US20140219701A1 - Cosmetic device with active temperature modulation - Google Patents

Cosmetic device with active temperature modulation Download PDF

Info

Publication number
US20140219701A1
US20140219701A1 US13/759,966 US201313759966A US2014219701A1 US 20140219701 A1 US20140219701 A1 US 20140219701A1 US 201313759966 A US201313759966 A US 201313759966A US 2014219701 A1 US2014219701 A1 US 2014219701A1
Authority
US
United States
Prior art keywords
applicator
product
housing
temperature modulating
dispenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/759,966
Inventor
David Jeffrey Eberlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HCT Packaging Inc
Original Assignee
HCT Packaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HCT Packaging Inc filed Critical HCT Packaging Inc
Priority to US13/759,966 priority Critical patent/US20140219701A1/en
Assigned to HCT PACKAGING, INC. reassignment HCT PACKAGING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EBERLEIN, DAVID JEFFREY
Priority to PCT/US2013/034699 priority patent/WO2014123558A1/en
Publication of US20140219701A1 publication Critical patent/US20140219701A1/en
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HCT PACKAGING, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D34/00Containers or accessories specially adapted for handling liquid toiletry or cosmetic substances, e.g. perfumes
    • A45D34/04Appliances specially adapted for applying liquid, e.g. using roller or ball
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D34/00Containers or accessories specially adapted for handling liquid toiletry or cosmetic substances, e.g. perfumes
    • A45D34/04Appliances specially adapted for applying liquid, e.g. using roller or ball
    • A45D34/041Appliances specially adapted for applying liquid, e.g. using roller or ball using a roller, a disc or a ball
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D40/00Casings or accessories specially adapted for storing or handling solid or pasty toiletry or cosmetic substances, e.g. shaving soaps or lipsticks
    • A45D40/26Appliances specially adapted for applying pasty paint, e.g. using roller, using a ball
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/05Details of containers
    • A45D2200/054Means for supplying liquid to the outlet of the container
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/15Temperature
    • A45D2200/155Heating or cooling means, i.e. for storing or applying cosmetic products at a predetermined temperature
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/20Additional enhancing means
    • A45D2200/207Vibration, e.g. ultrasound

Definitions

  • Devices for dispensing cosmetic or medicinal products. Such devices usually consist of an outer tubular shell or housing, a delivery mechanism for displacement of the cosmetic or medicinal products, and an applicator tip.
  • applicators are employed for applying medicinal products, such as ointments, to portions of the body.
  • applicators are used to apply lipstick, lip balm, skin creams, lotions, and other cosmetic products to portions of the body.
  • these medicinal and cosmetic products may include skin care substances, such as aloe or lanolin, that provide a healing or therapeutic effect to heal damaged skin or maintain healthy skin.
  • these products may include therapeutic substances, such as topical anesthetics, analgesics, fragrances, menthol, or other substances that provide a soothing or stimulating sensation when applied to skin of a user of the product.
  • thermal treatments e.g., application of heat and/or cold
  • this disclosure is directed to a cosmetic or medicinal temperature modulating device.
  • the device may include a housing, and an applicator coupled to the housing, the applicator having an application face for applying a cosmetic or medicinal product to a surface, manipulating the product when on the surface or both.
  • the device also may include a temperature modulating element disposed adjacent to the applicator.
  • the temperature modulating element may be controlled by an electrical circuit or controller and/or powered via an electrical source.
  • the device may include a dispenser that includes a housing having a reservoir for containing a product.
  • the device may include an attachment component for attaching the device to a container.
  • the device may include a housing designed for applying a cosmetic or medicinal product to a surface or for manipulating the product when on the surface, or both, and a temperature modulating element disposed in the housing, wherein the temperature modulating element is powered via an electrical source.
  • FIG. 1 is a cross-sectional view of an illustrative cosmetic temperature modulating device taken along line A-A of FIG. 2 .
  • FIG. 2 is a front side view of the cosmetic temperature modulating device of FIG. 1 .
  • FIG. 3 is a cross-sectional view of another illustrative cosmetic temperature modulating device taken along line B-B of FIG. 4 .
  • FIG. 5 is a cross-sectional view of yet another illustrative cosmetic temperature modulating device.
  • FIG. 6 is a perspective view of a temperature modulating assembly comprising a Peltier thermoelectric cooler, heat sink, and applicator.
  • This disclosure is directed to temperature modulating devices and dispensers which have a product applicator (“applicator”) and a housing having a temperature modulating element disposed therein for actively controlling a temperature of the product applicator.
  • the applicator is also able to store and maintain a level of thermal energy.
  • the applicator may have an application face comprising various metals, ceramics, composites, and/or other materials that can be heated or cooled by the temperature modulating element and are able to retain the heated or cooled condition for a period of time.
  • a product may be dispensed from or onto the dispenser through the applicator for application to, for example, a user's skin, hair or other surface.
  • thermodynamic properties of the applicator e.g., thermal conductivity, specific heat capacity, and/or thermal diffusivity
  • thermal energy may be applied to the dispensed product so that it may be heated or cooled during application.
  • the application face of the applicator may transfer heat to or from the user's skin, thereby causing the user to feel a thermal sensation (warm or cool depending on the thermal energy in the applicator).
  • the heat or cold transfer may also minimize or alleviate pain or discomfort caused by, for example, damage to the skin.
  • the device may include a housing designed for applying a cosmetic or medicinal product to a surface or for manipulating the product when on the surface, or both, and a temperature modulating element disposed in the housing, wherein the temperature modulating element is powered via an electrical source.
  • FIG. 1 represents an illustrative temperature modulating device (“device”) 100 with an applicator 102 and a housing 104 .
  • the applicator 102 is of a generally convex, disk-shaped and is made of a material capable of holding and retaining thermal energy or maintaining is thermal state for a period of time.
  • the applicator 102 can be made of stainless steel.
  • any suitable material may be used that is capable of retaining and/or transferring heat towards or away from the user and/or product.
  • applicator 102 may be coated, sealed or have any number of surface treatments applied, such as, for example, polishing, micro-finishing, etc.
  • the device 100 also includes a temperature modulating element 106 and an electrical source 110 disposed in the housing 104 .
  • the temperature modulating element 106 may be disposed adjacent the applicator 102 and enables active control of the temperature of the applicator 102 .
  • the temperature modulating element 106 can be a Peltier thermoelectric device. Examples of other technologies suitable for use as a temperature modulating element 106 include, but are not limited to, resistive elements, refrigerants, or fluid coolants.
  • the temperature modulation element 106 may include two or more different temperature modulation technologies.
  • the electrical source 110 provides electrical power for the temperature modulating element 106 .
  • electricity provided to the temperature modulating element 106 can be controlled, for example, via an electronic circuit.
  • electronic control techniques include pulse width modulation, voltage divider circuitry, and the use of integrated circuits (ICs) with discreet voltage output(s) (e.g. Buck/boost converter).
  • the electrical source 110 can be, for example, one or more fuel cells, one or more solar cells and/or one or more batteries which may be disposable or rechargeable.
  • the device can include an alternating current (AC) adapter (not shown) to be plugged into a wall socket or other external electrical source.
  • AC alternating current
  • the device 100 also includes a cap 112 that encapsulates the applicator 102 when the device is not in use.
  • the housing 104 can be designed to include one or more openings (not shown) formed in the housing 104 adjacent the temperature modulating element 106 to allow heat to escape.
  • the applicator 102 may be articulatable (e.g. pivotable, rotatable, etc.) relative to the handle through an angle ⁇ .
  • the device 100 may have an angle ⁇ between the applicator 102 and the handle portion 108 of the housing 104 .
  • the angle ⁇ is about 120°. This design facilitates application of the product to the user's skin.
  • the angle ⁇ may be from about 80° to about 180°.
  • Still further implementations may have angles anywhere from about 90° to about 160°.
  • the applicator 102 may additionally or alternatively include a brush, a sponge, or various other features to assist in the application of a dispensed product to a user's skin and/or manipulation of the product when on the user's skin.
  • the device 100 may include additional components such as, for example, an on/off switch 134 ; an LED indicator not shown; an LED charge indicator 130 ; temperature setting adjustment 132 (e.g. a sliding switch, a rotating knob, or a push button); and a recharge cord jack 136 .
  • the device 100 may include a vibration element 140 that may be disposed within the housing 104 for, for example, vibrating or sonicating the applicator 102 .
  • the device 100 may be programmed (e.g. by the manufacturer or the user) to apply heat, cold, and/or vibration according to a profile.
  • the device 100 can be preprogrammed by the manufacture or programmed by the user prior to use to provide any one of a heating, cooling, or vibration profile to the applicator 102 for a period of time.
  • the device 100 can be programmed to provide any combination of one or more heating, cooling, and vibration profiles to the applicator 102 .
  • the device 100 can be preprogrammed to include an automatic shut-off or temperature control circuit to prevent the device from becoming too cold or too hot.
  • FIG. 2 is a front side view of the temperature modulating device 100 .
  • the applicator 102 generally comprises an application face 214 which can contact a product of choice, such as for example, a cosmetic or medicinal ointment.
  • the application face 214 and product imparted thereon or adsorbed or absorbed therein can then be placed in contact with a surface, such as, for example, a user's lip, under-eye, face, neck body, or skin in general to transfer the product and/or heat or cold to the surface.
  • the device 100 may also be used to apply a therapeutic or medicinal product to, for example, a user's muscle or joint area.
  • the applicator 102 is shown as being a generally convex, disk-shaped body.
  • the applicator 102 in this implementation is made at least in part of stainless steel, and has a contact surface area that properly correlates with its intended use.
  • the applicator can have a contact surface area of from about 75 to about 315 mm 2 ; from about 100 to about 300 mm 2 ; or from about 150 to about 250 mm 2 .
  • the applicator can have a contact surface area of from about 175 to about 700 mm 2 ; from about 200 to about 600 mm 2 ; or from about 300 to about 500 mm 2 .
  • the applicator can have a contact surface area of from about 700 to about 4000 mm 2 ; from about 1000 to about 3000 mm 2 ; or from about 1500 to about 2500 mm 2 .
  • the applicator 102 may be configured in any form suitable for the application of the product contained on the applicator surface 214 and/or manipulation of the product on the surface.
  • the applicator may be constructed in any other suitable shape and size and may have any suitable mass, surface finish, and/or surface treatment desired for a given application.
  • the device 100 and applicator 102 shown in FIGS. 1-5 are comprised of a separate applicator 102 and housing 104 , in other implementations to decrease manufacturing costs, or for any other desired reason, the applicator 102 and some or all of the housing 104 may be formed integrally.
  • FIG. 3 represents an illustrative dispenser and temperature modulating device (“device”) 300 with an applicator 302 and a housing 304 .
  • the applicator 302 is of a generally convex, disk-shaped and is made of a material capable of holding and retaining a thermal charge.
  • the applicator 302 can be made of stainless steel.
  • any suitable material may be used that is capable of retaining and/or transferring heat or cold during the application of the product. Examples of other suitable materials are described above.
  • the device 300 also includes a temperature modulating element 306 and an electrical source 310 disposed in the housing 304 . According to certain embodiments, the temperature modulating element 306 is disposed adjacent the applicator 302 .
  • the first example may be implemented using a click or a reverse click operation, whereby the user may operate the dispenser by moving the applicator 302 , or other dispensing control feature, relative to the housing 304 in either a clockwise or counterclockwise direction or by depressing on actuator button (e.g. similar to a ball-point pen).
  • actuator button e.g. similar to a ball-point pen
  • Another example delivery mechanism for dispensing the product may be a squeeze operation.
  • the delivery mechanism when pressure is applied to the housing 304 containing the reservoir 318 , the product in the reservoir 318 may be forced, by the squeezing action, through the insert 315 via a product delivery passageway 316 for application to the user's skin.
  • a delivery mechanism for dispensing the product may be by a pressurized dispenser, such as an aerosol dispenser.
  • the delivery mechanism is an aerosol delivery mechanism
  • the composition will be held under pressure in a container and will be dispersed along with an aerosol propellant in response to actuation by a user.
  • Actuation may be by depressing, rotating, tilting, or otherwise manipulating the applicator, pressing a button, and/or by any other suitable dispensing mechanism. Details of the construction and propellant of an aerosol dispenser are within the skill of one of ordinary skill in the art and will, therefore, not be described in detail herein.
  • a delivery mechanism for dispensing product may be an airless pump.
  • airless pump refers to a pump that provides dispensing of a substance from a container under pressure in essentially a single direction without permitting reverse (intake) flow of air via the pump. That is, as product is pumped from the container, the pumped product is not replaced with a corresponding volume of air through the pump.
  • an airless pump typically does not allow intake of any other substances to replace the volume of product pumped out of the container.
  • an airless pump could include a one-way valve, such as a check valve.
  • FIG. 4 is a front side view of the temperature modulating device 300 in more detail.
  • the applicator 302 generally comprises an application face 414 which can adsorb or absorb a product thereon that has been dispensed through the insert 315 .
  • the applicator 302 can then be placed in contact with a surface, such as, for example, a user's skin to transfer the product and/or manipulate the product and heat or cold to the surface.
  • the product can be dispensed directly to a surface (e.g. a user's skin) via the product dispensing path.
  • the applicator 302 can then be place in contact with the surface for manipulating the product and transferring heat or cold.
  • the applicator 302 is shown as being a generally convex, disk-shaped body.
  • the application face 414 and/or the entire applicator 302 may have a particular surface finish.
  • the surface finish corresponds to the measurements of the small scale variations in the height of the physical surface. Such surface finishes may be accomplished by polishing and/or buffing inside the fabrication mold, while other surface finishes may be achieved using one or more secondary operations on the application face 414 or applicator 302 itself, such as buffing, polishing, or chroming, for example.
  • the applicator 302 may be configured in any form suitable for the application of the product dispensed and/or contained on the applicator face 414 .
  • the applicator may be constructed in any other suitable shape and size and may have any suitable mass, surface finish, and/or surface treatment desired for a given application.
  • FIG. 5 shows another embodiment in which the device 500 also includes an attachment component 520 , which can be used to attach the device 500 to a bottle or other product container 524 .
  • the attachment component 520 extends through an opening in a bottle or product container 524 which bottle or container may be disposable.
  • the attachment component 520 may be secured to the bottle or product container via, for example, a press-fit or friction-fit, snap-fit, adhesive, threading, clamping, and/or engagement by one or more engagement features.
  • the attachment component 520 is retained in the bottle or product container 524 by a series of barbs 526 .
  • the device 500 includes a generally cylindrical insert 515 extending through the applicator 502 and forming a product delivery passageway 516 for the product in product container 524 .
  • the insert 515 may be made of a thermoplastic polymer, for example, which is non-reactive with the product stored in the product container 524 .
  • the insert 515 may be made of virtually any other material that is non-reactive or resistant to the product being dispensed, such as various metals, plastics, ceramics, composites, or the like.
  • FIG. 6 shows an embodiment of a temperature modulating element.
  • the temperature modulating element employs Peltier thermoelectric device.
  • the Peltier thermoelectric device comprises a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
  • Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC).
  • the Peltier thermoelectric device can be used either for heating or for cooling (refrigeration) depending on the flow of electricity; although in practice the main application is cooling.
  • the temperature modulating assembly 600 which comprises a temperature modulating element 604 (which in this embodiment is a Peltier device but in other embodiments could be a refrigerant, etc.) that absorbs heat and a heat sink 606 which gives off or emits heat.
  • the temperature modulating assembly 600 also includes an applicator 602 that is adhered to or abuts the temperature modulating element 604 . While in the embodiment showed in FIG. 6 , the temperature modulating assembly 600 is configured to draw heat away from the applicator 602 thereby providing a cooling effect, the flow of electricity to the temperature modulating element 604 can be reversed to thereby provide heat to the applicator 602 , thus providing a heating effect.
  • examples of other technologies suitable for use as a temperature modulating assembly 600 include, but are not limited to, resistive elements, refrigerants, or fluid coolants.

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

An active temperature modulating device for applying cosmetic or medicinal products to surfaces. The device has an applicator which includes a temperature modulating element disposed in the tip. Moreover, the temperature modulating element is controlled via an electrical source. The applicator comprises a material that is capable of storing, retaining, and/or transferring thermal energy during application of the product.

Description

    BACKGROUND
  • Devices exist for dispensing cosmetic or medicinal products. Such devices usually consist of an outer tubular shell or housing, a delivery mechanism for displacement of the cosmetic or medicinal products, and an applicator tip. For example, in the medical industry, applicators are employed for applying medicinal products, such as ointments, to portions of the body. In the cosmetics and personal care industries, applicators are used to apply lipstick, lip balm, skin creams, lotions, and other cosmetic products to portions of the body.
  • In many cases, these medicinal and cosmetic products may include skin care substances, such as aloe or lanolin, that provide a healing or therapeutic effect to heal damaged skin or maintain healthy skin. In addition, these products may include therapeutic substances, such as topical anesthetics, analgesics, fragrances, menthol, or other substances that provide a soothing or stimulating sensation when applied to skin of a user of the product. In addition to skin care substances, thermal treatments (e.g., application of heat and/or cold) are known to relieve pain, provide a therapeutic sensation, and to slow the body's natural response to injury so that a slower and more controlled healing process may ensue.
  • Existing cosmetic and medicinal dispensers are limited to application of products to the skin, and do not provide for thermal treatments of the skin by active control of the device temperature. Accordingly, there remains a need in the art for improved applicators and dispensers.
  • SUMMARY
  • This summary is provided to introduce simplified concepts of temperature modulating devices and dispensers for applying, for example, cosmetics and/or medicinal products to surfaces, which are further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
  • According to a first embodiment, this disclosure is directed to a cosmetic or medicinal temperature modulating device. The device may include a housing, and an applicator coupled to the housing, the applicator having an application face for applying a cosmetic or medicinal product to a surface, manipulating the product when on the surface or both. The device also may include a temperature modulating element disposed adjacent to the applicator. Moreover, the temperature modulating element may be controlled by an electrical circuit or controller and/or powered via an electrical source.
  • In some implementations, the device may include a dispenser that includes a housing having a reservoir for containing a product.
  • In still further implementations, the device may include an attachment component for attaching the device to a container.
  • In yet other implementations, the device may include a housing designed for applying a cosmetic or medicinal product to a surface or for manipulating the product when on the surface, or both, and a temperature modulating element disposed in the housing, wherein the temperature modulating element is powered via an electrical source.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
  • FIG. 1 is a cross-sectional view of an illustrative cosmetic temperature modulating device taken along line A-A of FIG. 2.
  • FIG. 2 is a front side view of the cosmetic temperature modulating device of FIG. 1.
  • FIG. 3 is a cross-sectional view of another illustrative cosmetic temperature modulating device taken along line B-B of FIG. 4.
  • FIG. 4 is a front side view of the cosmetic temperature modulating device of FIG. 3.
  • FIG. 5 is a cross-sectional view of yet another illustrative cosmetic temperature modulating device.
  • FIG. 6 is a perspective view of a temperature modulating assembly comprising a Peltier thermoelectric cooler, heat sink, and applicator.
  • DETAILED DESCRIPTION Overview
  • This disclosure is directed to temperature modulating devices and dispensers which have a product applicator (“applicator”) and a housing having a temperature modulating element disposed therein for actively controlling a temperature of the product applicator. According to an embodiment, the applicator is also able to store and maintain a level of thermal energy. The applicator may have an application face comprising various metals, ceramics, composites, and/or other materials that can be heated or cooled by the temperature modulating element and are able to retain the heated or cooled condition for a period of time. In some embodiments, a product may be dispensed from or onto the dispenser through the applicator for application to, for example, a user's skin, hair or other surface. By virtue of the desirable thermodynamic properties of the applicator (e.g., thermal conductivity, specific heat capacity, and/or thermal diffusivity), thermal energy may be applied to the dispensed product so that it may be heated or cooled during application. Moreover, the application face of the applicator may transfer heat to or from the user's skin, thereby causing the user to feel a thermal sensation (warm or cool depending on the thermal energy in the applicator). In some cases, the heat or cold transfer may also minimize or alleviate pain or discomfort caused by, for example, damage to the skin.
  • In yet other implementations, the device may include a housing designed for applying a cosmetic or medicinal product to a surface or for manipulating the product when on the surface, or both, and a temperature modulating element disposed in the housing, wherein the temperature modulating element is powered via an electrical source.
  • Illustrative Temperature Modulating Device
  • FIG. 1 represents an illustrative temperature modulating device (“device”) 100 with an applicator 102 and a housing 104. In this implementation, the applicator 102 is of a generally convex, disk-shaped and is made of a material capable of holding and retaining thermal energy or maintaining is thermal state for a period of time. In one implementation, the applicator 102 can be made of stainless steel. However, in other implementations, any suitable material may be used that is capable of retaining and/or transferring heat towards or away from the user and/or product. Examples of other suitable materials include, but are not limited to, metals (e.g., aluminum, titanium, steel, nickel, tin, copper, brass, silver, gold, platinum, chrome alloys thereof such as Zamac, etc.), glass, stone (e.g. precious and semi-precious stones, crystals, coral stones, volcanic stones, etc), ceramics, high-density plastics, wood, composites, or the like. According to certain embodiments, applicator 102 may be coated, sealed or have any number of surface treatments applied, such as, for example, polishing, micro-finishing, etc. The device 100 also includes a temperature modulating element 106 and an electrical source 110 disposed in the housing 104. The temperature modulating element 106 may be disposed adjacent the applicator 102 and enables active control of the temperature of the applicator 102. According to an embodiment, the temperature modulating element 106 can be a Peltier thermoelectric device. Examples of other technologies suitable for use as a temperature modulating element 106 include, but are not limited to, resistive elements, refrigerants, or fluid coolants. In some embodiments, the temperature modulation element 106 may include two or more different temperature modulation technologies.
  • The electrical source 110 provides electrical power for the temperature modulating element 106. According to an embodiment, electricity provided to the temperature modulating element 106 can be controlled, for example, via an electronic circuit. Such electronic control techniques include pulse width modulation, voltage divider circuitry, and the use of integrated circuits (ICs) with discreet voltage output(s) (e.g. Buck/boost converter). According to an embodiment, the electrical source 110 can be, for example, one or more fuel cells, one or more solar cells and/or one or more batteries which may be disposable or rechargeable. According to another embodiment, the device can include an alternating current (AC) adapter (not shown) to be plugged into a wall socket or other external electrical source.
  • According to certain embodiments, the device 100 also includes a cap 112 that encapsulates the applicator 102 when the device is not in use. According to yet another embodiment, the housing 104 can be designed to include one or more openings (not shown) formed in the housing 104 adjacent the temperature modulating element 106 to allow heat to escape. In some examples, the applicator 102 may be articulatable (e.g. pivotable, rotatable, etc.) relative to the handle through an angle θ.
  • According to certain implementations, the device 100 may have an angle θ between the applicator 102 and the handle portion 108 of the housing 104. In certain embodiments, the angle θ is about 120°. This design facilitates application of the product to the user's skin. However, other designs may be used. For example, in other implementations the angle θ may be from about 80° to about 180°. Still further implementations may have angles anywhere from about 90° to about 160°.
  • In other implementations, the applicator 102 may additionally or alternatively include a brush, a sponge, or various other features to assist in the application of a dispensed product to a user's skin and/or manipulation of the product when on the user's skin. In still other embodiments, the device 100 may include additional components such as, for example, an on/off switch 134; an LED indicator not shown; an LED charge indicator 130; temperature setting adjustment 132 (e.g. a sliding switch, a rotating knob, or a push button); and a recharge cord jack 136. In still other embodiments, the device 100 may include a vibration element 140 that may be disposed within the housing 104 for, for example, vibrating or sonicating the applicator 102.
  • According to certain embodiments, the device 100 may be programmed (e.g. by the manufacturer or the user) to apply heat, cold, and/or vibration according to a profile. For example, the device 100 can be preprogrammed by the manufacture or programmed by the user prior to use to provide any one of a heating, cooling, or vibration profile to the applicator 102 for a period of time. According to another example, the device 100 can be programmed to provide any combination of one or more heating, cooling, and vibration profiles to the applicator 102. According to still other embodiments, the device 100 can be preprogrammed to include an automatic shut-off or temperature control circuit to prevent the device from becoming too cold or too hot.
  • FIG. 2 is a front side view of the temperature modulating device 100. Again, the applicator 102 generally comprises an application face 214 which can contact a product of choice, such as for example, a cosmetic or medicinal ointment. The application face 214 and product imparted thereon or adsorbed or absorbed therein can then be placed in contact with a surface, such as, for example, a user's lip, under-eye, face, neck body, or skin in general to transfer the product and/or heat or cold to the surface. According to certain embodiments, the device 100 may also be used to apply a therapeutic or medicinal product to, for example, a user's muscle or joint area.
  • In this implementation the applicator 102 is shown as being a generally convex, disk-shaped body. In addition, the applicator 102 in this implementation is made at least in part of stainless steel, and has a contact surface area that properly correlates with its intended use. For example, for eye and face applications, the applicator can have a contact surface area of from about 75 to about 315 mm2; from about 100 to about 300 mm2; or from about 150 to about 250 mm2. For neck applications, the applicator can have a contact surface area of from about 175 to about 700 mm2; from about 200 to about 600 mm2; or from about 300 to about 500 mm2. Moreover, for body applications, the applicator can have a contact surface area of from about 700 to about 4000 mm2; from about 1000 to about 3000 mm2; or from about 1500 to about 2500 mm2. While features of various illustrative implementations are described, in other implementations, the applicator 102 may be configured in any form suitable for the application of the product contained on the applicator surface 214 and/or manipulation of the product on the surface. For example, the applicator may be constructed in any other suitable shape and size and may have any suitable mass, surface finish, and/or surface treatment desired for a given application.
  • While the device 100 and applicator 102 shown in FIGS. 1-5 are comprised of a separate applicator 102 and housing 104, in other implementations to decrease manufacturing costs, or for any other desired reason, the applicator 102 and some or all of the housing 104 may be formed integrally.
  • Illustrative Dispenser and Temperature Modulating Device
  • FIG. 3 represents an illustrative dispenser and temperature modulating device (“device”) 300 with an applicator 302 and a housing 304. In this implementation, the applicator 302 is of a generally convex, disk-shaped and is made of a material capable of holding and retaining a thermal charge. In one implementation, the applicator 302 can be made of stainless steel. However, in other implementations, any suitable material may be used that is capable of retaining and/or transferring heat or cold during the application of the product. Examples of other suitable materials are described above. The device 300 also includes a temperature modulating element 306 and an electrical source 310 disposed in the housing 304. According to certain embodiments, the temperature modulating element 306 is disposed adjacent the applicator 302.
  • In addition, in this implementation, the applicator 302 includes a generally cylindrical insert 315 extending through the applicator 302 and forming a product delivery passageway 316 for the product contained in a reservoir 318 in housing 304. The insert 315 may be made of a thermoplastic polymer, for example, which is non-reactive with the product stored in the reservoir 318. In other implementations, the insert 315 may be made of virtually any other material that is non-reactive or resistant to the product being dispensed, such as various metals, plastics, ceramics, composites, or the like. In other embodiments, instead of an insert 315 a through hole or bore may simply be formed through the applicator 306 and/or heat sink. In still other embodiments, a product dispensing path may extend through or around the applicator. Regardless of the specific configuration, the route the product follows from the reservoir 318 to the application face may be referred to generally as the product dispensing path.
  • The dispenser 300 also includes a cap 312 that encapsulates the applicator 302 when the device 300 is not in use and includes a plug 320 that seals the product dispensing path. The plug 320 may be made of a thermoplastic polymer similar to the insert 108 or any other material which is non-reactive or resistant to the product being dispensed, such as various metals, plastics, ceramics, composites, or the like. Additionally or alternatively, either the plug 320, the insert 315, or both may be elastomeric, such that when the cap is in place either the plug 320, insert 315, or both, may expand and/or deform somewhat to seal the product delivery passageway 316.
  • The following is a discussion of examples, without limitation, of delivery mechanisms for dispensing a product. The first example may be implemented using a click or a reverse click operation, whereby the user may operate the dispenser by moving the applicator 302, or other dispensing control feature, relative to the housing 304 in either a clockwise or counterclockwise direction or by depressing on actuator button (e.g. similar to a ball-point pen).
  • Another example delivery mechanism for dispensing the product may be a squeeze operation. In certain embodiments wherein the delivery mechanism is a squeeze operation, when pressure is applied to the housing 304 containing the reservoir 318, the product in the reservoir 318 may be forced, by the squeezing action, through the insert 315 via a product delivery passageway 316 for application to the user's skin.
  • In yet another example, a delivery mechanism for dispensing the product may be by a pressurized dispenser, such as an aerosol dispenser. In certain embodiments wherein the delivery mechanism is an aerosol delivery mechanism, the composition will be held under pressure in a container and will be dispersed along with an aerosol propellant in response to actuation by a user. Actuation may be by depressing, rotating, tilting, or otherwise manipulating the applicator, pressing a button, and/or by any other suitable dispensing mechanism. Details of the construction and propellant of an aerosol dispenser are within the skill of one of ordinary skill in the art and will, therefore, not be described in detail herein.
  • In yet another example, a delivery mechanism for dispensing product may be an airless pump. The term airless pump refers to a pump that provides dispensing of a substance from a container under pressure in essentially a single direction without permitting reverse (intake) flow of air via the pump. That is, as product is pumped from the container, the pumped product is not replaced with a corresponding volume of air through the pump. In addition to preventing reverse intake flow of air, an airless pump typically does not allow intake of any other substances to replace the volume of product pumped out of the container. For example, an airless pump could include a one-way valve, such as a check valve.
  • FIG. 4 is a front side view of the temperature modulating device 300 in more detail. Again, the applicator 302 generally comprises an application face 414 which can adsorb or absorb a product thereon that has been dispensed through the insert 315. The applicator 302 can then be placed in contact with a surface, such as, for example, a user's skin to transfer the product and/or manipulate the product and heat or cold to the surface. According to other embodiments, the product can be dispensed directly to a surface (e.g. a user's skin) via the product dispensing path. The applicator 302 can then be place in contact with the surface for manipulating the product and transferring heat or cold.
  • In this implementation the applicator 302 is shown as being a generally convex, disk-shaped body. In some implementations, the application face 414 and/or the entire applicator 302 may have a particular surface finish. The surface finish corresponds to the measurements of the small scale variations in the height of the physical surface. Such surface finishes may be accomplished by polishing and/or buffing inside the fabrication mold, while other surface finishes may be achieved using one or more secondary operations on the application face 414 or applicator 302 itself, such as buffing, polishing, or chroming, for example. Again, the applicator 302 may be configured in any form suitable for the application of the product dispensed and/or contained on the applicator face 414. For example, the applicator may be constructed in any other suitable shape and size and may have any suitable mass, surface finish, and/or surface treatment desired for a given application.
  • Illustrative Attachable/Temperature Modulating and/or Dispensing Device
  • FIG. 5 shows another embodiment in which the device 500 also includes an attachment component 520, which can be used to attach the device 500 to a bottle or other product container 524. According to certain embodiments, the attachment component 520 extends through an opening in a bottle or product container 524 which bottle or container may be disposable. The attachment component 520 may be secured to the bottle or product container via, for example, a press-fit or friction-fit, snap-fit, adhesive, threading, clamping, and/or engagement by one or more engagement features. According to an embodiment, the attachment component 520 is retained in the bottle or product container 524 by a series of barbs 526.
  • In addition, in this implementation, the device 500 includes a generally cylindrical insert 515 extending through the applicator 502 and forming a product delivery passageway 516 for the product in product container 524. The insert 515 may be made of a thermoplastic polymer, for example, which is non-reactive with the product stored in the product container 524. In other implementations, the insert 515 may be made of virtually any other material that is non-reactive or resistant to the product being dispensed, such as various metals, plastics, ceramics, composites, or the like.
  • Temperature Modulating Element
  • FIG. 6 shows an embodiment of a temperature modulating element. According to this embodiment, the temperature modulating element employs Peltier thermoelectric device. The Peltier thermoelectric device comprises a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current. Such an instrument is also called a Peltier device, Peltier heat pump, solid state refrigerator, or thermoelectric cooler (TEC). The Peltier thermoelectric device can be used either for heating or for cooling (refrigeration) depending on the flow of electricity; although in practice the main application is cooling.
  • According to an embodiment, the temperature modulating assembly 600 which comprises a temperature modulating element 604 (which in this embodiment is a Peltier device but in other embodiments could be a refrigerant, etc.) that absorbs heat and a heat sink 606 which gives off or emits heat. According to certain embodiments, the temperature modulating assembly 600 also includes an applicator 602 that is adhered to or abuts the temperature modulating element 604. While in the embodiment showed in FIG. 6, the temperature modulating assembly 600 is configured to draw heat away from the applicator 602 thereby providing a cooling effect, the flow of electricity to the temperature modulating element 604 can be reversed to thereby provide heat to the applicator 602, thus providing a heating effect.
  • As mentioned above, examples of other technologies suitable for use as a temperature modulating assembly 600 include, but are not limited to, resistive elements, refrigerants, or fluid coolants.
  • CONCLUSION
  • Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementing the invention.

Claims (24)

What is claimed is:
1. A cosmetic temperature modulating device comprising:
a housing,
an applicator coupled to the housing, the applicator having an application face for applying a cosmetic or medicinal product to a surface, manipulating the product when on the surface or both,
a temperature modulating element disposed in the housing adjacent the applicator, and
wherein the temperature modulating element is powered via an electrical source.
2. The device of claim 1, wherein the temperature modulating element heats or cools the applicator.
3. The device according to claim 2, wherein the temperature modulating element comprises a resistive element, a Peltier thermoelectric device, a refrigerant, or a fluid based coolant.
4. The device of claim 1, wherein the electrical source comprises a battery or an alternating current (AC) adapter to be plugged into a wall socket.
5. The device of claim 1, further comprising a vibration element for vibrating the applicator.
6. The device of claim 1, further comprising:
a housing;
a reservoir for containing a product disposed in said housing, and
an insert disposed in the applicator, the insert defining a product delivery passageway in communication with the reservoir, the product delivery passageway extending through or around the applicator.
7. The device of claim 6, further comprising a product delivery mechanism to dispense product from the dispenser, the product delivery mechanism comprising:
a reverse click motion delivery mechanism;
a click motion delivery mechanism;
a squeeze tube delivery mechanism;
an airless pump delivery mechanism; or an aerosol delivery mechanism.
8. The device of claim 1, wherein the applicator comprises a material capable of retaining heat or cold during application of the product.
9. The device of claim 1, wherein the applicator comprises a metal, a glass, a stone, a ceramic, a high-density plastic, a wood, or a composite thereof
10. The device of claim 1, wherein the applicator comprises a generally convex, disk-shaped body.
11. A dispenser comprising:
a housing having a reservoir for containing a product;
an applicator coupled to the housing, the applicator having and an application face for applying a product to a surface, manipulating the product when on the surface, or both, and a product dispensing path, for dispensing the product onto the surface, the applicator face, or both, extending through or around the applicator; and
a temperature modulating element disposed in the housing and adjacent the applicator, wherein said temperature modulating element is controlled via an electrical source.
12. The dispenser of claim 11, wherein the applicator comprises a material capable of retaining heat or cold during application of the product.
13. The dispenser according to claim 12, wherein the temperature modulating element comprises a resistive element, a Peltier thermoelectric cooler, a refrigerant, or a fluid based coolant.
14. The dispenser of claim 11, wherein the electrical source comprises a battery or an alternating current (AC) adapter to be plugged into a wall socket.
15. The device of claim 11, wherein the temperature modulating element heats or cools the applicator.
16. The dispenser of claim 11, wherein the applicator is fixed to the housing against movement relative to the housing.
17. The dispenser of claim 11, wherein the applicator comprises a generally convex, disk-shaped body.
18. The dispenser of claim 11, wherein the applicator comprises a generally curvilinear shape, a generally cylindrical shape, or a generally planar shape.
19. A dispenser comprising:
a housing having an attachment component for attaching the housing to a container;
an applicator being fixedly mounted to the housing and having a generally disk-shape and comprising:
an application face for applying a product to a surface, manipulating the product when on the surface, or both, and
a delivery passageway configured to convey a product from the container to the application face, onto a surface, or both; and
a temperature modulating element disposed in the housing and adjacent the applicator, wherein said temperature modulating element is controlled via an electrical source.
20. The dispenser of claim 19, further comprising the container holding the product removably attached to the housing via the attachment component.
21. The device of claim 19, further comprising a vibration element for vibrating the applicator.
22. The dispenser of claim 19, wherein the applicator comprises a metal, a glass, a stone, a ceramic, a high-density plastic, a wood, or a composite thereof.
23. The dispenser of claim 19, wherein the product is a cosmetic product, a medicinal product or both.
24. A cosmetic temperature modulating device comprising:
a housing designed for applying a cosmetic or medicinal product to a surface or for manipulating the product when on the surface, or both; and
a temperature modulating element disposed in the housing, wherein the temperature modulating element is powered via an electrical source.
US13/759,966 2013-02-05 2013-02-05 Cosmetic device with active temperature modulation Abandoned US20140219701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/759,966 US20140219701A1 (en) 2013-02-05 2013-02-05 Cosmetic device with active temperature modulation
PCT/US2013/034699 WO2014123558A1 (en) 2013-02-05 2013-03-29 Cosmetic device with active temperature modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/759,966 US20140219701A1 (en) 2013-02-05 2013-02-05 Cosmetic device with active temperature modulation

Publications (1)

Publication Number Publication Date
US20140219701A1 true US20140219701A1 (en) 2014-08-07

Family

ID=51259315

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/759,966 Abandoned US20140219701A1 (en) 2013-02-05 2013-02-05 Cosmetic device with active temperature modulation

Country Status (2)

Country Link
US (1) US20140219701A1 (en)
WO (1) WO2014123558A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331422A1 (en) * 2013-05-09 2014-11-13 HCT Group Holdings Limited Combination cosmetic applicator
US20160030233A1 (en) * 2014-08-01 2016-02-04 Empire Technology Development Llc Apparatuses and methods for cooling a surface
US20160206470A1 (en) * 2013-09-18 2016-07-21 L'oreal Peltier effect device for creating a cooling or heating feeling
USD767903S1 (en) 2014-09-22 2016-10-04 HCT Group Holdings Limited Cosmetic brush
USD778069S1 (en) 2015-03-18 2017-02-07 HCT Group Holdings Limited Dual ended kabuki brush
USD779140S1 (en) 2014-10-23 2017-02-14 HCT Group Holdings Limited Brush cleansing mitt
US20170135852A1 (en) * 2015-11-13 2017-05-18 HUNTKEY JAPAN Inc. Ophthalmic thermal therapeutic apparatus
USD787835S1 (en) 2015-03-18 2017-05-30 HCT Group Holdings Limited Multi-head dual end cosmetic applicator
US9801505B2 (en) 2013-12-20 2017-10-31 Toaster Labs, Inc. Automatic fluid dispenser
US9801460B2 (en) 2013-11-04 2017-10-31 HCT Group Holdings Limited Retractable cosmetic implement with multiple positions
US9826824B2 (en) 2014-10-23 2017-11-28 HCT Group Holdings Limited Cosmetic brush cleaning aid
US9867448B2 (en) 2014-09-15 2018-01-16 HCT Group Holdings Limited Container with collapsible applicator
USD818641S1 (en) 2016-03-16 2018-05-22 HCT Group Holdings Limited Cosmetics applicator with cap
US9974416B2 (en) 2013-12-20 2018-05-22 Toaster Labs, Inc. Automatic heated fluid dispenser
CN108135350A (en) * 2015-10-13 2018-06-08 皇家飞利浦有限公司 For the heating of facial brush and cooling supply
US9993059B2 (en) 2015-07-10 2018-06-12 HCT Group Holdings Limited Roller applicator
US10098510B2 (en) 2013-12-20 2018-10-16 Toaster Loabs, Inc. Pneumatically driven fluid dispenser
US10144032B2 (en) 2013-12-20 2018-12-04 Toaster Labs, Inc. Inductively heatable fluid reservoir
CN109223495A (en) * 2018-11-13 2019-01-18 宁波爱果电子科技有限公司 A kind of portable regular movements constant temperature essence application device
US10189038B2 (en) 2013-12-20 2019-01-29 Toaster Labs, Inc. Inductively heatable fluid reservoir for various fluid types
USD841235S1 (en) 2017-03-15 2019-02-19 HCT Group Holdings Limited Spatula cosmetic applicator
US10433372B2 (en) 2013-12-20 2019-10-01 Toaster Labs, Inc. Portable fluid warming device
US20190335877A1 (en) * 2017-03-22 2019-11-07 Woong-Hee Lee Tubular Container Having Applicator
US10477956B2 (en) 2013-08-20 2019-11-19 HCT Group Holdings Limited Cosmetic systems
USD886633S1 (en) 2018-05-18 2020-06-09 HCT Group Holdings Limited Cosmetic dispenser with cap
USD886634S1 (en) * 2017-08-30 2020-06-09 Anderson Cosmetic Supplies Pty Ltd. Cosmetics applicator bottle
USD889745S1 (en) 2018-09-06 2020-07-07 HCT Group Holdings Limited Dual purpose makeup applicator
US10835013B2 (en) 2014-09-02 2020-11-17 HCT Group Holdings Limited Container with dispensing tip
USD904691S1 (en) 2018-07-05 2020-12-08 Cosmopak U.S.A. LLC Cosmetic container with magnetic closure
US10874193B2 (en) 2018-03-14 2020-12-29 HCT Group Holdings Limited Wheel actuated cosmetic stick
USD910236S1 (en) 2018-11-20 2021-02-09 HCT Group Holdings Limited Ball tip applicator
AU2016290895B2 (en) * 2015-07-06 2021-05-06 Mitchell Terrace Pty. Ltd. Device for applying a product
US11090506B2 (en) 2018-05-15 2021-08-17 Omm Imports, Inc. Disposable product cap and assembly having a manually usable thermo-optical device for skin care
US11331244B2 (en) 2020-06-29 2022-05-17 Therabody, Inc. Vibration therapy system and device
USD961153S1 (en) * 2020-10-09 2022-08-16 Parfums Christian Dior Cosmetic applicator device
USD976431S1 (en) 2021-03-02 2023-01-24 Therabody, Inc. Facial treatment device
US11564863B2 (en) 2020-06-29 2023-01-31 Therabody, Inc. Cooling attachment module for facial treatment device
US11730668B2 (en) 2020-06-29 2023-08-22 Therabody, Inc. Vibrating therapy system and device
USD1004793S1 (en) 2021-03-02 2023-11-14 Therabody, Inc. Facial treatment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9191081B2 (en) 2013-03-08 2015-11-17 Mimosa Networks, Inc. System and method for dual-band backhaul radio
USD1016620S1 (en) 2022-06-17 2024-03-05 HCT Group Holdings Limited Flex dropper
USD1023776S1 (en) 2022-07-06 2024-04-23 HCT Group Holdings Limited Flex dropper assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178095A1 (en) * 2006-06-07 2010-07-15 Herve Bouix Cosmetic Applicators Containing Heating Elements
WO2012032148A1 (en) * 2010-09-10 2012-03-15 L'oreal Heating packaging and application device for cosmetic product
US8573874B2 (en) * 2009-06-04 2013-11-05 Elc Management, Llc Metal clad ceramic cosmetic applicator
US20140234004A1 (en) * 2013-02-19 2014-08-21 Hct Asia Ltd. Applicator device or dispenser with applicator tip assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020095268A (en) * 2001-06-14 2002-12-26 고려하이텍 주식회사 multi function a massage device coldness and warmth possible
KR200427986Y1 (en) * 2006-06-30 2006-10-04 (주)아모레퍼시픽 massage apparatus for skin care
US7883287B2 (en) * 2007-05-10 2011-02-08 HCT Asia, Ltd Dispenser with thermal storage tip
US20100274162A1 (en) * 2009-04-22 2010-10-28 Dale Marlyn Marie Evans Thermal Massager
KR101117311B1 (en) * 2009-12-11 2012-03-19 김희구 Trans-dermal drug delivery system of apparatus for skin massage
US8360998B2 (en) * 2010-02-02 2013-01-29 Hct Asia Ltd. Applicator system with vibrating implement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178095A1 (en) * 2006-06-07 2010-07-15 Herve Bouix Cosmetic Applicators Containing Heating Elements
US8573874B2 (en) * 2009-06-04 2013-11-05 Elc Management, Llc Metal clad ceramic cosmetic applicator
WO2012032148A1 (en) * 2010-09-10 2012-03-15 L'oreal Heating packaging and application device for cosmetic product
US8864401B2 (en) * 2010-09-10 2014-10-21 L'oreal Heating packaging and application device for cosmetic product
US20140234004A1 (en) * 2013-02-19 2014-08-21 Hct Asia Ltd. Applicator device or dispenser with applicator tip assembly

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331422A1 (en) * 2013-05-09 2014-11-13 HCT Group Holdings Limited Combination cosmetic applicator
US10477956B2 (en) 2013-08-20 2019-11-19 HCT Group Holdings Limited Cosmetic systems
US20160206470A1 (en) * 2013-09-18 2016-07-21 L'oreal Peltier effect device for creating a cooling or heating feeling
US9801460B2 (en) 2013-11-04 2017-10-31 HCT Group Holdings Limited Retractable cosmetic implement with multiple positions
US10144032B2 (en) 2013-12-20 2018-12-04 Toaster Labs, Inc. Inductively heatable fluid reservoir
US10189038B2 (en) 2013-12-20 2019-01-29 Toaster Labs, Inc. Inductively heatable fluid reservoir for various fluid types
US9801505B2 (en) 2013-12-20 2017-10-31 Toaster Labs, Inc. Automatic fluid dispenser
US10433372B2 (en) 2013-12-20 2019-10-01 Toaster Labs, Inc. Portable fluid warming device
US10098510B2 (en) 2013-12-20 2018-10-16 Toaster Loabs, Inc. Pneumatically driven fluid dispenser
US9974416B2 (en) 2013-12-20 2018-05-22 Toaster Labs, Inc. Automatic heated fluid dispenser
US20160030233A1 (en) * 2014-08-01 2016-02-04 Empire Technology Development Llc Apparatuses and methods for cooling a surface
US10835013B2 (en) 2014-09-02 2020-11-17 HCT Group Holdings Limited Container with dispensing tip
US9867448B2 (en) 2014-09-15 2018-01-16 HCT Group Holdings Limited Container with collapsible applicator
USD767903S1 (en) 2014-09-22 2016-10-04 HCT Group Holdings Limited Cosmetic brush
US9826824B2 (en) 2014-10-23 2017-11-28 HCT Group Holdings Limited Cosmetic brush cleaning aid
US10506869B2 (en) 2014-10-23 2019-12-17 HCT Group Holdings Limited Cosmetic brush cleaning aid
USD779140S1 (en) 2014-10-23 2017-02-14 HCT Group Holdings Limited Brush cleansing mitt
USD787835S1 (en) 2015-03-18 2017-05-30 HCT Group Holdings Limited Multi-head dual end cosmetic applicator
USD835419S1 (en) 2015-03-18 2018-12-11 HCT Group Holdings Limited Multi-head dual end cosmetic applicator
USD778069S1 (en) 2015-03-18 2017-02-07 HCT Group Holdings Limited Dual ended kabuki brush
AU2016290895B2 (en) * 2015-07-06 2021-05-06 Mitchell Terrace Pty. Ltd. Device for applying a product
US11510475B2 (en) * 2015-07-06 2022-11-29 Mitchell Terrace Pty. Ltd Device for applying a product
US9993059B2 (en) 2015-07-10 2018-06-12 HCT Group Holdings Limited Roller applicator
CN108135350A (en) * 2015-10-13 2018-06-08 皇家飞利浦有限公司 For the heating of facial brush and cooling supply
JP7152307B2 (en) 2015-10-13 2022-10-12 コーニンクレッカ フィリップス エヌ ヴェ Heating and cooling source for facial brush
US20220133026A1 (en) * 2015-10-13 2022-05-05 Koninklijke Philips N.V. Heating and cooling supply for facial brush
US11812846B2 (en) * 2015-10-13 2023-11-14 Koninklijke Philips N.V. Heating and cooling supply for facial brush
JP2018531700A (en) * 2015-10-13 2018-11-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Heating and cooling source for facial brush
US11259627B2 (en) * 2015-10-13 2022-03-01 Koninklijke Philips N.V. Heating and cooling supply for facial brush
EP3361903B1 (en) * 2015-10-13 2022-08-03 Koninklijke Philips N.V. Facial brush with heating and cooling supply
US20180295980A1 (en) * 2015-10-13 2018-10-18 Koninklijke Philips N.V. Heating and cooling supply for facial brush
US20170135852A1 (en) * 2015-11-13 2017-05-18 HUNTKEY JAPAN Inc. Ophthalmic thermal therapeutic apparatus
USD818641S1 (en) 2016-03-16 2018-05-22 HCT Group Holdings Limited Cosmetics applicator with cap
USD841235S1 (en) 2017-03-15 2019-02-19 HCT Group Holdings Limited Spatula cosmetic applicator
US10750840B2 (en) * 2017-03-22 2020-08-25 Yonwoo Co., Ltd. Tubular container having applicator
EP3603442A4 (en) * 2017-03-22 2020-12-02 Yonwoo Co.,Ltd Tube container having detachable applicator part
US20190335877A1 (en) * 2017-03-22 2019-11-07 Woong-Hee Lee Tubular Container Having Applicator
USD886634S1 (en) * 2017-08-30 2020-06-09 Anderson Cosmetic Supplies Pty Ltd. Cosmetics applicator bottle
US10874193B2 (en) 2018-03-14 2020-12-29 HCT Group Holdings Limited Wheel actuated cosmetic stick
US11752358B2 (en) * 2018-05-15 2023-09-12 OMM Imports Inc. Disposable product cap and assembly having a manually usable thermo-optical device for skin care
US11090506B2 (en) 2018-05-15 2021-08-17 Omm Imports, Inc. Disposable product cap and assembly having a manually usable thermo-optical device for skin care
US20220032082A1 (en) * 2018-05-15 2022-02-03 Omm Imports, Inc. Disposable product cap and assembly having a manually usable thermo-optical device for skin care
USD886633S1 (en) 2018-05-18 2020-06-09 HCT Group Holdings Limited Cosmetic dispenser with cap
USD926380S1 (en) 2018-07-05 2021-07-27 Cosmopak U.S.A. LLC Cylindrical cosmetic container with magnetic closure
USD904691S1 (en) 2018-07-05 2020-12-08 Cosmopak U.S.A. LLC Cosmetic container with magnetic closure
USD889745S1 (en) 2018-09-06 2020-07-07 HCT Group Holdings Limited Dual purpose makeup applicator
CN109223495A (en) * 2018-11-13 2019-01-18 宁波爱果电子科技有限公司 A kind of portable regular movements constant temperature essence application device
USD910236S1 (en) 2018-11-20 2021-02-09 HCT Group Holdings Limited Ball tip applicator
US11331244B2 (en) 2020-06-29 2022-05-17 Therabody, Inc. Vibration therapy system and device
US11564863B2 (en) 2020-06-29 2023-01-31 Therabody, Inc. Cooling attachment module for facial treatment device
US11730668B2 (en) 2020-06-29 2023-08-22 Therabody, Inc. Vibrating therapy system and device
USD961153S1 (en) * 2020-10-09 2022-08-16 Parfums Christian Dior Cosmetic applicator device
USD976431S1 (en) 2021-03-02 2023-01-24 Therabody, Inc. Facial treatment device
USD1004793S1 (en) 2021-03-02 2023-11-14 Therabody, Inc. Facial treatment device

Also Published As

Publication number Publication date
WO2014123558A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
US20140219701A1 (en) Cosmetic device with active temperature modulation
US20180084892A1 (en) Cosmetic device with thermal storage tip
US11096467B2 (en) Dispenser with spaced thermal member
JP5189086B2 (en) Cosmetic delivery device having a heating element
EP3013182B1 (en) Dispenser with threaded tip/dispenser with removable cap
US10973299B2 (en) Depressible thermal tips
CN108290028B (en) Beauty health appliance and cartridge
KR20110094252A (en) Heating and dispenser system
US20120009002A1 (en) Applicator device
US11412833B1 (en) Cosmetic package for a fluid product
KR101401046B1 (en) Gel heating unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: HCT PACKAGING, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EBERLEIN, DAVID JEFFREY;REEL/FRAME:029784/0865

Effective date: 20130131

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT

Free format text: SECURITY INTEREST;ASSIGNOR:HCT PACKAGING, INC.;REEL/FRAME:064595/0411

Effective date: 20230815