic betaine groups include —(CH 2 ) 3 —O—CH 2 CH(OH)(CH 2 )—N + (CH 3 ) 2 CH 2 COO ⁇ .
  • Such compounds are commercially available.
  • cationic polysiloxanes include compounds represented by formula (II), wherein R 7 represents other organic amine derivatives including organic primary, secondary and tertiary amines.
  • organo-modified polysiloxanes include di-betaine polysiloxanes and di-quaternary polysiloxanes, which can be represented by the formula
  • R 12 to R 17 each represent an alkyl containing 1-6 carbon atoms, typically a methyl group
  • the R 11 and R 18 groups represent an organic betaine group for di-betaine polysiloxanes or an organic quaternary group for di-quaternary, and have different numbers of carbon atoms and may contain a hydroxyl group or other functional groups containing N, P or S, and m is from 1 to 200.
  • R 11 and R 18 are represented by the group
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , Z, X ⁇ and x are the same as defined above.
  • Such compounds are commercially available.
  • Quaternium 80 (INCI) is one of the commercial examples.
  • the polysiloxane can be modified by organic anionic groups, where one or more organic anionic groups are attached to the polysiloxane chain, either at the middle or the end or both, including sulfate polysiloxanes, phosphate polysiloxanes, carboxylate polysiloxanes, sulfonate polysiloxanes, thiosulfate polysiloxanes.
  • the organosiloxane compounds also include alkylsiloxanes including hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, hexaethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane.
  • alkylsiloxanes including hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, hexaethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, octamethyltrisiloxan
  • the organosilane compounds include alkylchlorosilane, for example methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, octadecyltrichlorosilane; alkyl-alkoxysilane compounds, for example methyl-, propyl-, isobutyl- and octyltrialkoxysilanes, and fluoro-organosilane compounds, for example, 2-(n-perfluoro-octyl)-ethyltriethoxysilane, and perfluoro-octyldimethyl chlorosilane.
  • alkylchlorosilane for example methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, octadecyltrichlorosilane
  • alkyl-alkoxysilane compounds for example methyl-, propyl
  • organosilicon compounds which are not organosilicon compounds, which can be used to render proppant surfaces hydrophobic are certain fluoro-substituted compounds, for example certain fluoro-organic compounds including cationic fluoro-organic compounds. Further information regarding organosilicon compounds can be found in U.S. Pat. No. 7,723,274 and Silicone Surfactants (Randal M. Hill, 1999) and the references therein, and in U.S. Pat. Nos.
  • Organosilanes can be represented by the formula
  • R is an organic radical having 1-50 carbon atoms that may possess functionality containing N, S, or P moieties that impart desired characteristics
  • X is a halogen, alkoxy, acyloxy or amine and n has a value of 1-3.
  • organosilanes include: Si(OCH 3 ) 4 , CH 3 Si(OCH 3 ) 3 , CH 3 Si(OCH 2 CH 3 ) 3 , CH 3 Si(OCH 2 CH 2 CH 3 ) 3 , CH 3 Si[O(CH 2 ) 3 CH 3 ] 3 ; CH 3 CH 2 Si(OCH 2 CH 3 ) 3 , C 6 H 5 Si(OCH 3 ) 3 , C 6 H 5 CH 2 Si(OCH 3 ) 3 , C 6 H 5 Si(OCH 2 CH 3 ) 3 , CH 2 ⁇ CHCH 2 Si(OCH 3 ) 3 , (CH 3 ) 2 Si(OCH 3 ) 2 , (CH 2 ⁇ CH)Si(CH 3 ) 2 Cl, (CH 3 ) 2 Si(OCH 2 CH 3 ) 2 , (CH 3 ) 2 Si(OCH 2 CH 2 CH 3 ) 2 , (CH 3 ) 2 Si[O(CH 2 ) 3 CH 3 ] 2 , (CHCH 3
  • frother is used herein to mean a compound that acts to stabilize bubbles so that they will remain well-dispersed in the slurry.
  • frothers are aliphatic alcohols, including particularly, methyl isobutyl carbinol (MIBC), 2-ethyl hexanol, n-pentanol, n-butyl, n-hexanol, 2-butanol, n-heptanol, n-octanol, isoamyl alcohol as well as cyclic alcohols including pine oil, terpineol, fenchyl alcohol, alkoxy paraffins such as 1,1,3,-triethoxybutane (TEB) and polypropyl glycol ethers such as commercial products Dowfroths® by Dow Chemicals Company.
  • MIBC isobutyl carbinol
  • TEB 1,1,3,-triethoxybutane
  • TEB 1,1,3,-triethoxybutane
  • oils including hydrocarbon oils such as mineral oils or paraffin oils and natural oils can be used alone or in combination with, for example, an alcohol frother, to stabilize the bubbles on the particulate surfaces and enhance particulate agglomeration.
  • aqueous liquid or “aqueous fluid” is used herein to mean water, salt solutions, or water containing an alcohol or other organic solvents. It should be understood that additives other than water in the aqueous liquid should be used in amounts or in a manner that does not adversely affect the methods and compositions described herein.
  • the size of particulates in the compositions and methods described herein is about 10-100 U.S. mesh, which is about 150 to 2000 ⁇ m in diameter. It should be understood that the size distribution of the particulates, such as proppants, can be narrow or wide. Suitable proppants include sands, ceramic proppants, glass beads/spheres, bauxite proppants, synthetic particulates and any other proppants known in the industry.
  • a gas can be mixed into the slurry. Suitable gases include air, carbon dioxide, nitrogen, methane and mixtures thereof.
  • the gas can be introduced into the slurry during preparation thereof. For example, when the slurry is pumped through a pipe, gas such as air or nitrogen can be introduced into the slurry.
  • the slurry compositions described herein comprise an aqueous liquid, proppants, such as sands, one or more hydrophobizing agents as described herein (such as a stearyl amine, tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), and one or more hydrophobic polymers (for example, a polyolefin such as poly(isobutene) or poly(isoprene)).
  • the compositions may also include a frother such as MIBC or a small amount of oil, or a frother/oil combination.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry compositions.
  • the slurries can be prepared, for example on-the-fly, by mixing an aqueous liquid, proppants, such as sands, one or more hydrophobizing agents as described herein (such as a stearyl amine, tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), and one or more hydrophobic polymers (for example, a polyolefin such as poly(isobutene) or poly(isoprene)) using conventional mixing methods under sufficient shear while pumping the slurry into the subterranean formation.
  • proppants such as sands
  • one or more hydrophobizing agents as described herein such as a stearyl amine, tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane
  • hydrophobic polymers for example, a polyolefin such as poly(isobutene) or
  • the slurries may further comprise a frother such as MIBC, or an oil, such as a mineral oil, or a frother/oil combination.
  • a frother such as MIBC
  • an oil such as a mineral oil
  • frother/oil combination Such frothers, oils or frother/oil combinations can be premixed with the hydrophobizing agent and hydrophobic polymer or can be added separately in the slurry to enhance the particulate floatation.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • proppants can be pre-treated prior to being introduced into the fluid, wherein proppants are first treated by contacting the proppants with a liquid medium containing one or more hydrophobizing agents as described herein (such as a stearyl amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), one or more hydrophobic polymers, for example, a polyolefin (such as poly(isobutene) or poly(isoprene)), and then separating the treated proppants from the medium.
  • the liquid medium used for pre-treating the proppants can be aqueous or non-aqueous.
  • the pre-hydrophobized proppants i.e., treated proppants
  • an aqueous liquid containing a small amount of oil, such as mineral oil can later be mixed with an aqueous liquid containing a frother, such as MIBC, to make the slurry during a hydraulic fracturing operation.
  • the pre-treated proppants can later be mixed with an aqueous liquid containing a frother/oil mixture.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • proppants can first be treated by contacting the proppants with a liquid medium containing one or more hydrophobizing agents as described herein, one or more hydrophobic polymers, and oil, and then separating the proppants from the medium.
  • the pre-treated proppants can later be mixed with an aqueous liquid to make the slurry during a hydraulic fracturing operation.
  • a frother can be added to the slurry composition while pumping.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • proppants can first be treated by contacting the proppants with a medium containing one or more hydrophobic polymers and then separating the proppants from the medium.
  • the pre-treated proppants can later be mixed with an aqueous liquid containing one or more hydrophobizing agents as described herein and a small amount of oil, such as mineral oil, to make the slurry during a hydraulic fracturing operation.
  • the pre-treated proppants can later be mixed with an aqueous liquid containing a frother, such as MIBC, to make the slurry during a hydraulic fracturing operation.
  • the pre-treated proppants can later be mixed with an aqueous liquid containing a frother/oil mixture.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • proppants can first be treated by contacting the proppants with a medium containing one or more hydrophobic polymers and oil and then separating the proppants from the medium.
  • the pre-treated proppants can later be mixed with an aqueous liquid comprising one or more hydrophobizing agents as described herein to make the slurry during a hydraulic fracturing operation.
  • a frother can also be added to the slurry composition.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • proppants can first be treated by contacting the proppants with a medium containing one or more hydrophobizing agents as described herein and then separating the proppants from the medium.
  • the pre-treated proppants can later be mixed with an aqueous liquid comprising one or more hydrophobic polymers.
  • This aqueous liquid may also comprise a small amount of oil, such as mineral oil, or a frother, such as MIBC, or a frother/oil mixture.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • a frother such as MIBS or n-hexanol, or an oil, are added in a small amount, which is less than 2% and preferably less than 1% of the total fluid volume.
  • proppants can be pre-treated on-the-fly in a fracturing operation wherein the proppants are pre-treated prior to being added to the blender while at the same time fluid is pumped into a well.
  • fracturing operation wherein the proppants are pre-treated prior to being added to the blender while at the same time fluid is pumped into a well.
  • proppants prior to being added into the blender, proppants are first treated by contacting the proppants (for example by spraying), with a liquid medium containing one or more hydrophobizing agents as described herein (such as tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), one or more hydrophobic polymers (such as a polyolefin including poly(isobutene) and poly(isoprene)), and either an oil, or a frother or a frother/oil mixture.
  • the pre-treated proppants are subsequently mixed with an aqueous liquid while being pumped into a well.
  • proppant can be first treated on-the-fly, for example by contacting the proppants (for example, by spraying), prior to being added to the blender, with a medium containing one or more hydrophobizing agents as described herein, and the pre-treated proppants are subsequently mixed with an aqueous liquid containing one or more hydrophobic polymers and either an oil, or a frother or a frother/oil mixture while being pumped into a well.
  • the proppants can be pre-treated on-the-fly by contacting the proppants with a medium (for example by spraying), prior to adding into the blender, containing one or more hydrophobic polymers (for example, a polyolefin such as poly(isobutene)) and an oil (for example, mineral oil), and the pre-treated proppants are subsequently mixed with an aqueous liquid containing one or more hydrophobizing agents as described herein, while being pumped into a well.
  • a frother can be added to the slurry composition while pumping.
  • proppants are pre-treated by contacting the proppants (for example by spraying), prior to being added into the blender, with a medium containing one or more hydrophobizing agents as described herein (for example, an octadecylamine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), and one or more hydrophobic polymers (for example, polyolefin including poly(isobutene) and poly(isoprene)), and subsequently mixing with an aqueous liquid containing either an oil, a frother or a frother/oil mixture while being pumped into a well.
  • hydrophobizing agents as described herein
  • hydrophobizing agents for example, an octadecylamine, a cationic modified polysiloxane, an amine silane or an alkoxy silane
  • hydrophobic polymers for example, polyolefin including poly(isobutene) and poly(isopren
  • proppant can be first treated on-the-fly, for example by contacting the proppants (for example, by spraying), prior to being added to the blender, with a medium containing one or more hydrophobic polymers and the pre-treated proppants are subsequently mixed with an aqueous liquid containing one or more hydrophobizing agents as described herein, and either an oil, or a frother or a frother/oil mixture while being pumped into a well.
  • a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry compositions.
  • a frother such as MIBS or n-hexanol, or an oil are added in a small amount, which is less than 2% and preferably less than 1% of the total fluid volume.
  • hydrophobic polymers may, in some cases, be further chemically cross-linked with each other or with the hydrophobizing agent, normally in the presence of a catalyst, after they are attached to the surfaces of the particulates.
  • proppants known to the industry can be treated according to the present disclosure during the manufacturing process, where the proppants are treated and then transported to the well site for the fracturing operations.
  • a gas such as air, nitrogen or carbon dioxide and mixtures thereof, can also be mixed into the slurry under agitation.
  • the slurry can be prepared on surface (above ground) or in a subterranean formation where proppants, an aqueous fluid, and a hydrophobizing agent are mixed in situ.
  • a high concentration of proppants can easily be pumped into a formation and the proppants are more evenly distributed in the fracture, leading to improved proppant conductivity.
  • water especially slick water, where the fluid itself has very limited proppant transportation capability, is particularly preferred as the fracturing fluid.
  • Linear gels of guar gum and its derivatives or polyacrylamide polymer or its copolymers including hydrophobically modified polyacrylamide can be used as well.
  • hydrophobizing agent used in the methods and compositions described herein depends to a large extent upon the type of particulates, the concentration of the particulates, as well as the fluid used. In general, more hydrophobizing agent and hydrophobic polymer and oil are required when particulates concentration is high.
  • Another benefit of the slurries described herein is that water in the slurry can be re-used, after it is separated from the proppants after a fracturing operation.
  • the flowback water from a previous fracturing operation especially fracturing operation using slick water, or mixture of flowback water and fresh water can be used in the compositions and methods described herein. This has great significance considering there is limited water supply in the world for hydraulic fracturing operations, especially in shale formations.
  • This disclosure also provides a method for preventing proppant flowback after a fracturing operation. Because of agglomeration, proppants in the slurry described herein tend to move cohesively, in contrast to conventional slurries under the same conditions. It is found that addition of oil, such as hydrocarbon oils, silicone oils, mineral oils, vegetable oils, or combinations thereof, to the slurry can significantly strengthen the proppant agglomeration. Proppant agglomeration makes it harder for fluid being flowed back to the surface (flowback fluid) to carry the proppants out of fractures, thus reducing proppant flowback.
  • oil such as hydrocarbon oils, silicone oils, mineral oils, vegetable oils, or combinations thereof
  • the strength of proppant agglomeration appears to depend on the contact angle formed between an oil drop and a proppant surface in water as well as on the solid/water interfacial tension.
  • the strength of proppant agglomeration also appears to depend, to some extent, on the amount of oil used for the agglomeration.
  • the methods and compositions described herein are particularly useful in gravel-pack operations where sand slurry is normally pumped into a wellbore to prevent excessive amount of sands from flowing into the wellbore from the formation.
  • the present method is cost effective.
  • a fluid containing, for example, a hydrophobizing agent as described herein, a hydrophobic polymer and oil is injected into a formation to increase cohesiveness among sand grains to consolidate the formation and to reduce sand production.
  • a hydrophobizing agent for example, a hydrophobic polymer and an oil can be added into a water-based drilling fluid. It is particularly useful when the composition is added to water or brine for use as a drilling fluid.
  • the fluid forms a slurry in situ with cuttings and transports the cuttings out of the wellbore.
  • a gas such as nitrogen or carbon dioxide can be mixed with the slurry during drilling. Since it is not necessary to use polymers or clays to viscosify the fluid, there is much less formation damage.
  • the cuttings can be easily removed on the surface and the aqueous liquid becomes re-useable. Different formations including sandstone, carbonate, shale and coal seams can be drilled using the slurry described herein.
  • water containing an amine hydrophobizing agent, a hydrophobic polymer, a frother and occasionally an oil can be circulated through the wellbore and form slurry with debris in situ.
  • the debris is subsequently transported out of the wellbore.
  • the fluid is re-useable after separation from the debris.
  • the slurry can be prepared by mixing an aqueous liquid, particulates and a hydrophobizing agent, a hydrophobic polymer, a frother and then pumping the slurry through the pipeline.
  • a gas such as nitrogen can be included in the slurry as well.
  • Sample A comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of stearylamine.
  • the molecular weight of poly(isobutylene) is about 1,000.
  • Sample B comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of tallow amine TA-100.
  • the molecular weight of poly(isobutylene) is about 1,000.
  • Sample C comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of ARMEEN® OL.
  • the molecular weight of poly(isobutylene) is about 1,000.
  • Sample D comprises of 59.5% of poly(isobutylene), 40% 2-ethyl-1-hexanol and 0.5% of ETHOMEEN® S/12.
  • the molecular weight of poly(isobutylene) is about 1,000.
  • Sample E comprises of 55.5% of poly(isoprene), 28% MIBC and 16% of limonene, and 0.5% of stearylamine.
  • Sample F comprises of 10% of polystyrene, 0.5% of stearylamine and 89.5% xylene.
  • Sample G comprises of 10% of poly[di(ethylene glycol) adipate], 0.5% of ARMEEN® OL and 40% 2-ethyl-1-hexanol.
  • the molecular weight of poly[di(ethylene glycol) adipate] is ⁇ 2,500.
  • Sample H comprises of 10% of poly(isobutyl methacrylate), 0.5% of ARMEEN® OL and 89.5% xylene.
  • the molecular weight of poly(isobutyl methacrylate) is ⁇ 70,000.
  • Sample I comprises of 10% of polyethylene, 0.5% of ARMEEN® OL and 89.5% xylene.
  • the molecular weight of polyethylene is ⁇ 4,000.
  • Sample J comprises of 59.5% of poly(isobutylene) and 40.5% MIBC.
  • the molecular weight of poly(isobutylene) is about 1,000.
  • Sample K comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of amine functionalized silicone polymer.
  • the molecular weight of poly(isobutylene) is about 1,500.
  • Sample A 0.3 ml of Sample A was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate, which is about 2500 rpm. It was observed that almost of sand was floating on the top.
  • Sample B 0.3 ml of Sample B was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that almost of sand was floating on the top.
  • Sample C 0.3 ml of Sample C was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that 50% of sand was floating on the top.
  • Sample D 0.3 ml of Sample D was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that 70% of sand was floating on the top.
  • Sample E 0.3 ml of Sample E was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that almost all of sand was floating on the top.
  • Sample F 0.3 ml of Sample F was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 50-60% of sand was floating on the top.
  • Sample G was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 50-60% of sand was floating on the top.
  • Sample G′ was prepared by replacing the hydrophobic polymer, poly[di(ethylene glycol) adipate], in Sample G with same amount of mineral oil while other components and concentrations remained the same, i.e., Sample G′ comprises of 59.5% of Envirodrill® mineral oil, 0.5% of ARMEEN® OL and 40% 2-ethyl-1-hexanol.
  • Sample G′ was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that less than 10% of sand was floating on the top.
  • This example demonstrates that, as compared to mineral oil, poly[di(ethylene glycol) adipate] is much more effective at promoting agglomeration.
  • Sample H 0.3 ml of Sample H was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was shear for 15 seconds at a moderate rate. It was observed that around 50-60% of sand was floating on the top.
  • Sample I 0.3 ml of Sample I was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 40-50% of sand was floating on the top.
  • Sample J 0.3 ml of Sample J was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 70% of sand was floating on the top.
  • Sample J 0.3 ml of Sample J was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 70-80% of sand was floating on the top.
  • Sample J′ was prepared by replacing the hydrophobic polymer, poly(isobutylene), in Sample J with same amount of mineral oil while other components and concentrations remained the same, i.e., Sample J′ comprises of 59% of Envirodrill® mineral oil, 40% MIBC and 1% of amine functionalized silicone polymer.
  • Sample J′ comprises of 59% of Envirodrill® mineral oil, 40% MIBC and 1% of amine functionalized silicone polymer.
  • 0.3 ml of Sample J′ was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 30% of sand was floating on the top.
  • poly(isobutylene) is much more effective at promoting agglomeration.
  • Sample K was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that almost all of sand was settling on the bottom.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An aqueous slurry composition for use in industries such as petroleum and pipeline industries comprises an aqueous liquid, particulates, a hydrophobizing agent that renders the particulate surface hydrophobic and a hydrophobic polymer. The slurry is produced by rendering the surface of the particulate hydrophobic during or prior to making the slurry. The method and composition can find many applications in different industries, particularly in petroleum industry.

Description

    FIELD
  • This disclosure relates to an aqueous slurry composition for transporting particulates and to a method of making such a composition.
  • BACKGROUND
  • Aqueous slurries, which basically comprise an aqueous medium and particulates, are commonly used in the oil and gas industry to transport particulates through a pipe or tube, either on ground, or from the surface to a subterranean formation or from a subterranean formation to the surface. The most commonly used particulates include sand, ceramic particulates, glass spheres, bauxite (aluminum oxide) particulates, resin coated particulates and synthetic particulates. The particulates usually range in size from about 10 to about 100 U.S. mesh, i.e., about 150 to 2000 μm in diameter and normally have significantly higher density than water. For example, the density of sand is typically about 2.6 g/cm3 while the density of water is 1 g/cm3. Aqueous slurries are widely used in petroleum industry, which include hydraulic fracturing and drilling operations. To make a relatively stable slurry, the particulates must be suspended in a liquid medium for a lengthy period of time at static and/or dynamic conditions, and therefore the viscosity or viscoelasticity of the fluid must be sufficiently high in order to be able to suspend particulates. The most commonly used method for increasing viscosity or viscoelasticity of an aqueous liquid is by adding a viscosifier (for example, a natural or synthetic polymer) or a viscoelastic surfactant to the liquid.
  • Hydraulic fracturing is a technology commonly used in the petroleum industry to enhance oil and gas production from a subterranean formation. During the operation, a fracturing fluid is injected through a wellbore into a subterranean formation at a pressure sufficient to initiate fractures in the formation. Frequently, the fracturing fluid comprises particulates, commonly known as proppants, suspended in the fluid and transported as a slurry into the fractures. For example, following the initiation of the fractures the slurry transports the particulates into the fractures. At the last stage of the fracturing operation, fracturing fluid is flowed back to the surface leaving proppants in the fractures forming proppant packs to prevent fractures from closing after pressure is released (i.e., the particulates “prop” open the fractures). The proppant packs provide highly conductive channels that allow the hydrocarbons (e.g., oil and/or gas) to seep through the formation to the wellbore more efficiently. Proppants, including sands, ceramic particulates, bauxite particulates, glass spheres, resin coated sands, synthetic particulates and the like, are known in the industry. Among them sands are by far the most commonly used proppants. As noted above, the proppants normally range in size from about 10 to 100 U.S. mesh, which is about 150 to 2000 μm in diameter.
  • Fracturing fluids in common use include various aqueous-based and non-aqueous based (i.e., hydrocarbon-based) fluids. Due to their low cost and high versatility, aqueous-based fluids are preferred and most commonly used. To better transport particulates, water-soluble viscosifiers, such as polymers (i.e., linear or cross-linked polymers) or viscoelastic surfactants are added to increase fluid viscosity. For example, a polymer, such as guar gum or its derivatives, is added into an aqueous liquid wherein the physical entanglement of polymer chains increases the fluid viscosity and thus its suspension capability. To further enhance fluid viscosity, it is common to chemically cross-link polymer chains by certain chemical compounds forming chemically cross-linked gel. Guar gum cross-linked by borates is one example of this. Compared to a cross-linked fluid, linear gels, i.e., fluids containing sufficient amount of polymers without cross-linking, cause less formation damage and are more cost-effective, but have relatively poor suspension capability. In recent years, slick water, i.e., water containing very small amount of friction reducing agent, which normally ranges from 0.015% to 0.1%, preferably 0.02% to 0.06%, of the fluid, has been widely used as a fracturing fluid, especially for fracturing shale or tight formations. Various water-soluble polymers, including guar gum and its derivatives as well as polyacrylamide and its derivatives, have been used as friction reducing agents. Polyacrylamide copolymers, which contain other monomers in addition to acrylamide monomers, are commonly used as friction reducing agents in hydraulic fracturing operations. One such type of copolymer is a hydrophobically modified polyacrylamide copolymer.
  • Viscoelastic fluids are the fluids that exhibit both viscous and elastic characteristics when being subjected to stress and are widely used to make aqueous slurries to transport particulates. Basically, the viscosity of the fluid works to slow down the rate of particulate settling out of suspension, while the elasticity helps to suspend the particulates. Under dynamic conditions, agitation or turbulence further help stabilize the slurry. Therefore, conventional methods of making stable particulate slurries focus on manipulating the rheological properties of the fluid by adding sufficient amounts of a viscosifier, such as a water-soluble polymer, to the slurry. It is not unusual that a polymer is used together with a foaming agent to improve the rheology and reduce the cost.
  • As noted above, the last stage of a fracturing treatment involves the flowing of the fracturing fluid back to the surface while the proppants are left in the fractures. However, it is not unusual for a significant amount of proppant to be carried out of the fractures and into the wellbore along with the fluids being flowed back out of the well. This process is known as “proppant flowback”. Proppant flowback after fracturing treatments has long plagued the petroleum industry. It is highly undesirable because it not only reduces the amount of proppants remaining in the fractures (thus, leading to reduced fracture conductivity), but also causes significant operational difficulties. U.S. Pat. No. 6,047,772 indicates that different methods have been tried to address the problem of proppant flowback. In one method, resins are used to coat the proppant grains to make them tacky so that they stick together to reduce proppant flowback. This method is expensive, and operationally challenging.
  • There still exists a need for compositions and methods of making slurries that will form a stable proppant pack in the fracture formations and resist flowing back to the surface, while at the same time being cost-effective and operationally simple.
  • When drilling subterranean formations for oil and gas, aqueous-based drilling fluids are normally used. During the drilling process large amounts of particulates, called cuttings, are generated. Cuttings have different sizes ranging from fines to pebbles. The drilling fluid is circulated through the wellbore to make a slurry with the cuttings in situ and subsequently transport them out of wellbore. In most cases, polymers as well as clays are added to the drilling fluids to increase their viscosity/viscoelasticity in order to transport the cuttings efficiently. However, polymers and clay fines can easily penetrate into pores or thin fractures in the formation and significantly reduce formation permeability, especially at near wellbore. Reduced formation permeability impedes oil and/or gas production. Therefore it is highly desirable to have a drilling fluid that can make stable slurry in situ with the cuttings and transport them out of the wellbore, while at the same time cause less formation damage (i.e., a fluid that does not impede the permeability of the formation).
  • In oil sand operation massive amount of sands are left after oil is stripped from the sand surface. Finding a more cost efficient way to transport sands efficiently over distance through pipelines has long been required in the industry.
  • U.S. Pat. Nos. 7,723,274 and 8,105,986 disclose a different way of enhancing particulate transportation using a slurry. Unlike the conventional way, which focuses on improving fluid rheology (as discussed above), these patents teach that by rendering the particulate surfaces sufficiently hydrophobic, gas bubbles become attached to the particulate surfaces, thus buoying the particulates, and consequently resulting in the formation of stable slurry without requiring viscosifying of the fluid. Moreover, the spontaneous attachment of bubbles to different particulates bridges the particulates together resulting in particulate agglomeration (aggregation). This is also known as gas bridging in the scientific literature. The slurry can be used to effectively transport particulates in different applications, particularly in hydraulic fracturing operation.
  • SUMMARY
  • It has been found that the addition of a hydrophobic polymer to a slurry composition, for example that disclosed in U.S. Pat. Nos. 7,723,274 and 8,105,986, can significantly enhance the attachment of bubbles to the particulate surfaces and can enhance particulate agglomeration. Consequently the transportation capability of the slurry is improved.
  • According to one aspect there is provided an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic and a hydrophobic polymer. Also provided is a method of making such an aqueous slurry composition. In some embodiments the aqueous slurry composition is a fracturing fluid. In some embodiments the particulates are proppants.
  • According to another aspect there is provided an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and a gas. Also provided is a method of making such an aqueous slurry composition. In some embodiments the aqueous slurry composition is a fracturing fluid. In some embodiments the particulates are proppants.
  • According to a further aspect there is provided an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and a frother. Also provided is a method of making such an aqueous slurry composition. In some embodiments the aqueous slurry composition is a fracturing fluid. In some embodiments the particulates are proppants.
  • According to a further aspect there is provided an aqueous slurry composition comprising an aqueous liquid, particulates, a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and an oil. Also provided is a method of making such an aqueous slurry composition. In some embodiments the aqueous slurry composition is a fracturing fluid. In some embodiments the particulates are proppants.
  • According to a further aspect there is provided a method of treating proppants in a hydraulic fracturing operation by contacting the proppants with a hydrophobizing agent which renders the particulate surfaces hydrophobic and a hydrophobic polymer, before or during the hydraulic fracturing operation.
  • According to a further aspect there is provided a method of treating proppants in a hydraulic fracturing operation by contacting the proppants with a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and a frother, before or during the hydraulic fracturing operation.
  • According to a further aspect, there is provided a method of treating proppants in a hydraulic fracturing operation by contacting the proppants with a hydrophobizing agent which renders the particulate surfaces hydrophobic, a hydrophobic polymer and an oil before or during such hydraulic fracturing operation. As well, when used in fracturing operations, especially slick water fracturing, water can be re-used after flowback from a previous fracturing operation, to make the slurry.
  • In one aspect, described herein is a well service slurry composition, including a fracturing fluid composition, comprising:
  • a) an aqueous liquid;
    b) particulates;
    c) one or more hydrophobizing agents; and
    d) one or more hydrophobic polymers.
  • The one or more hydrophobic polymers may be a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • The one or more hydrophobizing agents may be an amine hydrophobizing agent, or a silicon or fluorinated hydrophobizing agent. In various embodiments the slurry composition may further comprise a frother, a gas, an oil, or a combination of these agents.
  • In one embodiment the slurry composition is a fracturing fluid and wherein the particulates are proppants. In one embodiment the particulates are sand proppants. In one embodiment the aqueous liquid is flowback water from a previous fracturing operation.
  • In another aspect, disclosed herein is a method of preparing an aqueous slurry composition, including a fracturing fluid composition, comprising the step of mixing an aqueous liquid, particulates, a hydrophobic polymer and a hydrophobizing agent together to form a mixture.
  • In one embodiment the method further comprises the step of mixing the particulates and the hydrophobizing agent together before adding the hydrophobic polymer to the mixture.
  • In one embodiment the hydrophobic polymer is a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • In one embodiment the hydrophobizing agent is an amine hydrophobizing agent. In one embodiment the hydrophobizing agent is a silicon or fluorinated hydrophobizing agent.
  • In one embodiment the method further comprises the step of adding a frother, an oil, a gas, or combination of same, to the mixture.
  • In one embodiment of the method the aqueous slurry composition is a fracturing fluid and wherein the particulates are proppants.
  • In one embodiment of the method, the fracturing fluid is formed simultaneously while it is being pumped into a formation. In one embodiment, the aqueous liquid is flowback water from a previous fracturing operation.
  • In another aspect, described herein is a method of preparing a well service slurry composition, including a fracturing fluid composition, comprising the steps of:
  • a) contacting particulates with a liquid medium containing a hydrophobizing agent and a hydrophobic polymer, to form treated particulates;
    b) separating the treated particulates from the liquid medium; and
    c) mixing the treated particulates with an aqueous liquid to form the aqueous slurry composition.
  • The liquid medium may be an aqueous or a non-aqueous medium.
  • The hydrophobic polymer may be a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • The hydrophobizing agent may be an amine hydrophobizing agent or a silicon or fluorinated hydrophobizing agent. The method may further comprise the step of adding a frother and/or a gas and/or an oil to the aqueous slurry composition.
  • In one embodiment of the method the aqueous slurry composition is a fracturing fluid and the particulates are proppants. In one embodiment of the method the aqueous liquid is flowback water from a previous fracturing operation.
  • In another aspect, described herein is method of preparing a well service slurry composition, including a fracturing fluid composition, comprising the steps of:
  • a) contacting particulates with a liquid medium containing a hydrophobizing agent to form treated particulates;
    b) separating the treated particulates from the liquid medium; and
    c) mixing the treated particulates with a hydrophobic polymer and an aqueous liquid to form the aqueous slurry composition.
  • The liquid medium may be an aqueous or a non-aqueous medium.
  • The hydrophobic polymer may be a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
  • The hydrophobizing agent may be an amine hydrophobizing agent or a silicon or fluorinated hydrophobizing agent. The method may further comprise the step of adding a frother and/or a gas and/or an oil to the aqueous slurry composition.
  • In one embodiment of the method the aqueous slurry composition is a fracturing fluid and the particulates are proppants. In one embodiment of the method the aqueous liquid is flowback water from a previous fracturing operation.
  • DETAILED DESCRIPTION
  • For purposes of this specification and the claims appended thereto, the term “hydrophobic polymer” is used herein to mean any polymer that is non-wetting to water and typically has a water contact angle approximately equal to or greater than 90°. Examples of hydrophobic polymers, by way of illustration only, include: (a) polyolefins, which is a class of polymers or copolymers synthesized from a simple olefin as a monomer including, polyethylene, poly(isobutene), poly(isoprene), poly(4-methyl-1-pentene), polypropylene, ethylene propylene copolymers, ethylene-propylene-hexadiene copolymers, and ethylene-vinyl acetate copolymers; (b) styrene polymers, including poly(styrene), poly(2-methylstyrene), styrene-acrylonitrile copolymers having less than about 20 mole-percent acrylonitrile; (c) vinyl polymers, such as poly(vinyl butyrate), poly(vinyl decanoate), poly(vinyl dodecanoate), poly(vinyl hexadecanoate), poly(vinyl hexanoate), poly(vinyl propionate), poly(vinyl octanoate), and poly(methacrylonitnile); (d) acrylic polymers, including poly(n-butyl acetate), poly(ethyl acrylate); methacrylic polymers, such as poly(benzyl methacrylate), poly(n-butyl methacrylate), poly(isobutyl methacrylate), poly(t-butyl methacrylate), poly(t-butylaminoethyl methacrylate), poly(dodecyl methacrylate), poly(ethyl methacrylate), poly(2-ethylhexyl methacrylate), poly(n-hexyl methacrylate), poly(phenyl methacrylate), poly(n-propyl methacrylate), poly(octadecyl methacrylate); (e) polyesters, such as poly(ethylene terephthalate), poly(butylene terephthalate), and poly(ethylene terenaphthalate); and (f) fluorinated or silyl-modified derivatives of above mentioned polymers, such as silyl-modified polyolefines, silyl-modified polyacrylates, silyl-modified polyamides, fluorinated olefin polymers, fluorinated vinyl polymers, fluorinated styrene polymers, fluorinated acrylic polymers, and fluorinated methacrylic polymers are included as well, including poly(chlorotrifluoroethylene), chlorotrifluoroethylenetetrafluoroethylene copolymers, poly(hexafluoropropylene), poly(tetrafluoroethylene), tetrafluoroethylene-ethylene copolymers, poly(trifluoroethylene), and styrene-2,2,3,3,-tetrafluoropropyl methacrylate copolymers, poly(vinyl fluoride), poly(vinylidene fluoride); poly(heptafluoroisopropoxyethylene), poly(heptafluoroisopropoxypropylene), poly[(1-chlorodifluorornethyl)tetrafluoroethyl acrylate], poly[di(chlorofluoromethyl) fluoromethyl acrylate], poly(1,1-dihydroheptafluorobutylacrylate), poly(1,1-dihydropentafluoroisopropyl acrylate), poly(1.1-dihydropentadecafluorooctyl acrylate), poly(heptafluoroisopropyl acrylate), poly[5-(heptafluoroisopropoxy)pentyl acrylate], poly[11-(heptafluoroisopropoxy) undecyl acrylate], poly[2-(heptafluoropropoxy)ethyl acrylate], poly(nonafluoroisobutyl acrylate); poly(1,1-dihydropentadecafluorooctyl methacrylate), poly(heptafluoroisopropyl methacrylate), poly(heptadecafluorooctyl methacrylate), poly(1-hydrotetrafluoroethyl methacrylate), poly(1,1-dihydrotetrafluoropropyl methacrylate), poly(1-hydrohexafluoroisopropyl methacrylate), and poly(t-nonafluorobutyl methacrylate). Normally hydrophobic polymers of low or moderate molecular weights are preferred. Furthermore, hydrophobic polymers that are liquid or viscous liquid at moderate conditions are also preferred.
  • The hydrophobizing agent used herein includes amine hydrophobizing agents and silicon or fluorinated hydrophobizing agents. The term “amine hydrophobizing agent” is used herein to mean long carbon chain hydrocarbon amines (i.e., containing no silicon or fluoro-based groups in the molecules). Such compounds contain at least fourteen, preferably at least sixteen, carbon atoms, which render the surface of the particulates hydrophobic. These include simple primary, secondary and tertiary amines, primary ether amines, di-amines, polyamines, ether diamines, stearyl amines, tallow amines, condensates of amine or alkanolamine with fatty acid or fatty acid ester, and condensates of hydroxyethylendiamines. Examples include the condensate of diethylenetetraamine and tallow oil fatty acid, tetradecyloxypropyl amine, octadecyloxypropyl amine, hexadecyloxypropyl amine, hexadecyl-1,3-propanediamine, tallow-1,3-propanediamine, hexadecyl amine, tallow amine, soyaalkylamine, erucyl amine, hydrogenated erucyl amine, ethoxylated erucyl amine, rapeseed amine, hydrogenated rapeseed amine, ethoxylated rapeseed amine, ethoxylated oleylamine, hydrogenated oleylamine, ethoxylated hexadecyl amine, octadecylamine, ethoxylated octadecylamine, ditallowamine, hydrogenated soyaalkylamine, amine, hydrogenated tallow amine, di-octadecylamine, ethoxylated (2) tallowalkylamine, for example Ethomeen® T/12 or ethoxylated (2) soyaalkylamine, for example, Ethomeen® S/12, or oleyl amine, for example, Armeen® OL, or di-cocoalkylalamine, for example Armeen® 2C from Akzo Nobel Inc., and the condensate of an excess of fatty acids with diethanolamine.
  • The term “silicon or fluorinated hydrophobizing agents” is used herein to mean the hydrophobizing agents disclosed, for example, in U.S. Pat. No. 7,723,274, which include different organosilanes, organosiloxanes and polysiloxanes modified with different functional groups, including cationic, amphoteric as well as anionic groups, fluorinated silanes, fluorinated siloxanes and fluorinated hydrocarbon compounds. In general, organosilanes are compounds containing silicon to carbon bonds. Organosiloxanes are compounds containing Si—O—Si bonds. Polysiloxanes are compounds in which the elements silicon and oxygen alternate in the molecular skeleton, i.e., Si—O—Si bonds are repeated. The simplest polysiloxanes are polydimethylsiloxanes. Polysiloxane compounds can be modified by various organic substitutes having different numbers of carbons, which may contain N, S, or P moieties that impart desired characteristics. For example, cationic polysiloxanes are compounds in which one or more organic cationic groups are attached to the polysiloxane chain, either at the middle or the end or both at the same time. The most common organic cationic groups are organic amine derivatives including primary, secondary, tertiary and quaternary amines (for example, quaternary polysiloxanes including, quaternary polysiloxanes including mono-as well as di-quaternary polysiloxanes, amido quaternary polysiloxanes, imidazoline quaternary polysiloxanes and carboxy quaternary polysiloxanes). Similarly, the polysiloxane can be modified by organic amphoteric groups, where one or more organic amphoteric groups are attached to the polysiloxane chain, either at the middle or the end or both, and include betaine polysiloxanes and phosphobetaine polysiloxanes. Among different organosiloxane compounds which are useful for the present compositions and methods are polysiloxanes modified with organic amphoteric or cationic groups including organic betaine polysiloxanes and organic amino or quaternary polysiloxanes as examples. One type of betaine polysiloxane or quaternary polysiloxane is represented by the formula
  • Figure US20160017213A1-20160121-C00001
  • wherein each of the groups R1 to R6, and R8 to R10 represents an alkyl containing 1-6 carbon atoms, typically a methyl group, R7 represents an organic betaine group for betaine polysiloxane, or an organic quaternary group for quaternary polysiloxane, and have different numbers of carbon atoms, and may contain a hydroxyl group or other functional groups containing N, P or S, and m and n are from 1 to 200. For example, in one type of quaternary polysiloxane R7 is represented by the group
  • Figure US20160017213A1-20160121-C00002
  • wherein R1, R2, R3 are alkyl groups with 1 to 22 carbon atoms or alkenyl groups with 2 to 22 carbon atoms. R4, R5, R7 are alkyl groups with 1 to 22 carbon atoms or alkenyl groups with 2 to 22 carbon atoms; R6 is —O— or the NR8 group, R8 being an alkyl or hydroxyalkyl group with 1 to 4 carbon atoms or a hydrogen group; Z is a bivalent hydrocarbon group, which may have a hydroxyl group and may be interrupted by an oxygen atom, an amino group or an amide group; x is 2 to 4; The R1, R2, R3, R4, R5, R7 may be the same or different, and Xis an inorganic or organic anion including Cland CH3COO. Examples of organic quaternary groups include [R—N+(CH3)2—CH2CH(OH)CH2—O—(CH2)3—] (CH3COO), wherein R is an alkyl group containing from 1-22 carbons or a benzyl radical and CH3COOan anion. Examples of organic betaine groups include —(CH2)3—O—CH2CH(OH)(CH2)—N+(CH3)2CH2COO. Such compounds are commercially available. It should be understood that cationic polysiloxanes include compounds represented by formula (II), wherein R7 represents other organic amine derivatives including organic primary, secondary and tertiary amines.
  • Other examples of organo-modified polysiloxanes include di-betaine polysiloxanes and di-quaternary polysiloxanes, which can be represented by the formula
  • Figure US20160017213A1-20160121-C00003
  • wherein the groups R12 to R17 each represent an alkyl containing 1-6 carbon atoms, typically a methyl group, the R11 and R18 groups represent an organic betaine group for di-betaine polysiloxanes or an organic quaternary group for di-quaternary, and have different numbers of carbon atoms and may contain a hydroxyl group or other functional groups containing N, P or S, and m is from 1 to 200. For example, in one type of di-quaternary polysiloxane R11 and R18 are represented by the group
  • Figure US20160017213A1-20160121-C00004
  • wherein R1, R2, R3, R4, R5, R6, R7, Z, Xand x are the same as defined above. Such compounds are commercially available. Quaternium 80 (INCI) is one of the commercial examples.
  • Similarly, the polysiloxane can be modified by organic anionic groups, where one or more organic anionic groups are attached to the polysiloxane chain, either at the middle or the end or both, including sulfate polysiloxanes, phosphate polysiloxanes, carboxylate polysiloxanes, sulfonate polysiloxanes, thiosulfate polysiloxanes. The organosiloxane compounds also include alkylsiloxanes including hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, hexaethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane. The organosilane compounds include alkylchlorosilane, for example methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, octadecyltrichlorosilane; alkyl-alkoxysilane compounds, for example methyl-, propyl-, isobutyl- and octyltrialkoxysilanes, and fluoro-organosilane compounds, for example, 2-(n-perfluoro-octyl)-ethyltriethoxysilane, and perfluoro-octyldimethyl chlorosilane. Other types of chemical compounds, which are not organosilicon compounds, which can be used to render proppant surfaces hydrophobic are certain fluoro-substituted compounds, for example certain fluoro-organic compounds including cationic fluoro-organic compounds. Further information regarding organosilicon compounds can be found in U.S. Pat. No. 7,723,274 and Silicone Surfactants (Randal M. Hill, 1999) and the references therein, and in U.S. Pat. Nos. 4,046,795; 4,537,595; 4,564,456; 4,689,085; 4,960,845; 5,098,979; 5,149,765; 5,209,775; 5,240,760; 5,256,805; 5,359,104; 6,132,638 and 6,830,811 and Canadian Patent No. 2,213,168. Organosilanes can be represented by the formula

  • RnSiX(4-n)  (I)
  • wherein R is an organic radical having 1-50 carbon atoms that may possess functionality containing N, S, or P moieties that impart desired characteristics, X is a halogen, alkoxy, acyloxy or amine and n has a value of 1-3. Examples of suitable organosilanes include:
    Si(OCH3)4, CH3Si(OCH3)3, CH3Si(OCH2CH3)3, CH3Si(OCH2CH2CH3)3, CH3Si[O(CH2)3CH3]3; CH3CH2Si(OCH2CH3)3, C6H5Si(OCH3)3, C6H5CH2Si(OCH3)3, C6H5Si(OCH2CH3)3, CH2═CHCH2Si(OCH3)3, (CH3)2Si(OCH3)2, (CH2═CH)Si(CH3)2Cl, (CH3)2Si(OCH2CH3)2, (CH3)2Si(OCH2CH2CH3)2, (CH3)2Si[O(CH2)3CH3]2, (CH3CH2)2Si(OCH2CH3)2, (C6H5)2Si(OCH3)2, (C6H5CH2)2Si(OCH3)2, (C6H5)2Si(OCH2CH3)2, (CH2═CH)Si(OCH3)2, (CH2═CHCH2)2Si(OCH3)2, (CH3)3SiOCH3, CH3HSi(OCH3)2, (CH3)2HSi(OCH3), CH3Si(OCH2CH2CH3)3, CH2═CHCH2Si(OCH2CH2OCH3)3, (C6H5)2Si(OCH2CH2OCH3)2, (CH3)2Si(OCH2CH2OCH3)2, (CH2═CH2)2Si(OCH2CH2OCH3)2, (CH2═CHCH2)2Si(OCH2CH2OCH3)2, (C6H5)2Si(OCH2CH2OCH3)2, CH3Si(CH3COO)3, 3-aminotriethoxysilane, methyldiethylchlorosilane, butyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, methyltrimethoxysilane, vinyltriethoxysilane, vinyltris(methoxyethoxy) silane, methacryloxypropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, aminopropyltriethoxysilane, divinyldi-2-methoxysilane, ethyltributoxysilane, isobutyltrimethoxysilane, hexyltrimethoxysilane, n-octyltriethoxysilane, dihexyldimethoxysilane, octadecyltrichlorosilane, octadecyltrimethoxysilane, octadecyldimethylchlorosilane, octadecyldimethylmethoxysilane and quaternary ammonium silanes including 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium chloride, 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium bromide, 3-(trimethylethoxysilylpropyl)didecylmethyl ammonium chloride, triethoxysilyl soyapropyl dimonium chloride, 3-(trimethylethoxysilylpropyl)didecylmethyl ammonium bromide, 3-(trimethylethoxysilylpropyl)didecylmethyl ammonium bromide, triethoxysilyl soyapropyl dimonium bromide, (CH3O)3Si(CH2)3P+(C6H5)3Cl, (CH3O)3Si(CH2)3P+(C6H5)3Br, (CH3O)3Si(CH2)3P+(CH3)3Cl, (CH3O)3Si(CH2)3P+(C6H5)3Cl, (CH3O)3Si(CH2)3N+(CH3)2C4H9Cl, (CH3O)3Si(CH2)3N+(CH3)2CH2C6H5Cl, (CH3O)3Si(CH2)3N+(CH3)2CH2CH2OHCl, (CH3O)3Si(CH2)3N+(C2H5)3Cl, (C2H5O)3Si(CH2)3N+(CH3)2C18H37Cl. It is well known that some silanes, for example, alkoxy silanes, undergo hydrolysis in aqueous medium before reacting with hydroxyl groups (—OH) on the particulate surfaces, for example, sand surfaces.
  • The term “frother” is used herein to mean a compound that acts to stabilize bubbles so that they will remain well-dispersed in the slurry. The most commonly used frothers are aliphatic alcohols, including particularly, methyl isobutyl carbinol (MIBC), 2-ethyl hexanol, n-pentanol, n-butyl, n-hexanol, 2-butanol, n-heptanol, n-octanol, isoamyl alcohol as well as cyclic alcohols including pine oil, terpineol, fenchyl alcohol, alkoxy paraffins such as 1,1,3,-triethoxybutane (TEB) and polypropyl glycol ethers such as commercial products Dowfroths® by Dow Chemicals Company. It is understood that mixtures of different frothers, such as mixtures of the alcohols, are often used. As well, oils including hydrocarbon oils such as mineral oils or paraffin oils and natural oils can be used alone or in combination with, for example, an alcohol frother, to stabilize the bubbles on the particulate surfaces and enhance particulate agglomeration.
  • The term “aqueous liquid” or “aqueous fluid” is used herein to mean water, salt solutions, or water containing an alcohol or other organic solvents. It should be understood that additives other than water in the aqueous liquid should be used in amounts or in a manner that does not adversely affect the methods and compositions described herein. The size of particulates in the compositions and methods described herein is about 10-100 U.S. mesh, which is about 150 to 2000 μm in diameter. It should be understood that the size distribution of the particulates, such as proppants, can be narrow or wide. Suitable proppants include sands, ceramic proppants, glass beads/spheres, bauxite proppants, synthetic particulates and any other proppants known in the industry.
  • The slurries described herein can be made on the surface or in situ in a subterranean formation. Furthermore, a gas can be mixed into the slurry. Suitable gases include air, carbon dioxide, nitrogen, methane and mixtures thereof. The gas can be introduced into the slurry during preparation thereof. For example, when the slurry is pumped through a pipe, gas such as air or nitrogen can be introduced into the slurry.
  • The slurry compositions described herein, particularly those suitable for use in hydraulic fracturing operations, comprise an aqueous liquid, proppants, such as sands, one or more hydrophobizing agents as described herein (such as a stearyl amine, tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), and one or more hydrophobic polymers (for example, a polyolefin such as poly(isobutene) or poly(isoprene)). The compositions may also include a frother such as MIBC or a small amount of oil, or a frother/oil combination. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry compositions.
  • For hydraulic fracturing operations, the slurries can be prepared, for example on-the-fly, by mixing an aqueous liquid, proppants, such as sands, one or more hydrophobizing agents as described herein (such as a stearyl amine, tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), and one or more hydrophobic polymers (for example, a polyolefin such as poly(isobutene) or poly(isoprene)) using conventional mixing methods under sufficient shear while pumping the slurry into the subterranean formation. Additionally, the slurries may further comprise a frother such as MIBC, or an oil, such as a mineral oil, or a frother/oil combination. Such frothers, oils or frother/oil combinations can be premixed with the hydrophobizing agent and hydrophobic polymer or can be added separately in the slurry to enhance the particulate floatation. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • Alternatively, proppants can be pre-treated prior to being introduced into the fluid, wherein proppants are first treated by contacting the proppants with a liquid medium containing one or more hydrophobizing agents as described herein (such as a stearyl amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), one or more hydrophobic polymers, for example, a polyolefin (such as poly(isobutene) or poly(isoprene)), and then separating the treated proppants from the medium. The liquid medium used for pre-treating the proppants can be aqueous or non-aqueous. The pre-hydrophobized proppants, i.e., treated proppants, can later be mixed with an aqueous liquid containing a small amount of oil, such as mineral oil, to make the slurry during a hydraulic fracturing operation. Alternatively, the pre-treated proppants can later be mixed with an aqueous liquid containing a frother, such as MIBC, to make the slurry during a hydraulic fracturing operation. Finally, the pre-treated proppants can later be mixed with an aqueous liquid containing a frother/oil mixture. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • In another embodiment, proppants can first be treated by contacting the proppants with a liquid medium containing one or more hydrophobizing agents as described herein, one or more hydrophobic polymers, and oil, and then separating the proppants from the medium. The pre-treated proppants can later be mixed with an aqueous liquid to make the slurry during a hydraulic fracturing operation. A frother can be added to the slurry composition while pumping. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • In another embodiment, proppants can first be treated by contacting the proppants with a medium containing one or more hydrophobic polymers and then separating the proppants from the medium. The pre-treated proppants can later be mixed with an aqueous liquid containing one or more hydrophobizing agents as described herein and a small amount of oil, such as mineral oil, to make the slurry during a hydraulic fracturing operation. Alternatively, the pre-treated proppants can later be mixed with an aqueous liquid containing a frother, such as MIBC, to make the slurry during a hydraulic fracturing operation. Finally, the pre-treated proppants can later be mixed with an aqueous liquid containing a frother/oil mixture. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • In a further embodiment, proppants can first be treated by contacting the proppants with a medium containing one or more hydrophobic polymers and oil and then separating the proppants from the medium. The pre-treated proppants can later be mixed with an aqueous liquid comprising one or more hydrophobizing agents as described herein to make the slurry during a hydraulic fracturing operation. A frother can also be added to the slurry composition. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • In another embodiment, proppants can first be treated by contacting the proppants with a medium containing one or more hydrophobizing agents as described herein and then separating the proppants from the medium. The pre-treated proppants can later be mixed with an aqueous liquid comprising one or more hydrophobic polymers. This aqueous liquid may also comprise a small amount of oil, such as mineral oil, or a frother, such as MIBC, or a frother/oil mixture. Furthermore, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry.
  • Normally, a frother such as MIBS or n-hexanol, or an oil, are added in a small amount, which is less than 2% and preferably less than 1% of the total fluid volume.
  • In another embodiment, proppants can be pre-treated on-the-fly in a fracturing operation wherein the proppants are pre-treated prior to being added to the blender while at the same time fluid is pumped into a well. There are a few methods of pre-treating on-the-fly. In one method, prior to being added into the blender, proppants are first treated by contacting the proppants (for example by spraying), with a liquid medium containing one or more hydrophobizing agents as described herein (such as tallow amine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), one or more hydrophobic polymers (such as a polyolefin including poly(isobutene) and poly(isoprene)), and either an oil, or a frother or a frother/oil mixture. The pre-treated proppants are subsequently mixed with an aqueous liquid while being pumped into a well.
  • In an alternative embodiment, proppant can be first treated on-the-fly, for example by contacting the proppants (for example, by spraying), prior to being added to the blender, with a medium containing one or more hydrophobizing agents as described herein, and the pre-treated proppants are subsequently mixed with an aqueous liquid containing one or more hydrophobic polymers and either an oil, or a frother or a frother/oil mixture while being pumped into a well.
  • In another embodiment, the proppants can be pre-treated on-the-fly by contacting the proppants with a medium (for example by spraying), prior to adding into the blender, containing one or more hydrophobic polymers (for example, a polyolefin such as poly(isobutene)) and an oil (for example, mineral oil), and the pre-treated proppants are subsequently mixed with an aqueous liquid containing one or more hydrophobizing agents as described herein, while being pumped into a well. A frother can be added to the slurry composition while pumping.
  • In another embodiment, proppants are pre-treated by contacting the proppants (for example by spraying), prior to being added into the blender, with a medium containing one or more hydrophobizing agents as described herein (for example, an octadecylamine, a cationic modified polysiloxane, an amine silane or an alkoxy silane), and one or more hydrophobic polymers (for example, polyolefin including poly(isobutene) and poly(isoprene)), and subsequently mixing with an aqueous liquid containing either an oil, a frother or a frother/oil mixture while being pumped into a well.
  • In an another embodiment, proppant can be first treated on-the-fly, for example by contacting the proppants (for example, by spraying), prior to being added to the blender, with a medium containing one or more hydrophobic polymers and the pre-treated proppants are subsequently mixed with an aqueous liquid containing one or more hydrophobizing agents as described herein, and either an oil, or a frother or a frother/oil mixture while being pumped into a well.
  • Optionally, a gas such as air, nitrogen or carbon dioxide (or mixtures thereof) can also be added to the slurry compositions. Normally, a frother such as MIBS or n-hexanol, or an oil are added in a small amount, which is less than 2% and preferably less than 1% of the total fluid volume.
  • With all of the above-mentioned applications the hydrophobic polymers may, in some cases, be further chemically cross-linked with each other or with the hydrophobizing agent, normally in the presence of a catalyst, after they are attached to the surfaces of the particulates.
  • Various proppants known to the industry, including sands and ceramic proppants, can be treated according to the present disclosure during the manufacturing process, where the proppants are treated and then transported to the well site for the fracturing operations. In each case, a gas, such as air, nitrogen or carbon dioxide and mixtures thereof, can also be mixed into the slurry under agitation. As noted above, the slurry can be prepared on surface (above ground) or in a subterranean formation where proppants, an aqueous fluid, and a hydrophobizing agent are mixed in situ. With the composition described herein, a high concentration of proppants can easily be pumped into a formation and the proppants are more evenly distributed in the fracture, leading to improved proppant conductivity.
  • In each case water, especially slick water, where the fluid itself has very limited proppant transportation capability, is particularly preferred as the fracturing fluid. Linear gels of guar gum and its derivatives or polyacrylamide polymer or its copolymers including hydrophobically modified polyacrylamide can be used as well.
  • The amount of hydrophobizing agent, the hydrophobic polymer and oil used in the methods and compositions described herein depends to a large extent upon the type of particulates, the concentration of the particulates, as well as the fluid used. In general, more hydrophobizing agent and hydrophobic polymer and oil are required when particulates concentration is high.
  • Another benefit of the slurries described herein is that water in the slurry can be re-used, after it is separated from the proppants after a fracturing operation. The flowback water from a previous fracturing operation, especially fracturing operation using slick water, or mixture of flowback water and fresh water can be used in the compositions and methods described herein. This has great significance considering there is limited water supply in the world for hydraulic fracturing operations, especially in shale formations.
  • This disclosure also provides a method for preventing proppant flowback after a fracturing operation. Because of agglomeration, proppants in the slurry described herein tend to move cohesively, in contrast to conventional slurries under the same conditions. It is found that addition of oil, such as hydrocarbon oils, silicone oils, mineral oils, vegetable oils, or combinations thereof, to the slurry can significantly strengthen the proppant agglomeration. Proppant agglomeration makes it harder for fluid being flowed back to the surface (flowback fluid) to carry the proppants out of fractures, thus reducing proppant flowback. The strength of proppant agglomeration appears to depend on the contact angle formed between an oil drop and a proppant surface in water as well as on the solid/water interfacial tension. The strength of proppant agglomeration also appears to depend, to some extent, on the amount of oil used for the agglomeration.
  • The methods and compositions described herein are particularly useful in gravel-pack operations where sand slurry is normally pumped into a wellbore to prevent excessive amount of sands from flowing into the wellbore from the formation. The present method is cost effective.
  • Similarly, the methods and compositions described herein can also be used in so-called formation consolidation operations. In such an operation, a fluid containing, for example, a hydrophobizing agent as described herein, a hydrophobic polymer and oil, is injected into a formation to increase cohesiveness among sand grains to consolidate the formation and to reduce sand production.
  • In drilling operations, for example, a hydrophobizing agent, a hydrophobic polymer and an oil can be added into a water-based drilling fluid. It is particularly useful when the composition is added to water or brine for use as a drilling fluid. During a drilling operation, the fluid forms a slurry in situ with cuttings and transports the cuttings out of the wellbore. Furthermore, a gas such as nitrogen or carbon dioxide can be mixed with the slurry during drilling. Since it is not necessary to use polymers or clays to viscosify the fluid, there is much less formation damage. Moreover, the cuttings can be easily removed on the surface and the aqueous liquid becomes re-useable. Different formations including sandstone, carbonate, shale and coal seams can be drilled using the slurry described herein.
  • Similarly in wellbore cleanout operations, for example, water containing an amine hydrophobizing agent, a hydrophobic polymer, a frother and occasionally an oil can be circulated through the wellbore and form slurry with debris in situ. The debris is subsequently transported out of the wellbore. The fluid is re-useable after separation from the debris.
  • For transporting particulates through pipelines the slurry can be prepared by mixing an aqueous liquid, particulates and a hydrophobizing agent, a hydrophobic polymer, a frother and then pumping the slurry through the pipeline. Alternatively, a gas such as nitrogen can be included in the slurry as well.
  • The following are non-limiting examples of fluid compositions and methods embodying the principles described herein.
  • Examples
  • Sample A: comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of stearylamine. The molecular weight of poly(isobutylene) is about 1,000.
  • Sample B: comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of tallow amine TA-100. The molecular weight of poly(isobutylene) is about 1,000.
  • Sample C: comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of ARMEEN® OL. The molecular weight of poly(isobutylene) is about 1,000.
  • Sample D: comprises of 59.5% of poly(isobutylene), 40% 2-ethyl-1-hexanol and 0.5% of ETHOMEEN® S/12. The molecular weight of poly(isobutylene) is about 1,000.
  • Sample E: comprises of 55.5% of poly(isoprene), 28% MIBC and 16% of limonene, and 0.5% of stearylamine.
  • Sample F: comprises of 10% of polystyrene, 0.5% of stearylamine and 89.5% xylene.
  • Sample G: comprises of 10% of poly[di(ethylene glycol) adipate], 0.5% of ARMEEN® OL and 40% 2-ethyl-1-hexanol. The molecular weight of poly[di(ethylene glycol) adipate] is ˜2,500.
  • Sample H: comprises of 10% of poly(isobutyl methacrylate), 0.5% of ARMEEN® OL and 89.5% xylene. The molecular weight of poly(isobutyl methacrylate) is ˜70,000.
  • Sample I: comprises of 10% of polyethylene, 0.5% of ARMEEN® OL and 89.5% xylene. The molecular weight of polyethylene is ˜4,000.
  • Sample J: comprises of 59.5% of poly(isobutylene) and 40.5% MIBC. The molecular weight of poly(isobutylene) is about 1,000.
  • Sample K: comprises of 59.5% of poly(isobutylene), 40% MIBC and 0.5% of amine functionalized silicone polymer. The molecular weight of poly(isobutylene) is about 1,500.
  • Example 1
  • 200 ml of water and 60 g of 20/40 mesh frac sand were added into a lab blender. Under moderate shear rate (5000 rpm), 4 ml of Sample A was added to the sand/water mixture in the blender. Then 0.2 ml of GFR-1, which is a polyacrylamide based friction reducing agent (about 30% active), was added to the blender. The slurry was sheared for about 15 seconds at 10,000 rpm. It was observed that about 60% of sand was floating on the top.
  • Example 2
  • 0.3 ml of Sample A was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate, which is about 2500 rpm. It was observed that almost of sand was floating on the top.
  • Example 3
  • 0.3 ml of Sample B was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that almost of sand was floating on the top.
  • Example 4
  • 0.3 ml of Sample C was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that 50% of sand was floating on the top.
  • Example 5
  • 0.3 ml of Sample D was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that 70% of sand was floating on the top.
  • Example 6
  • 0.3 ml of Sample E was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that almost all of sand was floating on the top.
  • Example 7
  • 0.3 ml of Sample F was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 50-60% of sand was floating on the top.
  • Example 8
  • 0.3 ml of Sample G was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 50-60% of sand was floating on the top.
  • Comparative Example 8a
  • For comparison, Sample G′ was prepared by replacing the hydrophobic polymer, poly[di(ethylene glycol) adipate], in Sample G with same amount of mineral oil while other components and concentrations remained the same, i.e., Sample G′ comprises of 59.5% of Envirodrill® mineral oil, 0.5% of ARMEEN® OL and 40% 2-ethyl-1-hexanol. 0.3 ml of Sample G′ was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that less than 10% of sand was floating on the top. This example demonstrates that, as compared to mineral oil, poly[di(ethylene glycol) adipate] is much more effective at promoting agglomeration.
  • Example 9
  • 0.3 ml of Sample H was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was shear for 15 seconds at a moderate rate. It was observed that around 50-60% of sand was floating on the top.
  • Example 10
  • 0.3 ml of Sample I was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 40-50% of sand was floating on the top.
  • Example 11
  • 0.3 ml of Sample J was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 70% of sand was floating on the top.
  • Example 11
  • 0.3 ml of Sample J was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 70-80% of sand was floating on the top.
  • Comparative Example 11a
  • For comparison, Sample J′ was prepared by replacing the hydrophobic polymer, poly(isobutylene), in Sample J with same amount of mineral oil while other components and concentrations remained the same, i.e., Sample J′ comprises of 59% of Envirodrill® mineral oil, 40% MIBC and 1% of amine functionalized silicone polymer. 0.3 ml of Sample J′ was mixed with 60 g of 20/40 frac sand. Then the mixture was added into a lab blender which contained 200 ml of 0.1% GFR-1 aqueous solution. The slurry was sheared for 15 seconds at a moderate rate. It was observed that around 30% of sand was floating on the top. This example demonstrates that, as compared to mineral oil, poly(isobutylene) is much more effective at promoting agglomeration.
  • Example 12
  • 0.3 ml of Sample K was mixed with 60 g of 40/70 frac sand. Then the mixture was added into a lab blender which contained 200 ml of water. The slurry was sheared for 15 seconds at a moderate rate. It was observed that almost all of sand was settling on the bottom.

Claims (37)

1. A well service slurry composition comprising:
a) an aqueous liquid;
b) particulates;
c) one or more hydrophobizing agents; and
d) one or more hydrophobic polymers.
2. The slurry composition of claim 1 wherein the one or more hydrophobic polymers is a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
3. The slurry composition of claim 1, wherein the one or more hydrophobizing agents is an amine hydrophobizing agent.
4. The slurry composition of claim 1, wherein the one or more hydrophobizing agents is a silicon or fluorinated hydrophobizing agent.
5. The slurry composition of claim 1, wherein the slurry composition further comprises a frother.
6. The slurry composition of claim 1, wherein the slurry composition further comprises a gas.
7. The slurry composition of claim 1, wherein the slurry composition further comprises an oil.
8. The slurry composition of claim 1, wherein the slurry composition is a fracturing fluid and wherein the particulates are proppants.
9. The slurry composition of claim 1, wherein the particulates are sand proppants.
10. The slurry composition of claim 8, wherein the aqueous liquid is flowback water from a previous fracturing operation.
11. A method of preparing an aqueous slurry composition comprising the step of mixing an aqueous liquid, particulates, a hydrophobic polymer and a hydrophobizing agent together to form a mixture.
12. The method of claim 11 further comprising the step of mixing the particulates and the hydrophobizing agent together before adding the hydrophobic polymer to the mixture.
13. The method of claim 11, wherein the hydrophobic polymer is a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
14. The method of claim 11, wherein the hydrophobizing agent is an amine hydrophobizing agent.
15. The method of claim 11, wherein the hydrophobizing agent is a silicon or fluorinated hydrophobizing agent.
16. The method of claim 11 further comprising the step of adding a frother to the mixture.
17. The method of claim 11 further comprising the step of adding an oil to the mixture.
18. The method of claim 11 further comprising the step of adding gas to the mixture.
19. The method of claim 11, wherein the aqueous slurry composition is a fracturing fluid and wherein the particulates are proppants.
20. The method of claim 19, wherein the fracturing fluid is formed simultaneously while it is being pumped into a formation.
21. The method of claim 19, wherein the aqueous liquid is flowback water from a previous fracturing operation.
22. A method of preparing a well service slurry composition comprising the steps of:
a) contacting particulates with a liquid medium containing a hydrophobizing agent and a hydrophobic polymer, to form treated particulates;
b) separating the treated particulates from the liquid medium; and
c) mixing the treated particulates with an aqueous liquid to form the aqueous slurry composition.
23. The method of claim 22, wherein the liquid medium is an aqueous or a non-aqueous medium.
24. The method of claim 22, wherein the hydrophobic polymer is a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
25. The method of claim 22 wherein the hydrophobizing agent is an amine hydrophobizing agent.
26. The method of claim 22, wherein the hydrophobizing agent is a silicon or fluorinated hydrophobizing agent.
27. The method of claim 22, further comprising the step of adding a frother and/or a gas and/or an oil to the aqueous slurry composition.
28. The method of claim 22, wherein the aqueous slurry composition is a fracturing fluid and wherein the particulates are proppants.
29. The method of claim 28, wherein the aqueous liquid is flowback water from a previous fracturing operation.
30. A method of preparing the well service slurry composition of claim 1 comprising the steps of:
a) contacting particulates with a liquid medium containing a hydrophobizing agent to form treated particulates;
b) separating the treated particulates from the liquid medium; and
c) mixing the treated particulates with a hydrophobic polymer and an aqueous liquid to form the aqueous slurry composition.
31. The method of claim 30, wherein the liquid medium is an aqueous or a non-aqueous medium.
32. The method of claim 30, wherein the hydrophobic polymer is a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer, a polyester, or a fluorinated or silyl-modified derivative of a polyolefin, a styrene polymer, a vinyl polymer, an acrylic polymer or a polyester.
33. The method of claim 30 wherein the hydrophobizing agent is an amine hydrophobizing agent.
34. The method of claim 30, wherein the hydrophobizing agent is a silicon or fluorinated hydrophobizing agent.
35. The method of claim 30, further comprising the step of adding a frother, and/or a gas and/or an oil to the aqueous slurry composition.
36. The method of claim 30, wherein the aqueous slurry composition is a fracturing fluid and wherein the particulates are proppants.
37. The method of claim 36, wherein the aqueous liquid is flowback water from a previous fracturing operation.
US14/801,619 2014-07-16 2015-07-16 Aqueous slurry for particulates transportation Abandoned US20160017213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/361,156 US10202542B2 (en) 2014-07-16 2016-11-25 Aqueous slurry for particulates transportation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2856942 2014-07-16
CA2856942A CA2856942A1 (en) 2014-07-16 2014-07-16 Aqueous slurry for particulates transportation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/361,156 Division US10202542B2 (en) 2014-07-16 2016-11-25 Aqueous slurry for particulates transportation

Publications (1)

Publication Number Publication Date
US20160017213A1 true US20160017213A1 (en) 2016-01-21

Family

ID=55074037

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/801,619 Abandoned US20160017213A1 (en) 2014-07-16 2015-07-16 Aqueous slurry for particulates transportation
US15/361,156 Active 2035-07-23 US10202542B2 (en) 2014-07-16 2016-11-25 Aqueous slurry for particulates transportation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/361,156 Active 2035-07-23 US10202542B2 (en) 2014-07-16 2016-11-25 Aqueous slurry for particulates transportation

Country Status (2)

Country Link
US (2) US20160017213A1 (en)
CA (2) CA2856942A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150303393A1 (en) * 2013-04-01 2015-10-22 Boe Technology Group Co., Ltd Organic electroluminescent device and process for preparing the same
US9523030B2 (en) 2007-04-26 2016-12-20 Trican Well Service Ltd Control of particulate entrainment by fluids
US9640597B2 (en) 2013-05-30 2017-05-02 Boe Technology Group Co., Ltd. Organic light-emitting diode (OLED) substrate and display device
US9932514B2 (en) 2014-04-25 2018-04-03 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
US20180134948A1 (en) * 2015-06-30 2018-05-17 Halliburton Energy Services, Inc. Improved Vertical Proppant Suspension in Hydraulic Fractures
US9976075B2 (en) 2005-05-02 2018-05-22 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US10196560B2 (en) 2015-01-30 2019-02-05 Trican Well Service Ltd. Proppant treatment with polymerizable natural oils
US10202542B2 (en) 2014-07-16 2019-02-12 Trican Well Service Ltd. Aqueous slurry for particulates transportation
US11130892B2 (en) * 2016-12-23 2021-09-28 Trican Well Service Ltd. Oil-based dust suppression composition and method of use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138919A1 (en) 2016-02-09 2017-08-17 Halliburton Energy Services, Inc. Surfactants for use in liquid suspensions of lightweight beads
US11807802B2 (en) * 2021-01-18 2023-11-07 China University Of Petroleum (East China) Nano-organosilicon film-forming and hydrophobic shale surface hydration inhibitor and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204071A1 (en) * 2007-04-13 2010-08-12 Trican Well Service, Ltd. Aqueous particulate slurry compositions and methods of making same
US20120267112A1 (en) * 2009-09-03 2012-10-25 Trican Well Service Ltd. Well service compositions and methods
US20140131041A1 (en) * 2012-11-09 2014-05-15 Halliburton Energy Services, Inc. Methods of Forming and Placing Proppant Pillars Into a Subterranean Formation
US20140144639A1 (en) * 2012-11-28 2014-05-29 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331594A (en) 1942-01-23 1943-10-12 Petrolite Corp Process for increasing production of petroleum oil from siliceous strata and the treating agent therefor
US2419755A (en) 1943-05-26 1947-04-29 Union Oil Co Chemical treatment of oil sands
US2765851A (en) 1953-09-23 1956-10-09 Pure Oil Co Process for improving oil recovery processes
US2885078A (en) 1956-04-12 1959-05-05 Int Minerals & Chem Corp Flotation of mica from silt deposits
US2935475A (en) 1957-12-16 1960-05-03 Pure Oil Co Well treating
US3060210A (en) 1960-05-12 1962-10-23 Petrolite Corp Polyaminomethyl phenols
US3271307A (en) 1960-08-04 1966-09-06 Petrolite Corp Oil well treatment
US3179250A (en) 1961-07-31 1965-04-20 Armour & Co Separating finely-divided minerals
US3373107A (en) 1964-07-16 1968-03-12 Milchem Inc Friction pressure reducing agents for liquids
US3361213A (en) 1965-09-13 1968-01-02 Mobil Oil Corp Method of decreasing friction loss in turbulent liquids
US3505374A (en) 1968-01-30 1970-04-07 Dow Chemical Co Gelling agents for hydrocarbons
US3595390A (en) 1968-06-18 1971-07-27 American Cyanamid Co Ore flotation process with poly(ethylene-propylene)glycol frothers
GB1352515A (en) 1970-04-15 1974-05-08 English Clays Lovering Pochin Separation of particulate materials
US3696923A (en) 1970-07-28 1972-10-10 Bethlehem Steel Corp Method for recovering fine coal and coal-containing particles in a coal recovery circuit
US3757864A (en) 1971-05-12 1973-09-11 Dow Chemical Co Friction reducing and gelling agent for organic liquids
US3864137A (en) 1971-12-31 1975-02-04 Bayer Ag Hydrogen peroxide blowing agent for silicate foams
US3857444A (en) 1972-10-06 1974-12-31 Dow Chemical Co Method for forming a consolidated gravel pack in a subterranean formation
US4003393A (en) 1973-02-14 1977-01-18 The Dow Chemical Company Gel-like composition for use as a pig in a pipeline
US3945435A (en) 1973-05-24 1976-03-23 The Ralph M. Parsons Co. In situ recovery of hydrocarbons from tar sands
AR207130A1 (en) 1973-12-12 1976-09-15 Dow Chemical Co A METHOD OF REDUCING THE VISCOSITY OF AN ORGANIC LIQUID
US3980136A (en) 1974-04-05 1976-09-14 Big Three Industries, Inc. Fracturing well formations using foam
ZA756203B (en) 1974-10-11 1976-09-29 Dresser Ind Silane coated silicate minerals and method for preparing same
US4000781A (en) 1975-04-24 1977-01-04 Shell Oil Company Well treating process for consolidating particles with aqueous emulsions of epoxy resin components
US4046795A (en) 1975-11-10 1977-09-06 Sws Silicones Corporation Process for preparing thiofunctional polysiloxane polymers
US4042031A (en) 1975-11-13 1977-08-16 Shell Oil Company Plugging subterranean earth formations with aqueous epoxy emulsions containing fine solid particles
US4007128A (en) 1975-11-28 1977-02-08 Borg-Warner Corporation Polyamine salts of aluminum alkyl orthophosphates
US4054161A (en) 1976-04-22 1977-10-18 Semi-Bulk Systems, Inc. Apparatus for filling a container and method of de-aerating material
US4074536A (en) 1976-08-02 1978-02-21 Halliburton Company Oil well consolidation treating
US4143716A (en) * 1976-08-30 1979-03-13 Texaco Inc. Tertiary oil recovery process utilizing a preflush
US4061580A (en) 1976-09-08 1977-12-06 The Lubrizol Corporation Thickened aqueous compositions for well treatment
US4368136A (en) 1977-10-06 1983-01-11 Halliburton Services Aqueous gel composition for temporary stabilization of subterranean well formation
US4183814A (en) 1978-01-03 1980-01-15 Union Carbide Corporation Asbestos composition having organo-silane coating
US4316810A (en) 1978-04-20 1982-02-23 Halliburton Company Gelled oil base compositions and methods of preparation and use of same
US4231428A (en) 1978-12-04 1980-11-04 Phillips Petroleum Company Well treatment method
US4301868A (en) 1979-10-15 1981-11-24 Petrolite Corporation Method using hydrocarbon foams as well stimulants
JPS58146434A (en) 1982-02-26 1983-09-01 Neos Co Ltd Additive used for aqueous slurry of coal
DE3208598A1 (en) 1982-03-10 1983-09-22 Degussa Ag, 6000 Frankfurt METHOD FOR THE PRODUCTION OF ZEOLITES MODIFIED WITH ORGANOSILANES
US4504385A (en) 1982-12-30 1985-03-12 Sherex Chemical Company, Inc. Ester-alcohol frothers for froth flotation of coal
DE3323881C2 (en) 1983-07-02 1985-06-13 Th. Goldschmidt Ag, 4300 Essen Organopolysiloxanes with Bunte salt groups, their production and use for the surface treatment of inorganic or organic materials
SU1126590A1 (en) 1983-07-08 1984-11-30 Всесоюзный научно-исследовательский геологоразведочный нефтяной институт Additive for clay drilling muds
US4512405A (en) 1984-02-29 1985-04-23 Hughes Tool Company Pneumatic transfer of solids into wells
DE3417912C1 (en) 1984-05-15 1985-07-25 Goldschmidt Ag Th Siloxanes containing betaine groups, their production and use in cosmetic preparations
US4564456A (en) 1984-06-01 1986-01-14 Dow Corning Corporation Method of treating water to inhibit corrosion and diminish mineral deposition
US4585064A (en) 1984-07-02 1986-04-29 Graham John W High strength particulates
NO853269L (en) 1984-11-15 1986-05-16 Halliburton Co PREPARATIONS FOR INCREASED HYDROCARBON PRODUCTION FOR UNDERGRADUATE FORMS.
DE3611230A1 (en) 1986-04-04 1987-10-08 Basf Ag POLYBUTYL AND POLYISOBUTYLAMINE, METHOD FOR THE PRODUCTION THEREOF AND THE FUEL AND LUBRICANT COMPOSITIONS CONTAINING THE SAME
US4857221A (en) 1986-05-14 1989-08-15 Fospur Limited Recovering coal fines
US4689085A (en) 1986-06-30 1987-08-25 Dow Corning Corporation Coupling agent compositions
US4725351A (en) 1986-09-29 1988-02-16 International Minerals & Chemical Corp. Collecting agents for use in the froth flotation of silica-containing ores
US4787453A (en) 1986-10-30 1988-11-29 Union Oil Company Of California Permeability stabilization in subterranean formations containing particulate matter
US4780220A (en) 1987-05-26 1988-10-25 Hydra Fluids, Inc. Drilling and completion fluid
DE3719086C1 (en) 1987-06-06 1988-10-27 Goldschmidt Ag Th Diquartere polysiloxanes, their production and use in cosmetic preparations
US4898957A (en) 1988-04-18 1990-02-06 Dow Corning Corporation Organosilicon diamine antimicrobial compound
US4933327A (en) 1988-04-18 1990-06-12 Dow Corning Corporation Organosilicon quaternary ammonium antimicrobial compounds
DE3904092A1 (en) 1989-02-11 1990-08-16 Hoechst Ag METHOD FOR THE STIMULATION OF OIL AND GAS PROBE IN THE EXTRACTION OF OIL AND GAS FROM UNDERGROUND FORMATIONS AND STIMULATING AGENTS THEREFOR
US5064613A (en) 1989-11-03 1991-11-12 Dow Corning Corporation Solid antimicrobial
US4964465A (en) 1989-11-06 1990-10-23 Texaco Inc. Method employing liquidized sand for controlling lost circulation of drilling fluids
US4960845A (en) 1989-11-08 1990-10-02 Siltech Inc. Sulfated silicone polymers
US5149765A (en) 1990-06-27 1992-09-22 Siltech Inc. Terminal phosphated silicone polymers
US5164522A (en) 1990-06-29 1992-11-17 Karlshamns Ab Cationic silicones
US5110485A (en) 1990-07-16 1992-05-05 Nalco Chemical Company Liquid aluminum phosphate salt gelling agent
EP0471248B1 (en) 1990-08-16 1997-02-19 BASF Aktiengesellschaft Process for the production of hydrocarbons and polymers terminated by allylic chloride groups
US5098979A (en) 1991-03-25 1992-03-24 Siltech Inc. Novel silicone quaternary compounds
US5166297A (en) 1991-03-25 1992-11-24 Siltech Inc. Silicone ester quaternary compounds
US5209775A (en) 1992-01-23 1993-05-11 Dow Corning Corporation Water repellents containing organosilicon compounds
US5240760A (en) 1992-02-07 1993-08-31 Minnesota Mining And Manufacturing Company Polysiloxane treated roofing granules
JPH0723211B2 (en) 1992-03-09 1995-03-15 豊順鉱業株式会社 Modified bentonite
FR2695558B1 (en) 1992-09-11 1994-10-21 Oreal Cosmetic composition containing solid particles coated with an amphoteric polymer.
US5306434A (en) 1992-10-20 1994-04-26 Alberto-Culver Company Hair care composition containing dispersed silicone oil
US5256805A (en) 1992-11-25 1993-10-26 Siltech Inc. Silicone amido amine salts
US5235082A (en) 1993-01-08 1993-08-10 Dow Corning Corporation Cationic diquaternary ammonium salt functional silicones
US5571315A (en) 1994-03-14 1996-11-05 Clearwater, Inc. Hydrocarbon gels useful in formation fracturing
DK0714978T3 (en) 1994-11-28 2001-04-23 Rhodia Chimie Sa Gel of unpolar medium and its use in the preparation of water-based drilling fluids
US5824226A (en) 1994-12-21 1998-10-20 Loyola University Of Chicago Silane-modified clay
US6047772A (en) 1995-03-29 2000-04-11 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5653794A (en) 1995-12-01 1997-08-05 Scm Chemicals, Inc. Silane treated inorganic pigments
DE69706661T2 (en) 1996-04-02 2002-02-07 Johnson & Son Inc S C METHOD FOR HYDROPHOBIZING A SUBSTRATE SURFACE WITH ORGANO-FUNCTIONAL SILANES OF LOW CONCENTRATION
DE69720122T2 (en) 1996-08-16 2003-10-16 Nippon Telegraph & Telephone Water-repellent coating, process for its production, and its use in coatings and for coated objects
US5646215A (en) 1996-10-31 1997-07-08 Dow Corning Corporation Polybutylene containing reactive unsaturated functionality
US6772838B2 (en) 1996-11-27 2004-08-10 Bj Services Company Lightweight particulate materials and uses therefor
US20050187112A1 (en) 1997-02-12 2005-08-25 Kb International, Llc Composition and method for a dual-function soil-grouting excavating or boring fluid
US5908708A (en) 1997-03-05 1999-06-01 Engelhard Corporation Aqueous dispersion of a particulate solid having a hydrophobic outer surface and films produced thereby
US6020185A (en) 1997-05-23 2000-02-01 Geovation Consultants, Inc. Method and composition for the anaerobic biodegradation of toxic compounds
US6132638A (en) 1997-06-04 2000-10-17 Colgate-Palmolive Co. Dust control composition
GB9804725D0 (en) 1998-03-05 1998-04-29 Unilever Plc Shampoo compositions
CA2255413A1 (en) 1998-12-11 2000-06-11 Fracmaster Ltd. Foamed nitrogen in liquid co2 for fracturing
US6297295B1 (en) 1999-03-03 2001-10-02 Mbt Holding Ag Transport of solid particulates
US6297210B1 (en) 1999-04-23 2001-10-02 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Process for applying perfume to dryer sheets
US6736891B1 (en) 1999-08-19 2004-05-18 Ppg Industries Ohio, Inc. Process for producing hydrophobic particulate inorganic oxides
US6187720B1 (en) 1999-11-01 2001-02-13 David B. Acker Delayed release breakers in gelled hydrocarbons
JP3850612B2 (en) 1999-12-28 2006-11-29 花王株式会社 Solid powder cosmetic
US6649571B1 (en) 2000-04-04 2003-11-18 Masi Technologies, L.L.C. Method of generating gas bubbles in oleaginous liquids
CA2408052A1 (en) 2000-05-03 2001-11-08 Trican Well Service Ltd. Fracturing fluid
CA2329600A1 (en) 2000-12-22 2002-06-22 Kewei Zhang Fracturing fluid
US6799682B1 (en) 2000-05-16 2004-10-05 Roe-Hoan Yoon Method of increasing flotation rate
US6323268B1 (en) 2000-06-27 2001-11-27 Dow Corning Corporation Organosilicon water repellent compositions
US6403163B1 (en) 2000-06-27 2002-06-11 Chemrex, Inc. Method of treating surfaces with organosilicon water repellent compositions
WO2002022759A1 (en) 2000-09-11 2002-03-21 Thuslick, Inc. Mud system and method
DE10104033A1 (en) 2001-01-31 2002-08-14 Wella Ag Hair care product with diquaternary silicone polymers
US6689854B2 (en) 2001-08-23 2004-02-10 3M Innovative Properties Company Water and oil repellent masonry treatments
US6482969B1 (en) 2001-10-24 2002-11-19 Dow Corning Corporation Silicon based quaternary ammonium functional compositions and methods for making them
US7216711B2 (en) 2002-01-08 2007-05-15 Halliburton Eenrgy Services, Inc. Methods of coating resin and blending resin-coated proppant
US6959815B2 (en) 2002-01-28 2005-11-01 The Governors Of The University Of Alberta Selective reactive oily bubble carriers in flotation processes and methods of generation and uses thereof
US20040023818A1 (en) 2002-08-05 2004-02-05 Nguyen Philip D. Method and product for enhancing the clean-up of hydrocarbon-producing well
US6830811B2 (en) 2002-10-02 2004-12-14 Dow Corning Corporation Method of preparing hydrophobic partially aggregated colloidal silica
US7135231B1 (en) 2003-07-01 2006-11-14 Fairmont Minerals, Ltd. Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom
US7066258B2 (en) 2003-07-08 2006-06-27 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US7204311B2 (en) 2003-08-27 2007-04-17 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US20050194142A1 (en) 2004-03-05 2005-09-08 Nguyen Philip D. Compositions and methods for controlling unconsolidated particulates
EP1735143A2 (en) 2004-04-12 2006-12-27 Carbo Ceramics Inc. Coating and/or treating hydraulic fracturing proppants to improve wettability, proppant lubrication, and/or to reduce damage by fracturing fluids and reservoir fluids
CA2566449C (en) 2004-05-13 2011-01-25 Baker Hughes Incorporated System stabilizers and performance enhancers for aqueous fluids gelled with viscoelastic surfactants
WO2005124099A1 (en) 2004-06-17 2005-12-29 Statoil Asa Well treatment
US7388033B2 (en) 2004-09-21 2008-06-17 Capital Chemical Co. Amine-functionalized polyisobutylenes for improved hydrophobizing microemulsions
US9714371B2 (en) 2005-05-02 2017-07-25 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
MX2007013682A (en) 2005-05-02 2008-04-09 Trican Well Service Ltd Method for making transportable aqueous slurries by particulate hydrophobicization.
US7500519B2 (en) 2005-05-20 2009-03-10 Halliburton Energy Services, Inc. Methods of modifying fracture faces and other surfaces in subterranean formations
CN101268150B (en) 2005-09-23 2013-05-08 川汉油田服务有限公司 Slurry compositions and methods for making same
US7767628B2 (en) 2005-12-02 2010-08-03 Clearwater International, Llc Method for foaming a hydrocarbon drilling fluid and for producing light weight hydrocarbon fluids
US7845409B2 (en) 2005-12-28 2010-12-07 3M Innovative Properties Company Low density proppant particles and use thereof
CA2531982A1 (en) 2006-01-04 2007-07-04 Trican Well Service Ltd. A hydrocarbon fluid composition and the method of use
EP2038364A2 (en) 2006-06-07 2009-03-25 ExxonMobil Upstream Research Company Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
US7581590B2 (en) 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US8302691B2 (en) 2007-01-19 2012-11-06 Halliburton Energy Services, Inc. Methods for increasing gas production from a subterranean formation
CA2848264C (en) 2007-04-26 2015-11-10 Trican Well Service Ltd. Control of particulate entrainment by fluids
CA2690253A1 (en) 2007-06-13 2008-12-18 Trican Well Service Ltd. Well service compositions for consolidation of particulates in subterranean coal seams
US20100256024A1 (en) 2007-07-18 2010-10-07 Trican Well Service Ltd. Resin coated proppant slurry compositions and methods of making and using same
EP2225344B1 (en) 2007-12-05 2012-02-29 3M Innovative Properties Company Method of treating proppants and fractures in-situ with fluorinated silane
CA2643251C (en) 2008-11-05 2014-06-03 Trican Well Service Ltd. Hydrocarbon fluid compositions and methods for using same
CA2690768A1 (en) 2010-01-21 2011-07-21 Trican Well Services Ltd. Compositions and methods for enhancing fluid recovery for hydraulic fracturing treatments
US20120067584A1 (en) 2010-03-17 2012-03-22 Kewei Zhang Hydrocarbon-based fluid compositions and methods of using same
US8402682B2 (en) 2010-09-28 2013-03-26 Imaginethis Renovations, Llc Bleacher with advertising tunnel
US8763703B2 (en) 2011-01-13 2014-07-01 Halliburton Energy Services, Inc. Nanohybrid phase interfaces for altering wettability in oil field applications
US8669326B2 (en) 2011-03-25 2014-03-11 Exxonmobil Chemical Patents Inc. Amine functionalized polyolefin and methods for preparation thereof
CA2845069A1 (en) 2014-03-07 2015-09-07 Trican Well Service Ltd. Fracturing slurry compositions and methods for making same
US9932514B2 (en) 2014-04-25 2018-04-03 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
CA2856942A1 (en) 2014-07-16 2016-01-16 Trican Well Service Ltd. Aqueous slurry for particulates transportation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100204071A1 (en) * 2007-04-13 2010-08-12 Trican Well Service, Ltd. Aqueous particulate slurry compositions and methods of making same
US20120071371A1 (en) * 2007-04-13 2012-03-22 Trican Well Service, Ltd. Aqueous particulate slurry compositions and methods of making same
US20120267112A1 (en) * 2009-09-03 2012-10-25 Trican Well Service Ltd. Well service compositions and methods
US20140131041A1 (en) * 2012-11-09 2014-05-15 Halliburton Energy Services, Inc. Methods of Forming and Placing Proppant Pillars Into a Subterranean Formation
US20140144639A1 (en) * 2012-11-28 2014-05-29 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976075B2 (en) 2005-05-02 2018-05-22 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US10023786B2 (en) 2005-05-02 2018-07-17 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US9523030B2 (en) 2007-04-26 2016-12-20 Trican Well Service Ltd Control of particulate entrainment by fluids
US10138416B2 (en) 2007-04-26 2018-11-27 Trican Well Service, Ltd Control of particulate entrainment by fluids
US20150303393A1 (en) * 2013-04-01 2015-10-22 Boe Technology Group Co., Ltd Organic electroluminescent device and process for preparing the same
US9640597B2 (en) 2013-05-30 2017-05-02 Boe Technology Group Co., Ltd. Organic light-emitting diode (OLED) substrate and display device
US9932514B2 (en) 2014-04-25 2018-04-03 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
US10202542B2 (en) 2014-07-16 2019-02-12 Trican Well Service Ltd. Aqueous slurry for particulates transportation
US10196560B2 (en) 2015-01-30 2019-02-05 Trican Well Service Ltd. Proppant treatment with polymerizable natural oils
US20180134948A1 (en) * 2015-06-30 2018-05-17 Halliburton Energy Services, Inc. Improved Vertical Proppant Suspension in Hydraulic Fractures
US10577536B2 (en) * 2015-06-30 2020-03-03 Halliburton Energy Services, Inc. Vertical proppant suspension in hydraulic fractures
US11130892B2 (en) * 2016-12-23 2021-09-28 Trican Well Service Ltd. Oil-based dust suppression composition and method of use

Also Published As

Publication number Publication date
CA2897441A1 (en) 2016-01-16
US20170107424A1 (en) 2017-04-20
CA2856942A1 (en) 2016-01-16
US10202542B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
US10202542B2 (en) Aqueous slurry for particulates transportation
US7723274B2 (en) Method for making particulate slurries and particulate slurry compositions
US10138416B2 (en) Control of particulate entrainment by fluids
US10023786B2 (en) Method for making particulate slurries and particulate slurry compositions
US11401454B2 (en) Hydrocarbon formation treatment micellar solutions
AU2006294332B2 (en) Slurry compositions and methods for making same
US9404031B2 (en) Compositions and methods for controlling particulate migration in a subterranean formation
US20170306219A1 (en) Controlled release of chemicals in oilfield operations
US9932514B2 (en) Compositions and methods for making aqueous slurry
US20180265773A1 (en) Aqueous particulate slurries and methods of making the same
AU2016206182A1 (en) Spray set-up for on-the-fly treatment of proppants
WO2021247045A1 (en) Enhancement of friction reducer performance in hydraulic fracturing
CA2857890A1 (en) Compositions and methods for making aqueous slurry
CA2849848A1 (en) Compositions and methods for making aqueous slurry

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRICAN WELL SERVICE LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, KEWEI;HEIDLAS, JULIUS XAVER;WANG, CHUANZHONG;AND OTHERS;REEL/FRAME:037001/0172

Effective date: 20151028

AS Assignment

Owner name: COMPUTERSHARE TRUST COMPANY OF CANADA, CANADA

Free format text: SECURITY INTEREST;ASSIGNOR:TRICAN WELL SERVICE LTD.;REEL/FRAME:037482/0866

Effective date: 20151115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION