US20140272388A1 - Molten metal resistant composite coatings - Google Patents

Molten metal resistant composite coatings Download PDF

Info

Publication number
US20140272388A1
US20140272388A1 US13/826,798 US201313826798A US2014272388A1 US 20140272388 A1 US20140272388 A1 US 20140272388A1 US 201313826798 A US201313826798 A US 201313826798A US 2014272388 A1 US2014272388 A1 US 2014272388A1
Authority
US
United States
Prior art keywords
composite coating
weight percent
molten metal
metallic binder
metal resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/826,798
Inventor
Michael Knight
Cliff Garrigus
Hongbo Tian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc filed Critical Kennametal Inc
Priority to US13/826,798 priority Critical patent/US20140272388A1/en
Assigned to KENNAMETAL INC. reassignment KENNAMETAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GARRIGUS, CLIFF, KNIGHT, MICHAEL, TIAN, HONGBO
Publication of US20140272388A1 publication Critical patent/US20140272388A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K5/00Gas flame welding
    • B23K5/18Gas flame welding for purposes other than joining parts, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils

Definitions

  • the present invention relates to molten metal resistant coatings, and more particularly relates to composite coatings deposited on articles such as tools that are exposed to molten aluminum.
  • Metallic parts in contact with molten aluminum typically are worn away quickly due to severe aluminum casting and smelting environments. Parts can react with molten aluminum at typical service temperatures ranging from 500° C. to 1,000° C., and the service lives of parts are relatively short. The low wear resistance of these parts makes it necessary to replace them frequently, which increases costs. The reaction of metallic parts with molten-aluminum can also cause quality problems. For example, steel components may dissolve in molten aluminum and contaminate the final product. A need exists for improved materials capable of withstanding such harsh conditions.
  • the present invention provides composite coating materials comprising a hard carbide phase and a metallic binder phase that are resistant to molten metals such as aluminum.
  • the composite coating materials exhibit desirable non-wetting behavior when exposed to molten metals.
  • An aspect of the present invention is to provide a molten metal resistant composite coating comprising a hard carbide phase and a metallic binder comprising Ni and Cr.
  • Another aspect of the present invention is to provide a tool capable of withstanding exposure to molten metal comprising a substrate and a composite coating over at least a portion of the substrate, wherein the composite coating comprises a hard carbide phase and a metallic binder phase.
  • a further aspect of the present invention is to provide a method of coating a substrate comprising depositing a composite coating on at least a portion of the substrate, wherein the composite coating comprises a base layer comprising a hard carbide phase and a metallic binder phase.
  • a composite coating is applied on metallic parts as a wear-resistant coating to improve the service life of the parts.
  • the coatings can be applied to metal parts such as plungers that are exposed to molten aluminum or other metals during use.
  • the composite coating comprises hard carbide particles and a metal binder.
  • the carbides in the coating comprise at least 40 weight percent of the coating.
  • the hard carbide typically comprises from 40 to 80 weight percent of the composite, for example, from 60 to 70 weight percent of the composite.
  • the metal binder may typically comprise up to 60 weight percent of the composite, for example, from 20 to 60 weight percent or from 30 to 40 weight percent of the composite.
  • the composite coatings may be deposited on substrates by suitable techniques such as conventional plasma transferred arc (PTA) welding techniques.
  • PTA plasma transferred arc
  • the hard carbide phase may comprise hard carbides such as tungsten carbide.
  • the tungsten carbide WC x may comprise WC, W 2 C, eutectic of WC and W 2 C and combinations thereof.
  • the hard carbides can be irregular, angular, rounded, or spherical in shape. In certain embodiments, 90 percent or more of the carbide particles have particle sizes from 70 to 180 microns.
  • the metal binder phase may comprise metal alloys such as nickel-based and cobalt-based alloys.
  • the metal binder may comprise Ni, Cr, Si, Fe and/or B.
  • the metal binder comprises a nickel-based alloy, such as an alloy comprising from 60 to 90 weight percent nickel.
  • the nickel-based binder metal may comprise more than 5 weight percent chromium, typically from 7 to 20 weight percent of the binder metal.
  • the binder metal is a nickel-based alloy comprising from 60 to 90 weight percent nickel, from 7 to 20 weight percent chromium, from 1 to 5 weight percent silicon, from 2 to 5 weight percent iron, from 1 to 4 weight percent boron, and incidental impurities.
  • nickel-based alloys with a hardness range of HRC 33-50 and a chromium content of from 7 to 20 weight percent are chosen so that the resulting deposited powder has desired characteristics of weldability, toughness and non-wetting of molten metal such as aluminum.
  • the surface of a plunger tip used in aluminum casting processes is coated with the composite coating using PTA techniques.
  • Powders of the hard carbide and binder metal may be mixed and then deposited onto a substrate via known PTA techniques.
  • a requirement for this application is that the plunger tip should not stick to the aluminum after the casting process.
  • the molten aluminum should not wet the protective composite coating of the plunger.
  • Such non-wetting characteristics may be achieved by controlling the composition of the composite coatings.
  • the composite coating may be flame-oxidized to form an oxidation layer on the coating surface after the PTA coating process.
  • the oxidation layer may comprise oxides of the binder metals, for example, nickel oxides, chromium oxides, silicon oxides, iron oxides and/or boron oxides.
  • the oxidation layer provides non-wetting characteristics to avoid reaction with the molten metals such as aluminum.
  • the oxide layer may be formed by known flame oxidation techniques, such as utilizing an oxidizing flame from an oxy-acetylene torch with the composite after the PTA welding process. The oxidation layer can be repetitively formed on the composite coating surface when the surface is exposed to molten metal during use.
  • the composite coating may have a typical thickness of at least 0.5 mm, for example, from 0.5 to 10 mm, or from 1 to 8 mm, or from 2 to 5 mm.
  • the oxide coating may have a typical coating thickness from 1 to 100 microns, for example, less than 50 microns, or less than 30 microns.
  • the substrates to which the composite coatings of the present invention are applied may be metal substrates, such as steel or other iron-containing alloys.
  • metal substrates such as steel or other iron-containing alloys.
  • plunger tips and other tools of bare metal will react with the molten aluminum and cause sticking of the tool to the aluminum cast product if the protective composite coatings of the present invention are not used.
  • the metal tool surfaces can be worn away quickly due to the reaction of the bare metal tool with molten aluminum and abrasion caused by the molten aluminum.
  • the composite coatings of the present invention can withstand such severe conditions in molten aluminum.
  • the composite coatings provide relatively thick protection layers on tools such as plunger tips that provide excellent wear resistance. For example, service life increases of at least 300 percent have been achieved in plunger tips used in molten aluminum casting operations in comparison with conventional plunger tips.
  • a composite coating was made by mixing 65 weight percent WC x powder comprising a combination of WC and W 2 C, 26 weight percent of a first nickel-based binder alloy powder, and 9 weight percent of a second nickel-based binder alloy powder, followed by PTA welding of the powder mixture onto a steel substrate. Greater than 90 percent of the WC, particles were between 74 and 177 microns in diameter.
  • the first nickel-based binder alloy comprised about 78 weight percent nickel, about 11 weight percent chromium, about 3 weight percent silicon, about 3.5 weight percent iron, and about 2.5 weight percent boron.
  • the first nickel-based binder alloy powder had particles sized such that more than 90 percent of the particles fall within the range of 44 microns to 105 microns.
  • Such an alloy may be a self-fluxing powder which provides relatively soft coatings with good wetting qualities.
  • the second nickel-based binder alloy comprised about 84.74 weight percent nickel, about 7.43 weight percent chromium, about 3.52 weight percent silicon, about 2.48 weight percent iron, about 1.55 weight percent boron, and about 0.25 weight percent carbon.
  • the second nickel-based binder alloy powder comprised particles sized such that more than 90 percent of the particles fall within the range of 45 microns to 150 microns.
  • the combination of the first nickel-based binder alloy and second nickel-based binder alloy results in a nickel-based alloy about 10.1 weight percent chromium.
  • the powders were mixed and then welded onto the steel substrate via a conventional PTA welding technique.
  • the composite coating was deposited at a thickness of about 4 mm.
  • a thin oxidized layer was then formed on the surface of the composite coating by applying an oxidizing flame from an oxy-acetylene welding torch using a #5 tip to the exterior portion of the composite coating for sufficient time to create the desired coating.
  • the resultant composite coating with the oxidized surface is capable of withstanding exposure to molten aluminum for long durations of time, and does not wet the molten aluminum.
  • the non-wetting characteristics are desirable for molten aluminum application. This is in contrast to coatings made from the first nickel-based binder alloy of which, when used alone, provides relatively good wetting characteristic.
  • the combination of nickel and chromium in the metallic binders creates not only the weldability, hardness, and non-wetting characteristics, but also allows the creation of a flame oxidation layer on the exterior surface of the coating.
  • any numerical range recited herein is intended to include all sub-ranges subsumed therein.
  • a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Composite coating materials comprising a hard carbide phase and a metallic binder that are resistant to molten metals such as aluminum are disclosed. The hard carbide phase of the composite coatings may comprise tungsten carbide, and the metallic binder may comprise a nickel-based alloy. A thin oxide layer comprising oxides of the binder metal may be provided on the surface of the composite coating. The composite coatings exhibit desirable non-wetting behavior when exposed to molten metals.

Description

    FIELD OF THE INVENTION
  • The present invention relates to molten metal resistant coatings, and more particularly relates to composite coatings deposited on articles such as tools that are exposed to molten aluminum.
  • BACKGROUND INFORMATION
  • Metallic parts in contact with molten aluminum typically are worn away quickly due to severe aluminum casting and smelting environments. Parts can react with molten aluminum at typical service temperatures ranging from 500° C. to 1,000° C., and the service lives of parts are relatively short. The low wear resistance of these parts makes it necessary to replace them frequently, which increases costs. The reaction of metallic parts with molten-aluminum can also cause quality problems. For example, steel components may dissolve in molten aluminum and contaminate the final product. A need exists for improved materials capable of withstanding such harsh conditions.
  • SUMMARY OF THE INVENTION
  • The present invention provides composite coating materials comprising a hard carbide phase and a metallic binder phase that are resistant to molten metals such as aluminum. The composite coating materials exhibit desirable non-wetting behavior when exposed to molten metals.
  • An aspect of the present invention is to provide a molten metal resistant composite coating comprising a hard carbide phase and a metallic binder comprising Ni and Cr.
  • Another aspect of the present invention is to provide a tool capable of withstanding exposure to molten metal comprising a substrate and a composite coating over at least a portion of the substrate, wherein the composite coating comprises a hard carbide phase and a metallic binder phase.
  • A further aspect of the present invention is to provide a method of coating a substrate comprising depositing a composite coating on at least a portion of the substrate, wherein the composite coating comprises a base layer comprising a hard carbide phase and a metallic binder phase.
  • These and other aspects of the present invention will be more apparent from the following description.
  • DETAILED DESCRIPTION
  • In accordance with embodiments of the present invention, a composite coating is applied on metallic parts as a wear-resistant coating to improve the service life of the parts. For example, the coatings can be applied to metal parts such as plungers that are exposed to molten aluminum or other metals during use. The composite coating comprises hard carbide particles and a metal binder. The carbides in the coating comprise at least 40 weight percent of the coating. In one embodiment, the hard carbide typically comprises from 40 to 80 weight percent of the composite, for example, from 60 to 70 weight percent of the composite. The metal binder may typically comprise up to 60 weight percent of the composite, for example, from 20 to 60 weight percent or from 30 to 40 weight percent of the composite. The composite coatings may be deposited on substrates by suitable techniques such as conventional plasma transferred arc (PTA) welding techniques.
  • The hard carbide phase may comprise hard carbides such as tungsten carbide. In certain embodiments, the tungsten carbide WCx may comprise WC, W2C, eutectic of WC and W2C and combinations thereof. The hard carbides can be irregular, angular, rounded, or spherical in shape. In certain embodiments, 90 percent or more of the carbide particles have particle sizes from 70 to 180 microns.
  • The metal binder phase may comprise metal alloys such as nickel-based and cobalt-based alloys. In certain embodiments, the metal binder may comprise Ni, Cr, Si, Fe and/or B. In one embodiment, the metal binder comprises a nickel-based alloy, such as an alloy comprising from 60 to 90 weight percent nickel. The nickel-based binder metal may comprise more than 5 weight percent chromium, typically from 7 to 20 weight percent of the binder metal. In another embodiment, the binder metal is a nickel-based alloy comprising from 60 to 90 weight percent nickel, from 7 to 20 weight percent chromium, from 1 to 5 weight percent silicon, from 2 to 5 weight percent iron, from 1 to 4 weight percent boron, and incidental impurities. In certain embodiments, nickel-based alloys with a hardness range of HRC 33-50 and a chromium content of from 7 to 20 weight percent are chosen so that the resulting deposited powder has desired characteristics of weldability, toughness and non-wetting of molten metal such as aluminum.
  • In one embodiment, the surface of a plunger tip used in aluminum casting processes is coated with the composite coating using PTA techniques. Powders of the hard carbide and binder metal may be mixed and then deposited onto a substrate via known PTA techniques. A requirement for this application is that the plunger tip should not stick to the aluminum after the casting process. Thus, the molten aluminum should not wet the protective composite coating of the plunger. Such non-wetting characteristics may be achieved by controlling the composition of the composite coatings.
  • In certain embodiments, the composite coating may be flame-oxidized to form an oxidation layer on the coating surface after the PTA coating process. The oxidation layer may comprise oxides of the binder metals, for example, nickel oxides, chromium oxides, silicon oxides, iron oxides and/or boron oxides. The oxidation layer provides non-wetting characteristics to avoid reaction with the molten metals such as aluminum. The oxide layer may be formed by known flame oxidation techniques, such as utilizing an oxidizing flame from an oxy-acetylene torch with the composite after the PTA welding process. The oxidation layer can be repetitively formed on the composite coating surface when the surface is exposed to molten metal during use.
  • The composite coating may have a typical thickness of at least 0.5 mm, for example, from 0.5 to 10 mm, or from 1 to 8 mm, or from 2 to 5 mm. The oxide coating may have a typical coating thickness from 1 to 100 microns, for example, less than 50 microns, or less than 30 microns.
  • The substrates to which the composite coatings of the present invention are applied may be metal substrates, such as steel or other iron-containing alloys. During molten aluminum smelting and casting operations, it has been found that plunger tips and other tools of bare metal will react with the molten aluminum and cause sticking of the tool to the aluminum cast product if the protective composite coatings of the present invention are not used. The metal tool surfaces can be worn away quickly due to the reaction of the bare metal tool with molten aluminum and abrasion caused by the molten aluminum. The composite coatings of the present invention can withstand such severe conditions in molten aluminum. The composite coatings provide relatively thick protection layers on tools such as plunger tips that provide excellent wear resistance. For example, service life increases of at least 300 percent have been achieved in plunger tips used in molten aluminum casting operations in comparison with conventional plunger tips.
  • The following example is intended to illustrate various aspects of an embodiment of the present invention, and is not intended to limit the scope of the present invention.
  • Example
  • A composite coating was made by mixing 65 weight percent WCx powder comprising a combination of WC and W2C, 26 weight percent of a first nickel-based binder alloy powder, and 9 weight percent of a second nickel-based binder alloy powder, followed by PTA welding of the powder mixture onto a steel substrate. Greater than 90 percent of the WC, particles were between 74 and 177 microns in diameter. The first nickel-based binder alloy comprised about 78 weight percent nickel, about 11 weight percent chromium, about 3 weight percent silicon, about 3.5 weight percent iron, and about 2.5 weight percent boron. The first nickel-based binder alloy powder had particles sized such that more than 90 percent of the particles fall within the range of 44 microns to 105 microns. Such an alloy may be a self-fluxing powder which provides relatively soft coatings with good wetting qualities. The second nickel-based binder alloy comprised about 84.74 weight percent nickel, about 7.43 weight percent chromium, about 3.52 weight percent silicon, about 2.48 weight percent iron, about 1.55 weight percent boron, and about 0.25 weight percent carbon. The second nickel-based binder alloy powder comprised particles sized such that more than 90 percent of the particles fall within the range of 45 microns to 150 microns. The combination of the first nickel-based binder alloy and second nickel-based binder alloy results in a nickel-based alloy about 10.1 weight percent chromium.
  • The powders were mixed and then welded onto the steel substrate via a conventional PTA welding technique. The composite coating was deposited at a thickness of about 4 mm. A thin oxidized layer was then formed on the surface of the composite coating by applying an oxidizing flame from an oxy-acetylene welding torch using a #5 tip to the exterior portion of the composite coating for sufficient time to create the desired coating. The resultant composite coating with the oxidized surface is capable of withstanding exposure to molten aluminum for long durations of time, and does not wet the molten aluminum. The non-wetting characteristics are desirable for molten aluminum application. This is in contrast to coatings made from the first nickel-based binder alloy of which, when used alone, provides relatively good wetting characteristic. The combination of nickel and chromium in the metallic binders creates not only the weldability, hardness, and non-wetting characteristics, but also allows the creation of a flame oxidation layer on the exterior surface of the coating.
  • For purposes of this detailed description, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. Moreover, other than in any operating examples, or where otherwise indicated, all numbers expressing, for example, quantities of ingredients used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard variation found in their respective testing measurements.
  • Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
  • In this application, the use of the singular includes the plural and the plural encompasses singular, unless specifically stated otherwise. In addition, in this application, the use of “or” means “and/or” unless specifically stated otherwise, even though “and/or” may be explicitly used in certain instances.
  • Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.

Claims (20)

1. A molten metal resistant composite coating comprising:
a hard carbide phase; and
a metallic binder comprising Ni and Cr.
2. The molten metal resistant composite coating of claim 1, wherein the hard carbide phase comprises from 60 to 70 weight percent of the composite coating.
3. The molten metal resistant composite coating of claim 1, wherein the carbide phase comprises tungsten carbide particles having an average size from 70 to 180 microns.
4. The molten metal resistant composite coating of claim 1, wherein the metallic binder comprises from 30 to 40 weight percent of the composite coating.
5. The molten metal resistant composite coating of claim 1, wherein the metallic binder comprises from 70 to 86 weight percent Ni.
6. The molten metal resistant composite coating of claim 5, wherein the metallic binder further comprises from 7 to 20 weight percent Cr.
7. The molten metal resistant composite coating of claim 1, wherein the metallic binder comprises 70 to 86 weight percent Ni, from 7 to 20 weight percent Cr, from 1 to 5 weight percent Si, from 2 to 5 weight percent Fe, from 1 to 4 weight percent B, and the balance incidental impurities, and has a hardness range of HRC from 33 to 50.
8. The molten metal resistant composite coating of claim 1, further comprising an oxide surface layer over at least a portion of the base layer.
9. The molten metal resistant composite coating of claim 8, wherein the oxide surface layer has a thickness of less than 50 microns.
10. The molten metal resistant composite coating of claim 8, wherein the oxide surface layer is formed by flame oxidation and comprises oxides of the metallic binder metals.
11. A tool capable of withstanding exposure to molten metal comprising:
a substrate, and
a composite coating over at least a portion of the substrate, wherein the composite coating comprises a hard carbide phase and a metal binder phase.
12. The tool of claim 11, wherein the hard carbide phase comprises from 60 to 70 weight percent of the composite coating.
13. The tool of claim 11, wherein the carbide phase comprises tungsten carbide particles having an average size from 70 to 180 microns.
14. The tool of claim 11, wherein the metallic binder comprises from 30 to 40 weight percent of the composite coating.
15. The tool of claim 11, wherein the metallic binder comprises from 70 to 86 weight percent Ni.
16. The tool of claim 15, wherein the metallic binder further comprises from 7 to 20 weight percent Cr.
17. The tool of claim 11, further comprising an oxide surface layer over at least a portion of the composite coating.
18. A method of coating a substrate comprising:
depositing a composite coating on at least a portion of the substrate, wherein the composite coating comprises a base layer comprising a hard carbide phase and a metallic binder phase.
19. The method of claim 18, wherein the composite coating is deposited on the substrate by plasma transferred arc welding.
20. The method of claim 18, further comprising forming an oxide surface layer over at least a portion of the base layer by flame-oxidation.
US13/826,798 2013-03-14 2013-03-14 Molten metal resistant composite coatings Abandoned US20140272388A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/826,798 US20140272388A1 (en) 2013-03-14 2013-03-14 Molten metal resistant composite coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/826,798 US20140272388A1 (en) 2013-03-14 2013-03-14 Molten metal resistant composite coatings

Publications (1)

Publication Number Publication Date
US20140272388A1 true US20140272388A1 (en) 2014-09-18

Family

ID=51528373

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/826,798 Abandoned US20140272388A1 (en) 2013-03-14 2013-03-14 Molten metal resistant composite coatings

Country Status (1)

Country Link
US (1) US20140272388A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016112341A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. Molten aluminum resistant alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) * 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971839A (en) * 1954-12-02 1961-02-14 Titanium Products Corp Ltd Hard metal carbide products
US3305326A (en) * 1963-04-23 1967-02-21 Metco Inc Self-fusing flame spray material
US4013453A (en) * 1975-07-11 1977-03-22 Eutectic Corporation Flame spray powder for wear resistant alloy coating containing tungsten carbide
US4507151A (en) * 1980-12-05 1985-03-26 Castolin S.A. Coating material for the formation of abrasion-resistant and impact-resistant coatings on workpieces
US4609401A (en) * 1983-02-23 1986-09-02 Castolin S.A. Powdered material for thermal spraying
US4906529A (en) * 1986-02-05 1990-03-06 Castolin S.A. Method of producing an erosion-resistant surface/layer on a metallic workpiece
US5419976A (en) * 1993-12-08 1995-05-30 Dulin; Bruce E. Thermal spray powder of tungsten carbide and chromium carbide
US6548161B1 (en) * 1998-05-28 2003-04-15 Mitsubishi Heavy Industries, Ltd. High temperature equipment
US20060040125A1 (en) * 2002-10-15 2006-02-23 Kabushiki Kaisha Riken Piston ring and thermal spray coating used therein, and method for manufacturing thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971839A (en) * 1954-12-02 1961-02-14 Titanium Products Corp Ltd Hard metal carbide products
US3305326A (en) * 1963-04-23 1967-02-21 Metco Inc Self-fusing flame spray material
US4013453A (en) * 1975-07-11 1977-03-22 Eutectic Corporation Flame spray powder for wear resistant alloy coating containing tungsten carbide
US4507151A (en) * 1980-12-05 1985-03-26 Castolin S.A. Coating material for the formation of abrasion-resistant and impact-resistant coatings on workpieces
US4609401A (en) * 1983-02-23 1986-09-02 Castolin S.A. Powdered material for thermal spraying
US4906529A (en) * 1986-02-05 1990-03-06 Castolin S.A. Method of producing an erosion-resistant surface/layer on a metallic workpiece
US5419976A (en) * 1993-12-08 1995-05-30 Dulin; Bruce E. Thermal spray powder of tungsten carbide and chromium carbide
US6548161B1 (en) * 1998-05-28 2003-04-15 Mitsubishi Heavy Industries, Ltd. High temperature equipment
US20060040125A1 (en) * 2002-10-15 2006-02-23 Kabushiki Kaisha Riken Piston ring and thermal spray coating used therein, and method for manufacturing thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US11111912B2 (en) 2014-06-09 2021-09-07 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) * 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
WO2016112341A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. Molten aluminum resistant alloys
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Similar Documents

Publication Publication Date Title
US20140272388A1 (en) Molten metal resistant composite coatings
JP6116569B2 (en) Cermet powder
JP4464685B2 (en) Corrosion resistant powder and coating
US7256369B2 (en) Composite wires for coating substrates and methods of use
TWI726875B (en) New powder composition and use thereof
JP6180427B2 (en) Metal powder for HVOF spraying and method for coating the surface thereby
JP5486093B2 (en) Wear-resistant cobalt base alloy and engine valve
CA2749983C (en) Wear resistant alloy
JP4782366B2 (en) Coating material and products coated with this material
JP2009543699A (en) High hardness / high wear resistance iron-based overlay welding material
US20140057124A1 (en) Corrosion And Wear-Resistant Claddings
EP2402474B1 (en) Piston ring
SE452029B (en) Spray powder
WO2014185181A1 (en) Powder for forming sprayed layer, thermite sprayed layer, thermite coating material, and method for producing thermite coating material
MX2015005436A (en) Engine valve.
JP2010275581A (en) Iron-based thermal-sprayed film
JP6087587B2 (en) Powder for forming sprayed layer, cermet sprayed layer, cermet coating material, and method for producing cermet coating material
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JP6985961B2 (en) Piston ring and its manufacturing method
CN113195759A (en) Corrosion and wear resistant nickel base alloy
EP2414106B1 (en) Chromium-free metallic coating, method of forming thereof and composite wire
TWI641699B (en) Hardfacing material
EP3947571B1 (en) Thermal spray iron-based alloys for coating engine cylinder bores
Simson et al. Comparison of plasma transferred arc and submerged arc welded abrasive wear resistant composite hardfacings
ATAK et al. Enhancement of wear resistance of rasp parts used in the paper industry

Legal Events

Date Code Title Description
AS Assignment

Owner name: KENNAMETAL INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNIGHT, MICHAEL;GARRIGUS, CLIFF;TIAN, HONGBO;SIGNING DATES FROM 20130809 TO 20130823;REEL/FRAME:031491/0454

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION