US20140192238A1 - System and Method for Imaging and Image Processing - Google Patents

System and Method for Imaging and Image Processing Download PDF

Info

Publication number
US20140192238A1
US20140192238A1 US13/881,039 US201113881039A US2014192238A1 US 20140192238 A1 US20140192238 A1 US 20140192238A1 US 201113881039 A US201113881039 A US 201113881039A US 2014192238 A1 US2014192238 A1 US 2014192238A1
Authority
US
United States
Prior art keywords
image
lens
depth information
interest
blurred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/881,039
Inventor
Ziv Attar
Chen Aharon-Attar
Edwin Maria Wolterink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linx Computational Imaging Ltd
Original Assignee
Linx Computational Imaging Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linx Computational Imaging Ltd filed Critical Linx Computational Imaging Ltd
Priority to US13/881,039 priority Critical patent/US20140192238A1/en
Assigned to OPERA IMAGING B.V. reassignment OPERA IMAGING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHARON-ATTAR, CHEN, ATTAR, ZIV
Assigned to ATTAR, ZIV reassignment ATTAR, ZIV ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OPERA IMAGING B.V.
Assigned to LINX COMPUTATIONAL IMAGING LTD. reassignment LINX COMPUTATIONAL IMAGING LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATTAR, ZIV
Publication of US20140192238A1 publication Critical patent/US20140192238A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/2224Studio circuitry; Studio devices; Studio equipment related to virtual studio applications
    • H04N5/2226Determination of depth image, e.g. for foreground/background separation
    • H04N5/232
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2621Cameras specially adapted for the electronic generation of special effects during image pickup, e.g. digital cameras, camcorders, video cameras having integrated special effects capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Definitions

  • the present invention relates to a system and method for creating an image having blurred and non blurred areas using an image capturing device. Moreover, the invention relates to an apparatus for creating an image with a low depth of field appearance, to an apparatus for creating an image with highlighted areas of interest and to an apparatus for creating an image with highlighted differences in an image sequence.
  • WO 2006/039486 relates to a method for digitally imaging a scene, the method comprising: using a photo sensor array to simultaneously detect light from the scene that is passed to different locations on a focal plane; determining the angle of incidence of the light detected at the different locations on the focal plane; and using the determined angle of incidence and the determined depth of field to compute an output image in which at least a portion of the image is refocused.
  • This International application discloses a system as well, comprising: a main lens; a photo sensor array for capturing a set of light rays; a microlens array between the main lens and the photo sensor array; a data processor to compute a synthesized refocused image via a virtual redirection of the set of light rays captured by the photo sensor array.
  • U.S. Pat. No. 7,224,384 relates to an optical imaging system comprising: a taking lens that collects light from a scene being imaged with the optical imaging system; a 3D camera comprising at least one photo surface that receives light from the taking lens simultaneously from all points in the scene and provides data for generating a depth map of the scene responsive to the light; and an imaging camera comprising at least one photo surface that receives light from the taking lens and provides a picture of the scene responsive to the light; and a light control system that controls an amount of light from the taking lens that reaches at least one of the 3D camera and the imaging camera without affecting an amount of light that reaches the other of the 3D camera and the imaging camera.
  • WO 2008/087652 relates to a method for mapping an object, comprising: illuminating the object with at least two beams of radiation having different beam characteristics; capturing at least one image of the object under illumination with each of the at least two beams; processing the at least one image to detect local differences in an intensity of the illumination cast on the object by the at least two beams; and analyzing the local differences in order to generate a three-dimensional (3D) map of the object.
  • An object of the present invention is to use information captured by the camera to blur only selected pixels in the image.
  • Another object of the present invention is to use depth information captured by the camera and a distance of interest set by an algorithm or by a user to blur only selected pixels.
  • Another object of the present invention is to use chromatic information captured by the camera and a spectrum of interest set by an algorithm or by a user to blur only selected pixels.
  • Another object of the present invention is to use difference information between two or more sequential frames to blur only selected pixels.
  • multi aperture digital camera as referred to means a camera that consists of more than one imaging lenses each having its aperture and lens elements.
  • imaging channel refers to a lens and sensor area of one aperture in a multi aperture digital camera.
  • Using a multi lens camera allows us to extract distance information of certain objects in a scene.
  • the distance between the lenses of the different imaging channels creates a parallax effect causing object that are not at infinity to appear at different position on the images of the different imaging channels.
  • Calculating these position shifts using an algorithm such as auto-correlation allows us to determine the distance of each object in the scene.
  • Using a time-of-flight systems allows us to calculate depth information of objects in a scene by means of emitting light toward the scene and measuring the time it takes the light to be return to the sensor. The farther an object is the longer time it will take.
  • a structured light system to allow us the calculate depth information of objects in a scene is based on a light emitting system in which light is emitted in a structured manner such as a grid of dots.
  • An imaging camera is used to image these dots and an algorithm measures to position of these dots on the its image.
  • the light emitting system and the imaging camera are separated laterally and therefore a parallax effect is present and by calculating the position of the dots or any other pattern the system can determine the distance of the object in which the dot was reflected from.
  • the present inventors found that it possible to blur selected part of an image in order to create a low depth of field appearance and to highlight certain areas or objects in an image or image sequence. Human, when looking at an image tend to focus the attention to areas that are the sharpest in their surroundings therefore blurring areas which are of lower interest has a clear advantage.
  • the present invention relates to a system and method which may be applied to a variety of imaging systems.
  • This system and method provide high quality imaging while considerably reducing the length of the camera as compared to other systems and methods.
  • the object of the present invention is to provide a system and a method to improve image capturing devices while. This may be accomplished by using a 2 or more apertures each using a lens. Each lens forms a small image of the scene. Each lens transfers light emitted or reflected from objects in the scenery onto a proportional area in the detector. The optical track of each lens is proportional to the segment of the detector which the emitted or reflected light is projected on. Therefore, when using smaller lenses the area of the detector which the emitted or reflected light is projected on, referred hereinafter as the active area of the detector, is smaller. When the detector is active for each lens separately, each initial image formed is significantly smaller as compare to using one lens which forms an entire image. One lens camera transfers emitter or reflected light onto the entire detector area.
  • the step of selecting can be done automatically by an algorithm that recognizes area of interest such as faces in conventional photography.
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • an object of interest can be chosen as the person standing at 1 meter.
  • first we will calculate the distance of the object of interest and than calculate the distance of all other objects and compare them. According to this comparison we decide on the type or size of blur to apple to each object. In this case a small blur will be applied to the person standing at 2 meters and a larger blur will be applied to the person standing at 3 meters.
  • the object of interest which is the person standing at one meter will not be blurred at all.
  • the advantage of the embodiment is that a low depth of field appearance is achieved.
  • Another advantage is that the selection of object of interest can be applied automatically or by a user using a touch screen or an input device and a display, in one frame that can be part of a preview mode frame sequence after which a full resolution image may be captured and processed to keep the object of interest in focus while blurring other object respectively with their distance from the object of interest. This eliminates the need to apply the blur only after the image is captured.
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • the advantage of this embodiment is that the selection of the object of interest is done after the capturing and depth calculating. This allows the user to choose different objects of interest or correct his selection while keeping the non blurred information and depth map.
  • Another advantage is that the selection of objects of interest, comparing with distances of the other objects and blurring accordingly can be done at a different time with respect to the time of the image capturing allowing us the operate these operations on a device different than the one used for image capturing.
  • the image capturing device could be a multi aperture camera integrated in to a mobile phone or tablet computer and the selection of object of interest and blurring can be done on a tablet or laptop computer at a different time.
  • Another advantage is that by saving the image and the depth information it is possible to apply select object of interest and blur multiple time while saving the resulting image as a computer file. Each time the selection of object of interest may be different.
  • the present invention relates to a method for creating an image having blurred and non blurred areas using an image capturing device, in which the method comprises the following steps:
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • the advantage of this embodiment is that we can highlight object with certain chromatic nature such as tissue suspected as harmful in an image captured by for example an endoscopic camera.
  • the present invention relates to a method for creating an image having blurred and non blurred areas using an image sequence capturing device, in which the method comprises the following steps:
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • the advantage of this embodiment is that objects that are moving or changing will be highlighted by the effect of the blurring of all other areas of the image or image sequence.
  • An example of the embodiment is a surveillance camera coupled with a display that is observed by a human.
  • the scene may contain many details and objects which make it more difficult for the human to detect moving objects. By blurring an object that is not moving we attract the attention of the observing human to the moving or changing objects.
  • the present invention could be integrated in many devices such as a digital camera, digital video camera, mobile phone, a personal computer, tablet, PDA, notebooks, gaming consoles, televisions, monitors, displays, automotive cameras, glasses, helmet, projector, microscopes, imaging endoscopes, imaging medical probe, surveillance systems, inspection systems, speed detection systems, traffic management systems, area access systems, satellite imaging, machine vision and augmented reality systems.
  • devices such as a digital camera, digital video camera, mobile phone, a personal computer, tablet, PDA, notebooks, gaming consoles, televisions, monitors, displays, automotive cameras, glasses, helmet, projector, microscopes, imaging endoscopes, imaging medical probe, surveillance systems, inspection systems, speed detection systems, traffic management systems, area access systems, satellite imaging, machine vision and augmented reality systems.
  • FIG. 1 illustrates a side view of a single lens camera.
  • FIG. 2 illustrates a sensor array ( 201 ) having multiple pixels.
  • FIG. 3 illustrates a side view of a three lens camera having one sensor and three lenses.
  • FIG. 4 illustrates an example of a scene as projected on to the sensor.
  • FIG. 5 illustrates a front view of a three lens camera using one rectangular sensor divided in to three regions.
  • FIG. 6 illustrates a front view of a three lens camera having one sensor, one large lens and two smaller lenses.
  • FIG. 7 illustrates a front view of a four lens camera having a one sensor ( 700 ) and four lenses.
  • FIG. 8 illustrates a 16 lens camera having four regions, each containing four lenses as illustrated in FIG. 7 .
  • FIG. 1 illustrates a side view of a single lens camera having a single lens ( 102 ) that can comprise one or more elements and a single sensor ( 101 ).
  • FIG. 2 illustrates a sensor array ( 201 ) having multiple pixels where the position of the green filter, red filter and blue filter are marked by ( 202 ), ( 203 ) and ( 204 ) respectively.
  • the image that will be taken using this configuration needs to be processed in order to separate the green, red and blue images.
  • FIG. 3 illustrates a side view of a three lens camera having one sensor ( 310 ) and three lenses ( 301 ), ( 302 ) and ( 303 ). Each one of the said lens will project the image of the same scene on to segments of the sensor marked by ( 311 ), ( 312 ) and ( 313 ) respectively. Each one of the three lenses will have different color filters integrated within the lens, in front of it or between the lens and sensor ( 310 ). Using the described configuration the image acquired by the sensor will be composed of two or more smaller images, each imaging information from the scene at different spectrums.
  • FIG. 4 illustrates an example of a scene as projected on to the sensor ( 401 ), in each region of the sensor ( 402 ), ( 403 ) and ( 404 ) the same scene is projected but each region will contain information for light at different wavelengths representing different colors according to the filters integrated within the lens that forms the image on each region.
  • the described configuration does not require the use of a color mask and therefore the maximal spatial frequency that can be resolved by the sensor is higher, on the other hand using smaller lens and smaller active area per channel necessarily means that the focal length of the lens is smaller and therefore the spatial resolution in objects space is decreased. Overall the maximal resolvable resolution for each color remains same.
  • the image acquired by the sensor is composed of two or smaller images, each containing information of the same scene but in different colors.
  • the complete image is then processed and separated in to 3 or more smaller images and combined together to one large color image.
  • Using a fourth lens in addition to the three used for each color red, green and blue (or other colors) with a broad spectral transmission can allow extension of the sensor's dynamic range and improve the signal-to-noise performance of the camera in low light conditions.
  • Another configuration that is proposed is using two or more lenses with one sensor having a color mask integrated or on top of the sensor such as a Bayer mask.
  • no color filter will be integrated in to each lens channel and all lenses will create a color image on the sensor region corresponding to the specific lens.
  • the resulting image will be processed to form one large image combining the two or more color images that are projected on to the sensor.
  • Dividing the sensor's active area in to 3 areas, one for each color Red, Green and Blue (or other colors) can be achieved by placing 3 lens one beside the other as described in the drawing below:
  • the resulting image will consist of 3 small images were each contains information of the same scene in different color.
  • Such a configuration will comprise of 3 lenses where the focal length of each lens is 4/9 of an equivalent single lens camera that uses a color filter array, these values assume a 4:3 aspect ratio sensor.
  • FIG. 5 illustrates a front view of a three lens camera using one rectangular sensor ( 500 ) divided in to three regions ( 501 ), ( 502 ) and ( 503 ).
  • the three lenses ( 511 ), ( 512 ) and ( 513 ) each having different color filters integrated within the lens, in front of the lens or between the lens and the sensor are used to form an image of the same scene but in different colors.
  • each region of the sensor ( 501 ), ( 502 ) and ( 503 ) are rectangular having the longer dimension of the rectangle perpendicular to the long dimension of the complete sensor.
  • FIG. 6 illustrates a front view of a three lens camera having one sensor ( 600 ), one large lens ( 613 ) and two smaller lenses ( 611 ) and ( 612 ).
  • the large lens ( 613 ) is used to form an image on the sensor segment marked ( 603 ) while the two smaller lenses form an image on the sensor's segments marked with ( 601 ) and ( 602 ) respectively.
  • the larger lens ( 613 ) can use a green color filter while the two smaller lenses ( 611 ) and ( 612 ) can use a blue and red filter respectively. Other color filters could be used for each lens.
  • FIG. 7 illustrates a front view of a four lens camera having a one sensor ( 700 ) and four lenses ( 711 ), ( 712 ), ( 713 ) and ( 714 ). Each lens forms an image on the corresponding sensor region marked with ( 701 ), ( 702 ), ( 703 ) and ( 704 ) respectively.
  • Each one of the lenses will be integrated with a color filter in side the lens, in front of the lens or between the lens and the sensor. All four lenses could be integrated with different color filter or alternatively two of the four lenses could have the same color filter integrated in side the lens, in front of the lens or between the lens and the sensor. For example using two green filters one blue filter and one red filter will allow more light collection in the green spectrum.
  • M and/or N larger than 2 allows higher shortening factor and higher increase in depth of focus.
  • FIG. 8 illustrates a 16 lens camera having 4 regions ( 801 ), ( 802 ), ( 803 ) and ( 804 ) each containing four lenses as illustrated in FIG. 7 .

Abstract

One or more objects of interest from a scene are selected. Depth information of the one or more objects is calculated. Additionally, depth information of the scene is calculated. The calculated depth information of the one or more objects is compared with calculated depth information of the scene. Based on the comparison a blur is applied to an image that includes the scene.

Description

  • The present invention relates to a system and method for creating an image having blurred and non blurred areas using an image capturing device. Moreover, the invention relates to an apparatus for creating an image with a low depth of field appearance, to an apparatus for creating an image with highlighted areas of interest and to an apparatus for creating an image with highlighted differences in an image sequence.
  • BACKGROUND OF THE INVENTION
  • WO 2006/039486 relates to a method for digitally imaging a scene, the method comprising: using a photo sensor array to simultaneously detect light from the scene that is passed to different locations on a focal plane; determining the angle of incidence of the light detected at the different locations on the focal plane; and using the determined angle of incidence and the determined depth of field to compute an output image in which at least a portion of the image is refocused. This International application discloses a system as well, comprising: a main lens; a photo sensor array for capturing a set of light rays; a microlens array between the main lens and the photo sensor array; a data processor to compute a synthesized refocused image via a virtual redirection of the set of light rays captured by the photo sensor array.
  • U.S. Pat. No. 7,224,384 relates to an optical imaging system comprising: a taking lens that collects light from a scene being imaged with the optical imaging system; a 3D camera comprising at least one photo surface that receives light from the taking lens simultaneously from all points in the scene and provides data for generating a depth map of the scene responsive to the light; and an imaging camera comprising at least one photo surface that receives light from the taking lens and provides a picture of the scene responsive to the light; and a light control system that controls an amount of light from the taking lens that reaches at least one of the 3D camera and the imaging camera without affecting an amount of light that reaches the other of the 3D camera and the imaging camera.
  • WO 2008/087652 relates to a method for mapping an object, comprising: illuminating the object with at least two beams of radiation having different beam characteristics; capturing at least one image of the object under illumination with each of the at least two beams; processing the at least one image to detect local differences in an intensity of the illumination cast on the object by the at least two beams; and analyzing the local differences in order to generate a three-dimensional (3D) map of the object.
  • An object of the present invention is to use information captured by the camera to blur only selected pixels in the image.
  • Another object of the present invention is to use depth information captured by the camera and a distance of interest set by an algorithm or by a user to blur only selected pixels.
  • Another object of the present invention is to use chromatic information captured by the camera and a spectrum of interest set by an algorithm or by a user to blur only selected pixels.
  • Another object of the present invention is to use difference information between two or more sequential frames to blur only selected pixels.
  • The term multi aperture digital camera as referred to means a camera that consists of more than one imaging lenses each having its aperture and lens elements. The term imaging channel refers to a lens and sensor area of one aperture in a multi aperture digital camera.
  • Using a multi lens camera allows us to extract distance information of certain objects in a scene. The distance between the lenses of the different imaging channels creates a parallax effect causing object that are not at infinity to appear at different position on the images of the different imaging channels. Calculating these position shifts using an algorithm such as auto-correlation allows us to determine the distance of each object in the scene. Using a time-of-flight systems allows us to calculate depth information of objects in a scene by means of emitting light toward the scene and measuring the time it takes the light to be return to the sensor. The farther an object is the longer time it will take.
  • Using a structured light system to allow us the calculate depth information of objects in a scene is based on a light emitting system in which light is emitted in a structured manner such as a grid of dots. An imaging camera is used to image these dots and an algorithm measures to position of these dots on the its image. The light emitting system and the imaging camera are separated laterally and therefore a parallax effect is present and by calculating the position of the dots or any other pattern the system can determine the distance of the object in which the dot was reflected from.
  • Using multiple cameras positioned differently allows us to extract distance information of certain objects in a scene. The distance between the lenses of the different imaging channels creates a parallax effect causing object that are not at infinity to appear at different position on the images of the different imaging channels. Calculating these position shifts using an algorithm such as auto-correlation allows us to determine the distance of each object in the scene.
  • The present inventors found that it possible to blur selected part of an image in order to create a low depth of field appearance and to highlight certain areas or objects in an image or image sequence. Human, when looking at an image tend to focus the attention to areas that are the sharpest in their surroundings therefore blurring areas which are of lower interest has a clear advantage.
  • When using cameras with lenses with a low F/# (focal length divided by aperture diameter) the depth of field becomes smaller when the F/# is smaller. Although this effect may be considered a disadvantage as object which are not positioned at the focus distance are severely blurred it may also create a 3 dimensional impression of the scene. Using the method described above for obtaining object distances by calculating the local shift between the images of the different imaging channels or using another technology as described above we can intentionally blur areas in the image that are far from the object of interest which we want to keep sharp.
  • The present invention relates to a system and method which may be applied to a variety of imaging systems. This system and method provide high quality imaging while considerably reducing the length of the camera as compared to other systems and methods.
  • Specifically, the object of the present invention is to provide a system and a method to improve image capturing devices while. This may be accomplished by using a 2 or more apertures each using a lens. Each lens forms a small image of the scene. Each lens transfers light emitted or reflected from objects in the scenery onto a proportional area in the detector. The optical track of each lens is proportional to the segment of the detector which the emitted or reflected light is projected on. Therefore, when using smaller lenses the area of the detector which the emitted or reflected light is projected on, referred hereinafter as the active area of the detector, is smaller. When the detector is active for each lens separately, each initial image formed is significantly smaller as compare to using one lens which forms an entire image. One lens camera transfers emitter or reflected light onto the entire detector area.
  • According to an embodiment the present invention relates to a method for creating an image having blurred and non blurred areas using an image capturing device capable of depth mapping comprising the steps of:
  • Selecting one or more object of interest from the scene,
  • Calculating depth information of said one or more objects of interest from the scene,
  • Retrieving raw data from the multi aperture camera of the complete scene,
  • Calculating depth information of the complete scene,
  • Comparing the calculated depth information of the selected object of interest with the calculated depth of the complete scene.
  • Applying a blur that is dependent on the result of the comparison.
  • The step of selecting can be done automatically by an algorithm that recognizes area of interest such as faces in conventional photography. Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • More in detail, if a scene consists of a room with 3 people standing at 1, 2 and 3 meters from the camera respectively, an object of interest can be chosen as the person standing at 1 meter. According to the embodiment above, first we will calculate the distance of the object of interest and than calculate the distance of all other objects and compare them. According to this comparison we decide on the type or size of blur to apple to each object. In this case a small blur will be applied to the person standing at 2 meters and a larger blur will be applied to the person standing at 3 meters. The object of interest which is the person standing at one meter will not be blurred at all.
  • The advantage of the embodiment is that a low depth of field appearance is achieved.
  • Another advantage is that the selection of object of interest can be applied automatically or by a user using a touch screen or an input device and a display, in one frame that can be part of a preview mode frame sequence after which a full resolution image may be captured and processed to keep the object of interest in focus while blurring other object respectively with their distance from the object of interest. This eliminates the need to apply the blur only after the image is captured.
  • According to another embodiment the present invention relates to a method for creating an image having blurred and non blurred areas using an image capturing device capable of depth mapping comprising the steps of:
  • Capturing an image from the image capturing device,
  • Calculating a depth map,
  • Selecting one or more object of interest from the image,
  • Comparing the calculated depth information of the selected object of interest with the calculated depth of the complete scene,
  • Applying a blur that is dependent on the result of the comparison.
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • The advantage of this embodiment is that the selection of the object of interest is done after the capturing and depth calculating. This allows the user to choose different objects of interest or correct his selection while keeping the non blurred information and depth map. Another advantage is that the selection of objects of interest, comparing with distances of the other objects and blurring accordingly can be done at a different time with respect to the time of the image capturing allowing us the operate these operations on a device different than the one used for image capturing. For example the image capturing device could be a multi aperture camera integrated in to a mobile phone or tablet computer and the selection of object of interest and blurring can be done on a tablet or laptop computer at a different time. Another advantage is that by saving the image and the depth information it is possible to apply select object of interest and blur multiple time while saving the resulting image as a computer file. Each time the selection of object of interest may be different.
  • According to another embodiment the present invention relates to a method for creating an image having blurred and non blurred areas using an image capturing device, in which the method comprises the following steps:
  • Capturing an image from the image capturing device,
  • Calculating chromatic properties of objects appearing in the captured image,
  • Selecting one or more object of interest from the image according to the calculated chromatic properties,
  • Applying a blur that is dependent on the result of the selection.
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • The advantage of this embodiment is that we can highlight object with certain chromatic nature such as tissue suspected as harmful in an image captured by for example an endoscopic camera.
  • According to another embodiment the present invention relates to a method for creating an image having blurred and non blurred areas using an image sequence capturing device, in which the method comprises the following steps:
  • Capturing an image sequence from the image sequence capturing device,
  • Calculating differences between the sequential images,
  • Selecting one or more pixel area of interest from the images according to the differences calculated between the sequential frames,
  • Applying a blur that is dependent on the result of the selection.
  • Blurring can be achieved by means of convolution of an area of the image with a blur filter such as a Gaussian.
  • The advantage of this embodiment is that objects that are moving or changing will be highlighted by the effect of the blurring of all other areas of the image or image sequence.
  • An example of the embodiment is a surveillance camera coupled with a display that is observed by a human. The scene may contain many details and objects which make it more difficult for the human to detect moving objects. By blurring an object that is not moving we attract the attention of the observing human to the moving or changing objects.
  • The present invention could be integrated in many devices such as a digital camera, digital video camera, mobile phone, a personal computer, tablet, PDA, notebooks, gaming consoles, televisions, monitors, displays, automotive cameras, glasses, helmet, projector, microscopes, imaging endoscopes, imaging medical probe, surveillance systems, inspection systems, speed detection systems, traffic management systems, area access systems, satellite imaging, machine vision and augmented reality systems.
  • The invention will be more clearly understood by reference to the following description of preferred embodiments thereof read in conjunction with the figures attached hereto. In the figures, identical structures, elements or parts which appear in more than one figure are labeled with the same numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a side view of a single lens camera.
  • FIG. 2 illustrates a sensor array (201) having multiple pixels.
  • FIG. 3 illustrates a side view of a three lens camera having one sensor and three lenses.
  • FIG. 4 illustrates an example of a scene as projected on to the sensor.
  • FIG. 5 illustrates a front view of a three lens camera using one rectangular sensor divided in to three regions.
  • FIG. 6 illustrates a front view of a three lens camera having one sensor, one large lens and two smaller lenses.
  • FIG. 7 illustrates a front view of a four lens camera having a one sensor (700) and four lenses.
  • FIG. 8 illustrates a 16 lens camera having four regions, each containing four lenses as illustrated in FIG. 7.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a side view of a single lens camera having a single lens (102) that can comprise one or more elements and a single sensor (101).
  • FIG. 2 illustrates a sensor array (201) having multiple pixels where the position of the green filter, red filter and blue filter are marked by (202), (203) and (204) respectively. The image that will be taken using this configuration needs to be processed in order to separate the green, red and blue images.
  • FIG. 3 illustrates a side view of a three lens camera having one sensor (310) and three lenses (301), (302) and (303). Each one of the said lens will project the image of the same scene on to segments of the sensor marked by (311), (312) and (313) respectively. Each one of the three lenses will have different color filters integrated within the lens, in front of it or between the lens and sensor (310). Using the described configuration the image acquired by the sensor will be composed of two or more smaller images, each imaging information from the scene at different spectrums.
  • FIG. 4 illustrates an example of a scene as projected on to the sensor (401), in each region of the sensor (402), (403) and (404) the same scene is projected but each region will contain information for light at different wavelengths representing different colors according to the filters integrated within the lens that forms the image on each region.
  • The described configuration does not require the use of a color mask and therefore the maximal spatial frequency that can be resolved by the sensor is higher, on the other hand using smaller lens and smaller active area per channel necessarily means that the focal length of the lens is smaller and therefore the spatial resolution in objects space is decreased. Overall the maximal resolvable resolution for each color remains same.
  • The image acquired by the sensor is composed of two or smaller images, each containing information of the same scene but in different colors. The complete image is then processed and separated in to 3 or more smaller images and combined together to one large color image.
  • The Described Method of Imaging has Many Advantages:
      • 1. Shorter lens track (height) as each one of the lens used is smaller in size than the single lens covering the same field of view, the total track (height) of each lens is smaller allowing the camera to be smaller in height, an important factor for mobile phone cameras, notebook cameras and other applications requiring short optical track.
      • 2. Reduced Color artifacts—Since each color is captured separately, artifacts originating from spatial dependency of each color in a color mask will not appear.
      • 3. Lens requirements: each lens does not have to be optimal for all spectrums used but only for one spectrum, allowing simplifying the lens design and possibly decreasing the amount of elements used in each lens as no color correction is needed.
      • 4. Larger Depth of Focus: the depth of focus of a system depends on its focal length. Since we use smaller lenses with smaller focal lengths, we increase the depth of focus by the scale factor squared.
      • 5. Elimination of focus mechanism: focus mechanisms change the distance between the lens and the sensor to compensate for the change in object distance and to assure that the desired distance is in focus during the exposure time. Such a mechanism is costly and has many other disadvantages such as:
        • a. Size
        • b. Power consumption
        • c. Shutter lag
        • d. Reliability
        • e. price
  • Using a fourth lens in addition to the three used for each color red, green and blue (or other colors) with a broad spectral transmission can allow extension of the sensor's dynamic range and improve the signal-to-noise performance of the camera in low light conditions.
  • All configuration described above using a fourth lens element can be applied on other configurations having two or more lenses.
  • Another configuration that is proposed is using two or more lenses with one sensor having a color mask integrated or on top of the sensor such as a Bayer mask. In such a configuration no color filter will be integrated in to each lens channel and all lenses will create a color image on the sensor region corresponding to the specific lens. The resulting image will be processed to form one large image combining the two or more color images that are projected on to the sensor.
  • Three Lens Camera:
  • Dividing the sensor's active area in to 3 areas, one for each color Red, Green and Blue (or other colors) can be achieved by placing 3 lens one beside the other as described in the drawing below: The resulting image will consist of 3 small images were each contains information of the same scene in different color. Such a configuration will comprise of 3 lenses where the focal length of each lens is 4/9 of an equivalent single lens camera that uses a color filter array, these values assume a 4:3 aspect ratio sensor.
  • FIG. 5 illustrates a front view of a three lens camera using one rectangular sensor (500) divided in to three regions (501), (502) and (503). The three lenses (511), (512) and (513) each having different color filters integrated within the lens, in front of the lens or between the lens and the sensor are used to form an image of the same scene but in different colors. In This example each region of the sensor (501), (502) and (503) are rectangular having the longer dimension of the rectangle perpendicular to the long dimension of the complete sensor.
  • Other three lens configuration can be used, such as using a larger green filtered lens and two smaller lenses for blue and red, such a configuration will results in higher spatial resolution in the green channel since more pixels are being used.
  • FIG. 6 illustrates a front view of a three lens camera having one sensor (600), one large lens (613) and two smaller lenses (611) and (612). The large lens (613) is used to form an image on the sensor segment marked (603) while the two smaller lenses form an image on the sensor's segments marked with (601) and (602) respectively. The larger lens (613) can use a green color filter while the two smaller lenses (611) and (612) can use a blue and red filter respectively. Other color filters could be used for each lens.
  • Four Lens Camera:
  • FIG. 7 illustrates a front view of a four lens camera having a one sensor (700) and four lenses (711), (712), (713) and (714). Each lens forms an image on the corresponding sensor region marked with (701), (702), (703) and (704) respectively. Each one of the lenses will be integrated with a color filter in side the lens, in front of the lens or between the lens and the sensor. All four lenses could be integrated with different color filter or alternatively two of the four lenses could have the same color filter integrated in side the lens, in front of the lens or between the lens and the sensor. For example using two green filters one blue filter and one red filter will allow more light collection in the green spectrum.
  • M×N Lens Camera:
  • Using M and/or N larger than 2 allows higher shortening factor and higher increase in depth of focus.
  • FIG. 8 illustrates a 16 lens camera having 4 regions (801), (802), (803) and (804) each containing four lenses as illustrated in FIG. 7.

Claims (13)

1-15. (canceled)
16. A method for creating an image comprising:
selecting one or more objects of interest from a scene;
calculating first depth information of the one or more objects of interest;
calculating second depth information of the scene;
comparing the first depth information with the second depth information; and
creating an image having at least one blurred area and at least one non-blurred area based on the comparison.
17. The method of claim 16, wherein the first depth information is calculated using a multi aperture digital camera having a plurality of imaging channels.
18. The method of claim 17, wherein the plurality of imaging channels includes filters with identical chromatic transmission properties.
19. The method of claim 17, wherein the plurality of imaging channels each includes a filter with proportional chromatic transmission properties.
20. The method of claim 17, wherein the first depth information is calculated by comparing a plurality of respective images from the plurality of imaging channels.
21. The method of claim 16, wherein the first depth information is calculated using a time-of-flight system.
22. The method of claim 16, wherein the first depth information is calculated by comparing two or more images captured by a differently positioned digital camera.
23. The method of claim 16, wherein the image having at least one blurred area and at least one non-blurred area has a low depth of field appearance.
24. A method for creating an image having blurred and non blurred areas, the method comprising:
capturing an image;
calculating a depth map;
selecting one or more objects of interest from the image;
comparing the calculated depth map with depth information of the selected one or more objects; and
applying a blur to the image based on the comparison.
25. The method of claim 24, wherein responsive to applying the blur, the image has a low depth of field appearance.
26. A method for creating an image having blurred and non blurred areas, the method comprising:
capturing an image sequence comprising sequential images;
calculating differences between the sequential images;
selecting one or more pixel areas of interest from the sequential images based on the calculated differences; and
applying a blur to the image sequence based on the selection of the one or more pixel areas.
27. The method of claim 26, wherein responsive to applying the blur, the differences between the sequential images are highlighted in the image sequence.
US13/881,039 2010-10-24 2011-04-24 System and Method for Imaging and Image Processing Abandoned US20140192238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/881,039 US20140192238A1 (en) 2010-10-24 2011-04-24 System and Method for Imaging and Image Processing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40614810P 2010-10-24 2010-10-24
US13/881,039 US20140192238A1 (en) 2010-10-24 2011-04-24 System and Method for Imaging and Image Processing
PCT/NL2011/050726 WO2012057623A1 (en) 2010-10-24 2011-10-24 System and method for imaging and image processing

Publications (1)

Publication Number Publication Date
US20140192238A1 true US20140192238A1 (en) 2014-07-10

Family

ID=44925618

Family Applications (7)

Application Number Title Priority Date Filing Date
US13/881,039 Abandoned US20140192238A1 (en) 2010-10-24 2011-04-24 System and Method for Imaging and Image Processing
US13/881,115 Active US9654696B2 (en) 2010-10-24 2011-10-24 Spatially differentiated luminance in a multi-lens camera
US13/881,118 Active 2032-05-01 US9025077B2 (en) 2010-10-24 2011-10-24 Geometrically distorted luminance in a multi-lens camera
US13/881,124 Active 2032-03-06 US9413984B2 (en) 2010-10-24 2011-10-24 Luminance source selection in a multi-lens camera
US13/881,123 Active 2032-03-09 US9681057B2 (en) 2010-10-24 2011-10-24 Exposure timing manipulation in a multi-lens camera
US14/703,715 Active US9578257B2 (en) 2010-10-24 2015-05-04 Geometrically distorted luminance in a multi-lens camera
US15/231,634 Active US9615030B2 (en) 2010-10-24 2016-08-08 Luminance source selection in a multi-lens camera

Family Applications After (6)

Application Number Title Priority Date Filing Date
US13/881,115 Active US9654696B2 (en) 2010-10-24 2011-10-24 Spatially differentiated luminance in a multi-lens camera
US13/881,118 Active 2032-05-01 US9025077B2 (en) 2010-10-24 2011-10-24 Geometrically distorted luminance in a multi-lens camera
US13/881,124 Active 2032-03-06 US9413984B2 (en) 2010-10-24 2011-10-24 Luminance source selection in a multi-lens camera
US13/881,123 Active 2032-03-09 US9681057B2 (en) 2010-10-24 2011-10-24 Exposure timing manipulation in a multi-lens camera
US14/703,715 Active US9578257B2 (en) 2010-10-24 2015-05-04 Geometrically distorted luminance in a multi-lens camera
US15/231,634 Active US9615030B2 (en) 2010-10-24 2016-08-08 Luminance source selection in a multi-lens camera

Country Status (4)

Country Link
US (7) US20140192238A1 (en)
EP (5) EP2630789A1 (en)
JP (1) JP2013546249A (en)
WO (5) WO2012057619A1 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287245A1 (en) * 2011-05-15 2012-11-15 Lighting Science Group Corporation Occupancy sensor and associated methods
US20130201290A1 (en) * 2011-05-15 2013-08-08 Lighting Science Group Corporation Occupancy sensor and associated methods
US20150070387A1 (en) * 2013-09-11 2015-03-12 Qualcomm Incorporated Structural modeling using depth sensors
CN104717482A (en) * 2015-03-12 2015-06-17 天津大学 Multi-spectral multi-depth-of-field array shooting method and shooting camera
US9225889B1 (en) 2014-08-18 2015-12-29 Entropix, Inc. Photographic image acquisition device and method
US9497367B1 (en) * 2015-07-22 2016-11-15 Ic Real Tech, Inc Maximizing effective surface area of a rectangular image sensor concurrently capturing image data from two lenses
WO2017034046A1 (en) * 2015-08-24 2017-03-02 재단법인 다차원 스마트 아이티 융합시스템 연구단 Method and device for extracting depth in multi-aperture camera
US9813680B2 (en) 2010-11-03 2017-11-07 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
CN108463992A (en) * 2016-01-13 2018-08-28 弗劳恩霍夫应用研究促进协会 Multiple aperture imaging device, imaging system and the method for detecting target area
US10156706B2 (en) 2014-08-10 2018-12-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10230898B2 (en) 2015-08-13 2019-03-12 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10250797B2 (en) 2013-08-01 2019-04-02 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10284780B2 (en) 2015-09-06 2019-05-07 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10288897B2 (en) 2015-04-02 2019-05-14 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10338955B1 (en) * 2015-10-22 2019-07-02 Gopro, Inc. Systems and methods that effectuate transmission of workflow between computing platforms
US10371928B2 (en) 2015-04-16 2019-08-06 Corephotonics Ltd Auto focus and optical image stabilization in a compact folded camera
US10379371B2 (en) 2015-05-28 2019-08-13 Corephotonics Ltd Bi-directional stiffness for optical image stabilization in a dual-aperture digital camera
US10488631B2 (en) 2016-05-30 2019-11-26 Corephotonics Ltd. Rotational ball-guided voice coil motor
US10534153B2 (en) 2017-02-23 2020-01-14 Corephotonics Ltd. Folded camera lens designs
US10578948B2 (en) 2015-12-29 2020-03-03 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US10616484B2 (en) 2016-06-19 2020-04-07 Corephotonics Ltd. Frame syncrhonization in a dual-aperture camera system
US10645286B2 (en) 2017-03-15 2020-05-05 Corephotonics Ltd. Camera with panoramic scanning range
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
US10706518B2 (en) 2016-07-07 2020-07-07 Corephotonics Ltd. Dual camera system with improved video smooth transition by image blending
US10845565B2 (en) 2016-07-07 2020-11-24 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US10884321B2 (en) 2017-01-12 2021-01-05 Corephotonics Ltd. Compact folded camera
US10904512B2 (en) 2017-09-06 2021-01-26 Corephotonics Ltd. Combined stereoscopic and phase detection depth mapping in a dual aperture camera
USRE48444E1 (en) 2012-11-28 2021-02-16 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
US10976567B2 (en) 2018-02-05 2021-04-13 Corephotonics Ltd. Reduced height penalty for folded camera
US10979743B2 (en) * 2015-06-03 2021-04-13 Nokia Technologies Oy Method, an apparatus, a computer program for video coding
US20210409629A1 (en) * 2018-11-12 2021-12-30 Magic Leap, Inc. Event-based camera with high-resolution frame output
US11268829B2 (en) 2018-04-23 2022-03-08 Corephotonics Ltd Optical-path folding-element with an extended two degree of freedom rotation range
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
US11315276B2 (en) 2019-03-09 2022-04-26 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
US11333955B2 (en) 2017-11-23 2022-05-17 Corephotonics Ltd. Compact folded camera structure
US11363180B2 (en) 2018-08-04 2022-06-14 Corephotonics Ltd. Switchable continuous display information system above camera
US11368631B1 (en) 2019-07-31 2022-06-21 Corephotonics Ltd. System and method for creating background blur in camera panning or motion
US11531209B2 (en) 2016-12-28 2022-12-20 Corephotonics Ltd. Folded camera structure with an extended light-folding-element scanning range
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
US11635596B2 (en) 2018-08-22 2023-04-25 Corephotonics Ltd. Two-state zoom folded camera
US11640047B2 (en) 2018-02-12 2023-05-02 Corephotonics Ltd. Folded camera with optical image stabilization
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
US11693064B2 (en) 2020-04-26 2023-07-04 Corephotonics Ltd. Temperature control for Hall bar sensor correction
US11770618B2 (en) 2019-12-09 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11832018B2 (en) 2020-05-17 2023-11-28 Corephotonics Ltd. Image stitching in the presence of a full field of view reference image
US11910089B2 (en) 2020-07-15 2024-02-20 Corephotonics Lid. Point of view aberrations correction in a scanning folded camera
US11946775B2 (en) 2020-07-31 2024-04-02 Corephotonics Ltd. Hall sensor—magnet geometry for large stroke linear position sensing
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11968453B2 (en) 2020-08-12 2024-04-23 Corephotonics Ltd. Optical image stabilization in a scanning folded camera
US11982796B2 (en) 2023-05-18 2024-05-14 Corephotonics Ltd. Zoom dual-aperture camera with folded lens

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
EP4336447A1 (en) 2008-05-20 2024-03-13 FotoNation Limited Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
EP2502115A4 (en) 2009-11-20 2013-11-06 Pelican Imaging Corp Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9495751B2 (en) * 2010-02-19 2016-11-15 Dual Aperture International Co. Ltd. Processing multi-aperture image data
US20120012748A1 (en) 2010-05-12 2012-01-19 Pelican Imaging Corporation Architectures for imager arrays and array cameras
US20140192238A1 (en) * 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
CN107404609B (en) 2011-05-11 2020-02-11 快图有限公司 Method for transferring image data of array camera
KR20140045458A (en) 2011-06-28 2014-04-16 펠리칸 이매징 코포레이션 Optical arrangements for use with an array camera
US20130265459A1 (en) 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
WO2013043751A1 (en) 2011-09-19 2013-03-28 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
CN104081414B (en) 2011-09-28 2017-08-01 Fotonation开曼有限公司 System and method for coding and decoding light field image file
EP2817955B1 (en) 2012-02-21 2018-04-11 FotoNation Cayman Limited Systems and methods for the manipulation of captured light field image data
CN103365032B (en) * 2012-03-28 2017-06-06 鸿富锦精密工业(深圳)有限公司 Light source channel correcting method and system
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
EP2677734A3 (en) * 2012-06-18 2016-01-13 Sony Mobile Communications AB Array camera imaging system and method
WO2014005123A1 (en) 2012-06-28 2014-01-03 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays, optic arrays, and sensors
US20140002674A1 (en) 2012-06-30 2014-01-02 Pelican Imaging Corporation Systems and Methods for Manufacturing Camera Modules Using Active Alignment of Lens Stack Arrays and Sensors
US9185387B2 (en) 2012-07-03 2015-11-10 Gopro, Inc. Image blur based on 3D depth information
WO2014006514A2 (en) * 2012-07-04 2014-01-09 Opera Imaging B.V. Image processing in a multi-channel camera
TW201406149A (en) * 2012-07-27 2014-02-01 Pei Rui Technology Co Ltd Multi-camera image composition system
EP3869797B1 (en) 2012-08-21 2023-07-19 Adeia Imaging LLC Method for depth detection in images captured using array cameras
WO2014032020A2 (en) 2012-08-23 2014-02-27 Pelican Imaging Corporation Feature based high resolution motion estimation from low resolution images captured using an array source
US9918017B2 (en) 2012-09-04 2018-03-13 Duelight Llc Image sensor apparatus and method for obtaining multiple exposures with zero interframe time
US9531961B2 (en) * 2015-05-01 2016-12-27 Duelight Llc Systems and methods for generating a digital image using separate color and intensity data
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
CN104685860A (en) 2012-09-28 2015-06-03 派力肯影像公司 Generating images from light fields utilizing virtual viewpoints
WO2014078443A1 (en) 2012-11-13 2014-05-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
WO2014084730A1 (en) * 2012-11-27 2014-06-05 Multimagnetic Solutions Ltd System and method for generating image using multiple lenses and multiple imagers
US10558848B2 (en) 2017-10-05 2020-02-11 Duelight Llc System, method, and computer program for capturing an image with correct skin tone exposure
US9807322B2 (en) 2013-03-15 2017-10-31 Duelight Llc Systems and methods for a digital image sensor
US9819849B1 (en) 2016-07-01 2017-11-14 Duelight Llc Systems and methods for capturing digital images
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
WO2014133974A1 (en) 2013-02-24 2014-09-04 Pelican Imaging Corporation Thin form computational and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
WO2014164550A2 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation System and methods for calibration of an array camera
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
WO2014159779A1 (en) 2013-03-14 2014-10-02 Pelican Imaging Corporation Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
JP6372488B2 (en) * 2013-07-04 2018-08-15 株式会社ニコン Electronics
CN105308953A (en) * 2013-07-19 2016-02-03 谷歌技术控股有限责任公司 Asymmetric sensor array for capturing images
WO2015048694A2 (en) 2013-09-27 2015-04-02 Pelican Imaging Corporation Systems and methods for depth-assisted perspective distortion correction
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
EP3054848B1 (en) * 2013-10-07 2019-09-25 Masimo Corporation Regional oximetry pod
US10591969B2 (en) 2013-10-25 2020-03-17 Google Technology Holdings LLC Sensor-based near-field communication authentication
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
EP3075140B1 (en) 2013-11-26 2018-06-13 FotoNation Cayman Limited Array camera configurations incorporating multiple constituent array cameras
US9462170B2 (en) * 2014-02-21 2016-10-04 The Lightco Inc. Lighting methods and apparatus
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
KR102269599B1 (en) 2014-04-23 2021-06-25 삼성전자주식회사 Image pickup apparatus including lens elements having different diameters
TW201545555A (en) * 2014-05-30 2015-12-01 Everready Prec Ind Corp Device with multi-image photographing
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
WO2016004115A1 (en) 2014-07-01 2016-01-07 Apple Inc. Mobile camera system
US10911738B2 (en) * 2014-07-16 2021-02-02 Sony Corporation Compound-eye imaging device
US9792502B2 (en) 2014-07-23 2017-10-17 Gopro, Inc. Generating video summaries for a video using video summary templates
US9685194B2 (en) 2014-07-23 2017-06-20 Gopro, Inc. Voice-based video tagging
US9716819B2 (en) 2014-09-29 2017-07-25 Samsung Electronics Co., Ltd. Imaging device with 4-lens time-of-flight pixels and interleaved readout thereof
CN113256730B (en) 2014-09-29 2023-09-05 快图有限公司 System and method for dynamic calibration of an array camera
US10924688B2 (en) 2014-11-06 2021-02-16 Duelight Llc Image sensor apparatus and method for obtaining low-noise, high-speed captures of a photographic scene
US11463630B2 (en) 2014-11-07 2022-10-04 Duelight Llc Systems and methods for generating a high-dynamic range (HDR) pixel stream
US9734870B2 (en) 2015-01-05 2017-08-15 Gopro, Inc. Media identifier generation for camera-captured media
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10613417B2 (en) 2015-06-03 2020-04-07 Center For Integrated Smart Sensors Foundation Multi-aperture camera system having auto focusing function and/or depth estimation function
MX2017016357A (en) * 2015-06-15 2018-12-06 Agrowing Ltd Multispectral imaging apparatus.
US9754182B2 (en) 2015-09-02 2017-09-05 Apple Inc. Detecting keypoints in image data
KR102550703B1 (en) 2015-09-17 2023-07-03 삼성전자 주식회사 Camera module including multi-lens and electronic device having the same
US9933601B2 (en) * 2015-12-16 2018-04-03 Intel Corporation Stacked wafer lens and camera
US9787862B1 (en) 2016-01-19 2017-10-10 Gopro, Inc. Apparatus and methods for generating content proxy
US9871994B1 (en) 2016-01-19 2018-01-16 Gopro, Inc. Apparatus and methods for providing content context using session metadata
US10078644B1 (en) 2016-01-19 2018-09-18 Gopro, Inc. Apparatus and methods for manipulating multicamera content using content proxy
US10129464B1 (en) 2016-02-18 2018-11-13 Gopro, Inc. User interface for creating composite images
CN107181905B (en) * 2016-03-10 2020-07-10 中兴通讯股份有限公司 Imaging method and device
US9972066B1 (en) 2016-03-16 2018-05-15 Gopro, Inc. Systems and methods for providing variable image projection for spherical visual content
US10402938B1 (en) 2016-03-31 2019-09-03 Gopro, Inc. Systems and methods for modifying image distortion (curvature) for viewing distance in post capture
US9838730B1 (en) 2016-04-07 2017-12-05 Gopro, Inc. Systems and methods for audio track selection in video editing
CN107295225B (en) * 2016-04-12 2020-07-10 三星电机株式会社 Camera module
US10229719B1 (en) 2016-05-09 2019-03-12 Gopro, Inc. Systems and methods for generating highlights for a video
US9953679B1 (en) 2016-05-24 2018-04-24 Gopro, Inc. Systems and methods for generating a time lapse video
US9967515B1 (en) 2016-06-15 2018-05-08 Gopro, Inc. Systems and methods for bidirectional speed ramping
US9922682B1 (en) 2016-06-15 2018-03-20 Gopro, Inc. Systems and methods for organizing video files
US10045120B2 (en) 2016-06-20 2018-08-07 Gopro, Inc. Associating audio with three-dimensional objects in videos
US10395119B1 (en) 2016-08-10 2019-08-27 Gopro, Inc. Systems and methods for determining activities performed during video capture
US9953224B1 (en) 2016-08-23 2018-04-24 Gopro, Inc. Systems and methods for generating a video summary
EP3507765A4 (en) 2016-09-01 2020-01-01 Duelight LLC Systems and methods for adjusting focus based on focus target information
US10268898B1 (en) 2016-09-21 2019-04-23 Gopro, Inc. Systems and methods for determining a sample frame order for analyzing a video via segments
US10282632B1 (en) 2016-09-21 2019-05-07 Gopro, Inc. Systems and methods for determining a sample frame order for analyzing a video
US10397415B1 (en) 2016-09-30 2019-08-27 Gopro, Inc. Systems and methods for automatically transferring audiovisual content
US10044972B1 (en) 2016-09-30 2018-08-07 Gopro, Inc. Systems and methods for automatically transferring audiovisual content
US11106988B2 (en) 2016-10-06 2021-08-31 Gopro, Inc. Systems and methods for determining predicted risk for a flight path of an unmanned aerial vehicle
US10002641B1 (en) 2016-10-17 2018-06-19 Gopro, Inc. Systems and methods for determining highlight segment sets
KR102646437B1 (en) 2016-11-25 2024-03-11 삼성전자주식회사 Captureing apparatus and metohd based on multi lens
CN106534590B (en) * 2016-12-27 2019-08-20 努比亚技术有限公司 A kind of photo processing method, device and terminal
US9916863B1 (en) 2017-02-24 2018-03-13 Gopro, Inc. Systems and methods for editing videos based on shakiness measures
US10339443B1 (en) 2017-02-24 2019-07-02 Gopro, Inc. Systems and methods for processing convolutional neural network operations using textures
US10051201B1 (en) 2017-03-20 2018-08-14 Google Llc Camera system including lens with magnification gradient
US10360663B1 (en) 2017-04-07 2019-07-23 Gopro, Inc. Systems and methods to create a dynamic blur effect in visual content
CN107040724B (en) * 2017-04-28 2020-05-15 Oppo广东移动通信有限公司 Dual-core focusing image sensor, focusing control method thereof and imaging device
US10395122B1 (en) 2017-05-12 2019-08-27 Gopro, Inc. Systems and methods for identifying moments in videos
US10406645B2 (en) 2017-05-24 2019-09-10 Trimble Inc. Calibration approach for camera placement
US10300573B2 (en) 2017-05-24 2019-05-28 Trimble Inc. Measurement, layout, marking, firestop stick
US10341618B2 (en) * 2017-05-24 2019-07-02 Trimble Inc. Infrastructure positioning camera system
US10652456B2 (en) * 2017-05-31 2020-05-12 Intel IP Corporation Image sensor operation
CN107295256A (en) * 2017-06-23 2017-10-24 华为技术有限公司 A kind of image processing method, device and equipment
WO2019003258A1 (en) * 2017-06-26 2019-01-03 三菱電機株式会社 Camera device, compound eye imaging device, image processing method, program, and recording medium
US10402698B1 (en) 2017-07-10 2019-09-03 Gopro, Inc. Systems and methods for identifying interesting moments within videos
US10614114B1 (en) 2017-07-10 2020-04-07 Gopro, Inc. Systems and methods for creating compilations based on hierarchical clustering
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10863057B2 (en) 2017-08-30 2020-12-08 Samsung Electronics Co., Ltd. Synchronizing image captures in multiple sensor devices
KR101889886B1 (en) * 2017-12-22 2018-08-21 세명대학교 산학협력단 Depth information generating method and apparatus
JP7197981B2 (en) * 2018-01-24 2022-12-28 キヤノン株式会社 Camera, terminal device, camera control method, terminal device control method, and program
CN108377345B (en) * 2018-04-11 2020-04-03 浙江大华技术股份有限公司 Exposure parameter value determination method and device, multi-view camera and storage medium
US11375092B2 (en) 2018-10-04 2022-06-28 Samsung Electronics Co., Ltd. Image sensor and image sensing method
US10924667B2 (en) 2018-10-04 2021-02-16 Samsung Electronics Co., Ltd. Image sensor and image sensing method
CN111225126A (en) * 2018-11-23 2020-06-02 华为技术有限公司 Multi-channel video stream generation method and device
KR20200072136A (en) 2018-12-12 2020-06-22 삼성전자주식회사 Lens array camera and method of driving lens array camera
WO2020192039A1 (en) * 2019-03-27 2020-10-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Three-dimensional localization using light-depth images
CN112468684A (en) * 2019-09-09 2021-03-09 北京小米移动软件有限公司 Camera module and mobile terminal with same
JP7273250B2 (en) 2019-09-17 2023-05-12 ボストン ポーラリメトリックス,インコーポレイティド Systems and methods for surface modeling using polarization cues
CN110661972B (en) * 2019-09-27 2021-02-23 维沃移动通信有限公司 Image processing method, image processing apparatus, electronic device, and medium
DE112020004813B4 (en) 2019-10-07 2023-02-09 Boston Polarimetrics, Inc. System for expanding sensor systems and imaging systems with polarization
KR20230116068A (en) 2019-11-30 2023-08-03 보스턴 폴라리메트릭스, 인크. System and method for segmenting transparent objects using polarization signals
TWI717942B (en) * 2019-12-19 2021-02-01 宏碁股份有限公司 Lens matching apparatus and lens matching method
US11195303B2 (en) 2020-01-29 2021-12-07 Boston Polarimetrics, Inc. Systems and methods for characterizing object pose detection and measurement systems
KR20220133973A (en) 2020-01-30 2022-10-05 인트린식 이노베이션 엘엘씨 Systems and methods for synthesizing data to train statistical models for different imaging modalities, including polarized images
WO2021243088A1 (en) 2020-05-27 2021-12-02 Boston Polarimetrics, Inc. Multi-aperture polarization optical systems using beam splitters
WO2022019908A1 (en) * 2020-07-22 2022-01-27 EyeQue Inc. Method and apparatus for refraction and vision measurement
US20220311938A1 (en) * 2021-03-24 2022-09-29 Qualcomm Incorporated Image capture with expanded field of view
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11956555B2 (en) 2022-05-20 2024-04-09 Varjo Technologies Oy Imaging with cameras having different distortion profiles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189748A1 (en) * 2006-02-14 2007-08-16 Fotonation Vision Limited Image Blurring
WO2008087652A2 (en) * 2007-01-21 2008-07-24 Prime Sense Ltd. Depth mapping using multi-beam illumination
US20080218611A1 (en) * 2007-03-09 2008-09-11 Parulski Kenneth A Method and apparatus for operating a dual lens camera to augment an image

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8502225A (en) 1985-06-10 1987-01-02 Philips Nv REPLIKA LENS AND METHOD FOR MANUFACTURING IT.
JP3214099B2 (en) * 1992-10-15 2001-10-02 株式会社ニコン Camera focus detection device
JP3962431B2 (en) 1995-11-07 2007-08-22 カリフォルニア インスティチュート オブ テクノロジー Image sensor with linear output of high dynamic range
NO305728B1 (en) 1997-11-14 1999-07-12 Reidar E Tangen Optoelectronic camera and method of image formatting in the same
US6809766B1 (en) 1998-03-11 2004-10-26 Micro Technology, Inc. Look ahead rolling shutter system in CMOS sensors
US6201899B1 (en) 1998-10-09 2001-03-13 Sarnoff Corporation Method and apparatus for extended depth of field imaging
JP4578588B2 (en) * 1998-11-09 2010-11-10 ソニー株式会社 Imaging device
US6980248B1 (en) * 1999-06-30 2005-12-27 Canon Kabushiki Kaisha Image pickup apparatus
JP3397758B2 (en) 1999-06-30 2003-04-21 キヤノン株式会社 Imaging device
US7224384B1 (en) 1999-09-08 2007-05-29 3Dv Systems Ltd. 3D imaging system
US6995800B2 (en) 2000-01-27 2006-02-07 Canon Kabushiki Kaisha Image pickup apparatus utilizing a plurality of converging lenses
CN1195787C (en) 2000-07-19 2005-04-06 皇家菲利浦电子有限公司 Method of manufacturing a replica as well as a replica obtained by carrying out a UV light-initiated cationic polymerization
US6952228B2 (en) 2000-10-13 2005-10-04 Canon Kabushiki Kaisha Image pickup apparatus
JP3703385B2 (en) 2000-10-19 2005-10-05 キヤノン株式会社 Imaging device
US7262799B2 (en) 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
AU2002221005A1 (en) * 2000-11-27 2002-06-03 Vision Sciences, Inc. Programmable resolution cmos image sensor
JP2002171430A (en) 2000-11-30 2002-06-14 Canon Inc Compound eye imaging system, imaging device and electronic apparatus
SE518050C2 (en) * 2000-12-22 2002-08-20 Afsenius Sven Aake Camera that combines sharply focused parts from various exposures to a final image
US6909554B2 (en) * 2000-12-27 2005-06-21 Finisar Corporation Wafer integration of micro-optics
JP2002209226A (en) 2000-12-28 2002-07-26 Canon Inc Image pickup device
US20040201748A1 (en) 2001-09-12 2004-10-14 Tim Goldstein Extended image digital photography
US6959099B2 (en) * 2001-12-06 2005-10-25 Koninklijke Philips Electronics N.V. Method and apparatus for automatic face blurring
EP1518333A2 (en) 2002-03-25 2005-03-30 The Trustees of Columbia University in the city of New York Method and system for enhancing data quality
JP2004032172A (en) 2002-06-24 2004-01-29 Canon Inc Fly-eye imaging device and equipment comprising the same
US6898331B2 (en) 2002-08-28 2005-05-24 Bae Systems Aircraft Controls, Inc. Image fusion system and method
US7564496B2 (en) 2002-09-17 2009-07-21 Anteryon B.V. Camera device, method of manufacturing a camera device, wafer scale package
DE10245912B4 (en) 2002-10-01 2011-12-08 Bayerische Motoren Werke Aktiengesellschaft Method for operating an optoelectronic sensor device
US6975329B2 (en) 2002-12-09 2005-12-13 Nvidia Corporation Depth-of-field effects using texture lookup
JP2004191893A (en) 2002-12-13 2004-07-08 Canon Inc Imaging apparatus
JP2005109622A (en) 2003-09-29 2005-04-21 Minolta Co Ltd Multiple-lens imaging apparatus and mobile communication terminal
EP1677518A4 (en) 2003-10-22 2009-12-02 Panasonic Corp Imaging device and method of producing the device, portable apparatus, and imaging element and method of producing the element
KR20050041640A (en) 2003-10-31 2005-05-04 삼성전자주식회사 Image photographing device and method
US7236304B2 (en) 2003-11-04 2007-06-26 Matsushita Electric Industrial Co., Ltd. Imaging Device
US20050128509A1 (en) 2003-12-11 2005-06-16 Timo Tokkonen Image creating method and imaging device
FI20031816A0 (en) * 2003-12-11 2003-12-11 Nokia Corp Method and device for creating an image
US7453510B2 (en) 2003-12-11 2008-11-18 Nokia Corporation Imaging device
US7446812B2 (en) * 2004-01-13 2008-11-04 Micron Technology, Inc. Wide dynamic range operations for imaging
US7773143B2 (en) 2004-04-08 2010-08-10 Tessera North America, Inc. Thin color camera having sub-pixel resolution
GB2412831A (en) 2004-03-30 2005-10-05 Univ Newcastle Highlighting important information by blurring less important information
US8049806B2 (en) 2004-09-27 2011-11-01 Digitaloptics Corporation East Thin camera and associated methods
JP2005303694A (en) 2004-04-13 2005-10-27 Konica Minolta Holdings Inc Compound eye imaging device
JP2005333265A (en) 2004-05-18 2005-12-02 Olympus Corp Solid state imaging element and unit
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
WO2006026354A2 (en) * 2004-08-25 2006-03-09 Newport Imaging Corporation Apparatus for multiple camera devices and method of operating same
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
WO2006027405A1 (en) 2004-09-09 2006-03-16 Nokia Corporation Method of creating colour image, imaging device and imaging module
US20060055811A1 (en) * 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
EP2398224B1 (en) 2004-10-01 2016-01-13 The Board of Trustees of The Leland Stanford Junior University Imaging arrangements and methods therefor
US7214926B2 (en) 2004-11-19 2007-05-08 Micron Technology, Inc. Imaging systems and methods
US7483065B2 (en) 2004-12-15 2009-01-27 Aptina Imaging Corporation Multi-lens imaging systems and methods using optical filters having mosaic patterns
CN101088285A (en) 2004-12-22 2007-12-12 松下电器产业株式会社 Imaging device and manufacturing method thereof
EP1689164B1 (en) * 2005-02-03 2007-12-19 Sony Ericsson Mobile Communications AB Method and device for creating enhanced picture by means of several consecutive exposures
US7512262B2 (en) 2005-02-25 2009-03-31 Microsoft Corporation Stereo-based image processing
JP2006246193A (en) 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Image pickup device
JP4826152B2 (en) 2005-06-23 2011-11-30 株式会社ニコン Image composition method and imaging apparatus
US20070102622A1 (en) 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
CN100579185C (en) 2005-07-26 2010-01-06 松下电器产业株式会社 Compound eye imaging apparatus
WO2007017920A1 (en) * 2005-08-05 2007-02-15 Matsushita Electric Industrial Co., Ltd. Imaging device
US7964835B2 (en) 2005-08-25 2011-06-21 Protarius Filo Ag, L.L.C. Digital cameras with direct luminance and chrominance detection
US20070258006A1 (en) * 2005-08-25 2007-11-08 Olsen Richard I Solid state camera optics frame and assembly
US20070075218A1 (en) 2005-10-04 2007-04-05 Gates John V Multiple exposure optical imaging apparatus
JP4673202B2 (en) 2005-12-06 2011-04-20 株式会社リコー Image input device
JP4706466B2 (en) 2005-12-16 2011-06-22 株式会社日立製作所 Imaging device
US7620309B2 (en) 2006-04-04 2009-11-17 Adobe Systems, Incorporated Plenoptic camera
US20070177004A1 (en) * 2006-06-08 2007-08-02 Timo Kolehmainen Image creating method and imaging device
JP4172512B2 (en) 2006-08-30 2008-10-29 船井電機株式会社 Panorama imaging device
KR100801088B1 (en) 2006-10-02 2008-02-05 삼성전자주식회사 Camera apparatus having multiple focus and method for producing focus-free image and out of focus image using the apparatus
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
US8319846B2 (en) * 2007-01-11 2012-11-27 Raytheon Company Video camera system using multiple image sensors
JP2008244649A (en) 2007-03-26 2008-10-09 Funai Electric Co Ltd Motion detection imaging device
US7812869B2 (en) 2007-05-11 2010-10-12 Aptina Imaging Corporation Configurable pixel array system and method
US8290358B1 (en) 2007-06-25 2012-10-16 Adobe Systems Incorporated Methods and apparatus for light-field imaging
US7855740B2 (en) 2007-07-20 2010-12-21 Eastman Kodak Company Multiple component readout of image sensor
US7787112B2 (en) * 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
JP4905326B2 (en) 2007-11-12 2012-03-28 ソニー株式会社 Imaging device
JP2008099329A (en) 2007-12-17 2008-04-24 Fujifilm Corp Solid-state imaging device and method for controlling the same
WO2009104394A1 (en) 2008-02-18 2009-08-27 パナソニック株式会社 Compound eye camera module
US8098904B2 (en) 2008-03-31 2012-01-17 Google Inc. Automatic face detection and identity masking in images, and applications thereof
JP5173536B2 (en) 2008-04-02 2013-04-03 シャープ株式会社 Imaging apparatus and optical axis control method
EP4336447A1 (en) 2008-05-20 2024-03-13 FotoNation Limited Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8244058B1 (en) * 2008-05-30 2012-08-14 Adobe Systems Incorporated Method and apparatus for managing artifacts in frequency domain processing of light-field images
JP5152655B2 (en) 2008-06-18 2013-02-27 株式会社リコー Imaging device
US20090321861A1 (en) 2008-06-26 2009-12-31 Micron Technology, Inc. Microelectronic imagers with stacked lens assemblies and processes for wafer-level packaging of microelectronic imagers
KR101445613B1 (en) 2008-07-23 2014-09-29 삼성전자주식회사 Image processing method and apparatus, and digital photographing apparatus using thereof
US7813043B2 (en) 2008-08-15 2010-10-12 Ether Precision, Inc. Lens assembly and method of manufacture
JP4966931B2 (en) 2008-08-26 2012-07-04 シャープ株式会社 Electronic element wafer module and manufacturing method thereof, electronic element module and manufacturing method thereof, electronic information device
KR101441586B1 (en) 2008-10-06 2014-09-23 삼성전자 주식회사 Apparatus and method for capturing image
US8436909B2 (en) * 2008-10-21 2013-05-07 Stmicroelectronics S.R.L. Compound camera sensor and related method of processing digital images
JP5324890B2 (en) 2008-11-11 2013-10-23 ラピスセミコンダクタ株式会社 Camera module and manufacturing method thereof
US8587681B2 (en) 2008-11-21 2013-11-19 Omnivision Technologies, Inc. Extended depth of field for image sensor
US8259212B2 (en) 2009-01-05 2012-09-04 Applied Quantum Technologies, Inc. Multiscale optical system
US8315476B1 (en) * 2009-01-20 2012-11-20 Adobe Systems Incorporated Super-resolution with the focused plenoptic camera
US8218068B2 (en) * 2009-04-01 2012-07-10 Omnivision Technologies, Inc. Exposing pixel groups in producing digital images
US8471905B2 (en) 2009-04-09 2013-06-25 Raytheon Company Methods and apparatus for imaging
JP5278819B2 (en) 2009-05-11 2013-09-04 株式会社リコー Stereo camera device and vehicle exterior monitoring device using the same
US8228417B1 (en) 2009-07-15 2012-07-24 Adobe Systems Incorporated Focused plenoptic camera employing different apertures or filtering at different microlenses
US8345144B1 (en) * 2009-07-15 2013-01-01 Adobe Systems Incorporated Methods and apparatus for rich image capture with focused plenoptic cameras
GB0912970D0 (en) * 2009-07-27 2009-09-02 St Microelectronics Res & Dev Improvements in or relating to a sensor and sensor system for a camera
JP5399215B2 (en) 2009-11-18 2014-01-29 シャープ株式会社 Multi-lens camera device and electronic information device
EP2502115A4 (en) 2009-11-20 2013-11-06 Pelican Imaging Corp Capturing and processing of images using monolithic camera array with heterogeneous imagers
JP5446797B2 (en) * 2009-12-04 2014-03-19 株式会社リコー Imaging device
KR101643607B1 (en) 2009-12-30 2016-08-10 삼성전자주식회사 Method and apparatus for generating of image data
US8817015B2 (en) 2010-03-03 2014-08-26 Adobe Systems Incorporated Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data
US20110242355A1 (en) 2010-04-05 2011-10-06 Qualcomm Incorporated Combining data from multiple image sensors
US8723912B2 (en) 2010-07-06 2014-05-13 DigitalOptics Corporation Europe Limited Scene background blurring including face modeling
US8749694B2 (en) * 2010-08-27 2014-06-10 Adobe Systems Incorporated Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing
US8724000B2 (en) 2010-08-27 2014-05-13 Adobe Systems Incorporated Methods and apparatus for super-resolution in integral photography
US20140192238A1 (en) 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
US9532033B2 (en) 2010-11-29 2016-12-27 Nikon Corporation Image sensor and imaging device
US8605199B2 (en) * 2011-06-28 2013-12-10 Canon Kabushiki Kaisha Adjustment of imaging properties for an imaging assembly having light-field optics
US9332239B2 (en) 2012-05-31 2016-05-03 Apple Inc. Systems and methods for RGB image processing
US8917336B2 (en) 2012-05-31 2014-12-23 Apple Inc. Image signal processing involving geometric distortion correction
EP2677734A3 (en) 2012-06-18 2016-01-13 Sony Mobile Communications AB Array camera imaging system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189748A1 (en) * 2006-02-14 2007-08-16 Fotonation Vision Limited Image Blurring
WO2008087652A2 (en) * 2007-01-21 2008-07-24 Prime Sense Ltd. Depth mapping using multi-beam illumination
US20080218611A1 (en) * 2007-03-09 2008-09-11 Parulski Kenneth A Method and apparatus for operating a dual lens camera to augment an image

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10158832B2 (en) 2010-11-03 2018-12-18 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
US9813680B2 (en) 2010-11-03 2017-11-07 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
US20130201290A1 (en) * 2011-05-15 2013-08-08 Lighting Science Group Corporation Occupancy sensor and associated methods
US20120287245A1 (en) * 2011-05-15 2012-11-15 Lighting Science Group Corporation Occupancy sensor and associated methods
US9648284B2 (en) * 2011-05-15 2017-05-09 Lighting Science Group Corporation Occupancy sensor and associated methods
US9681108B2 (en) * 2011-05-15 2017-06-13 Lighting Science Group Corporation Occupancy sensor and associated methods
USRE48444E1 (en) 2012-11-28 2021-02-16 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
USRE48477E1 (en) 2012-11-28 2021-03-16 Corephotonics Ltd High resolution thin multi-aperture imaging systems
USRE48697E1 (en) 2012-11-28 2021-08-17 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
USRE48945E1 (en) 2012-11-28 2022-02-22 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
USRE49256E1 (en) 2012-11-28 2022-10-18 Corephotonics Ltd. High resolution thin multi-aperture imaging systems
US10326942B2 (en) 2013-06-13 2019-06-18 Corephotonics Ltd. Dual aperture zoom digital camera
US11838635B2 (en) 2013-06-13 2023-12-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10225479B2 (en) 2013-06-13 2019-03-05 Corephotonics Ltd. Dual aperture zoom digital camera
US11470257B2 (en) 2013-06-13 2022-10-11 Corephotonics Ltd. Dual aperture zoom digital camera
US10841500B2 (en) 2013-06-13 2020-11-17 Corephotonics Ltd. Dual aperture zoom digital camera
US10904444B2 (en) 2013-06-13 2021-01-26 Corephotonics Ltd. Dual aperture zoom digital camera
US10620450B2 (en) 2013-07-04 2020-04-14 Corephotonics Ltd Thin dual-aperture zoom digital camera
US11287668B2 (en) 2013-07-04 2022-03-29 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11852845B2 (en) 2013-07-04 2023-12-26 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11614635B2 (en) 2013-07-04 2023-03-28 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US10288896B2 (en) 2013-07-04 2019-05-14 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11716535B2 (en) 2013-08-01 2023-08-01 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10694094B2 (en) 2013-08-01 2020-06-23 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US10250797B2 (en) 2013-08-01 2019-04-02 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US11470235B2 (en) 2013-08-01 2022-10-11 Corephotonics Ltd. Thin multi-aperture imaging system with autofocus and methods for using same
US10469735B2 (en) 2013-08-01 2019-11-05 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US11856291B2 (en) 2013-08-01 2023-12-26 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US20150070387A1 (en) * 2013-09-11 2015-03-12 Qualcomm Incorporated Structural modeling using depth sensors
US10789776B2 (en) 2013-09-11 2020-09-29 Qualcomm Incorporated Structural modeling using depth sensors
US9934611B2 (en) * 2013-09-11 2018-04-03 Qualcomm Incorporated Structural modeling using depth sensors
US11042011B2 (en) 2014-08-10 2021-06-22 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10976527B2 (en) 2014-08-10 2021-04-13 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10509209B2 (en) 2014-08-10 2019-12-17 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10156706B2 (en) 2014-08-10 2018-12-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10571665B2 (en) 2014-08-10 2020-02-25 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11262559B2 (en) 2014-08-10 2022-03-01 Corephotonics Ltd Zoom dual-aperture camera with folded lens
US11002947B2 (en) 2014-08-10 2021-05-11 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11703668B2 (en) 2014-08-10 2023-07-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11543633B2 (en) 2014-08-10 2023-01-03 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US9792668B2 (en) 2014-08-18 2017-10-17 Entropix, Inc. Photographic image acquistion device and method
US9225889B1 (en) 2014-08-18 2015-12-29 Entropix, Inc. Photographic image acquisition device and method
US10288840B2 (en) 2015-01-03 2019-05-14 Corephotonics Ltd Miniature telephoto lens module and a camera utilizing such a lens module
US11125975B2 (en) 2015-01-03 2021-09-21 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
CN104717482A (en) * 2015-03-12 2015-06-17 天津大学 Multi-spectral multi-depth-of-field array shooting method and shooting camera
US10558058B2 (en) 2015-04-02 2020-02-11 Corephontonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10288897B2 (en) 2015-04-02 2019-05-14 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
US10613303B2 (en) 2015-04-16 2020-04-07 Corephotonics Ltd. Auto focus and optical image stabilization in a compact folded camera
US10371928B2 (en) 2015-04-16 2019-08-06 Corephotonics Ltd Auto focus and optical image stabilization in a compact folded camera
US10656396B1 (en) 2015-04-16 2020-05-19 Corephotonics Ltd. Auto focus and optical image stabilization in a compact folded camera
US10459205B2 (en) 2015-04-16 2019-10-29 Corephotonics Ltd Auto focus and optical image stabilization in a compact folded camera
US11808925B2 (en) 2015-04-16 2023-11-07 Corephotonics Ltd. Auto focus and optical image stabilization in a compact folded camera
US10571666B2 (en) 2015-04-16 2020-02-25 Corephotonics Ltd. Auto focus and optical image stabilization in a compact folded camera
US10962746B2 (en) 2015-04-16 2021-03-30 Corephotonics Ltd. Auto focus and optical image stabilization in a compact folded camera
US10379371B2 (en) 2015-05-28 2019-08-13 Corephotonics Ltd Bi-directional stiffness for optical image stabilization in a dual-aperture digital camera
US10670879B2 (en) 2015-05-28 2020-06-02 Corephotonics Ltd. Bi-directional stiffness for optical image stabilization in a dual-aperture digital camera
US10979743B2 (en) * 2015-06-03 2021-04-13 Nokia Technologies Oy Method, an apparatus, a computer program for video coding
US9497367B1 (en) * 2015-07-22 2016-11-15 Ic Real Tech, Inc Maximizing effective surface area of a rectangular image sensor concurrently capturing image data from two lenses
US11770616B2 (en) 2015-08-13 2023-09-26 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10567666B2 (en) 2015-08-13 2020-02-18 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US11350038B2 (en) 2015-08-13 2022-05-31 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10230898B2 (en) 2015-08-13 2019-03-12 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10917576B2 (en) 2015-08-13 2021-02-09 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US10356332B2 (en) 2015-08-13 2019-07-16 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
US11546518B2 (en) 2015-08-13 2023-01-03 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
WO2017034046A1 (en) * 2015-08-24 2017-03-02 재단법인 다차원 스마트 아이티 융합시스템 연구단 Method and device for extracting depth in multi-aperture camera
US10284780B2 (en) 2015-09-06 2019-05-07 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10498961B2 (en) 2015-09-06 2019-12-03 Corephotonics Ltd. Auto focus and optical image stabilization with roll compensation in a compact folded camera
US10338955B1 (en) * 2015-10-22 2019-07-02 Gopro, Inc. Systems and methods that effectuate transmission of workflow between computing platforms
US10578948B2 (en) 2015-12-29 2020-03-03 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US10935870B2 (en) 2015-12-29 2021-03-02 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11599007B2 (en) 2015-12-29 2023-03-07 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11314146B2 (en) 2015-12-29 2022-04-26 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11392009B2 (en) 2015-12-29 2022-07-19 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US11726388B2 (en) 2015-12-29 2023-08-15 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US10771668B2 (en) 2016-01-13 2020-09-08 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-aperture imaging device, imaging system and method for capturing an object area
CN108463992A (en) * 2016-01-13 2018-08-28 弗劳恩霍夫应用研究促进协会 Multiple aperture imaging device, imaging system and the method for detecting target area
US11650400B2 (en) 2016-05-30 2023-05-16 Corephotonics Ltd. Rotational ball-guided voice coil motor
US10488631B2 (en) 2016-05-30 2019-11-26 Corephotonics Ltd. Rotational ball-guided voice coil motor
US11977210B2 (en) 2016-05-30 2024-05-07 Corephotonics Ltd. Rotational ball-guided voice coil motor
US11689803B2 (en) 2016-06-19 2023-06-27 Corephotonics Ltd. Frame synchronization in a dual-aperture camera system
US11172127B2 (en) 2016-06-19 2021-11-09 Corephotonics Ltd. Frame synchronization in a dual-aperture camera system
US10616484B2 (en) 2016-06-19 2020-04-07 Corephotonics Ltd. Frame syncrhonization in a dual-aperture camera system
US11048060B2 (en) 2016-07-07 2021-06-29 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US11977270B2 (en) 2016-07-07 2024-05-07 Corephotonics Lid. Linear ball guided voice coil motor for folded optic
US10706518B2 (en) 2016-07-07 2020-07-07 Corephotonics Ltd. Dual camera system with improved video smooth transition by image blending
US11550119B2 (en) 2016-07-07 2023-01-10 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US10845565B2 (en) 2016-07-07 2020-11-24 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
US11531209B2 (en) 2016-12-28 2022-12-20 Corephotonics Ltd. Folded camera structure with an extended light-folding-element scanning range
US10884321B2 (en) 2017-01-12 2021-01-05 Corephotonics Ltd. Compact folded camera
US11809065B2 (en) 2017-01-12 2023-11-07 Corephotonics Ltd. Compact folded camera
US11693297B2 (en) 2017-01-12 2023-07-04 Corephotonics Ltd. Compact folded camera
US11815790B2 (en) 2017-01-12 2023-11-14 Corephotonics Ltd. Compact folded camera
US10534153B2 (en) 2017-02-23 2020-01-14 Corephotonics Ltd. Folded camera lens designs
US10571644B2 (en) 2017-02-23 2020-02-25 Corephotonics Ltd. Folded camera lens designs
US10670827B2 (en) 2017-02-23 2020-06-02 Corephotonics Ltd. Folded camera lens designs
US10645286B2 (en) 2017-03-15 2020-05-05 Corephotonics Ltd. Camera with panoramic scanning range
US11671711B2 (en) 2017-03-15 2023-06-06 Corephotonics Ltd. Imaging system with panoramic scanning range
US10904512B2 (en) 2017-09-06 2021-01-26 Corephotonics Ltd. Combined stereoscopic and phase detection depth mapping in a dual aperture camera
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
US11695896B2 (en) 2017-10-03 2023-07-04 Corephotonics Ltd. Synthetically enlarged camera aperture
US11333955B2 (en) 2017-11-23 2022-05-17 Corephotonics Ltd. Compact folded camera structure
US11809066B2 (en) 2017-11-23 2023-11-07 Corephotonics Ltd. Compact folded camera structure
US11619864B2 (en) 2017-11-23 2023-04-04 Corephotonics Ltd. Compact folded camera structure
US10976567B2 (en) 2018-02-05 2021-04-13 Corephotonics Ltd. Reduced height penalty for folded camera
US11686952B2 (en) 2018-02-05 2023-06-27 Corephotonics Ltd. Reduced height penalty for folded camera
US11640047B2 (en) 2018-02-12 2023-05-02 Corephotonics Ltd. Folded camera with optical image stabilization
US10911740B2 (en) 2018-04-22 2021-02-02 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
US11867535B2 (en) 2018-04-23 2024-01-09 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11268829B2 (en) 2018-04-23 2022-03-08 Corephotonics Ltd Optical-path folding-element with an extended two degree of freedom rotation range
US11733064B1 (en) 2018-04-23 2023-08-22 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11359937B2 (en) 2018-04-23 2022-06-14 Corephotonics Ltd. Optical-path folding-element with an extended two degree of freedom rotation range
US11976949B2 (en) 2018-04-23 2024-05-07 Corephotonics Lid. Optical-path folding-element with an extended two degree of freedom rotation range
US11268830B2 (en) 2018-04-23 2022-03-08 Corephotonics Ltd Optical-path folding-element with an extended two degree of freedom rotation range
US11363180B2 (en) 2018-08-04 2022-06-14 Corephotonics Ltd. Switchable continuous display information system above camera
US11635596B2 (en) 2018-08-22 2023-04-25 Corephotonics Ltd. Two-state zoom folded camera
US11852790B2 (en) 2018-08-22 2023-12-26 Corephotonics Ltd. Two-state zoom folded camera
US20210409629A1 (en) * 2018-11-12 2021-12-30 Magic Leap, Inc. Event-based camera with high-resolution frame output
US11809613B2 (en) * 2018-11-12 2023-11-07 Magic Leap, Inc. Event-based camera with high-resolution frame output
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
US11527006B2 (en) 2019-03-09 2022-12-13 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
US11315276B2 (en) 2019-03-09 2022-04-26 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
US11368631B1 (en) 2019-07-31 2022-06-21 Corephotonics Ltd. System and method for creating background blur in camera panning or motion
US11985440B2 (en) 2019-10-30 2024-05-14 Magic Leap, Inc. Depth based dynamic vision sensor
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11770618B2 (en) 2019-12-09 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
US11693064B2 (en) 2020-04-26 2023-07-04 Corephotonics Ltd. Temperature control for Hall bar sensor correction
US11832018B2 (en) 2020-05-17 2023-11-28 Corephotonics Ltd. Image stitching in the presence of a full field of view reference image
US11962901B2 (en) 2020-05-30 2024-04-16 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11910089B2 (en) 2020-07-15 2024-02-20 Corephotonics Lid. Point of view aberrations correction in a scanning folded camera
US11832008B2 (en) 2020-07-15 2023-11-28 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
US11946775B2 (en) 2020-07-31 2024-04-02 Corephotonics Ltd. Hall sensor—magnet geometry for large stroke linear position sensing
US11968453B2 (en) 2020-08-12 2024-04-23 Corephotonics Ltd. Optical image stabilization in a scanning folded camera
US11982796B2 (en) 2023-05-18 2024-05-14 Corephotonics Ltd. Zoom dual-aperture camera with folded lens

Also Published As

Publication number Publication date
US20130293744A1 (en) 2013-11-07
EP2630788A1 (en) 2013-08-28
US9615030B2 (en) 2017-04-04
US20160344915A1 (en) 2016-11-24
EP2630789A1 (en) 2013-08-28
EP2630785A2 (en) 2013-08-28
EP2630784A1 (en) 2013-08-28
US20130278802A1 (en) 2013-10-24
WO2012057621A1 (en) 2012-05-03
US9025077B2 (en) 2015-05-05
US9681057B2 (en) 2017-06-13
WO2012057623A1 (en) 2012-05-03
US20160057361A1 (en) 2016-02-25
WO2012057620A2 (en) 2012-05-03
WO2012057622A1 (en) 2012-05-03
WO2012057620A3 (en) 2012-06-14
US9413984B2 (en) 2016-08-09
JP2013546249A (en) 2013-12-26
EP2630785B1 (en) 2018-09-19
US9654696B2 (en) 2017-05-16
WO2012057619A1 (en) 2012-05-03
US9578257B2 (en) 2017-02-21
EP2630786A1 (en) 2013-08-28
US20130335621A1 (en) 2013-12-19
US20140009646A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
US20140192238A1 (en) System and Method for Imaging and Image Processing
JP6767543B2 (en) Image imaging and processing using a monolithic camera array with different types of imaging devices
CN108307675B (en) Multi-baseline camera array system architecture for depth enhancement in VR/AR applications
CN104079839B (en) Device and method for the multispectral imaging using parallax correction
CN101888487B (en) High dynamic range video imaging system and image generating method
JP6260006B2 (en) IMAGING DEVICE, IMAGING SYSTEM USING THE SAME, ELECTRONIC MIRROR SYSTEM, AND RANGING DEVICE
JP4769079B2 (en) Camera information analyzer
US20140168424A1 (en) Imaging device for motion detection of objects in a scene, and method for motion detection of objects in a scene
US20120249846A1 (en) Solid-state image sensor and image capturing apparatus
US9008412B2 (en) Image processing device, image processing method and recording medium for combining image data using depth and color information
JP5943785B2 (en) IMAGING DEVICE, IMAGING SYSTEM, IMAGE PROCESSING DEVICE, AND IMAGING DEVICE CONTROL METHOD
JP5882789B2 (en) Image processing apparatus, image processing method, and program
JP2022003817A (en) Imaging apparatus, image generation method, and computer program
JP6095266B2 (en) Image processing apparatus and control method thereof
JP2011176710A (en) Imaging apparatus
JP2015046019A (en) Image processing device, imaging device, imaging system, image processing method, program, and storage medium
JP2015188251A (en) Image processing system, imaging apparatus, image processing method, and program
JP2016001853A (en) Image processing system, imaging device, control method, and program
US20160156867A1 (en) Image sensor, image capturing apparatus, focus detection apparatus, image processing apparatus, and control method of image capturing apparatus
US11601607B2 (en) Infrared and non-infrared channel blender for depth mapping using structured light
JPWO2019171691A1 (en) Image processing device, imaging device, and image processing method
WO2020084894A1 (en) Multi-camera system, control value calculation method and control device
JP2021004762A (en) Measurement device, imaging device, measurement system, control method, program and recording medium
JP6628617B2 (en) Image processing apparatus and image processing method
JP2023132730A (en) Image processing device and image processing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: OPERA IMAGING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ATTAR, ZIV;AHARON-ATTAR, CHEN;REEL/FRAME:030945/0304

Effective date: 20130805

AS Assignment

Owner name: ATTAR, ZIV, ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OPERA IMAGING B.V.;REEL/FRAME:031178/0526

Effective date: 20130908

AS Assignment

Owner name: LINX COMPUTATIONAL IMAGING LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATTAR, ZIV;REEL/FRAME:031226/0640

Effective date: 20130912

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION