US20150272220A1 - Nicotine dosage sensor - Google Patents

Nicotine dosage sensor Download PDF

Info

Publication number
US20150272220A1
US20150272220A1 US14/483,828 US201414483828A US2015272220A1 US 20150272220 A1 US20150272220 A1 US 20150272220A1 US 201414483828 A US201414483828 A US 201414483828A US 2015272220 A1 US2015272220 A1 US 2015272220A1
Authority
US
United States
Prior art keywords
nicotine
user
solution
heating element
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/483,828
Inventor
Kristofer Spinka
Xabay SPINKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nicotech LLC
Original Assignee
Nicotech LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicotech LLC filed Critical Nicotech LLC
Priority to US14/483,828 priority Critical patent/US20150272220A1/en
Assigned to Nicotech, LLC reassignment Nicotech, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPINKA, Kristofer, SPINKA, Xabay
Priority to US14/533,874 priority patent/US20150272222A1/en
Priority to PCT/US2015/022299 priority patent/WO2015148547A1/en
Publication of US20150272220A1 publication Critical patent/US20150272220A1/en
Priority to US16/811,595 priority patent/US20200205472A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • A24F47/008
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • This disclosure relates to an electronic nicotine delivery device having a nicotine dosage sensor configured to determine and/or regulate an amount of nicotine delivered by the electronic nicotine delivery device.
  • Electronic nicotine delivery devices (such as electronic cigarettes, vaporizers, and tobacco furnaces) are a widely popular means of nicotine delivery. Because they are more analogous to traditional cigarettes than other nicotine delivery devices like gums or patches, it is easier for most users to transition from traditional cigarettes to electronic nicotine delivery devices.
  • Traditional cigarettes by way of the smoke itself, create a self-limiting maximum rate of nicotine consumption because inhaling traditional cigarette smoke at an increased rate creates levels of discomfort (for example, coughing, carbon monoxide, heat from the smoke, etc.).
  • the electronic nicotine delivery device poses a risk of increased nicotine consumption because the almost-sensationless effect of inhaling the vaporized nicotine solution does not have the self-limiting side effects of traditional cigarettes. Due to inconsistency in manufacturing, the amount of nicotine delivered by each electronic nicotine delivery device may vary from unit to unit. Therefore, nicotine consumption per electronic nicotine delivery device cannot be reliably tracked.
  • One embodiment of the present invention is an electronic nicotine delivery device including a nicotine dosage sensor that determines an amount of nicotine consumed by a user based on the duration of an inhalation.
  • the simple act of informing the user regarding nicotine consumption may reduce the nicotine consumption of the user.
  • the user may want to be restricted from exceeding a predetermined maximum nicotine consumption level. Accordingly, the electronic nicotine delivery device may restrict the amount of nicotine consumed by the user based on a predetermined nicotine consumption amount or user input.
  • Exemplary embodiments of the present invention may enable an electronic nicotine delivery device to be classified as a smoking cessation device rather than a simple nicotine delivery system. This classification may enable the electronic nicotine delivery device to be purchased through health insurance providers and/or avoid the burdens of additional regulation.
  • FIG. 1 illustrates an electronic nicotine delivery device
  • FIG. 2 illustrates a nicotine dosage sensor according to an exemplary embodiment of the present invention
  • FIG. 3 illustrates an electronic nicotine delivery device according to another exemplary embodiment of the present invention
  • FIG. 4 illustrates an electronic nicotine delivery device according to yet another exemplary embodiment of the present invention
  • FIG. 5 illustrates an electronic nicotine delivery device according to yet another exemplary embodiment of the present invention.
  • FIG. 6 illustrates an electronic nicotine delivery device according to yet another exemplary embodiment of the present invention.
  • FIG. 1 illustrates an electronic nicotine delivery device 100 , including a reservoir 110 for storing a diluted nicotine solution 112 , a power source 120 , and a processor 130 and a heating element 140 (shown inside cut-out 150 ).
  • the device 100 may also include a negative pressure switch or manually actuated switch (not shown).
  • the processor 130 may be configured to electrically connect the power source 120 and the heating element 140 to vaporize the diluted nicotine solution 112 in response to the switch.
  • the processor 130 may also provide very basic functions including passing current to a decorative light emitting diode (LED), regulating electrical current flow to the heating element 140 , and limiting the contiguous amount of time the heating element 140 can be in use for one inhalation (i.e., draw, usage, puff) of the device in order to protect the diluted nicotine solution 112 and heating element 140 from overheating and releasing toxic substances from the nicotine solution (e.g., formaldehyde).
  • LED decorative light emitting diode
  • the processor 130 may also provide very basic functions including passing current to a decorative light emitting diode (LED), regulating electrical current flow to the heating element 140 , and limiting the contiguous amount of time the heating element 140 can be in use for one inhalation (i.e., draw, usage, puff) of the device in order to protect the diluted nicotine solution 112 and heating element 140 from overheating and releasing toxic substances from the nicotine solution (e.g., formaldehyde).
  • LED decorative light emitting diode
  • the electronic nicotine delivery device 100 may be an electronic cigarette including the reservoir 110 for storing a diluted nicotine solution 112
  • the electronic nicotine delivery device 100 may be any other vaporizing device configured to deliver any vaporized solution (with or without nicotine).
  • the electronic nicotine delivery device 100 may be a tobacco furnace including a nicotine cartridge (for example, a cartridge containing tobacco and a filter) in addition to or instead of the reservoir 110 for storing the diluted nicotine solution 112 .
  • the reservoir 110 may be refillable or disposable.
  • the power source 120 may be a battery, a fuel injector, or any other device configured to supply power to the heating element 140 .
  • the power source 120 may be rechargeable or disposable.
  • the reservoir 110 may be removably connected to the power source 120 or the reservoir 110 and the power source 120 may be integrated into a single device.
  • the processor 130 may be incorporated as part of the power source 120 , the reservoir 110 or as a separate, removably connectable device.
  • FIG. 2 illustrates a nicotine dosage sensor 200 according to an exemplary embodiment of the present invention.
  • the nicotine dosage sensor 200 includes a processor 230 similar to the processor 130 illustrated in FIG. 1 and memory 240 .
  • the electronic nicotine delivery device 100 or the nicotine dosage sensor 200 may also include a timer 250 , an inhalation sensor 260 , an air flow sensor 270 , and/or a heating element sensor 280 .
  • the memory 240 may include a solution profile 242 and a device profile 244 .
  • the processor 230 may be an integrated circuit or soft logic processor.
  • the memory 240 may be any non-transitory computer-readable storage medium, such flash memory, configured to store data and instructions that, when executed by the processor 230 , carry out relevant portions of the features described herein.
  • the timer 250 may be any device configured to measure time intervals.
  • the timer 250 may be “always on” (real-time clock) and measure time intervals as long as the electronic nicotine delivery device 100 is connected to the power source 120 or the electronic nicotine delivery device 100 may include a switch to connect and disconnect the timer 250 from the power source 120 . In either instance, the timer 250 is configured to measure time intervals both during and after an inhalation of the electronic nicotine delivery device 100 .
  • the inhalation sensor 260 may be any device configured to determine if a user is actively inhaling the vaporized diluted nicotine solution 112 .
  • the inhalation sensor 260 may be configured to detect, for example, the output of the negative pressure switch described above, negative pressure from the user, air flow, flow of the vaporized diluted nicotine solution 112 from the reservoir 110 , etc.
  • the air flow may be determined by an optional air pressure sensor 270 (discussed below).
  • the nicotine dosage sensor 200 is configured to determine (i.e., estimate and/or measure) the amount of nicotine consumed by a user based on the nicotine content of the diluted nicotine solution 112 , the duration of each inhalation, the time elapsed between inhalations, and information indicative of the temperature of the heating element 140 during each inhalation.
  • the nicotine dosage sensor 200 determines the duration of each inhalation and the time elapsed between inhalations based on the outputs of the timer 250 and the inhalation sensor 260 .
  • the nicotine content of the nicotine solution 112 may be pre-determined (for example, by analyzing the nicotine solution 112 with a spectrometer tank) and stored in the memory 240 of as part of the solution profile 242 .
  • the solution profile 242 may also include additional information regarding the nicotine solution 112 .
  • the solution profile 242 may include the burning point of the nicotine solution (i.e., the temperature at which the solution 112 begins releasing toxic substances to the user).
  • the temperature of the heating element 140 rises. Accordingly, the temperature of the heating element 140 is dependent on the length of an inhalation.
  • the relationship between the length of an inhalation and the temperature of the heating element may be pre-determined (for example, by simulating the use of a prototypical electronic nicotine delivery device and measuring the physical characteristics of the device) and stored in the memory 240 as part of the device profile 244 .
  • the device profile 244 may be determined, for example, by placing the a prototypical electronic nicotine delivery device (e.g., the same model as the electronic nicotine delivery device 100 that includes the nicotine dosage sensor 200 ) in a simulated puffing device, activating the prototypical electronic nicotine delivery device for a series of successive durations and measuring the temperature of the heating element 140 .
  • the device profile 244 may also include addition information regarding the electronic nicotine delivery device 100 .
  • the additional information may be pre-determined using the simulated puffing device in combination with the spectrometer, a gas chromatograph, a volume measurement setup, etc.
  • the device profile 244 may determine if and when the electronic nicotine delivery device 100 reaches the burning point of the solution 112 .
  • the temperature of the heating element 140 may also be dependent on the time elapsed between each inhalation. As described above, some devices limit the length of a single inhalation in order to prevent the heating element 140 from overheating and burning the nicotine solution 112 . A user, however, may initiate multiple inhalations in quick succession, activating the heating element 140 before it has cooled down after the initial inhalation. Accordingly, the device profile 244 may include a ramp up profile indicative of the temperature of the heating element 140 during ramp up (i.e., the temperature increase of the heating element 140 during inhalation) and a decaying profile indicative of the temperature of the heating element 140 during ramp down (i.e., the temperature decrease of the heating element 140 after the heating element is de-activated). The device profile 244 enables the nicotine dosage sensor 200 to determine the temperature of the heating element 140 during a single inhalation or multiple successive inhalations based on the duration of each inhalation and the time elapsed between inhalations.
  • the electronic nicotine delivery device 100 may include an optional heating element sensor 280 configured to determine the temperature of the heating element 140 .
  • the nicotine dosage sensor 200 may determine the temperature of the heating element 140 , for example, based on the in-line resistance and voltage of the heating element 140 detected by the heating element sensor 280 .
  • the amount of nicotine consumed by a user may also depend on the air flow rate of the electronic nicotine delivery device 100 during each inhalation.
  • the nicotine dosage sensor 200 may estimate the air flow during each inhalation based on information included in the device profile 244 .
  • an estimated air flow rate may be pre-determined by simulating the use of a prototypical electronic nicotine delivery device as described above and measuring the air flow of the prototypical device during one or more simulated inhalations.
  • the nicotine dosage sensor 200 may estimate the air flow during each inhalation, for example, by multiplying the estimated air flow rate by the duration of each inhalation.
  • the nicotine dosage sensor 200 may include an optional air flow sensor 270 configured to determine (i.e., estimate or measure) the air flow or air flow rate of the electronic nicotine delivery device 100 during each inhalation.
  • the air flow sensor 270 may be any device configured to measure or estimate the air flow or air flow rate of the electronic nicotine delivery device 100 , including a pressure gauge, a vacuum gauge, a diaphragm, an impeller setup, etc.
  • the nicotine dosage sensor 200 includes formula or look-up table stored in the memory 240 that outputs an amount of nicotine consumed by the user based on the duration of each inhalation or both the duration of each inhalation and the time elapsed between inhalations. As described above, the relationship between the amount of nicotine consumed by a user of the electronic nicotine delivery device 100 and the duration of each inhalation (or both the duration of each inhalation and the time elapsed between inhalations) is determined based on characteristics of the solution 112 stored in the solution profile 242 and characteristics of the electronic nicotine delivery device 100 stored in the device profile 244 .
  • the electronic nicotine delivery device 100 may be configured to pair with a single diluted nicotine solution 112 (e.g., a single use electronic cigarette, an electronic cigarette with one type of mechanically compatible reservoir 110 pre-filled with a single type of diluted nicotine solution 112 , etc.).
  • a single diluted nicotine solution 112 e.g., a single use electronic cigarette, an electronic cigarette with one type of mechanically compatible reservoir 110 pre-filled with a single type of diluted nicotine solution 112 , etc.
  • the device profile 244 associated with the electronic nicotine delivery device 100 and the solution profile 242 associated with the diluted nicotine solution 112 may be pre-stored in the memory 240 of the nicotine dosage sensor 200 of the electronic nicotine delivery device 100 .
  • the electronic nicotine delivery device 100 may be configured to pair with a multiple diluted nicotine solutions 112 (e.g., an electronic cigarette with multiple compatible reservoirs 110 , a refillable vaporizer, etc.).
  • the device profile 244 associated with the electronic nicotine delivery device 100 may be pre-stored in the memory 240 and the solution profile 242 may be selected by the user based on the diluted nicotine solution 112 paired with the electronic nicotine delivery device 100 .
  • the solution profile 242 associated with the diluted nicotine solution 112 may be downloaded from the internet via an external device (e.g., a computer, a smart phone, etc.), transferred to the electronic nicotine delivery device 100 via a wired connection (e.g., USB) or wireless connection (e.g., Bluetooth), and stored in the memory 240 of the nicotine dosage sensor 200 of the electronic nicotine delivery device 100 .
  • the solution profile 242 associated with the diluted nicotine solution 112 may be determined and/or distributed by the manufacturer of the solution 112 or a third party.
  • the amount of nicotine consumed by a user may be further based on the type of nicotine solution 112 (e.g., a vegetable glycerin solution, a propylene glycol solution, etc.). Accordingly, the solution profile 242 may include information indicative of the nicotine solution type and the nicotine dosage sensor 200 may further determine the amount of nicotine consumed by the user based on the nicotine solution type.
  • the type of nicotine solution 112 e.g., a vegetable glycerin solution, a propylene glycol solution, etc.
  • the solution profile 242 may include information indicative of the nicotine solution type and the nicotine dosage sensor 200 may further determine the amount of nicotine consumed by the user based on the nicotine solution type.
  • the nicotine dosage sensor 200 of the present invention may be configured to determine the temperature of the heating element 140 and the solution profile 242 may include information indicative of the boiling point of the nicotine solution 112 .
  • the nicotine dosage sensor 200 may be further configured to prevent the heating element 140 from boiling the nicotine solution 112 (even when the user initiates successive inhalations) by comparing the temperature of the heating element 140 (as determined by the nicotine dosage sensor 200 ) and the boiling point of the nicotine solution 112 and outputting a signal if the temperature of the heating element 140 is approaching or exceeds the boiling point of the nicotine solution 112 .
  • the electronic nicotine delivery device 100 may be configured to prevent the heating element 140 from approaching or exceeding the boiling point of the nicotine solution 112 (e.g., by disconnecting the heating element 140 from the power source 120 ) and/or output an audible or visual warning (e.g., via an LED or speaker) to the user if the temperature of the heating element 140 is approaching or exceeds the boiling point of the nicotine solution 112 .
  • an audible or visual warning e.g., via an LED or speaker
  • the nicotine dosage sensor 200 may be further configured to determine (i.e., estimate or measure) the nicotine or cotinine levels of a user. Because nicotine is metabolized primarily by liver enzymes, the nicotine or cotinine levels of a user may be further based on the liver performance of the user. Accordingly, the nicotine dosage sensor 200 may be further configured to estimate the liver performance of the user based on static and/or dynamic biometrics of the user.
  • the static biometrics of the user may include the body weight of the user (which may be used as an estimate of liver mass) and/or the sex, age, height, weight, and/or body type of the user (which may be used as an estimate of liver performance).
  • the static biometrics of the user may also include the user's average water/fluid intake, sampled cotinine levels, sampled hormone levels, etc.
  • the static biometrics of the user may be input into an external device (e.g., a computer, a smart phone, etc.), transferred to the electronic nicotine delivery device 100 via a wired connection (e.g., USB) or wireless connection (e.g., Bluetooth), and stored in the memory 240 of the nicotine dosage sensor 200 of the electronic nicotine delivery device 100 .
  • an external device e.g., a computer, a smart phone, etc.
  • a wired connection e.g., USB
  • wireless connection e.g., Bluetooth
  • the dynamic biometrics of the user may include the metabolic rate of the user.
  • the user's metabolic rate may be determined by an external device (e.g., a fitness tracker, a fitness watch, etc.) and transferred to and stored by the electronic nicotine delivery device 100 as described above.
  • the dynamic biometrics of the user may also include hydration of the user.
  • the user's hydration may be similarly determined by an external device and transferred to and stored by the electronic nicotine delivery device 100 .
  • the electronic nicotine delivery device 100 may include a hydration sensor.
  • the hydration sensor may be located on the exterior surface of the electronic nicotine delivery device 100 and may determine the bioelectrical impedance of the user based on contact with the user's fingers or mouth. In this instance, the nicotine dosage sensor 200 may estimate the user's hydration based on the bioelectrical impedance of the user.
  • the timer 250 , the inhalation sensor 260 , the air flow sensor 270 , and/or the heating element sensor 280 may be incorporated with or distinct from the nicotine dosage sensor 200 and/or the electronic nicotine delivery device 100 .
  • the nicotine dosage sensor 200 may be integrated with the electronic nicotine delivery device 100 and may be configured to receive static and/or dynamic biometrics of the user from an external device.
  • the nicotine dosage sensor 200 may be stored and executed by an external device configured to receive the duration of each inhalation, the time between inhalations, and/or the bioelectrical impedance of the user from the electronic nicotine delivery device 100 .
  • the ramp up profile and the decaying profile of the electronic nicotine delivery device 100 may change over time.
  • the heating element 140 may oxidize or the output of the power supply 120 may change.
  • the nicotine dosage sensor 200 may be configured to update the device profile 244 to account for the changing characteristics of the electronic nicotine delivery device 100 .
  • the nicotine dosage sensor 200 may be configured to receive measurements or estimates of the nicotine or cotinine levels of a user (e.g., from an external device as described above) and update the device profile 244 based on the measured or estimated nicotine or cotinine levels of a user in order to more accurately determine the amount of nicotine consumed by a user and/or the nicotine or cotinine levels of the user.
  • the nicotine dosage sensor 200 may be configured to output the nicotine consumption information or user nicotine or cotinine levels to the user in the form of visual or audible notification (for example, using an LED, a display, or a speaker).
  • the nicotine dosage sensor 200 may also be configured to output the nicotine consumption information and/or the user nicotine or cotinine levels to an external device (e.g., a computer, a smart phone, a fitness tracker, a fitness watch, etc.).
  • an external device e.g., a computer, a smart phone, a fitness tracker, a fitness watch, etc.
  • FIG. 3 illustrates an electronic nicotine delivery device 300 according to an exemplary embodiment of the present invention. Similar to the electronic nicotine delivery device 100 illustrated in FIG. 1 , the electronic nicotine delivery device 300 may include a reservoir 110 , nicotine solution 112 , and a power source 120 . The electronic nicotine delivery device 300 may also include the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250 , the inhalation sensor 260 , the air flow sensor 270 , and/or the heating element sensor 280 .
  • the electronic nicotine delivery device 300 may also include visual indicators 310 , 320 , and 330 configured to output the nicotine consumption information or user nicotine or cotinine levels described above.
  • the visual indicators 310 , 320 , and 330 may be, for example, light emitting diodes (LEDs) or any other suitable device configured to selectively emit light.
  • the visual indicators 310 , 320 , and 330 may also be, for example, portions of an electronic paper display (e.g., an electrophoretic display, an electro-wetting display, an electrofluidic display, an interferometric modulator, etc.) or any other suitable device configured to selectively reflect light.
  • an electronic paper display e.g., an electrophoretic display, an electro-wetting display, an electrofluidic display, an interferometric modulator, etc.
  • a plurality of visual indicators 310 emit or reflect light proportional to the nicotine consumption over a predetermined time period or user nicotine or cotinine levels.
  • the visual indicators 310 may emit or reflect light proportional to the amount of nicotine consumed over the past 24 hours, the amount of nicotine consumed during the current session, the estimated current plasma levels of a user, or the estimated average plasma levels of a user over the last 24 hours.
  • the visual indicator 320 may indicate that a target minimum amount of nicotine (for example, 0 mg) has been consumed over the last 24 hours.
  • the visual indicator 330 may indicate that a predetermined maximum amount of nicotine (for example, 30 mg) has been consumed over the last 24 hours.
  • FIG. 4 illustrates an electronic nicotine delivery device 400 according to another exemplary embodiment of the present invention. Similar to the electronic nicotine delivery device 100 illustrated in FIG. 1 , the electronic nicotine delivery device 400 may include a reservoir 110 , nicotine solution 112 , and a power source 120 . The electronic nicotine delivery device 400 may also include the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250 , the inhalation sensor 260 , the air flow sensor 270 , and/or the heating element sensor 280 .
  • the electronic nicotine delivery device 400 may also include visual indicators 410 1 - 410 n that mimic the nicotine consumption (or user nicotine or cotinine levels) of a traditional cigarette. Similar to the visual indicators 310 , 320 , and 330 , the visual indicators 410 1 - 410 n may be any suitable device configured to selectively emit or reflect light. In the exemplary embodiment illustrated in FIG. 4 , the visual indicators 410 1 - 410 n emit or reflect light in succession as nicotine is consumed. As shown, visual indicator 420 emits or reflects light while the other visual indicators 410 1 - 410 n are off.
  • the visual indicators 410 1 - 410 n may be configured to output nicotine consumption information proportional to the nicotine included in a traditional cigarette.
  • visual indicator 410 1 may output a visual indication at the start of a smoking session.
  • Visual indicators 410 2 - 410 n may emit or reflect light in succession as the user continues to use the electronic nicotine delivery device 400 .
  • the visual indicator 410 n may emit or reflect light when the nicotine dosage sensor estimates that the amount of nicotine consumed by the user is equivalent to the amount of nicotine in a tradition cigarette.
  • the output of the visual indicators 410 1 - 410 n may be proportional to another pre-determined maximum nicotine consumption or user nicotine or cotinine level.
  • the user nicotine or cotinine level may be based on an estimated current level and an estimated average level over a specified time period.
  • the electronic nicotine delivery device 400 may audibly (e.g., via an optional speaker) or visually (e.g., via the visual indicators 410 1 - 410 n ) alert the user nicotine or cotinine level has fallen beneath a target threshold to notify the user when the user may resume using the electronic nicotine delivery device 400 .
  • the nicotine consumption sensor 200 may limit the amount of nicotine consumed over time.
  • the heating element may be configured to remain unheated if the user has reached or exceeded a predetermined maximum nicotine consumption level in a given time period (for example, a usage session, a daily limit, or any other measure of time) or a predetermined maximum user nicotine or cotinine level.
  • the heating element may be configured to output a reduced amount of heat if the user has reached or exceeded the predetermined maximum nicotine consumption level in the given time period or the predetermined maximum user nicotine or cotinine level.
  • the predetermined maximum nicotine consumption level or the user nicotine or cotinine level may be user adjustable.
  • FIG. 5 illustrates an electronic nicotine delivery device 500 according to another exemplary embodiment of the present invention. Similar to the electronic nicotine delivery device 100 illustrated in FIG. 1 , the electronic nicotine delivery device 500 may include a reservoir 110 , nicotine solution 112 , and a power source 120 . The electronic nicotine delivery device 500 may also include the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250 , the inhalation sensor 260 , the air flow sensor 270 , and/or the heating element sensor 280 .
  • the electronic nicotine delivery device 500 may also include one or more user input devices 510 and 520 configured to adjust the predetermined maximum nicotine consumption or user nicotine or cotinine level.
  • the user input devices 510 and 520 may be, for example, dials or switches connected to a variable resistor.
  • the nicotine dosage sensor 200 may adjust the predetermined maximum nicotine consumption or user nicotine or cotinine level based on the location of the user input devices 510 and 520 .
  • the user input device 510 may be used to adjust the predetermined maximum nicotine consumption for one session while the user input device 520 may be used to adjust a the predetermined maximum nicotine consumption for one rolling 24 hour period.
  • the user input devices 510 and 520 and nicotine dosage sensor 200 may be calibrated such that user input devices 510 and 520 are aligned with visual indicators such as hash marks 512 and 522 .
  • the number of user input devices and the degree of freedom available for each user input device may be constrained by the size of the electronic nicotine delivery device 500 .
  • the predetermined maximum nicotine consumption or user nicotine or cotinine levels may be preprogrammed or adjustable by a user through an external device in communication with the electronic nicotine delivery device 500 wireless or wired connection as described above.
  • the electronic nicotine delivery device 500 may include user input devices similar to user input devices 510 and 520 that allow a user to input one or more user biometrics.
  • the electronic nicotine delivery device may include a user input device that allows a user to input the user's weight.
  • the electronic nicotine delivery device may include one or more alternate reservoirs that may include a reduced concentration of nicotine solution 112 (either in addition to the reservoir 110 or in a separate portion of the reservoir 110 ).
  • the alternate reservoir may enable a user to manually switch to a reduced concentration of nicotine solution.
  • the electronic nicotine delivery device may automatically vaporize the reduced concentration nicotine solution 112 in response to a determination by the nicotine dosage sensor 200 that the user has consumed a predetermined maximum nicotine amount.
  • FIG. 6 illustrates an electronic nicotine delivery device 600 according to another exemplary embodiment of the present invention.
  • the electronic nicotine delivery device 600 may include a power source 120 (similar to the electronic nicotine delivery device 100 illustrated in FIG. 1 ) and the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250 , the inhalation sensor 260 , the air flow sensor 270 , and/or the heating element sensor 280 .
  • the electronic nicotine delivery device 600 may also include reservoirs 610 , 612 , and 614 , for containing solution with three distinct concentrations of nicotine.
  • the reservoir 610 may include the highest concentration of nicotine
  • reservoir 612 may include a reduced-concentration solution
  • the reservoir 614 (on the back side of the electronic nicotine delivery device 600 relative to the viewer) may include a solution with no nicotine.
  • the electronic nicotine delivery device 600 may be configured to vaporize the solution in reservoir 612 until the user has reached or exceeded the predetermined nicotine consumption target in a given time period, and then vaporize the reduced-concentrated nicotine solution (for example, by an alternate heating element and/or a reservoir injection system) in reservoir 614 until nicotine consumption levels are reduced below the target level (or another pre-defined level of nicotine consumption).
  • the electronic nicotine delivery device 600 may also be configured to vaporize the solution in reservoir 614 if the user has reached or exceeded a second predetermined nicotine consumption target in a given time period.
  • the electronic nicotine delivery device 600 may include an on-demand solution mixing device for electromechanically mixing pure nicotine and solvents in a reservoir or directly into the heating element in order to providing a reduced-concentration nicotine solution 112 .
  • the electronic nicotine delivery device 300 - 600 in conjunction with the nicotine dosage sensor 200 may be used as a smoking cessation device.
  • the simple act of informing the user regarding nicotine consumption or user nicotine or cotinine levels may reduce nicotine consumption.
  • the user may be restricted from exceeding a predetermined maximum nicotine consumption or user nicotine or cotinine level.
  • the nicotine dosage sensor 200 may be configured to reduce the predetermined maximum nicotine consumption or user nicotine or cotinine level over a large time window (for example, days, weeks, months, etc.).
  • the nicotine dosage sensor 200 may be configured to account for human models of withdrawal. For instance, the nicotine dosage sensor 200 may allow for high impulses upon wake and then further tapering throughout wakeful hours.
  • the nicotine dosage sensor 200 may be configured to mimic traditional cigarette profiles. For example, a user may prefer a nicotine consumption limit equivalent to one pack of traditional cigarettes per day, spaced out into 20 equal doses equivalent to one traditional cigarette each.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An electronic nicotine delivery device including a nicotine dosage sensor that determines an amount of nicotine consumed by a user based on the duration of an inhalation.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims priority to U.S. Provisional Application No. 61/970,23S, filed Mar. 25, 2014, the entire contents of which is incorporated herein by reference.
  • BACKGROUND
  • 1. Field of the Invention
  • This disclosure relates to an electronic nicotine delivery device having a nicotine dosage sensor configured to determine and/or regulate an amount of nicotine delivered by the electronic nicotine delivery device.
  • 2. Background of the Invention
  • Electronic nicotine delivery devices (such as electronic cigarettes, vaporizers, and tobacco furnaces) are a widely popular means of nicotine delivery. Because they are more analogous to traditional cigarettes than other nicotine delivery devices like gums or patches, it is easier for most users to transition from traditional cigarettes to electronic nicotine delivery devices.
  • Traditional cigarettes, by way of the smoke itself, create a self-limiting maximum rate of nicotine consumption because inhaling traditional cigarette smoke at an increased rate creates levels of discomfort (for example, coughing, carbon monoxide, heat from the smoke, etc.). The electronic nicotine delivery device, however, poses a risk of increased nicotine consumption because the almost-sensationless effect of inhaling the vaporized nicotine solution does not have the self-limiting side effects of traditional cigarettes. Due to inconsistency in manufacturing, the amount of nicotine delivered by each electronic nicotine delivery device may vary from unit to unit. Therefore, nicotine consumption per electronic nicotine delivery device cannot be reliably tracked.
  • SUMMARY
  • One embodiment of the present invention is an electronic nicotine delivery device including a nicotine dosage sensor that determines an amount of nicotine consumed by a user based on the duration of an inhalation.
  • In some instances, the simple act of informing the user regarding nicotine consumption may reduce the nicotine consumption of the user. In other instances, the user may want to be restricted from exceeding a predetermined maximum nicotine consumption level. Accordingly, the electronic nicotine delivery device may restrict the amount of nicotine consumed by the user based on a predetermined nicotine consumption amount or user input.
  • Exemplary embodiments of the present invention may enable an electronic nicotine delivery device to be classified as a smoking cessation device rather than a simple nicotine delivery system. This classification may enable the electronic nicotine delivery device to be purchased through health insurance providers and/or avoid the burdens of additional regulation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Exemplary embodiments will be set forth with reference to the drawings, in which:
  • FIG. 1 illustrates an electronic nicotine delivery device;
  • FIG. 2 illustrates a nicotine dosage sensor according to an exemplary embodiment of the present invention;
  • FIG. 3 illustrates an electronic nicotine delivery device according to another exemplary embodiment of the present invention;
  • FIG. 4 illustrates an electronic nicotine delivery device according to yet another exemplary embodiment of the present invention;
  • FIG. 5 illustrates an electronic nicotine delivery device according to yet another exemplary embodiment of the present invention; and
  • FIG. 6 illustrates an electronic nicotine delivery device according to yet another exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Exemplary embodiments of the present invention will be set forth in detail with reference to the accompanying drawings, in which like reference numerals refer to like elements throughout. The description set forth below and illustrated in part by the drawings is intended to serve as a description of exemplary embodiments of the application and is not intended to represent the only methods by which the present application can be constructed and/or utilized. The description sets forth the functions and the sequence of steps for constructing, calibrating and operating exemplary embodiments of the present invention. It is to be understood, however, that the same or equivalent functions and sequences can be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of this disclosure. Exemplary embodiments illustrated in the accompanying drawings are not necessarily to scale and are instead provided to convey the inventive concepts to one of ordinary skill in the art.
  • FIG. 1 illustrates an electronic nicotine delivery device 100, including a reservoir 110 for storing a diluted nicotine solution 112, a power source 120, and a processor 130 and a heating element 140 (shown inside cut-out 150). The device 100 may also include a negative pressure switch or manually actuated switch (not shown). The processor 130 may be configured to electrically connect the power source 120 and the heating element 140 to vaporize the diluted nicotine solution 112 in response to the switch. The processor 130 may also provide very basic functions including passing current to a decorative light emitting diode (LED), regulating electrical current flow to the heating element 140, and limiting the contiguous amount of time the heating element 140 can be in use for one inhalation (i.e., draw, usage, puff) of the device in order to protect the diluted nicotine solution 112 and heating element 140 from overheating and releasing toxic substances from the nicotine solution (e.g., formaldehyde).
  • While the electronic nicotine delivery device 100 may be an electronic cigarette including the reservoir 110 for storing a diluted nicotine solution 112, in another exemplary embodiment the electronic nicotine delivery device 100 may be any other vaporizing device configured to deliver any vaporized solution (with or without nicotine). In yet another exemplary embodiment, the electronic nicotine delivery device 100 may be a tobacco furnace including a nicotine cartridge (for example, a cartridge containing tobacco and a filter) in addition to or instead of the reservoir 110 for storing the diluted nicotine solution 112.
  • The reservoir 110 may be refillable or disposable. The power source 120 may be a battery, a fuel injector, or any other device configured to supply power to the heating element 140. The power source 120 may be rechargeable or disposable. The reservoir 110 may be removably connected to the power source 120 or the reservoir 110 and the power source 120 may be integrated into a single device. The processor 130 may be incorporated as part of the power source 120, the reservoir 110 or as a separate, removably connectable device.
  • FIG. 2 illustrates a nicotine dosage sensor 200 according to an exemplary embodiment of the present invention. The nicotine dosage sensor 200 includes a processor 230 similar to the processor 130 illustrated in FIG. 1 and memory 240. The electronic nicotine delivery device 100 or the nicotine dosage sensor 200 may also include a timer 250, an inhalation sensor 260, an air flow sensor 270, and/or a heating element sensor 280. The memory 240 may include a solution profile 242 and a device profile 244.
  • The processor 230 may be an integrated circuit or soft logic processor. The memory 240 may be any non-transitory computer-readable storage medium, such flash memory, configured to store data and instructions that, when executed by the processor 230, carry out relevant portions of the features described herein.
  • The timer 250 may be any device configured to measure time intervals. The timer 250 may be “always on” (real-time clock) and measure time intervals as long as the electronic nicotine delivery device 100 is connected to the power source 120 or the electronic nicotine delivery device 100 may include a switch to connect and disconnect the timer 250 from the power source 120. In either instance, the timer 250 is configured to measure time intervals both during and after an inhalation of the electronic nicotine delivery device 100.
  • The inhalation sensor 260 may be any device configured to determine if a user is actively inhaling the vaporized diluted nicotine solution 112. The inhalation sensor 260 may be configured to detect, for example, the output of the negative pressure switch described above, negative pressure from the user, air flow, flow of the vaporized diluted nicotine solution 112 from the reservoir 110, etc. The air flow may be determined by an optional air pressure sensor 270 (discussed below).
  • The nicotine dosage sensor 200 is configured to determine (i.e., estimate and/or measure) the amount of nicotine consumed by a user based on the nicotine content of the diluted nicotine solution 112, the duration of each inhalation, the time elapsed between inhalations, and information indicative of the temperature of the heating element 140 during each inhalation. The nicotine dosage sensor 200 determines the duration of each inhalation and the time elapsed between inhalations based on the outputs of the timer 250 and the inhalation sensor 260.
  • The nicotine content of the nicotine solution 112 may be pre-determined (for example, by analyzing the nicotine solution 112 with a spectrometer tank) and stored in the memory 240 of as part of the solution profile 242. The solution profile 242 may also include additional information regarding the nicotine solution 112. For example, the solution profile 242 may include the burning point of the nicotine solution (i.e., the temperature at which the solution 112 begins releasing toxic substances to the user).
  • After the heating element 140 is activated during inhalation, the temperature of the heating element 140 rises. Accordingly, the temperature of the heating element 140 is dependent on the length of an inhalation. The relationship between the length of an inhalation and the temperature of the heating element may be pre-determined (for example, by simulating the use of a prototypical electronic nicotine delivery device and measuring the physical characteristics of the device) and stored in the memory 240 as part of the device profile 244. The device profile 244 may be determined, for example, by placing the a prototypical electronic nicotine delivery device (e.g., the same model as the electronic nicotine delivery device 100 that includes the nicotine dosage sensor 200) in a simulated puffing device, activating the prototypical electronic nicotine delivery device for a series of successive durations and measuring the temperature of the heating element 140. The device profile 244 may also include addition information regarding the electronic nicotine delivery device 100. The additional information may be pre-determined using the simulated puffing device in combination with the spectrometer, a gas chromatograph, a volume measurement setup, etc. For example, the device profile 244 may determine if and when the electronic nicotine delivery device 100 reaches the burning point of the solution 112.
  • The temperature of the heating element 140 may also be dependent on the time elapsed between each inhalation. As described above, some devices limit the length of a single inhalation in order to prevent the heating element 140 from overheating and burning the nicotine solution 112. A user, however, may initiate multiple inhalations in quick succession, activating the heating element 140 before it has cooled down after the initial inhalation. Accordingly, the device profile 244 may include a ramp up profile indicative of the temperature of the heating element 140 during ramp up (i.e., the temperature increase of the heating element 140 during inhalation) and a decaying profile indicative of the temperature of the heating element 140 during ramp down (i.e., the temperature decrease of the heating element 140 after the heating element is de-activated). The device profile 244 enables the nicotine dosage sensor 200 to determine the temperature of the heating element 140 during a single inhalation or multiple successive inhalations based on the duration of each inhalation and the time elapsed between inhalations.
  • Instead of relying solely on the device profile 244, the electronic nicotine delivery device 100 may include an optional heating element sensor 280 configured to determine the temperature of the heating element 140. In this instance, the nicotine dosage sensor 200 may determine the temperature of the heating element 140, for example, based on the in-line resistance and voltage of the heating element 140 detected by the heating element sensor 280.
  • The amount of nicotine consumed by a user may also depend on the air flow rate of the electronic nicotine delivery device 100 during each inhalation. The nicotine dosage sensor 200 may estimate the air flow during each inhalation based on information included in the device profile 244. For example, an estimated air flow rate may be pre-determined by simulating the use of a prototypical electronic nicotine delivery device as described above and measuring the air flow of the prototypical device during one or more simulated inhalations. In this example, the nicotine dosage sensor 200 may estimate the air flow during each inhalation, for example, by multiplying the estimated air flow rate by the duration of each inhalation. Alternatively, the nicotine dosage sensor 200 may include an optional air flow sensor 270 configured to determine (i.e., estimate or measure) the air flow or air flow rate of the electronic nicotine delivery device 100 during each inhalation. The air flow sensor 270 may be any device configured to measure or estimate the air flow or air flow rate of the electronic nicotine delivery device 100, including a pressure gauge, a vacuum gauge, a diaphragm, an impeller setup, etc.
  • The nicotine dosage sensor 200 includes formula or look-up table stored in the memory 240 that outputs an amount of nicotine consumed by the user based on the duration of each inhalation or both the duration of each inhalation and the time elapsed between inhalations. As described above, the relationship between the amount of nicotine consumed by a user of the electronic nicotine delivery device 100 and the duration of each inhalation (or both the duration of each inhalation and the time elapsed between inhalations) is determined based on characteristics of the solution 112 stored in the solution profile 242 and characteristics of the electronic nicotine delivery device 100 stored in the device profile 244.
  • In one exemplary embodiment, the electronic nicotine delivery device 100 may be configured to pair with a single diluted nicotine solution 112 (e.g., a single use electronic cigarette, an electronic cigarette with one type of mechanically compatible reservoir 110 pre-filled with a single type of diluted nicotine solution 112, etc.). In this embodiment, the device profile 244 associated with the electronic nicotine delivery device 100 and the solution profile 242 associated with the diluted nicotine solution 112 may be pre-stored in the memory 240 of the nicotine dosage sensor 200 of the electronic nicotine delivery device 100.
  • In another exemplary embodiment, the electronic nicotine delivery device 100 may be configured to pair with a multiple diluted nicotine solutions 112 (e.g., an electronic cigarette with multiple compatible reservoirs 110, a refillable vaporizer, etc.). In this embodiment, the device profile 244 associated with the electronic nicotine delivery device 100 may be pre-stored in the memory 240 and the solution profile 242 may be selected by the user based on the diluted nicotine solution 112 paired with the electronic nicotine delivery device 100. The solution profile 242 associated with the diluted nicotine solution 112 may be downloaded from the internet via an external device (e.g., a computer, a smart phone, etc.), transferred to the electronic nicotine delivery device 100 via a wired connection (e.g., USB) or wireless connection (e.g., Bluetooth), and stored in the memory 240 of the nicotine dosage sensor 200 of the electronic nicotine delivery device 100. The solution profile 242 associated with the diluted nicotine solution 112 may be determined and/or distributed by the manufacturer of the solution 112 or a third party.
  • The amount of nicotine consumed by a user may be further based on the type of nicotine solution 112 (e.g., a vegetable glycerin solution, a propylene glycol solution, etc.). Accordingly, the solution profile 242 may include information indicative of the nicotine solution type and the nicotine dosage sensor 200 may further determine the amount of nicotine consumed by the user based on the nicotine solution type.
  • As described above, continuing to inhale from the electronic nicotine delivery device 100 after the temperature of the heating element 140 has reached the burning point of the nicotine solution 112 may cause the user to ingest potentially toxic substances (e.g., formaldehyde) from the nicotine solution. Conventional electronic nicotine delivery devices may attempt to prevent the burning of a nicotine solution by limiting the duration of a single inhalation. A user, however, may further increase the temperature of a heating element of a conventional electronic nicotine delivery device by initiating multiple successive inhalations. As also described above, the nicotine dosage sensor 200 of the present invention may be configured to determine the temperature of the heating element 140 and the solution profile 242 may include information indicative of the boiling point of the nicotine solution 112. Therefore, the nicotine dosage sensor 200 may be further configured to prevent the heating element 140 from boiling the nicotine solution 112 (even when the user initiates successive inhalations) by comparing the temperature of the heating element 140 (as determined by the nicotine dosage sensor 200) and the boiling point of the nicotine solution 112 and outputting a signal if the temperature of the heating element 140 is approaching or exceeds the boiling point of the nicotine solution 112. The electronic nicotine delivery device 100 may be configured to prevent the heating element 140 from approaching or exceeding the boiling point of the nicotine solution 112 (e.g., by disconnecting the heating element 140 from the power source 120) and/or output an audible or visual warning (e.g., via an LED or speaker) to the user if the temperature of the heating element 140 is approaching or exceeds the boiling point of the nicotine solution 112.
  • The nicotine dosage sensor 200 may be further configured to determine (i.e., estimate or measure) the nicotine or cotinine levels of a user. Because nicotine is metabolized primarily by liver enzymes, the nicotine or cotinine levels of a user may be further based on the liver performance of the user. Accordingly, the nicotine dosage sensor 200 may be further configured to estimate the liver performance of the user based on static and/or dynamic biometrics of the user. The static biometrics of the user may include the body weight of the user (which may be used as an estimate of liver mass) and/or the sex, age, height, weight, and/or body type of the user (which may be used as an estimate of liver performance). The static biometrics of the user may also include the user's average water/fluid intake, sampled cotinine levels, sampled hormone levels, etc. The static biometrics of the user may be input into an external device (e.g., a computer, a smart phone, etc.), transferred to the electronic nicotine delivery device 100 via a wired connection (e.g., USB) or wireless connection (e.g., Bluetooth), and stored in the memory 240 of the nicotine dosage sensor 200 of the electronic nicotine delivery device 100.
  • The dynamic biometrics of the user may include the metabolic rate of the user. The user's metabolic rate may be determined by an external device (e.g., a fitness tracker, a fitness watch, etc.) and transferred to and stored by the electronic nicotine delivery device 100 as described above. The dynamic biometrics of the user may also include hydration of the user. The user's hydration may be similarly determined by an external device and transferred to and stored by the electronic nicotine delivery device 100. Alternatively, the electronic nicotine delivery device 100 may include a hydration sensor. For example, the hydration sensor may be located on the exterior surface of the electronic nicotine delivery device 100 and may determine the bioelectrical impedance of the user based on contact with the user's fingers or mouth. In this instance, the nicotine dosage sensor 200 may estimate the user's hydration based on the bioelectrical impedance of the user.
  • The timer 250, the inhalation sensor 260, the air flow sensor 270, and/or the heating element sensor 280 may be incorporated with or distinct from the nicotine dosage sensor 200 and/or the electronic nicotine delivery device 100. As described above, the nicotine dosage sensor 200 may be integrated with the electronic nicotine delivery device 100 and may be configured to receive static and/or dynamic biometrics of the user from an external device. Alternatively, the nicotine dosage sensor 200 may be stored and executed by an external device configured to receive the duration of each inhalation, the time between inhalations, and/or the bioelectrical impedance of the user from the electronic nicotine delivery device 100.
  • The ramp up profile and the decaying profile of the electronic nicotine delivery device 100 may change over time. For example, the heating element 140 may oxidize or the output of the power supply 120 may change. Accordingly, the nicotine dosage sensor 200 may be configured to update the device profile 244 to account for the changing characteristics of the electronic nicotine delivery device 100. For example, the nicotine dosage sensor 200 may be configured to receive measurements or estimates of the nicotine or cotinine levels of a user (e.g., from an external device as described above) and update the device profile 244 based on the measured or estimated nicotine or cotinine levels of a user in order to more accurately determine the amount of nicotine consumed by a user and/or the nicotine or cotinine levels of the user.
  • The nicotine dosage sensor 200 may be configured to output the nicotine consumption information or user nicotine or cotinine levels to the user in the form of visual or audible notification (for example, using an LED, a display, or a speaker). The nicotine dosage sensor 200 may also be configured to output the nicotine consumption information and/or the user nicotine or cotinine levels to an external device (e.g., a computer, a smart phone, a fitness tracker, a fitness watch, etc.).
  • FIG. 3 illustrates an electronic nicotine delivery device 300 according to an exemplary embodiment of the present invention. Similar to the electronic nicotine delivery device 100 illustrated in FIG. 1, the electronic nicotine delivery device 300 may include a reservoir 110, nicotine solution 112, and a power source 120. The electronic nicotine delivery device 300 may also include the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250, the inhalation sensor 260, the air flow sensor 270, and/or the heating element sensor 280.
  • The electronic nicotine delivery device 300 may also include visual indicators 310, 320, and 330 configured to output the nicotine consumption information or user nicotine or cotinine levels described above. The visual indicators 310, 320, and 330 may be, for example, light emitting diodes (LEDs) or any other suitable device configured to selectively emit light. The visual indicators 310, 320, and 330 may also be, for example, portions of an electronic paper display (e.g., an electrophoretic display, an electro-wetting display, an electrofluidic display, an interferometric modulator, etc.) or any other suitable device configured to selectively reflect light. In the exemplary embodiment illustrated in FIG. 3, a plurality of visual indicators 310 emit or reflect light proportional to the nicotine consumption over a predetermined time period or user nicotine or cotinine levels. The visual indicators 310 may emit or reflect light proportional to the amount of nicotine consumed over the past 24 hours, the amount of nicotine consumed during the current session, the estimated current plasma levels of a user, or the estimated average plasma levels of a user over the last 24 hours. The visual indicator 320 may indicate that a target minimum amount of nicotine (for example, 0 mg) has been consumed over the last 24 hours. The visual indicator 330 may indicate that a predetermined maximum amount of nicotine (for example, 30 mg) has been consumed over the last 24 hours.
  • FIG. 4 illustrates an electronic nicotine delivery device 400 according to another exemplary embodiment of the present invention. Similar to the electronic nicotine delivery device 100 illustrated in FIG. 1, the electronic nicotine delivery device 400 may include a reservoir 110, nicotine solution 112, and a power source 120. The electronic nicotine delivery device 400 may also include the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250, the inhalation sensor 260, the air flow sensor 270, and/or the heating element sensor 280.
  • The electronic nicotine delivery device 400 may also include visual indicators 410 1-410 n that mimic the nicotine consumption (or user nicotine or cotinine levels) of a traditional cigarette. Similar to the visual indicators 310, 320, and 330, the visual indicators 410 1-410 n may be any suitable device configured to selectively emit or reflect light. In the exemplary embodiment illustrated in FIG. 4, the visual indicators 410 1-410 n emit or reflect light in succession as nicotine is consumed. As shown, visual indicator 420 emits or reflects light while the other visual indicators 410 1-410 n are off.
  • The visual indicators 410 1-410 n may be configured to output nicotine consumption information proportional to the nicotine included in a traditional cigarette. For example, visual indicator 410 1 may output a visual indication at the start of a smoking session. Visual indicators 410 2-410 n may emit or reflect light in succession as the user continues to use the electronic nicotine delivery device 400. The visual indicator 410 n may emit or reflect light when the nicotine dosage sensor estimates that the amount of nicotine consumed by the user is equivalent to the amount of nicotine in a tradition cigarette.
  • Alternatively, the output of the visual indicators 410 1-410 n may be proportional to another pre-determined maximum nicotine consumption or user nicotine or cotinine level. The user nicotine or cotinine level may be based on an estimated current level and an estimated average level over a specified time period. The electronic nicotine delivery device 400 may audibly (e.g., via an optional speaker) or visually (e.g., via the visual indicators 410 1-410 n) alert the user nicotine or cotinine level has fallen beneath a target threshold to notify the user when the user may resume using the electronic nicotine delivery device 400.
  • The nicotine consumption sensor 200 may limit the amount of nicotine consumed over time. For example, the heating element may be configured to remain unheated if the user has reached or exceeded a predetermined maximum nicotine consumption level in a given time period (for example, a usage session, a daily limit, or any other measure of time) or a predetermined maximum user nicotine or cotinine level. Alternatively, the heating element may be configured to output a reduced amount of heat if the user has reached or exceeded the predetermined maximum nicotine consumption level in the given time period or the predetermined maximum user nicotine or cotinine level. The predetermined maximum nicotine consumption level or the user nicotine or cotinine level may be user adjustable.
  • FIG. 5 illustrates an electronic nicotine delivery device 500 according to another exemplary embodiment of the present invention. Similar to the electronic nicotine delivery device 100 illustrated in FIG. 1, the electronic nicotine delivery device 500 may include a reservoir 110, nicotine solution 112, and a power source 120. The electronic nicotine delivery device 500 may also include the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250, the inhalation sensor 260, the air flow sensor 270, and/or the heating element sensor 280.
  • The electronic nicotine delivery device 500 may also include one or more user input devices 510 and 520 configured to adjust the predetermined maximum nicotine consumption or user nicotine or cotinine level. The user input devices 510 and 520 may be, for example, dials or switches connected to a variable resistor. The nicotine dosage sensor 200 may adjust the predetermined maximum nicotine consumption or user nicotine or cotinine level based on the location of the user input devices 510 and 520.
  • In the exemplary embodiment illustrated in FIG. 5, the user input device 510 may be used to adjust the predetermined maximum nicotine consumption for one session while the user input device 520 may be used to adjust a the predetermined maximum nicotine consumption for one rolling 24 hour period. The user input devices 510 and 520 and nicotine dosage sensor 200 may be calibrated such that user input devices 510 and 520 are aligned with visual indicators such as hash marks 512 and 522. The number of user input devices and the degree of freedom available for each user input device may be constrained by the size of the electronic nicotine delivery device 500. Alternatively, the predetermined maximum nicotine consumption or user nicotine or cotinine levels may be preprogrammed or adjustable by a user through an external device in communication with the electronic nicotine delivery device 500 wireless or wired connection as described above.
  • Alternatively, the electronic nicotine delivery device 500 may include user input devices similar to user input devices 510 and 520 that allow a user to input one or more user biometrics. For example, the electronic nicotine delivery device may include a user input device that allows a user to input the user's weight.
  • The electronic nicotine delivery device may include one or more alternate reservoirs that may include a reduced concentration of nicotine solution 112 (either in addition to the reservoir 110 or in a separate portion of the reservoir 110). The alternate reservoir may enable a user to manually switch to a reduced concentration of nicotine solution. Alternatively, the electronic nicotine delivery device may automatically vaporize the reduced concentration nicotine solution 112 in response to a determination by the nicotine dosage sensor 200 that the user has consumed a predetermined maximum nicotine amount.
  • FIG. 6 illustrates an electronic nicotine delivery device 600 according to another exemplary embodiment of the present invention. The electronic nicotine delivery device 600 may include a power source 120 (similar to the electronic nicotine delivery device 100 illustrated in FIG. 1) and the nicotine dosage sensor 200 illustrated in FIG. 2 as well as the timer 250, the inhalation sensor 260, the air flow sensor 270, and/or the heating element sensor 280. The electronic nicotine delivery device 600 may also include reservoirs 610, 612, and 614, for containing solution with three distinct concentrations of nicotine.
  • For example, the reservoir 610 may include the highest concentration of nicotine, reservoir 612 may include a reduced-concentration solution, and the reservoir 614 (on the back side of the electronic nicotine delivery device 600 relative to the viewer) may include a solution with no nicotine. The electronic nicotine delivery device 600 may be configured to vaporize the solution in reservoir 612 until the user has reached or exceeded the predetermined nicotine consumption target in a given time period, and then vaporize the reduced-concentrated nicotine solution (for example, by an alternate heating element and/or a reservoir injection system) in reservoir 614 until nicotine consumption levels are reduced below the target level (or another pre-defined level of nicotine consumption). The electronic nicotine delivery device 600 may also be configured to vaporize the solution in reservoir 614 if the user has reached or exceeded a second predetermined nicotine consumption target in a given time period.
  • Alternatively, the electronic nicotine delivery device 600 may include an on-demand solution mixing device for electromechanically mixing pure nicotine and solvents in a reservoir or directly into the heating element in order to providing a reduced-concentration nicotine solution 112.
  • In each of the exemplary embodiments described above, the electronic nicotine delivery device 300-600 in conjunction with the nicotine dosage sensor 200 may be used as a smoking cessation device. In some instances, the simple act of informing the user regarding nicotine consumption or user nicotine or cotinine levels may reduce nicotine consumption. In other instances, the user may be restricted from exceeding a predetermined maximum nicotine consumption or user nicotine or cotinine level.
  • The nicotine dosage sensor 200 may be configured to reduce the predetermined maximum nicotine consumption or user nicotine or cotinine level over a large time window (for example, days, weeks, months, etc.). The nicotine dosage sensor 200 may be configured to account for human models of withdrawal. For instance, the nicotine dosage sensor 200 may allow for high impulses upon wake and then further tapering throughout wakeful hours. Alternatively, the nicotine dosage sensor 200 may be configured to mimic traditional cigarette profiles. For example, a user may prefer a nicotine consumption limit equivalent to one pack of traditional cigarettes per day, spaced out into 20 equal doses equivalent to one traditional cigarette each.
  • While exemplary embodiments have been set forth above, those skilled in the art who have reviewed the present disclosure will readily appreciate that other embodiments can be realized within the scope of the invention. For example, while this disclosure describes regulating five distinct measures of nicotine consumption with respect to time (peak nicotine plasma levels, average nicotine plasma levels, cumulative nicotine consumption over a sliding window, cotinine levels over a sliding window, and nicotine consumption per session) it is to be understood that other metrics are simply reconfiguration of the same logic (programmable variants) and should be encompassed by this application. Therefore, the present invention should be construed as limited only by the appended claims.

Claims (24)

What is claimed is:
1. An electronic nicotine delivery device comprising:
a reservoir configured to store a nicotine solution;
a heating element configured to vaporize the nicotine solution;
a power source configured to supply power to the heating element;
an inhalation sensor configured to detect an inhalation by a user;
a timer; and
a nicotine dosage sensor comprising a processor and memory, the nicotine dosage sensor configured to determine an amount of nicotine consumed by the user based on a duration of the inhalation.
2. The device of claim 1, wherein the nicotine dosage sensor determines the amount of nicotine consumed by the user further based on information indicative of a relationship between the duration of the inhalation and a temperature of the heating element.
3. The device of claim 2, wherein the memory includes a device profile, the device profile including the information indicative of the relationship between the duration of the inhalation and the temperature of the heating element.
4. The device of claim 3, wherein the nicotine dosage sensor determines the amount of nicotine consumed by the user further based on a time between the inhalation and a previous inhalation.
5. The device of claim 4, wherein the device profile further includes a ramp up profile indicative of the temperature of the heating element during inhalation and a decaying profile indicative of the temperature of the heating element after the heating element is de-activated.
6. The device of claim 3, wherein the nicotine dosage sensor determines the amount of nicotine consumed by the user further based on information indicative of an air flow rate of the electronic nicotine delivery device.
7. The device of claim 6, wherein the information indicative of the air flow rate of the electronic nicotine delivery device is stored in the device profile.
8. The device of claim 6, further comprising an air flow sensor configured to determine the air flow rate of the electronic nicotine delivery device.
9. The device of claim 1, wherein the nicotine dosage sensor determines the amount of nicotine consumed by the user further based on a nicotine concentration of the nicotine solution.
10. The device of claim 9, wherein the memory includes a solution profile associated with the nicotine solution, the solution profile including the nicotine concentration.
11. The device of claim 10, wherein the device is configured to receive the solution profile associated with the nicotine solution from an external device.
12. The device of claim 10, wherein the solution profile further includes a burning point of the nicotine solution.
13. The device of claim 12, wherein the nicotine dosage sensor is further configured to determine a temperature of the heating element and compare the temperature of the heating element to the boiling point of the nicotine solution.
14. The device of claim 13, wherein the device is configured to output an indication to the user in response to the temperature of the heating element approaching or exceeding the boiling point of the nicotine solution.
15. The device of claim 14, wherein the device is configured to interrupt the supply of power to the heating element in response to a determination that the temperature of the heating element approaching or exceeding the boiling point of the nicotine solution.
16. The device of claim 1, further comprising:
a visual indicator configured to output a visual indication indicative of the amount of nicotine consumed by the user.
17. The device of claim 16, wherein the visual indication is indicative of a comparison of the amount of nicotine consumed by the user and an amount of nicotine in a traditional cigarette.
18. The device of claim 16, wherein the visual indicator comprises a plurality of light emitting diodes.
19. The device of claim 1, wherein the nicotine dosage sensor is configured to output data indicative of the nicotine consumed by the user to a health monitoring device.
20. The device of claim 1, wherein the nicotine dosage sensor is configured to compare the amount of nicotine consumed by the user to a nicotine consumption limit.
21. The device of claim 20, wherein the nicotine consumption limit is user adjustable.
22. The device of claim 20, wherein the nicotine dosage sensor is configured to reduce the nicotine consumption limit over time.
23. The device of claim 20, wherein the device is configured to interrupt the supply of power to the heating element in response to a determination that the amount of nicotine consumed is greater than or equal to the nicotine consumption limit.
24. The electronic nicotine delivery device of claim 20, wherein:
the reservoir is a first reservoir for storing a first nicotine solution with a first nicotine concentration,
the electronic nicotine delivery device further comprises a second reservoir for storing a second nicotine solution with a second nicotine concentration, and the device is configured to:
vaporize the first nicotine solution in response to a determination that the amount of nicotine consumed is less than the nicotine consumption limit, and
vaporize the second nicotine solution in response to a determination that the amount of nicotine consumed is greater than or equal to the nicotine consumption limit.
US14/483,828 2014-03-25 2014-09-11 Nicotine dosage sensor Abandoned US20150272220A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/483,828 US20150272220A1 (en) 2014-03-25 2014-09-11 Nicotine dosage sensor
US14/533,874 US20150272222A1 (en) 2014-03-25 2014-11-05 Inhalation sensor for alternative nicotine/thc delivery device
PCT/US2015/022299 WO2015148547A1 (en) 2014-03-25 2015-03-24 Inhalation sensor for alternative nicotine/thc delivery device
US16/811,595 US20200205472A1 (en) 2014-03-25 2020-03-06 Software-controlled alternative nicotine/thc delivery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461970238P 2014-03-25 2014-03-25
US14/483,828 US20150272220A1 (en) 2014-03-25 2014-09-11 Nicotine dosage sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/533,874 Continuation-In-Part US20150272222A1 (en) 2014-03-25 2014-11-05 Inhalation sensor for alternative nicotine/thc delivery device

Publications (1)

Publication Number Publication Date
US20150272220A1 true US20150272220A1 (en) 2015-10-01

Family

ID=54188556

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/483,828 Abandoned US20150272220A1 (en) 2014-03-25 2014-09-11 Nicotine dosage sensor

Country Status (1)

Country Link
US (1) US20150272220A1 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160029695A1 (en) * 2014-07-29 2016-02-04 Joe Benites Vapor safety ring for mechanical mods
USD758650S1 (en) * 2014-10-16 2016-06-07 Shenzhen Smaco Technology Limited Electronic cigarette device
US20160157524A1 (en) * 2014-12-05 2016-06-09 Adam Bowen Calibrated dose control
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
USD784609S1 (en) * 2015-03-27 2017-04-18 Tuanfang Liu Electronic cigarette
WO2017149481A1 (en) * 2016-03-04 2017-09-08 Rai Strategic Holdings, Inc. Flexible display for an aerosol delivery device
USD814102S1 (en) * 2016-09-16 2018-03-27 Nesta Holding Co. Ltd. Vaporizer pen
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
CN108402520A (en) * 2018-02-06 2018-08-17 王孝骞 A kind of nicotine quantization controlling transmission mode based on Intelligent electronic cigarette
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
US10327479B2 (en) 2017-03-15 2019-06-25 Canopy Growth Corporation System and method for an improved personal vapourization device
JP2019519198A (en) * 2016-04-29 2019-07-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with visual feedback device
WO2019169002A1 (en) * 2018-02-27 2019-09-06 Juul Labs, Inc. Mass output controlled vaporizer
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10405580B2 (en) 2016-07-07 2019-09-10 Altria Client Services Llc Mechanically-adjustable e-vaping device flavor assembly
US10463069B2 (en) 2013-12-05 2019-11-05 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
CN110477459A (en) * 2019-08-21 2019-11-22 湖南人文科技学院 Pipe tobacco electronic cigarette
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US20200008487A1 (en) * 2014-02-28 2020-01-09 Ayr Ltd. E-cigarette personal vaporizer
USD873479S1 (en) 2017-11-16 2020-01-21 Patrick Lehoux Set of windows for a vaporizer pen
WO2020037226A1 (en) 2018-08-16 2020-02-20 Vapor Dosing Technologies, Inc. Vapor dosing platform for vaporization cartridges
USD876719S1 (en) 2018-06-18 2020-02-25 Canopy Growth Corporation Vape device
US10588356B2 (en) 2016-01-28 2020-03-17 Zenigata Llc Vapor delivery systems and methods
US20200093187A1 (en) * 2014-06-09 2020-03-26 Nicoventures Holdings Limited Electronic vapour provision system
WO2020064637A1 (en) * 2018-09-24 2020-04-02 Nerudia Limited Smoking substitute device
US20200137570A1 (en) * 2018-10-29 2020-04-30 Zorday IP, LLC Network-enabled electronic cigarette
WO2020086883A1 (en) * 2018-10-24 2020-04-30 Vosen Steven R Vaporizer and method of operating a vaporizer
US10653180B2 (en) 2013-06-14 2020-05-19 Juul Labs, Inc. Multiple heating elements with separate vaporizable materials in an electric vaporization device
US10661035B2 (en) * 2018-01-17 2020-05-26 Indose Inc Inhalation device with constricted flow pathway
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
CN111418900A (en) * 2020-03-20 2020-07-17 深圳麦克韦尔科技有限公司 Tobacco tar nicotine content detection system, method and device and electronic atomization device
EP3711514A1 (en) * 2019-03-22 2020-09-23 Nerudia Limited Smoking substitute system
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD907289S1 (en) 2019-08-02 2021-01-05 Canopy Growth Corporation Vape device
US10888665B2 (en) 2019-01-02 2021-01-12 Gofire, Inc. System and method for multi-modal dosing device
WO2021011870A1 (en) * 2015-12-07 2021-01-21 Indose Inc. Vaporizer with dosimeter and delivered dosage communication
JP2021503901A (en) * 2017-11-22 2021-02-15 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. Electronic vaporizer session operation
US10952468B2 (en) 2013-05-06 2021-03-23 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
EP3682751A4 (en) * 2017-09-12 2021-06-30 Changzhou Patent Electronic Technology Co., Ltd Method for obtaining intake quantity of target substance and electronic device
US11064727B2 (en) 2019-02-06 2021-07-20 Altria Client Services Llc Sensor apparatuses and systems
US11075995B2 (en) 2016-12-27 2021-07-27 Gofire, Inc. System and method for managing concentrate usage of a user
US11083850B2 (en) 2018-08-21 2021-08-10 Vivera Pharmaceuticals Inc. Secure smart dosing system with automated delivery, measurement, and management
US11090449B2 (en) 2018-08-21 2021-08-17 Vivera Pharmaceuticals Inc. Smart inhaler device with automated dose delivery, measurement, and management
US11109622B1 (en) 2020-03-30 2021-09-07 Gofire, Inc. System and method for metered dosing vaporizer
US20210289845A1 (en) * 2018-07-26 2021-09-23 Philip Morris Products S.A. Aerosol-generating device having improved power supply controller
US11134722B2 (en) 2013-11-12 2021-10-05 Vmr Products Llc Vaporizer
US20220018795A1 (en) * 2020-07-17 2022-01-20 Robert Bosch Gmbh Method for determining a nicotine content in a gas mixture
EP3496792B1 (en) 2016-08-09 2022-03-09 Hauni Maschinenbau GmbH Method of operating an inhaler
US20220095695A1 (en) * 2015-12-07 2022-03-31 Indose Inc Inhalation device with cylindrical rotatable dial for input of a target amount of inhaled substance
US11439183B2 (en) * 2017-02-10 2022-09-13 Nicoventures Trading Limited Vapor provision system
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
US20230141797A1 (en) * 2021-11-05 2023-05-11 Nicoventures Trading Limited Aerosol provision system
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device
US11800898B2 (en) 2017-12-20 2023-10-31 Nicoventures Trading Limited Electronic aerosol provision system
WO2023212347A1 (en) * 2022-04-28 2023-11-02 Regents Of The University Of Michigan Closed-loop architecture for distributing and administering medicines to patients
US11856654B2 (en) 2016-04-29 2023-12-26 Altria Client Services Llc Aerosol generating device with visual feedback device
US11871321B2 (en) 2017-12-29 2024-01-09 Nicoventures Trading Limited Device identification method
US11871795B2 (en) 2017-12-20 2024-01-16 Nicoventures Trading Limited Electronic aerosol provision system
US11924728B2 (en) 2017-05-03 2024-03-05 Nicoventures Trading Limited Method and an aerosol delivery device for transmitting aerosol delivery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947875A (en) * 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Flavor delivery articles utilizing electrical energy
US20080257367A1 (en) * 2007-04-23 2008-10-23 Greg Paterno Electronic evaporable substance delivery device and method
US20110265806A1 (en) * 2010-04-30 2011-11-03 Ramon Alarcon Electronic smoking device
US20120291791A1 (en) * 2011-05-19 2012-11-22 Neurofocus, Inc. Methods and apparatus for nicotine delivery reduction
US8667891B2 (en) * 2009-03-12 2014-03-11 Wal-Mart Stores, Inc. Liquid director and beverage maker including same
US20150047662A1 (en) * 2012-04-12 2015-02-19 Jt International Sa Aerosol-generation devices
US20160106936A1 (en) * 2014-10-21 2016-04-21 Breathe eCigs Corp. Personal Vaporizer Having Controlled Usage
US9363860B1 (en) * 2013-11-25 2016-06-07 Phahol Lowchareonkul Intelligent light source
US20160157524A1 (en) * 2014-12-05 2016-06-09 Adam Bowen Calibrated dose control
US9423152B2 (en) * 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US20160278435A1 (en) * 2013-10-29 2016-09-29 Smokewatchers Sas Smoking cessation device
US20160334119A1 (en) * 2015-05-15 2016-11-17 Lunatech, Llc Integration of vaporized or nebulized air in medical environments
US20170150756A1 (en) * 2015-11-30 2017-06-01 National Concessions Group Inc. Dual-activation for vaporizer devices
US9675114B2 (en) * 2012-11-08 2017-06-13 Ludovicus Josephine Felicien Timmermans Real time variable voltage programmable electronic cigarette and method
US20170203058A1 (en) * 2014-06-30 2017-07-20 Syqe Medical Ltd. Flow regulating inhaler device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947875A (en) * 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Flavor delivery articles utilizing electrical energy
US20080257367A1 (en) * 2007-04-23 2008-10-23 Greg Paterno Electronic evaporable substance delivery device and method
US8667891B2 (en) * 2009-03-12 2014-03-11 Wal-Mart Stores, Inc. Liquid director and beverage maker including same
US20110265806A1 (en) * 2010-04-30 2011-11-03 Ramon Alarcon Electronic smoking device
US20120291791A1 (en) * 2011-05-19 2012-11-22 Neurofocus, Inc. Methods and apparatus for nicotine delivery reduction
US20150047662A1 (en) * 2012-04-12 2015-02-19 Jt International Sa Aerosol-generation devices
US9675114B2 (en) * 2012-11-08 2017-06-13 Ludovicus Josephine Felicien Timmermans Real time variable voltage programmable electronic cigarette and method
US9423152B2 (en) * 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US20160278435A1 (en) * 2013-10-29 2016-09-29 Smokewatchers Sas Smoking cessation device
US9363860B1 (en) * 2013-11-25 2016-06-07 Phahol Lowchareonkul Intelligent light source
US20170203058A1 (en) * 2014-06-30 2017-07-20 Syqe Medical Ltd. Flow regulating inhaler device
US20160106936A1 (en) * 2014-10-21 2016-04-21 Breathe eCigs Corp. Personal Vaporizer Having Controlled Usage
US20160157524A1 (en) * 2014-12-05 2016-06-09 Adam Bowen Calibrated dose control
US20160334119A1 (en) * 2015-05-15 2016-11-17 Lunatech, Llc Integration of vaporized or nebulized air in medical environments
US20170150756A1 (en) * 2015-11-30 2017-06-01 National Concessions Group Inc. Dual-activation for vaporizer devices

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10952468B2 (en) 2013-05-06 2021-03-23 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
US10653180B2 (en) 2013-06-14 2020-05-19 Juul Labs, Inc. Multiple heating elements with separate vaporizable materials in an electric vaporization device
US11134722B2 (en) 2013-11-12 2021-10-05 Vmr Products Llc Vaporizer
US11744277B2 (en) 2013-12-05 2023-09-05 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US10463069B2 (en) 2013-12-05 2019-11-05 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US11510433B2 (en) 2013-12-05 2022-11-29 Juul Labs, Inc. Nicotine liquid formulations for aerosol devices and methods thereof
US10117465B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10070669B2 (en) 2013-12-23 2018-09-11 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10912331B2 (en) 2013-12-23 2021-02-09 Juul Labs, Inc. Vaporization device systems and methods
US10701975B2 (en) 2013-12-23 2020-07-07 Juul Labs, Inc. Vaporization device systems and methods
US10117466B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10058124B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US11752283B2 (en) 2013-12-23 2023-09-12 Juul Labs, Inc. Vaporization device systems and methods
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10201190B2 (en) 2013-12-23 2019-02-12 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10667560B2 (en) 2013-12-23 2020-06-02 Juul Labs, Inc. Vaporizer apparatus
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10264823B2 (en) 2013-12-23 2019-04-23 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10681938B2 (en) 2014-02-28 2020-06-16 Ayr Ltd. E-cigarette personal vaporizer
US10638796B2 (en) 2014-02-28 2020-05-05 Ayr Ltd. E-cigarette personal vaporizer
US10806189B2 (en) 2014-02-28 2020-10-20 Ayr Ltd. E-cigarette personal vaporizer
US10750789B2 (en) * 2014-02-28 2020-08-25 Ayr Ltd. E-cigarette personal vaporizer
US10721972B2 (en) 2014-02-28 2020-07-28 Ayr Ltd. E-cigarette personal vaporizer
US10716334B2 (en) 2014-02-28 2020-07-21 Ayr Ltd. E-cigarette personal vaporizer
US10701984B2 (en) 2014-02-28 2020-07-07 Ayr Ltd. E-cigarette personal vaporizer
US10694786B2 (en) 2014-02-28 2020-06-30 Ayr Ltd. E-cigarette personal vaporizer
US10687559B2 (en) 2014-02-28 2020-06-23 Ayr Ltd. E-cigarette personal vaporizer
US10687560B2 (en) 2014-02-28 2020-06-23 Ayr Ltd. E-cigarette personal vaporizer
US11751609B2 (en) 2014-02-28 2023-09-12 Ayr Ltd. E-cigarette personal vaporizer
US11690408B2 (en) 2014-02-28 2023-07-04 Ayr Ltd. E-cigarette personal vaporizer
US20200008487A1 (en) * 2014-02-28 2020-01-09 Ayr Ltd. E-cigarette personal vaporizer
US11253006B2 (en) * 2014-02-28 2022-02-22 Ayr Ltd. E-cigarette personal vaporizer
US10631577B2 (en) 2014-02-28 2020-04-28 Ayr Ltd. E-cigarette personal vaporizer
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
US20200093187A1 (en) * 2014-06-09 2020-03-26 Nicoventures Holdings Limited Electronic vapour provision system
US11116915B2 (en) * 2014-06-09 2021-09-14 Nicoventures Holdings Limited Electronic vapour provision system
US20160029695A1 (en) * 2014-07-29 2016-02-04 Joe Benites Vapor safety ring for mechanical mods
USD758650S1 (en) * 2014-10-16 2016-06-07 Shenzhen Smaco Technology Limited Electronic cigarette device
CN112155255A (en) * 2014-12-05 2021-01-01 尤尔实验室有限公司 Corrective dose control
US11565057B2 (en) * 2014-12-05 2023-01-31 Juul Labs, Inc. Calibrated dose control
US20160157524A1 (en) * 2014-12-05 2016-06-09 Adam Bowen Calibrated dose control
US10512282B2 (en) * 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
USD784609S1 (en) * 2015-03-27 2017-04-18 Tuanfang Liu Electronic cigarette
US20220095695A1 (en) * 2015-12-07 2022-03-31 Indose Inc Inhalation device with cylindrical rotatable dial for input of a target amount of inhaled substance
WO2021011870A1 (en) * 2015-12-07 2021-01-21 Indose Inc. Vaporizer with dosimeter and delivered dosage communication
US11425931B2 (en) 2016-01-28 2022-08-30 Zenigata Llc Vapor delivery systems and methods
US11666088B2 (en) 2016-01-28 2023-06-06 Zenigata Llc Vapor delivery systems and methods
US11950638B2 (en) 2016-01-28 2024-04-09 Zenigata Llc Vapor delivery systems and methods
US10588356B2 (en) 2016-01-28 2020-03-17 Zenigata Llc Vapor delivery systems and methods
US10959464B2 (en) 2016-01-28 2021-03-30 Zenigata Llc Vapor delivery systems and methods
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
WO2017149481A1 (en) * 2016-03-04 2017-09-08 Rai Strategic Holdings, Inc. Flexible display for an aerosol delivery device
KR102466244B1 (en) 2016-03-04 2022-11-10 레이 스트라티직 홀딩스, 인크. Flexible Display for Aerosol Delivery Devices
KR20180118201A (en) * 2016-03-04 2018-10-30 레이 스트라티직 홀딩스, 인크. Flexible display for aerosol dispenser
CN108778004A (en) * 2016-03-04 2018-11-09 莱战略控股公司 The flexible display of aerosol delivery equipment
RU2741525C1 (en) * 2016-03-04 2021-01-26 Раи Стретеджик Холдингс, Инк. Flexible display for an aerosol delivery device
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US11856654B2 (en) 2016-04-29 2023-12-26 Altria Client Services Llc Aerosol generating device with visual feedback device
JP2019519198A (en) * 2016-04-29 2019-07-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with visual feedback device
EP3448184B1 (en) 2016-04-29 2022-07-20 Philip Morris Products S.A. Aerosol-generating device with visual feedback device
USD929036S1 (en) 2016-06-16 2021-08-24 Pax Labs, Inc. Vaporizer cartridge and device assembly
USD913583S1 (en) 2016-06-16 2021-03-16 Pax Labs, Inc. Vaporizer device
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
US10405580B2 (en) 2016-07-07 2019-09-10 Altria Client Services Llc Mechanically-adjustable e-vaping device flavor assembly
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
EP3496792B1 (en) 2016-08-09 2022-03-09 Hauni Maschinenbau GmbH Method of operating an inhaler
USD814102S1 (en) * 2016-09-16 2018-03-27 Nesta Holding Co. Ltd. Vaporizer pen
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device
US11075995B2 (en) 2016-12-27 2021-07-27 Gofire, Inc. System and method for managing concentrate usage of a user
US11652885B2 (en) 2016-12-27 2023-05-16 Gofire, Inc. System and method for managing concentrate usage of a user
US11439183B2 (en) * 2017-02-10 2022-09-13 Nicoventures Trading Limited Vapor provision system
US10327479B2 (en) 2017-03-15 2019-06-25 Canopy Growth Corporation System and method for an improved personal vapourization device
US11924728B2 (en) 2017-05-03 2024-03-05 Nicoventures Trading Limited Method and an aerosol delivery device for transmitting aerosol delivery
EP3682751A4 (en) * 2017-09-12 2021-06-30 Changzhou Patent Electronic Technology Co., Ltd Method for obtaining intake quantity of target substance and electronic device
USD927061S1 (en) 2017-09-14 2021-08-03 Pax Labs, Inc. Vaporizer cartridge
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
USD873479S1 (en) 2017-11-16 2020-01-21 Patrick Lehoux Set of windows for a vaporizer pen
JP2021503901A (en) * 2017-11-22 2021-02-15 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. Electronic vaporizer session operation
US11871795B2 (en) 2017-12-20 2024-01-16 Nicoventures Trading Limited Electronic aerosol provision system
US11800898B2 (en) 2017-12-20 2023-10-31 Nicoventures Trading Limited Electronic aerosol provision system
US11871321B2 (en) 2017-12-29 2024-01-09 Nicoventures Trading Limited Device identification method
US10661035B2 (en) * 2018-01-17 2020-05-26 Indose Inc Inhalation device with constricted flow pathway
CN108402520A (en) * 2018-02-06 2018-08-17 王孝骞 A kind of nicotine quantization controlling transmission mode based on Intelligent electronic cigarette
JP2021514639A (en) * 2018-02-27 2021-06-17 ジュール・ラブズ・インコーポレイテッドJuul Labs, Inc. Mass output controlled vaporizer
WO2019169002A1 (en) * 2018-02-27 2019-09-06 Juul Labs, Inc. Mass output controlled vaporizer
US11565059B2 (en) 2018-02-27 2023-01-31 Juul Labs, Inc. Mass output controlled vaporizer
CN111970937A (en) * 2018-02-27 2020-11-20 尤尔实验室有限公司 Evaporator with controlled mass output
JP7364578B2 (en) 2018-02-27 2023-10-18 ジュール・ラブズ・インコーポレイテッド mass output controlled vaporizer
USD889034S1 (en) 2018-06-18 2020-06-30 Canopy Growth Corporation Vape device
USD876719S1 (en) 2018-06-18 2020-02-25 Canopy Growth Corporation Vape device
JP7315655B2 (en) 2018-07-26 2023-07-26 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with improved power supply controller
JP2021531786A (en) * 2018-07-26 2021-11-25 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with improved power controller
US20210289845A1 (en) * 2018-07-26 2021-09-23 Philip Morris Products S.A. Aerosol-generating device having improved power supply controller
WO2020037226A1 (en) 2018-08-16 2020-02-20 Vapor Dosing Technologies, Inc. Vapor dosing platform for vaporization cartridges
EP3836997A4 (en) * 2018-08-16 2022-05-18 Vapor Dosing Technologies, Inc. Vapor dosing platform for vaporization cartridges
US11083850B2 (en) 2018-08-21 2021-08-10 Vivera Pharmaceuticals Inc. Secure smart dosing system with automated delivery, measurement, and management
US11090449B2 (en) 2018-08-21 2021-08-17 Vivera Pharmaceuticals Inc. Smart inhaler device with automated dose delivery, measurement, and management
WO2020064637A1 (en) * 2018-09-24 2020-04-02 Nerudia Limited Smoking substitute device
EP4223166A3 (en) * 2018-09-24 2023-08-16 Nerudia Limited Smoking substitute device
WO2020086883A1 (en) * 2018-10-24 2020-04-30 Vosen Steven R Vaporizer and method of operating a vaporizer
US20200137570A1 (en) * 2018-10-29 2020-04-30 Zorday IP, LLC Network-enabled electronic cigarette
US11882438B2 (en) * 2018-10-29 2024-01-23 Zorday IP, LLC Network-enabled electronic cigarette
US10888665B2 (en) 2019-01-02 2021-01-12 Gofire, Inc. System and method for multi-modal dosing device
US10888666B2 (en) 2019-01-02 2021-01-12 Gofire, Inc. System and method for multi-modal dosing device
US11653691B2 (en) 2019-02-06 2023-05-23 Altria Client Services Llc Sensor apparatuses and systems
US11064727B2 (en) 2019-02-06 2021-07-20 Altria Client Services Llc Sensor apparatuses and systems
EP3711514A1 (en) * 2019-03-22 2020-09-23 Nerudia Limited Smoking substitute system
WO2020193200A1 (en) * 2019-03-22 2020-10-01 Nerudia Limited Smoking substitute system
USD907289S1 (en) 2019-08-02 2021-01-05 Canopy Growth Corporation Vape device
CN110477459A (en) * 2019-08-21 2019-11-22 湖南人文科技学院 Pipe tobacco electronic cigarette
CN111418900A (en) * 2020-03-20 2020-07-17 深圳麦克韦尔科技有限公司 Tobacco tar nicotine content detection system, method and device and electronic atomization device
US11109622B1 (en) 2020-03-30 2021-09-07 Gofire, Inc. System and method for metered dosing vaporizer
US20220018795A1 (en) * 2020-07-17 2022-01-20 Robert Bosch Gmbh Method for determining a nicotine content in a gas mixture
US11592413B2 (en) * 2020-07-17 2023-02-28 Robert Bosch Gmbh Method for determining a nicotine content in a gas mixture
US20230141797A1 (en) * 2021-11-05 2023-05-11 Nicoventures Trading Limited Aerosol provision system
WO2023212347A1 (en) * 2022-04-28 2023-11-02 Regents Of The University Of Michigan Closed-loop architecture for distributing and administering medicines to patients

Similar Documents

Publication Publication Date Title
US20200205472A1 (en) Software-controlled alternative nicotine/thc delivery device
US20150272220A1 (en) Nicotine dosage sensor
US10772360B2 (en) Inhalation device including substance usage controls
ES2937135T3 (en) Power control for an aerosol delivery device
US10925318B2 (en) Method of controlling a vaping device and vaping device for carrying out the method
EP3925468A1 (en) Atomization device capable of controlling administration amount, and control method for same
US20190183185A1 (en) A system and method of monitoring and controlling the usage behaviour of an electronic cigarette
US20200205477A1 (en) Method for obtaining intake quantity of target substance and electronic device
US20210068466A1 (en) Smoking substitute device
WO2019052081A1 (en) Method for obtaining intake quantity of target substance and electronic device
US20220256934A1 (en) Aerosol delivery device and system
EP3838019A1 (en) An aerosol delivery device with visual feedback means
ES2963589T3 (en) Aerosol generating device and operating procedure thereof
WO2020143565A1 (en) Method and apparatus for acquiring intake quantity of target substance
JP2022553893A (en) Aerosol-generating vaping apparatus and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: NICOTECH, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPINKA, KRISTOFER;SPINKA, XABAY;REEL/FRAME:033861/0347

Effective date: 20140905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION