US20160003558A1 - Fluid processing system, heat exchange sub-system, and an associated method thereof - Google Patents

Fluid processing system, heat exchange sub-system, and an associated method thereof Download PDF

Info

Publication number
US20160003558A1
US20160003558A1 US14/490,096 US201414490096A US2016003558A1 US 20160003558 A1 US20160003558 A1 US 20160003558A1 US 201414490096 A US201414490096 A US 201414490096A US 2016003558 A1 US2016003558 A1 US 2016003558A1
Authority
US
United States
Prior art keywords
fluid
heat exchange
condensate
hot
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/490,096
Inventor
Guillaume Becquin
William Joseph Antel, JR.
Erik Mele
John Daniel Friedemann
Jorgen Harald Corneliussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US14/490,096 priority Critical patent/US20160003558A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRIEDEMANN, JOHN DANIEL, CORNELIUSSEN, Jorgen Harald, ANTEL, WILLIAM JOSEPH, JR., BECQUIN, Guillaume, MELE, Erik
Priority to GB1621411.6A priority patent/GB2542962A/en
Priority to BR112017000003A priority patent/BR112017000003A2/en
Priority to PCT/US2015/035950 priority patent/WO2016003637A1/en
Priority to AU2015284617A priority patent/AU2015284617C1/en
Publication of US20160003558A1 publication Critical patent/US20160003558A1/en
Priority to NO20161974A priority patent/NO20161974A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0068General arrangements, e.g. flowsheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/36Underwater separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/14Diverting flow into alternative channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements

Definitions

  • the present invention relates to a fluid processing system for deployment in a subsea environment, and more particularly to a heat exchange sub-system used in the fluid processing system.
  • Fluid processing systems used in hydrocarbon production in subsea environments typically comprise a heat exchange system disposed upstream relative to a main separator assembly.
  • the heat exchange system facilitates temperature reduction of a multiphase fluid (hydrocarbon) being produced from a subsea hydrocarbon reservoir prior to its introduction to the main separator assembly.
  • the multiphase fluid is typically a hot mixture of gaseous and liquid components comprising methane, carbon dioxide, hydrogen sulfide and liquid crude oil, and may also contain solid particulates such as sand.
  • the main separator assembly separates the gaseous components from the liquid components of the multiphase fluid.
  • pipelines are deployed within the subsea environment to move the multiphase fluid from the subsea hydrocarbon reservoir to a fluid storage facility via the fluid processing system.
  • These pipelines are generally insulated and/or heated at certain intervals to ensure that the temperature of the multiphase fluid remains above a certain threshold level. Failure to maintain the temperature of the multiphase fluid, for example the liquid components, above the threshold level may lead to formation of sludge within the pipelines.
  • the heat exchange system disposed upstream relative to the main separator assembly may inadvertently reduce the temperature of the multiphase fluid thereby increasing the risk of un-desired secondary phases such as wax, scale, hydrates, sludge and/or hydrate formation within the pipelines. Further, the performance of the heat exchange system operating with the multiphase fluid may be difficult to predict and complex in nature.
  • the present invention provides a heat exchange sub-system comprising: an inlet header; an outlet header; a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and a liquid-gas separator coupled to the outlet header; wherein the heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, and to condense at least a portion of the condensable components, the cold ambient environment serving as a heat sink.
  • the present invention provides a fluid processing system comprising: (a) a main separator assembly configured to separate a hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components and a hot liquid fluid; (b) a heat exchange sub-system comprising: (i) an inlet header; (ii) an outlet header; (iii) a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and (iv) a liquid-gas separator coupled to the outlet header; wherein the heat exchange sub-system is configured to receive the hot gaseous fluid, and to condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components, the cold ambient environment serving as a heat sink, (c) a gas compressor configured to receive the gaseous fluid from the heat exchange sub-system; and (d) a fluid pump coupled
  • the present invention provides a method of transporting a hot, multiphase production fluid, the method comprising: (a) introducing a hot multiphase fluid into a main separator assembly and separating the hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components, and a hot liquid fluid; (b) introducing the hot gaseous fluid comprising condensable and non-condensable components into an energy dissipating device and condensing at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components; (c) compressing the gaseous fluid depleted in condensable components to produce a compressed gaseous fluid depleted in condensable components; and (d) combining the compressed gaseous fluid depleted in condensable components with the hot liquid fluid produced in the main separator assembly.
  • the present invention provides a fluid processing system comprising: (a) a main separator assembly configured to separate a hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components and a hot liquid fluid; (b) an energy dissipating device configured to receive the hot gaseous fluid and to condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components; (c) a gas compressor configured to receive the gaseous fluid depleted in condensable components from the energy dissipating device; and (d) a fluid pump coupled to the main separator assembly; wherein the pump is configured to drive the hot liquid fluid toward a fluid storage facility.
  • FIG. 1 illustrates a schematic view of a fluid processing system in accordance with one exemplary embodiment
  • FIG. 2 illustrates a schematic view of a heat exchange sub-system for the fluid processing system in accordance with the exemplary embodiment of FIG. 1 .
  • Embodiments discussed herein disclose a new configuration of a fluid processing system for efficiently moving multiphase fluid (hydrocarbon) being produced from a subsea hydrocarbon reservoir to a distant fluid storage facility.
  • the fluid processing system of the present invention comprises an improved heat exchange sub-system disposed downstream relative to a main separator assembly.
  • the heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, from the main separator assembly and condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components.
  • Such heat exchange sub-system may additionally include a liquid-gas separator configured to separate the condensate from the gaseous fluid and collect the separated condensate.
  • FIG. 1 represents a fluid processing system 100 deployed in a subsea environment 114 .
  • the fluid processing system 100 may be located at depths reaching several thousands of meters within a cold ambient environment and proximate to a subsea hydrocarbon reservoir 119 .
  • the exemplary fluid processing system 100 includes a main separator assembly 102 , an energy dissipating device 104 , a gas compressor 106 , and a fluid pump 108 .
  • the fluid processing system 100 further includes an import line 110 coupled to the main separator assembly 102 , and an export line 112 coupled to the gas compressor 106 and the fluid pump 108 via a mixer 116 .
  • the import line 110 and the export line 112 may also be referred as “pipelines”.
  • the fluid processing system 100 is configured to move a multiphase fluid 120 , for example hydrocarbon, being produced from the subsea hydrocarbon reservoir 119 to a distant fluid storage facility 130 more efficiently.
  • the main separator assembly 102 receives the multiphase fluid 120 from the subsea hydrocarbon reservoir 119 via the import line 110 .
  • the multiphase fluid 120 is typically a mixture of a hot gaseous fluid 120 a and a hot liquid fluid 120 b .
  • the main separator assembly 102 functions as a pressure vessel and aids in separating the hot gaseous fluid 120 a from the hot liquid fluid 120 b.
  • the hot gaseous fluid 120 a includes condensable components such as moisture and low molecular weight hydrocarbons and non-condensable components such as the gases CO 2 and H 2 S.
  • Various known separation devices may serve as the main separator assembly 102 , for example, a stage separator, a knockout vessel, a flash chamber, an expansion separator, an expansion vessel, or a scrubber.
  • the energy dissipating device 104 is disposed downstream relative to the main separator assembly 102 and is configured to receive the hot gaseous fluid 120 a from the main separator assembly 102 .
  • the hot gaseous fluid 120 a is passing within the energy dissipating device 104 acts to condense at least a portion of the condensable components to produce a gaseous fluid 120 c depleted in condensable components and a condensate 120 d.
  • the energy dissipating device 104 is a heat exchange sub-system 104 a (as shown in FIG. 2 ) including a plurality of heat exchange tubes configured to exchange heat with the cold ambient environment 114 serving as a heat sink.
  • the heat exchange sub-system 104 a and the condensation of the portion of the condensable components within the heat exchange sub-system 104 a are explained in greater detail below.
  • the energy dissipating device 104 is a work extraction device. Suitable work extraction devices include turboexpander, hydraulic expander, and hydraulic motor. In yet another embodiment of the present invention, the energy dissipating device 104 is a frictional loss or pressure change device such as throttle device or valve. The energy dissipating device 104 is configured to receive the hot gaseous fluid 120 a, and reduce its total energy content thereby and condensing at least a portion of the condensable components to produce the condensate 120 d and the gaseous fluid 120 c depleted in condensable components.
  • a liquid-gas separator 138 is disposed within the energy dissipating device 104 and coupled to the energy dissipating device 104 .
  • the liquid-gas separator 138 separates the condensate 120 d from the gaseous fluid 120 c using, for example, a barrier, a filter, or a vortex flow separator.
  • the separated condensate 120 d is collected within the liquid-gas separator 138 .
  • the liquid-gas separator 138 comprises one or more weir separators, filter separators, cyclone separators, sheet metal separators, or a combination of two or more of the foregoing separators.
  • the energy dissipating device 104 is coupled to the gas compressor 106 which receives the gaseous fluid 120 c from the energy dissipating device 104 .
  • the liquid-gas separator 138 is coupled to the fluid pump 108 which receives the condensate 120 d collected within the liquid-gas separator 138 .
  • the liquid-gas separator 138 may be coupled to the main separator assembly 102 for feeding the condensate 120 d collected within the liquid-gas separator 138 .
  • the condensate 120 d may be fed to the main separator assembly 102 either by pumping or gravitational force.
  • the condensate 120 d may be drained from the liquid-gas separator 138 by pressure to the subsea environment 114 .
  • the separation of the gaseous fluid 120 c from the condensate 120 d is explained in greater detail below.
  • the liquid-gas separator 138 may be disposed outside of the energy dissipating device 104 and coupled to the energy dissipating device 104 via a conduit. In such embodiments, the liquid-gas separator 138 may receive the condensate 120 d and the gaseous fluid 120 c from the energy dissipating device 104 . The liquid-gas separator 138 may be further configured to separate the condensate 120 d from the gaseous fluid 120 c and feed the gaseous fluid 120 c to the gas compressor 106 and the condensate 120 d to the fluid pump 108 .
  • the gaseous fluid 120 c may be compressed by a motor-driven compressor 106 (see motor 128 ), which increases the pressure of the gaseous fluid 120 c and moves the gaseous fluid 120 c towards the fluid storage facility 130 via the mixer 116 .
  • a portion 120 g of the gaseous fluid 120 c may be fed to the main separator assembly 102 via a flow control valve 115 .
  • the feeding of the portion 120 g of the gaseous fluid 120 c may assist steady state operation of the compressor 106 , protection of the compressor 106 from pressure variation, and during system 100 start-up.
  • the gas compressor 106 may be configured to discharge a slip-stream 120 e of the gaseous fluid 120 c to cool the motor 128 .
  • the slip stream 120 e may be discharged from an initial stage 127 of the gas compressor 106 .
  • the gas compressor 106 may be a positive displacement compressor or a centrifugal compressor.
  • the fluid pump 108 is disposed downstream relative to the main separator assembly 102 and is configured to receive the hot liquid fluid 120 b from the main separator assembly 102 . Further, the fluid pump 108 may also receive the condensate 120 d discharged from the liquid-gas separator 138 . The fluid pump 108 increases pressure of the hot liquid fluid 120 b and/or the condensate 120 d so as to drive the hot liquid fluid 120 b towards the fluid storage facility 130 via the mixer 116 . In one or more embodiments, the fluid pump 108 may be a positive displacement pump or a gear pump or a screw pump.
  • the mixer 116 may be configured to combine/mix the gaseous fluid 120 c and the liquid fluid 120 b and/or the condensate 120 d before discharging the mixed fluids to the fluid storage facility 130 via the export line 112 .
  • the fluid storage facility 130 may be located within subsea environment 114 or at a surface location.
  • FIG. 2 represents a heat exchange sub-system 104 a used in the fluid processing system 100 in accordance with the exemplary embodiment of FIG. 1 .
  • the heat exchange sub-system 104 a includes an inlet header 132 , an outlet header 134 , a plurality of heat exchange tubes 136 , and a liquid-gas separator 138 . Further the heat exchange sub-system 104 a includes a condensate re-evaporator 140 coupled to the liquid-gas separator 138 .
  • the heat exchange sub-system 104 a is configured to condense at least a portion of condensable components to produce a condensate 120 d and a gaseous fluid 120 c depleted in condensable components.
  • the inlet header 132 has an inlet chamber 142 and is configured to receive the hot gaseous fluid 120 a discharged from the main separator assembly 102 (as shown in FIG. 1 ). In the embodiment shown, the inlet header 132 is aligned horizontally at about 0.degree.
  • the outlet header 134 has an outlet chamber 152 and is configured to discharge the gaseous fluid 120 c to the gas compressor 106 (as shown in FIG. 1 ). In the embodiment shown, the outlet header 134 is aligned at a pre-determined angle relative to the inlet header 132 . In one or more embodiments, the pre-determined angle may be in a range from about 0.degree to about 60.degrees.
  • the plurality of heat exchange tubes 136 are disposed between the inlet header 132 and outlet header 134 .
  • the plurality of heat exchange tubes 136 may be coupled directly to the main separator assembly 102 and may be configured to receive the hot gaseous fluid 120 a discharged from the main separator assembly 102 .
  • the heat exchange tubes 136 are coupled to the inlet chamber 142 and outlet chamber 152 to establish a fluid communication between the inlet header 132 and outlet header 134 .
  • the plurality of heat exchange tubes 136 are straight pipes aligned vertically at about 90.degrees.
  • the heat exchange tubes 136 may have spirals or coils, as will be appreciated by those skilled in the art.
  • the plurality of heat exchange tubes 136 may additionally include the liquid-gas separator 138 disposed along a length of the tubes 136 .
  • the liquid-gas separator 138 may be fluidly coupled to the condensate re-evaporator 140 and a discharge end of the plurality of heat exchange tubes 136 may be coupled to the compressor 106 .
  • the liquid-gas separator 138 is disposed within the outlet header 134 and is an integral component thereof.
  • the liquid-gas separator 138 is a weir separator having an open tank configuration.
  • the weir separator has a weir 139 and a bottom end portion 143 coupled to the weir 139 and the outlet header 134 .
  • the weir separator 139 is a horizontal gravity based separator.
  • the liquid-gas separator 138 is disposed outside the outlet header 134 and is not an integral component thereof. In such other embodiments, the liquid-gas separator 138 may be coupled to the outlet header 134 via a conduit.
  • the liquid-gas separator 138 is fluidly coupled to the condensate re-evaporator 140 .
  • the condensate re-evaporator 140 is a shell and tube heat exchanger.
  • the condensate re-evaporator 140 includes an inlet plenum chamber 174 , an outlet plenum chamber 176 , and a bundle of tubes 178 coupled to the inlet and outlet plenum chambers 174 , 176 .
  • the bundle of tubes 178 is disposed in a condensate chamber 184 formed between the inlet plenum chamber 174 and outlet plenum chamber 176 .
  • the tubes 178 are fluidly coupled to the corresponding plenum chambers 174 , 176 .
  • the condensate chamber 184 is coupled to the liquid-gas separator 138 through a pipe 187 .
  • the condensate chamber 184 is further coupled to the outlet header 134 via a return pipe 189 .
  • the condensate re-evaporator 140 is disposed between the main separator assembly 102 and the heat exchange sub-system 104 a.
  • the inlet plenum chamber 174 is coupled to the main separator assembly 102 and may be configured to receive the hot gaseous fluid 120 a (hot process gas) from the main separator assembly 102 .
  • the outlet plenum chamber 176 is coupled to the heat exchange sub-system 104 a and is configured to feed the hot gaseous fluid 120 a to the heat exchange sub-system 104 a.
  • the outlet plenum chamber 176 is coupled to the inlet header 132 via a channel 194 having a by-pass valve 198 .
  • the heat exchange sub-system 104 a further includes an intermediate channel 196 coupled to the by-pass valve 198 and the outlet header 134 .
  • the inlet plenum chamber 174 may be coupled to import line 120 to receive the multiphase fluid 120 being produced from the subsea hydrocarbon reservoir 119 .
  • the outlet plenum chamber 176 may be coupled to the main separator assembly 102 to feed the multiphase fluid 120 to the main separator assembly 102 .
  • the condensate re-evaporator 140 further includes a discharge channel 190 having a discharge valve 192 , coupled to the condensate chamber 184 and the fluid pump 108 (as shown in FIG. 1 ).
  • the discharge valve 192 is configured to regulate a flow of the condensate 120 d towards the fluid pump 108 .
  • the inlet header 132 receives the hot gaseous fluid 120 a from the main separator assembly 102 (as shown in FIG. 1 ) via the condensate re-evaporator 140 .
  • the hot gaseous fluid 120 a flows within the inlet plenum chamber 174 , the bundle of tubes 178 , and the outlet plenum chamber 176 of the condensate re-evaporator 140 .
  • the hot gaseous fluid 120 a includes the condensable components such as moisture and low molecular weight hydrocarbons, and non-condensable components such as the gases CO 2 and H 2 5 .
  • the hot gaseous fluid 120 a flows along the inlet chamber 142 of the inlet header 132 and gets circulated within the plurality of heat exchange tubes 136 .
  • the heat exchange tubes 136 exchange heat with the cold ambient environment 114 serving as a heat sink. This heat exchange results in condensation of the condensable components to produce the gaseous fluid 120 c and the condensate 120 d.
  • the gaseous fluid 120 c depleted in condensable components and the condensate 120 d produced within the heat exchange tubes 136 flows into the outlet chamber 152 of the outlet header 134 .
  • the plurality of heat exchange tubes 136 may additionally function as a distributed separator configured to separate the condensate 120 d from the gaseous fluid 120 c along the length of the plurality of heat exchange tubes 136 .
  • the gaseous fluid 120 c may be released from the discharge end of the plurality of heat exchange tubes 136 to the compressor 106 and the condensate 120 d may be transferred from the liquid-gas separator 138 to the condensate re-evaporator 140 .
  • the liquid-gas separator 138 separates the condensate 120 d from the gaseous fluid 120 c.
  • the weir 139 is configured to separate the condensate 120 d from the gaseous fluid 120 c and the bottom end portion 143 is configured to collect the condensate 120 d.
  • Other types of liquid-gas separators 138 are known to those skilled in the art and may be used to separate the condensate 120 d from the gaseous fluid 120 c.
  • Other such liquid-gas separators 138 may include a filter separator, a cyclone separator, and a sheet metal separator.
  • the filter separator may separate the condensate 120 d from the gaseous fluid 120 c by a filter having a membrane to trap the condensate 120 d and allow the gaseous fluid 120 c to pass through the membrane.
  • the cyclone separator may separate the condensate 120 d from the gaseous fluid 120 c through vortex separation.
  • the sheet metal separator may use a single or multiple metal layers/sheets to segregate the condensate 120 d from the gaseous fluid 120 c.
  • the gaseous fluid 120 c is then released from the outlet header 134 to the gas compressor 106 and the condensate 120 d is transferred from the outlet header 134 to condensate re-evaporator 140 via the pipe 187 .
  • Various means of affecting such transfer are known to those skilled in the art, for example, through the use of a pump and a check valve integrated into the pipe 187 .
  • the gaseous fluid 120 c is compressed in the gas compressor 106 and is driven towards the fluid storage facility 130 via the mixer 116 .
  • the condensate 120 d is circulated across the bundles of tubes 178 disposed within the condensate chamber 184 .
  • the gaseous fluid 120 a flowing within the bundle of tubes 178 exchanges heat with the condensate 120 d and evaporates at least a portion of the condensate 120 d so as to produce a re-evaporated gaseous fluid 120 f within the condensate chamber 184 .
  • the re-evaporated gaseous fluid 120 f is fed to the outlet header 134 via the return pipe 189 .
  • the hot gaseous fluid 120 a after exchanging heat indirectly with the condensate 120 d is fed to the inlet header 132 via the channel 194 .
  • the by-pass valve 198 may allow the hot gaseous fluid 120 a to flow towards the outlet header 134 via the intermediate channel 196 .
  • the regulation of the by-pass valve 198 may depend on temperature of the gaseous fluid 120 a and an operating condition of the fluid processing system 100 , such as start-up and/or maintenance.
  • the by-pass valve 198 is typically opened during start-up of the system 100 to ensure steady and smooth operation of the system 100 . Further, the by-pass valve 198 is opened when the temperature of the hot gaseous fluid 120 a is lower than one or more threshold temperatures of the gaseous fluid 120 c and/or the condensate 120 d.
  • the discharge valve 192 is opened intermittently to discharge the condensate 120 d from the condensate chamber 184 into the liquid pump 108 .
  • the condensate 120 d may be discharged to the main separator assembly 102 .
  • the regulation of the discharge valve 192 may depend on a level of condensate 120 d accumulated within the condensate chamber 184 and an operating condition of the system 100 , such as start-up and/or maintenance.
  • the discharge valve 192 may be opened to discharge the condensate 120 d completely from the condensate chamber 184 .
  • the discharge valve 192 may be opened to discharge a portion of the condensate 120 d when the level of the condensate is above a threshold level in the condensate chamber.
  • the fluid processing system facilitates temperature reduction of only the hot gaseous fluid component of a multiphase fluid without sacrificing heat retained in the liquid component of the multiphase fluid.
  • the fluid processing system of the present invention acts to limit sludge and/or hydrate formation within the pipelines connecting the system to a storage facility.
  • the heat exchange sub-system separates a condensate from a gaseous fluid and feeds only the gaseous fluid to the gas compressor. The condensate is re-evaporated to enhance the production of the gaseous fluid and facilitate continuous operation of the system.
  • the present invention acts to conserve heat derived from the reservoir and may reduce costs by limiting the need for more active heat conservation measures.

Abstract

A heat exchange sub-system and fluid processing system is provided containing an inlet header; an outlet header; a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header. The heat exchange tubes are configured to exchange heat with a cold ambient environment. A liquid-gas separator is coupled to the outlet header. The heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, and to condense at least a portion of the condensable components. The system is configured such that the cold ambient subsea environment serves as a heat sink.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(e) from Provisional Application No. 62/020,440 filed on 3 Jul. 2014, which is incorporated by reference herein in its entirety.
  • BACKGROUND
  • The present invention relates to a fluid processing system for deployment in a subsea environment, and more particularly to a heat exchange sub-system used in the fluid processing system.
  • Fluid processing systems used in hydrocarbon production in subsea environments typically comprise a heat exchange system disposed upstream relative to a main separator assembly. The heat exchange system facilitates temperature reduction of a multiphase fluid (hydrocarbon) being produced from a subsea hydrocarbon reservoir prior to its introduction to the main separator assembly. The multiphase fluid is typically a hot mixture of gaseous and liquid components comprising methane, carbon dioxide, hydrogen sulfide and liquid crude oil, and may also contain solid particulates such as sand. The main separator assembly separates the gaseous components from the liquid components of the multiphase fluid.
  • Typically, pipelines are deployed within the subsea environment to move the multiphase fluid from the subsea hydrocarbon reservoir to a fluid storage facility via the fluid processing system. These pipelines are generally insulated and/or heated at certain intervals to ensure that the temperature of the multiphase fluid remains above a certain threshold level. Failure to maintain the temperature of the multiphase fluid, for example the liquid components, above the threshold level may lead to formation of sludge within the pipelines. However, the heat exchange system disposed upstream relative to the main separator assembly may inadvertently reduce the temperature of the multiphase fluid thereby increasing the risk of un-desired secondary phases such as wax, scale, hydrates, sludge and/or hydrate formation within the pipelines. Further, the performance of the heat exchange system operating with the multiphase fluid may be difficult to predict and complex in nature.
  • Thus, there is a need for an improved fluid processing system for efficiently handling a multiphase fluid being produced from a subsea environment and also an improved heat exchange system for such fluid processing system.
  • BRIEF DESCRIPTION
  • In one embodiment, the present invention provides a heat exchange sub-system comprising: an inlet header; an outlet header; a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and a liquid-gas separator coupled to the outlet header; wherein the heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, and to condense at least a portion of the condensable components, the cold ambient environment serving as a heat sink.
  • In another embodiment, the present invention provides a fluid processing system comprising: (a) a main separator assembly configured to separate a hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components and a hot liquid fluid; (b) a heat exchange sub-system comprising: (i) an inlet header; (ii) an outlet header; (iii) a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and (iv) a liquid-gas separator coupled to the outlet header; wherein the heat exchange sub-system is configured to receive the hot gaseous fluid, and to condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components, the cold ambient environment serving as a heat sink, (c) a gas compressor configured to receive the gaseous fluid from the heat exchange sub-system; and (d) a fluid pump coupled to the main separator assembly; wherein the pump is configured to drive the hot liquid fluid toward a fluid storage facility.
  • In yet another embodiment, the present invention provides a method of transporting a hot, multiphase production fluid, the method comprising: (a) introducing a hot multiphase fluid into a main separator assembly and separating the hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components, and a hot liquid fluid; (b) introducing the hot gaseous fluid comprising condensable and non-condensable components into an energy dissipating device and condensing at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components; (c) compressing the gaseous fluid depleted in condensable components to produce a compressed gaseous fluid depleted in condensable components; and (d) combining the compressed gaseous fluid depleted in condensable components with the hot liquid fluid produced in the main separator assembly.
  • In yet another embodiment, the present invention provides a fluid processing system comprising: (a) a main separator assembly configured to separate a hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components and a hot liquid fluid; (b) an energy dissipating device configured to receive the hot gaseous fluid and to condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components; (c) a gas compressor configured to receive the gaseous fluid depleted in condensable components from the energy dissipating device; and (d) a fluid pump coupled to the main separator assembly; wherein the pump is configured to drive the hot liquid fluid toward a fluid storage facility.
  • DRAWINGS
  • These and other features and aspects of embodiments of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
  • FIG. 1 illustrates a schematic view of a fluid processing system in accordance with one exemplary embodiment; and
  • FIG. 2 illustrates a schematic view of a heat exchange sub-system for the fluid processing system in accordance with the exemplary embodiment of FIG. 1.
  • DETAILED DESCRIPTION
  • Embodiments discussed herein disclose a new configuration of a fluid processing system for efficiently moving multiphase fluid (hydrocarbon) being produced from a subsea hydrocarbon reservoir to a distant fluid storage facility. The fluid processing system of the present invention comprises an improved heat exchange sub-system disposed downstream relative to a main separator assembly. The heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, from the main separator assembly and condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components. Such heat exchange sub-system may additionally include a liquid-gas separator configured to separate the condensate from the gaseous fluid and collect the separated condensate.
  • FIG. 1 represents a fluid processing system 100 deployed in a subsea environment 114. The fluid processing system 100 may be located at depths reaching several thousands of meters within a cold ambient environment and proximate to a subsea hydrocarbon reservoir 119. In one embodiment, the exemplary fluid processing system 100 includes a main separator assembly 102, an energy dissipating device 104, a gas compressor 106, and a fluid pump 108. The fluid processing system 100 further includes an import line 110 coupled to the main separator assembly 102, and an export line 112 coupled to the gas compressor 106 and the fluid pump 108 via a mixer 116. The import line 110 and the export line 112 may also be referred as “pipelines”. The fluid processing system 100 is configured to move a multiphase fluid 120, for example hydrocarbon, being produced from the subsea hydrocarbon reservoir 119 to a distant fluid storage facility 130 more efficiently.
  • The main separator assembly 102 receives the multiphase fluid 120 from the subsea hydrocarbon reservoir 119 via the import line 110. The multiphase fluid 120 is typically a mixture of a hot gaseous fluid 120 a and a hot liquid fluid 120 b. The main separator assembly 102 functions as a pressure vessel and aids in separating the hot gaseous fluid 120 a from the hot liquid fluid 120 b. The hot gaseous fluid 120 a includes condensable components such as moisture and low molecular weight hydrocarbons and non-condensable components such as the gases CO2 and H2S. Various known separation devices may serve as the main separator assembly 102, for example, a stage separator, a knockout vessel, a flash chamber, an expansion separator, an expansion vessel, or a scrubber.
  • The energy dissipating device 104 is disposed downstream relative to the main separator assembly 102 and is configured to receive the hot gaseous fluid 120 a from the main separator assembly 102. The hot gaseous fluid 120 a is passing within the energy dissipating device 104 acts to condense at least a portion of the condensable components to produce a gaseous fluid 120 c depleted in condensable components and a condensate 120 d. Specifically, in one embodiment, the energy dissipating device 104 is a heat exchange sub-system 104 a (as shown in FIG. 2) including a plurality of heat exchange tubes configured to exchange heat with the cold ambient environment 114 serving as a heat sink. The heat exchange sub-system 104 a and the condensation of the portion of the condensable components within the heat exchange sub-system 104 a are explained in greater detail below.
  • In another embodiment of the present invention, the energy dissipating device 104 is a work extraction device. Suitable work extraction devices include turboexpander, hydraulic expander, and hydraulic motor. In yet another embodiment of the present invention, the energy dissipating device 104 is a frictional loss or pressure change device such as throttle device or valve. The energy dissipating device 104 is configured to receive the hot gaseous fluid 120 a, and reduce its total energy content thereby and condensing at least a portion of the condensable components to produce the condensate 120 d and the gaseous fluid 120 c depleted in condensable components.
  • In one embodiment shown, a liquid-gas separator 138 is disposed within the energy dissipating device 104 and coupled to the energy dissipating device 104. The liquid-gas separator 138 separates the condensate 120 d from the gaseous fluid 120 c using, for example, a barrier, a filter, or a vortex flow separator. The separated condensate 120 d is collected within the liquid-gas separator 138. In one or more embodiments, the liquid-gas separator 138 comprises one or more weir separators, filter separators, cyclone separators, sheet metal separators, or a combination of two or more of the foregoing separators.
  • The energy dissipating device 104 is coupled to the gas compressor 106 which receives the gaseous fluid 120 c from the energy dissipating device 104. The liquid-gas separator 138 is coupled to the fluid pump 108 which receives the condensate 120 d collected within the liquid-gas separator 138. In another embodiment, the liquid-gas separator 138 may be coupled to the main separator assembly 102 for feeding the condensate 120 d collected within the liquid-gas separator 138. The condensate 120 d may be fed to the main separator assembly 102 either by pumping or gravitational force. In yet another embodiment, the condensate 120 d may be drained from the liquid-gas separator 138 by pressure to the subsea environment 114. The separation of the gaseous fluid 120 c from the condensate 120 d is explained in greater detail below.
  • Alternatively, the liquid-gas separator 138 may be disposed outside of the energy dissipating device 104 and coupled to the energy dissipating device 104 via a conduit. In such embodiments, the liquid-gas separator 138 may receive the condensate 120 d and the gaseous fluid 120 c from the energy dissipating device 104. The liquid-gas separator 138 may be further configured to separate the condensate 120 d from the gaseous fluid 120 c and feed the gaseous fluid 120 c to the gas compressor 106 and the condensate 120 d to the fluid pump 108.
  • The gaseous fluid 120 c may be compressed by a motor-driven compressor 106 (see motor 128), which increases the pressure of the gaseous fluid 120 c and moves the gaseous fluid 120 c towards the fluid storage facility 130 via the mixer 116. In another embodiment, a portion 120 g of the gaseous fluid 120 c may be fed to the main separator assembly 102 via a flow control valve 115. The feeding of the portion 120 g of the gaseous fluid 120 c may assist steady state operation of the compressor 106, protection of the compressor 106 from pressure variation, and during system 100 start-up. Further, the gas compressor 106 may be configured to discharge a slip-stream 120 e of the gaseous fluid 120 c to cool the motor 128. The slip stream 120 e may be discharged from an initial stage 127 of the gas compressor 106. In one or more embodiments, the gas compressor 106 may be a positive displacement compressor or a centrifugal compressor.
  • The fluid pump 108 is disposed downstream relative to the main separator assembly 102 and is configured to receive the hot liquid fluid 120 b from the main separator assembly 102. Further, the fluid pump 108 may also receive the condensate 120 d discharged from the liquid-gas separator 138. The fluid pump 108 increases pressure of the hot liquid fluid 120 b and/or the condensate 120 d so as to drive the hot liquid fluid 120 b towards the fluid storage facility 130 via the mixer 116. In one or more embodiments, the fluid pump 108 may be a positive displacement pump or a gear pump or a screw pump.
  • The mixer 116 may be configured to combine/mix the gaseous fluid 120 c and the liquid fluid 120 b and/or the condensate 120 d before discharging the mixed fluids to the fluid storage facility 130 via the export line 112. The fluid storage facility 130 may be located within subsea environment 114 or at a surface location.
  • FIG. 2 represents a heat exchange sub-system 104 a used in the fluid processing system 100 in accordance with the exemplary embodiment of FIG. 1. The heat exchange sub-system 104 a includes an inlet header 132, an outlet header 134, a plurality of heat exchange tubes 136, and a liquid-gas separator 138. Further the heat exchange sub-system 104 a includes a condensate re-evaporator 140 coupled to the liquid-gas separator 138. The heat exchange sub-system 104 a is configured to condense at least a portion of condensable components to produce a condensate 120 d and a gaseous fluid 120 c depleted in condensable components.
  • The inlet header 132 has an inlet chamber 142 and is configured to receive the hot gaseous fluid 120 a discharged from the main separator assembly 102 (as shown in FIG. 1). In the embodiment shown, the inlet header 132 is aligned horizontally at about 0.degree. The outlet header 134 has an outlet chamber 152 and is configured to discharge the gaseous fluid 120 c to the gas compressor 106 (as shown in FIG. 1). In the embodiment shown, the outlet header 134 is aligned at a pre-determined angle relative to the inlet header 132. In one or more embodiments, the pre-determined angle may be in a range from about 0.degree to about 60.degrees.
  • The plurality of heat exchange tubes 136 are disposed between the inlet header 132 and outlet header 134. In certain other embodiments, the plurality of heat exchange tubes 136 may be coupled directly to the main separator assembly 102 and may be configured to receive the hot gaseous fluid 120 a discharged from the main separator assembly 102. The heat exchange tubes 136 are coupled to the inlet chamber 142 and outlet chamber 152 to establish a fluid communication between the inlet header 132 and outlet header 134. In the embodiment shown, the plurality of heat exchange tubes 136 are straight pipes aligned vertically at about 90.degrees. In certain other embodiments, the heat exchange tubes 136 may have spirals or coils, as will be appreciated by those skilled in the art. In another embodiment, the plurality of heat exchange tubes 136 may additionally include the liquid-gas separator 138 disposed along a length of the tubes 136. In such embodiments, the liquid-gas separator 138 may be fluidly coupled to the condensate re-evaporator 140 and a discharge end of the plurality of heat exchange tubes 136 may be coupled to the compressor 106.
  • In the embodiment shown, the liquid-gas separator 138 is disposed within the outlet header 134 and is an integral component thereof. In the illustrated embodiment, the liquid-gas separator 138 is a weir separator having an open tank configuration. The weir separator has a weir 139 and a bottom end portion 143 coupled to the weir 139 and the outlet header 134. The weir separator 139 is a horizontal gravity based separator. In certain other embodiments, the liquid-gas separator 138 is disposed outside the outlet header 134 and is not an integral component thereof. In such other embodiments, the liquid-gas separator 138 may be coupled to the outlet header 134 via a conduit.
  • The liquid-gas separator 138 is fluidly coupled to the condensate re-evaporator 140. In one embodiment, the condensate re-evaporator 140 is a shell and tube heat exchanger. The condensate re-evaporator 140 includes an inlet plenum chamber 174, an outlet plenum chamber 176, and a bundle of tubes 178 coupled to the inlet and outlet plenum chambers 174, 176. The bundle of tubes 178 is disposed in a condensate chamber 184 formed between the inlet plenum chamber 174 and outlet plenum chamber 176. The tubes 178 are fluidly coupled to the corresponding plenum chambers 174, 176. The condensate chamber 184 is coupled to the liquid-gas separator 138 through a pipe 187. The condensate chamber 184 is further coupled to the outlet header 134 via a return pipe 189.
  • In the embodiment shown, the condensate re-evaporator 140 is disposed between the main separator assembly 102 and the heat exchange sub-system 104 a. Specifically, the inlet plenum chamber 174 is coupled to the main separator assembly 102 and may be configured to receive the hot gaseous fluid 120 a (hot process gas) from the main separator assembly 102. Similarly, the outlet plenum chamber 176 is coupled to the heat exchange sub-system 104 a and is configured to feed the hot gaseous fluid 120 a to the heat exchange sub-system 104 a. In one embodiment, the outlet plenum chamber 176 is coupled to the inlet header 132 via a channel 194 having a by-pass valve 198. The heat exchange sub-system 104 a further includes an intermediate channel 196 coupled to the by-pass valve 198 and the outlet header 134.
  • In certain other embodiments, the inlet plenum chamber 174 may be coupled to import line 120 to receive the multiphase fluid 120 being produced from the subsea hydrocarbon reservoir 119. In such embodiments, the outlet plenum chamber 176 may be coupled to the main separator assembly 102 to feed the multiphase fluid 120 to the main separator assembly 102.
  • The condensate re-evaporator 140 further includes a discharge channel 190 having a discharge valve 192, coupled to the condensate chamber 184 and the fluid pump 108 (as shown in FIG. 1). The discharge valve 192 is configured to regulate a flow of the condensate 120 d towards the fluid pump 108.
  • During operation of the fluid processing system 100, the inlet header 132 receives the hot gaseous fluid 120 a from the main separator assembly 102 (as shown in FIG. 1) via the condensate re-evaporator 140. Specifically, the hot gaseous fluid 120 a flows within the inlet plenum chamber 174, the bundle of tubes 178, and the outlet plenum chamber 176 of the condensate re-evaporator 140. The hot gaseous fluid 120 a includes the condensable components such as moisture and low molecular weight hydrocarbons, and non-condensable components such as the gases CO2 and H2 5.
  • The hot gaseous fluid 120 a flows along the inlet chamber 142 of the inlet header 132 and gets circulated within the plurality of heat exchange tubes 136. The heat exchange tubes 136 exchange heat with the cold ambient environment 114 serving as a heat sink. This heat exchange results in condensation of the condensable components to produce the gaseous fluid 120 c and the condensate 120 d. The gaseous fluid 120 c depleted in condensable components and the condensate 120 d produced within the heat exchange tubes 136 flows into the outlet chamber 152 of the outlet header 134. In another embodiment, the plurality of heat exchange tubes 136 may additionally function as a distributed separator configured to separate the condensate 120 d from the gaseous fluid 120 c along the length of the plurality of heat exchange tubes 136. In such embodiments, the gaseous fluid 120 c may be released from the discharge end of the plurality of heat exchange tubes 136 to the compressor 106 and the condensate 120 d may be transferred from the liquid-gas separator 138 to the condensate re-evaporator 140.
  • The liquid-gas separator 138 separates the condensate 120 d from the gaseous fluid 120 c. In the illustrated embodiment, the weir 139 is configured to separate the condensate 120 d from the gaseous fluid 120 c and the bottom end portion 143 is configured to collect the condensate 120 d. Other types of liquid-gas separators 138 are known to those skilled in the art and may be used to separate the condensate 120 d from the gaseous fluid 120 c. Other such liquid-gas separators 138 may include a filter separator, a cyclone separator, and a sheet metal separator. The filter separator may separate the condensate 120 d from the gaseous fluid 120 c by a filter having a membrane to trap the condensate 120 d and allow the gaseous fluid 120 c to pass through the membrane. The cyclone separator may separate the condensate 120 d from the gaseous fluid 120 c through vortex separation. The sheet metal separator may use a single or multiple metal layers/sheets to segregate the condensate 120 d from the gaseous fluid 120 c.
  • The gaseous fluid 120 c is then released from the outlet header 134 to the gas compressor 106 and the condensate 120 d is transferred from the outlet header 134 to condensate re-evaporator 140 via the pipe 187. Various means of affecting such transfer are known to those skilled in the art, for example, through the use of a pump and a check valve integrated into the pipe 187.
  • The gaseous fluid 120 c is compressed in the gas compressor 106 and is driven towards the fluid storage facility 130 via the mixer 116. The condensate 120 d is circulated across the bundles of tubes 178 disposed within the condensate chamber 184. The gaseous fluid 120 a flowing within the bundle of tubes 178 exchanges heat with the condensate 120 d and evaporates at least a portion of the condensate 120 d so as to produce a re-evaporated gaseous fluid 120 f within the condensate chamber 184.
  • The re-evaporated gaseous fluid 120 f is fed to the outlet header 134 via the return pipe 189. The hot gaseous fluid 120 a after exchanging heat indirectly with the condensate 120 d is fed to the inlet header 132 via the channel 194. The by-pass valve 198 may allow the hot gaseous fluid 120 a to flow towards the outlet header 134 via the intermediate channel 196. The regulation of the by-pass valve 198 may depend on temperature of the gaseous fluid 120 a and an operating condition of the fluid processing system 100, such as start-up and/or maintenance. The by-pass valve 198 is typically opened during start-up of the system 100 to ensure steady and smooth operation of the system 100. Further, the by-pass valve 198 is opened when the temperature of the hot gaseous fluid 120 a is lower than one or more threshold temperatures of the gaseous fluid 120 c and/or the condensate 120 d.
  • The discharge valve 192 is opened intermittently to discharge the condensate 120 d from the condensate chamber 184 into the liquid pump 108. In certain other embodiments, the condensate 120 d may be discharged to the main separator assembly 102. The regulation of the discharge valve 192 may depend on a level of condensate 120 d accumulated within the condensate chamber 184 and an operating condition of the system 100, such as start-up and/or maintenance. During maintenance of the system 100, the discharge valve 192 may be opened to discharge the condensate 120 d completely from the condensate chamber 184. Further, the discharge valve 192 may be opened to discharge a portion of the condensate 120 d when the level of the condensate is above a threshold level in the condensate chamber.
  • In accordance with embodiments discussed herein, the fluid processing system facilitates temperature reduction of only the hot gaseous fluid component of a multiphase fluid without sacrificing heat retained in the liquid component of the multiphase fluid. In doing so, the fluid processing system of the present invention acts to limit sludge and/or hydrate formation within the pipelines connecting the system to a storage facility. Further, the heat exchange sub-system separates a condensate from a gaseous fluid and feeds only the gaseous fluid to the gas compressor. The condensate is re-evaporated to enhance the production of the gaseous fluid and facilitate continuous operation of the system. The present invention acts to conserve heat derived from the reservoir and may reduce costs by limiting the need for more active heat conservation measures.
  • While only certain features of embodiments have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended embodiments are intended to cover all such modifications and changes as falling within the spirit of the invention.

Claims (25)

1. A heat exchange sub-system comprising:
an inlet header;
an outlet header;
a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and
a liquid-gas separator coupled to the outlet header;
wherein the heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, and to condense at least a portion of the condensable components, the cold ambient environment serving as a heat sink.
2. The heat exchange sub-system of claim 1, wherein the liquid-gas separator comprises at least one weir separator.
3. The heat exchange sub-system of claim 1, further comprising a condensate re-evaporator coupled to the liquid-gas separator.
4. The heat exchange sub-system of claim 3, wherein the condensate re-evaporator comprises a shell and tube heat exchanger configured to evaporate at least a portion of a condensate formed within the heat exchange sub-system.
5. The heat exchange sub-system of claim 4, wherein the condensate re-evaporator is configured to receive a hot process gas.
6. The heat exchange sub-system of claim 5, further comprising a by-pass valve configured to regulate a flow of the hot gaseous fluid to the inlet header and outlet header.
7. The heat exchange sub-system of claim 1, wherein the liquid-gas separator is disposed within the outlet header.
8. A fluid processing system comprising:
(a) a main separator assembly configured to separate a hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components and a hot liquid fluid;
(b) a heat exchange sub-system comprising:
(i) an inlet header;
(ii) an outlet header;
(iii) a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and
(iv) a liquid-gas separator coupled to the outlet header;
wherein the heat exchange sub-system is configured to receive the hot gaseous fluid, and to condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components, the cold ambient environment serving as a heat sink,
(c) a gas compressor configured to receive the gaseous fluid from the heat exchange sub-system; and
(d) a fluid pump coupled to the main separator assembly;
wherein the pump is configured to drive the hot liquid fluid toward a fluid storage facility.
9. The fluid processing system of claim 8, wherein the liquid-gas separator comprises at least one weir separator.
10. The fluid processing system of claim 8, further comprising a condensate re-evaporator coupled to the outlet header.
11. The fluid processing system of claim 10, wherein the condensate re-evaporator comprises a shell and tube heat exchanger configured to evaporate at least a portion of the condensate formed within the heat exchange sub-system.
12. The fluid processing system of claim 11, wherein the condensate re-evaporator is configured to receive a hot process gas.
13. The fluid processing system of claim 12, further comprising a by-pass valve configured to regulate a flow of the hot gaseous fluid to the inlet header and outlet header.
14. The fluid processing system of claim 8, wherein said gas compressor is driven by a motor configured to be cooled by a slip stream of the gaseous fluid produced by one or more stages of the gas compressor.
15. The fluid processing system of claim 8, wherein the liquid-gas separator is disposed within the outlet header.
16. A method of transporting a hot, multiphase production fluid, the method comprising:
(a) introducing a hot multiphase fluid into a main separator assembly and separating the hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components, and a hot liquid fluid;
(b) introducing the hot gaseous fluid comprising condensable and non-condensable components into an energy dissipating device and condensing at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components;
(c) compressing the gaseous fluid depleted in condensable components to produce a compressed gaseous fluid depleted in condensable components; and
(d) combining the compressed gaseous fluid depleted in condensable components with the hot liquid fluid produced in the main separator assembly.
17. The method of claim 16, further comprising the step of separating the condensate from the gaseous fluid and collecting the condensate in a liquid-gas separator coupled to the energy dissipating device.
18. The method of claim 17, further comprising the step of re-evaporating at least a portion of the condensate by transferring heat from the hot gaseous fluid comprising the condensable and non-condensable components to the condensate in a condensate re-evaporator coupled to the liquid-gas separator.
19. The method of claim 18, further comprising the step of intermittently discharging the condensate from the condensate re-evaporator into a fluid pump.
20. A fluid processing system comprising:
(a) a main separator assembly configured to separate a hot multiphase fluid into a hot gaseous fluid comprising condensable and non-condensable components and a hot liquid fluid;
(b) an energy dissipating device configured to receive the hot gaseous fluid and to condense at least a portion of the condensable components to produce a condensate and a gaseous fluid depleted in condensable components;
(c) a gas compressor configured to receive the gaseous fluid depleted in condensable components from the energy dissipating device; and
(d) a fluid pump coupled to the main separator assembly;
wherein the pump is configured to drive the hot liquid fluid toward a fluid storage facility.
21. The fluid processing system of claim 20, wherein the energy dissipating device comprises a work extraction device.
22. The fluid processing system of claim 21, wherein the energy dissipating device is selected from the group consisting of turboexpanders, hydraulic expanders, and hydraulic motors.
23. The fluid processing system of claim 20, wherein the energy dissipating device is a frictional loss or pressure change device.
24. The fluid processing system of claim 23, wherein the energy dissipating device is a throttle device.
25. The fluid processing system of claim 20, wherein the energy dissipating device is a heat exchange sub-system comprising:
(i) an inlet header;
(ii) an outlet header;
(iii) a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header; said heat exchange tubes being configured to exchange heat with a cold ambient environment; and
(iv) a liquid-gas separator coupled to the outlet header.
US14/490,096 2014-07-03 2014-09-18 Fluid processing system, heat exchange sub-system, and an associated method thereof Abandoned US20160003558A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/490,096 US20160003558A1 (en) 2014-07-03 2014-09-18 Fluid processing system, heat exchange sub-system, and an associated method thereof
GB1621411.6A GB2542962A (en) 2014-07-03 2015-06-16 Fluid processing system, heat exchange sub-system, and an associated method thereof
BR112017000003A BR112017000003A2 (en) 2014-07-03 2015-06-16 heat exchange subsystem, fluid processing systems and fluid transport method
PCT/US2015/035950 WO2016003637A1 (en) 2014-07-03 2015-06-16 Fluid processing system, heat exchange sub-system, and an associated method thereof
AU2015284617A AU2015284617C1 (en) 2014-07-03 2015-06-16 Fluid processing system, heat exchange sub-system, and an associated method thereof
NO20161974A NO20161974A1 (en) 2014-07-03 2016-12-13 Fluid processing system, heat exchange sub-system, and an associated method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462020440P 2014-07-03 2014-07-03
US14/490,096 US20160003558A1 (en) 2014-07-03 2014-09-18 Fluid processing system, heat exchange sub-system, and an associated method thereof

Publications (1)

Publication Number Publication Date
US20160003558A1 true US20160003558A1 (en) 2016-01-07

Family

ID=55016697

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/490,096 Abandoned US20160003558A1 (en) 2014-07-03 2014-09-18 Fluid processing system, heat exchange sub-system, and an associated method thereof
US14/490,183 Abandoned US20160003255A1 (en) 2014-07-03 2014-09-18 Fluid processing system, an energy-dissipating device, and an associated method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/490,183 Abandoned US20160003255A1 (en) 2014-07-03 2014-09-18 Fluid processing system, an energy-dissipating device, and an associated method thereof

Country Status (6)

Country Link
US (2) US20160003558A1 (en)
AU (2) AU2015284617C1 (en)
BR (2) BR112017000003A2 (en)
GB (2) GB2542962A (en)
NO (2) NO20161974A1 (en)
WO (2) WO2016003637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190010796A1 (en) * 2015-12-30 2019-01-10 General Electric Company Underwater gas/liquid-liquid method and separation system and use of deoling membrane

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072429B1 (en) * 2017-10-16 2020-06-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude COMPRESSION DEVICE AND METHOD
FR3072428B1 (en) * 2017-10-16 2019-10-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude COMPRESSION DEVICE AND METHOD AND REFRIGERATION MACHINE
US11067000B2 (en) 2019-02-13 2021-07-20 General Electric Company Hydraulically driven local pump
EP3686436A1 (en) * 2019-07-31 2020-07-29 Sulzer Management AG Multistage pump and subsea pumping arrangement
CN110566812B (en) * 2019-08-06 2021-08-03 李珊 Natural gas station gas transmission process
CN113483368A (en) * 2021-05-17 2021-10-08 孙杰 Oil smoke purification separator

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611587A (en) * 1950-07-27 1952-09-23 Heat X Changer Co Inc Heat exchanger
US3129077A (en) * 1961-05-23 1964-04-14 Renard P Adams Gas purifying apparatus
US5766412A (en) * 1997-01-13 1998-06-16 Recovery Technologies Corporation System and method of waster water reduction and product recovery
US20070169922A1 (en) * 2006-01-24 2007-07-26 Pautler Donald R Microchannel, flat tube heat exchanger with bent tube configuration
US20100020657A1 (en) * 2003-07-29 2010-01-28 Samsung Electonics Co., Ltd. Information storage medium and method and apparatus for recording and/or reproducing pointing information
US20100206573A1 (en) * 2007-07-30 2010-08-19 Peter Marie Paulus Method and apparatus for cooling a gaseous hydrocarbon stream
US20110048546A1 (en) * 2008-04-21 2011-03-03 Statoil Asa Gas compression system
US20120029834A1 (en) * 2006-06-07 2012-02-02 Sumco Corporation Method for determining cop generation factors for single-crystal silicon wafer
US20120175081A1 (en) * 2011-01-07 2012-07-12 Denso Corporation Refrigerant radiator
US20120298343A1 (en) * 2009-07-15 2012-11-29 Fmc Kongsberg Subsea As Subsea cooler
US20130013410A1 (en) * 1998-07-17 2013-01-10 B.E. Technologies, Llc Method of reactive targeted advertising
US20130013662A1 (en) * 2011-07-08 2013-01-10 Ricoh Company, Limited Method, apparatus, and computer program product for processing workflow
US20130134109A1 (en) * 2011-11-29 2013-05-30 Bonavista Energy Corporation Settling vessel and method of use
US20130136629A1 (en) * 2011-06-01 2013-05-30 Dresser-Rand Company Subsea motor-compressor cooling system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO321304B1 (en) * 2003-09-12 2006-04-24 Kvaerner Oilfield Prod As Underwater compressor station
NO20052808L (en) * 2005-06-10 2006-12-11 Norsk Hydro Produksjon As Underwater compression system
RU2412738C2 (en) * 2005-12-21 2011-02-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method and system of fluid flow separation
WO2010080040A1 (en) * 2009-01-08 2010-07-15 Aker Subsea As A device for liquid treatment when compressing a well flow
WO2010107052A1 (en) * 2009-03-17 2010-09-23 株式会社プライムポリマー Polypropylene for film capacitor, polypropylene sheet for film capacitor, methods for producing same, and uses of same
CN103047190A (en) * 2012-04-17 2013-04-17 溧阳德维透平机械有限公司 Centrifugal compressor
SG11201408693YA (en) * 2012-10-08 2015-02-27 Exxonmobil Upstream Res Co Multiphase separation system
WO2014079515A1 (en) * 2012-11-26 2014-05-30 Statoil Petroleum As Combined dehydration of gas and inhibition of liquid from a well stream

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611587A (en) * 1950-07-27 1952-09-23 Heat X Changer Co Inc Heat exchanger
US3129077A (en) * 1961-05-23 1964-04-14 Renard P Adams Gas purifying apparatus
US5766412A (en) * 1997-01-13 1998-06-16 Recovery Technologies Corporation System and method of waster water reduction and product recovery
US20130013410A1 (en) * 1998-07-17 2013-01-10 B.E. Technologies, Llc Method of reactive targeted advertising
US20100020657A1 (en) * 2003-07-29 2010-01-28 Samsung Electonics Co., Ltd. Information storage medium and method and apparatus for recording and/or reproducing pointing information
US20070169922A1 (en) * 2006-01-24 2007-07-26 Pautler Donald R Microchannel, flat tube heat exchanger with bent tube configuration
US20120029834A1 (en) * 2006-06-07 2012-02-02 Sumco Corporation Method for determining cop generation factors for single-crystal silicon wafer
US20100206573A1 (en) * 2007-07-30 2010-08-19 Peter Marie Paulus Method and apparatus for cooling a gaseous hydrocarbon stream
US20110048546A1 (en) * 2008-04-21 2011-03-03 Statoil Asa Gas compression system
US20120298343A1 (en) * 2009-07-15 2012-11-29 Fmc Kongsberg Subsea As Subsea cooler
US20120175081A1 (en) * 2011-01-07 2012-07-12 Denso Corporation Refrigerant radiator
US20130136629A1 (en) * 2011-06-01 2013-05-30 Dresser-Rand Company Subsea motor-compressor cooling system
US20130013662A1 (en) * 2011-07-08 2013-01-10 Ricoh Company, Limited Method, apparatus, and computer program product for processing workflow
US20130134109A1 (en) * 2011-11-29 2013-05-30 Bonavista Energy Corporation Settling vessel and method of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190010796A1 (en) * 2015-12-30 2019-01-10 General Electric Company Underwater gas/liquid-liquid method and separation system and use of deoling membrane

Also Published As

Publication number Publication date
GB2542962A (en) 2017-04-05
GB201621411D0 (en) 2017-02-01
NO20161974A1 (en) 2016-12-13
GB2542297A (en) 2017-03-15
WO2016004271A1 (en) 2016-01-07
BR112016029424A2 (en) 2017-08-22
WO2016003637A1 (en) 2016-01-07
US20160003255A1 (en) 2016-01-07
GB201621412D0 (en) 2017-02-01
WO2016003637A8 (en) 2017-02-02
AU2015284617A1 (en) 2017-01-05
AU2015284617B2 (en) 2018-10-04
AU2015283998B2 (en) 2018-10-18
BR112017000003A2 (en) 2017-10-31
NO20161988A1 (en) 2016-12-15
AU2015283998A1 (en) 2017-01-12
AU2015284617C1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
AU2015284617C1 (en) Fluid processing system, heat exchange sub-system, and an associated method thereof
US8657940B2 (en) Separation and capture of liquids of a multiphase flow
EA026765B1 (en) Method and an apparatus for obtaining energy by expanding a gas at a wellhead
JP2016540914A (en) Device for separating and removing oil from organic working fluids
US8814992B2 (en) Gas expansion cooling method
NO20140097A1 (en) Method and system for water dew point subsidence underwater
US11925882B2 (en) System for degassing and/or separation of fluid streams and methods of using same
US10578128B2 (en) Fluid processing system
AU2006312399B2 (en) Flow divider and separation system
RU2471979C2 (en) Associated gas treatment method
Dries et al. A correlation giving improved description of the capacity and efficiency of vane‐type gas–liquid separators
RU2807372C1 (en) Hydrodynamic liquid separator with ability to pass cleaning and diagnostic agents
RU221428U1 (en) Hydrodynamic liquid separator with the ability to pass cleaning and diagnostic agents (SOD)
RU2775239C1 (en) Method for preparing natural gas at the final stage of development of a gas condensate field
US11117070B2 (en) Vapor recovery system and method
JP2019521849A (en) Cyclone condensing and cooling system
Zheng et al. Separation technique for oil-gas multi-phase flow transportation in submarine pipeline
Balk et al. Subsea Hydrocarbon Processing and Treatment: Twister Subsea
NO20120695A1 (en) Heat exchange from compressed gas
Phillips et al. PRODUCTION EQUIPMENT EFFECTS ON ORIFICE MEASUREMENT
NO173592B (en) PROCEDURE AND DEVICE FOR SEPARATING GAS AND LIQUID FROM A MULTIPHAGE MIXTURE

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BECQUIN, GUILLAUME;ANTEL, WILLIAM JOSEPH, JR.;MELE, ERIK;AND OTHERS;SIGNING DATES FROM 20140825 TO 20140911;REEL/FRAME:033770/0514

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION