US20140154379A1 - System and method for producing a dehydrated food product - Google Patents

System and method for producing a dehydrated food product Download PDF

Info

Publication number
US20140154379A1
US20140154379A1 US13/913,636 US201313913636A US2014154379A1 US 20140154379 A1 US20140154379 A1 US 20140154379A1 US 201313913636 A US201313913636 A US 201313913636A US 2014154379 A1 US2014154379 A1 US 2014154379A1
Authority
US
United States
Prior art keywords
food
fruit
dried
dehydrated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/913,636
Inventor
Jack G. Mazin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/913,636 priority Critical patent/US20140154379A1/en
Publication of US20140154379A1 publication Critical patent/US20140154379A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • A23L1/2123
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/02Dehydrating; Subsequent reconstitution
    • A23B7/022Dehydrating; Subsequent reconstitution with addition of chemicals before or during drying, e.g. semi-moist products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/03Products from fruits or vegetables; Preparation or treatment thereof consisting of whole pieces or fragments without mashing the original pieces
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N12/00Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts
    • A23N12/08Machines for cleaning, blanching, drying or roasting fruits or vegetables, e.g. coffee, cocoa, nuts for drying or roasting
    • A23P1/085
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/15Apparatus or processes for coating with liquid or semi-liquid products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/15Apparatus or processes for coating with liquid or semi-liquid products
    • A23P20/18Apparatus or processes for coating with liquid or semi-liquid products by spray-coating, fluidised-bed coating or coating by casting

Definitions

  • the present invention relates to the field of dehydrated food products, and more particularly to food products which are modified by the addition of constituents, such as flavors, nutrients, preservatives, colorings, coatings, etc.
  • Dried fruits such as raisins, prunes, apples, apricots, and peaches are recognized as highly nutritious food products.
  • Raisins for example, are a good source of iron, and they supply calcium, magnesium, potassium, phosphorous, B vitamins, protein and dietary fiber.
  • Dried fruits are utilized as snack foods, confectionaries, etc., and as ingredients in foods such as snack foods, confectionaries, biscuits, cookies, cakes, dairy products, cereals, etc. Dried fruits are typically sweet, chewy, and resilient to mechanical food processing equipment.
  • U.S. Pat. No. 1,717,489 discloses a method of changing the flavor of dried fruits comprising combining the expressed juice of one fruit with another fruit which has been sun-dried or evaporated or which is in the process of drying.
  • a dry or drying fruit is immersed in the fruit juice of another fruit for a short time and then put again to dry; the process being repeated until the desired result is fully obtained.
  • the method disclosed in the reference leaves much to be desired in terms of processing efficiency and processing costs and the tendency of the fruit juice to ferment over time may result in a product having an alcoholic taste.
  • the absence of preservatives in the fruit juice and/or repeated applications of the fruit juice to the dry or drying fruit may introduce undesirable microorganisms into the dried fruit product shortening the shelf life of the product and more importantly, rendering the product harmful to consumers.
  • the repeated application of the fruit juice to the dry or drying fruit increases the sugar content resulting in a sticky product which is nutritionally less desirable. Repeated drying of the fruit also reduces the content of nutrients and volatiles in the fruit which effects the nutritional, and aroma and flavor qualities, respectively of the product.
  • the present invention provides a system and method for modifying a dried food product to enhancing the ability to infuse substances within its body.
  • dried is intended to mean that the product has a reduced moisture content as compared to a corresponding fresh agricultural product, and is not intended to require any particular moisture reduction or maximum moisture level unless particularly noted herein.
  • an unmodified raisin has a relatively impervious skin, which impedes liquid absorption. This leads to relatively slow uptake of liquids and slow dehydration after processing.
  • the present invention modifies the surface or shell of a dried fruit to increase permeability and surface area, without substantially changing its appearance, texture, or usage properties in food.
  • the present invention also permits the spatial control or modification of soluble components within the dried food.
  • the naturally occurring sugar distribution in a raisin can be reduced in the outer regions, leading to a product which has diminished bleeding tendencies and stickiness.
  • It is therefore an object to provide a process and apparatus therefore, for preparing a dried food product comprising treating a dried food with an aqueous acidulant, in an amount and for a period of time which is sufficient to modify a surface of the food to increase water permeability; dehydrating the acidified food to obtain a desired moisture content with heat; cooling the heated dehydrated acidified food; and infusing the cooled dehydrated acidified food with an infusate.
  • the dried food preferably comprises a dried fruit.
  • the infused food may be further cooled to a temperature below about 50F and then packaged.
  • the packaging may be a moisture barrier sealed bag or pouch.
  • the infusate may be a heat labile composition, and thus the cooling step cools the dehydrated acidified food to a temperature below about 100F from a temperature above about 150F, preferably the cooling step cools the dehydrated acidified food to a temperature below about 80F from a temperature above about 160F, and most preferably the cooling step cools the dehydrated acidified food to a temperature of about 70F from a temperature between about 160E-180F.
  • Another object of the invention is to provide a dried food product produced by a process comprising treating the dried food with an aqueous acidulant, in an amount and for a period of time which is sufficient to modify a surface of the food to increase water permeability; dehydrating the acidified food to obtain a desired moisture content with heat; cooling the heated dehydrated acidified food; and infusing the cooled dehydrated acidified food with an infusate.
  • the infusate may, for example, comprise a flavoring, preservative, coloring, humectant, fortification (vitamins, minerals, nutritional supplement), alcohol, sweetener (sugar or a low calorie substitute or a sugar alcohol, etc.).
  • the alcohol may be added at any stage subsequent to the drying, and for example, may be added during packaging, since the alcohol will tend to redistribute evenly through the product after packaging in a vapor barrier package.
  • a heat labile infusate for example a volatile flavoring, or certain vitamins, is added to the product after all substantial heating steps are concluded, for example where the remainder of the process does not subject the heat labile infusate to process temperatures above about 100F.
  • the dried food preferably comprises a fruit, and more preferably comprises a berry or small fruit with a surrounding skin.
  • the food is seedless, either as a seedless variety, or having been de-pitted.
  • Exemplary dried foods are raisins and currants.
  • the apparatus may further comprise a chiller for further cooling the infused dehydrated acidified food to a temperature below about 50F, and preferably to about 35F.
  • FIG. 1 shows a side view of a tumbler system according to the present invention, showing the various fluids and controls;
  • FIG. 2 shows a semi-schematic view of an acid station, including controls, for providing the acid to the tumbler system
  • FIG. 3 shows an end view of the tumbler system with the inlet transfer conveyor
  • FIG. 4 shows a top view of the system showing a spreader feeding dried food to the tumbler, a conveyor leading from the tumbler to the staging area, and a tracer conveyor leading to the dryer;
  • FIG. 5 shows a top view of the entire apparatus, including optional components.
  • One typically application for the invention is for flavoring raisins.
  • a food processing apparatus and method employs a special tumbling system (scissor mesh cascading drum) which receives the food product and declumps it, acidifies it, and cleans debris, such as stems, capstems, and foreign objects from the product, using a rotary perforated conveyor system.
  • This tumbling system receives a food product to be processed, which is typically a dehydrated food, which, after processing, is tolerant, or indeed, benefited by the acidification.
  • This declumping system is designed to minimize tear or damage to the surface of the dried food.
  • Typical food products are dried fruits, though vegetables and other foods may also be appropriate. Especially preferred are raisins, currants, and cranberries. Pomegranate may also be processed.
  • a typical configuration provides a conveyor belt with the dried food spread across, which leads to a staging area where the dried food is engaged, by a set of pins and paddles, and drawn into the tumbling system.
  • the configuration of the conveyor and pins may be modified to suit the dried food to be processed.
  • the tumbler is preferably inclined to provide a gravity feed of the dried food therethrough.
  • the tumbler system is not limited to inclined designs.
  • the tumbling system has a set of liquid conduits to hydrate the dried food.
  • the dried food enters the tumbling system having tumbler 6 , it is mixed with water, which may be recycled. This water assists in separating clumps of dried food, and removing debris, stems, capstems, and the like, which may be adherent to the food.
  • a 12 foot long, 4 foot diameter tumbler 6 rotates at about 6 rotations per minute.
  • the tumbler 6 is perforated, with holes designed to retain the food, but permit the debris to pass through.
  • a heated acid mix 50 is pumped with pump 55 to an upper, inlet portion of the tumbler 6 , and the fluid 53 flows downward toward the exit, pooling 52 near the bottom, such that the previously dried food is completely covered in acid fluid and rehydrated to a significant extent.
  • the level of the fluid is maintained by an inlet 56 , which sprays the dried food, from the pump 55 , through valve 58 , and a return 54 , which leads back to the acid mix 50 container for filtering.
  • a float valve 51 maintains a constant level. Excess fluid is fed to a drain, and the acid fluid in the acid mix 50 container is filtered in filter unit 60 .
  • the dried food for example raisins, are thus treated by spraying with an acid, and immersed in a heated acid solution, in a vibrating rotary tumbler 6 system.
  • FIGS. 4 and 5 show a system layout for a system according to the present invention. The elements shown are:
  • cased raisins or other dried fruit
  • the roller conveyor 2 As shown in FIGS. 4 and 5 , cased raisins (or other dried fruit) are placed on the roller conveyor 2 , and are then manually placed on the raisin case table, removed from the respective case, and automatically agitated and spread with the raisin spreader 5 , which automatically transfers the spread raisins into the 12′ tumbler 6 , which acts to declump, acidify, and clean the raisins.
  • a set of nozzles sprays an acid solution on the food.
  • the acid is, for example, a citric or malic acid solution, from about 1-6% by weight.
  • a sufficient quantity of acid solution is provided to wet the surface of the food, and form a pool toward the exit of the tumbler 6 , which is then filtered and recycled.
  • a typical ratio of acid spray to hydration water is 10:1.
  • Near the exit of the tumbler 6 the food is submerged in an acid solution.
  • Typical transit time through the tumbler 6 system is about 3 minutes.
  • a raisin enters the transfer conveyor with a water percentage of 10-15%, and when exiting the tumbling system has about 16-20% water.
  • the acid spray is warm, for example about 110F.
  • the partially hydrated and acidified food is then fed, from the tumbling 6 system, by a set of pins and paddles on the tumbler, to an exit conveyor, and is fed to a staging area, to form a mound.
  • a separate conveyor transfers the food from the staging area to a tracing area as a uniform sheet, for example 1 inch thick.
  • the acified raisins are transferred via an upright conveyor 7 to the staging conveyor 8 , which, in turn, leads to a set of tracer-raisin spreaders 10 A, 10 B, which spread the acidified raisins evenly, and transfer them to an accumulator 11 , allowing the acidified raisins to cure with the acidulant.
  • the raisins are dried in a drier 12 reaching a temperature of about 160-180F, and subsequently cooled in a cooler 14 , for example, to 70-80F, with chilled air.
  • the water percentage of the food drops about 4-7% in the dryer.
  • the water content is about the same entering the tumbler and leaving the dryer.
  • the time between exiting the tumbling system and entering the dryer is, for example, about 30 minutes.
  • the dryer is, for example, an 18 foot long, 3.5 foot wide conduit, held at a temperature of 160E-180F.
  • a preferred dryer is gas fired, and provides a turbulent air flow of about 30 miles per hour, from the exit toward the entrance, above, below and through the conveyor belt, which is itself a metal mesh.
  • the hot food is then fed to a chiller, where the temperature is reduced to about 70F by blowing cold air.
  • the cooling of the food after the dryer is immediate, and without substantial passive cooling. This, for example, helps reduce clumping, and reduces the time for which the food is maintained in a headed condition.
  • the cooled raisins are then flavored in a flavoring unit 15 , fed with flavorant from the flavoring dispenser 16 , and transferred by an upright transfer conveyor 17 to a set of Tracer-raisin spreaders 18 A, 18 B.
  • the spread raisins are then accumulated at an accumulator 19 , for cooling via chilling system 43 and packaging.
  • the cooled food is then fed by another conveyor to an infusing tunnel, where an infusate solution is sprayed on the dried food, which contains, for example, a flavor, fortifying agent, coating, or the like.
  • the infusate is a water spray with a solids concentration of about 1-2%.
  • the infusing tunnel typically does not agitate the food, though in some cases, it may be desirable to tumble the dried food, for example where it is desired for the infusate to evenly coat the food.
  • the infused food is then fed to another staging area to a cooling tunnel, which chills the food to near freezing, e.g., 35F, by blowing cold air.
  • the product is then ready to be packaged.
  • the acidified raisins are thus dried to a suitable moisture content and then cooled to about 70-80F.
  • a flavoring agent in for example an oil or glycerin based spray, is provided, which is absorbed through the skin into the raisin, but also remains on the skin. After the flavoring agent is provided, the raisins are further cooled and packaged.
  • the packaging section which is separated from the initial processing stages, and especially the drier 12 , by a partition 60 , in order to facilitate cooling of the raisins for packaging, provides a Bucket lift 20 , which feeds a staging conveyor with divider 21 , from which the raisins are packaged, for example in a Stoke packaging machine 22 , a Mirapack packaging machine 23 , a Hanzella packaging machine 24 , or a Monobag packaging machine 25 .
  • the packaged raisins from the packaging machines 22 , 23 , 24 , 25 are transferred with a packaging take-out conveyor 29 , and an upright transfer conveyor 30 , past a gated inspection conveyor 31 , to either a display pack-up conveyor 32 or a transfer conveyor 33 to a Langen boxing machine 35 via a Langen conveyor 34 .
  • the rolling conveyor 36 A transfers the packaged goods to a padlocker 37 which groups the small “grocery store” cases into a master case.
  • Rolling conveyor 36 B transfers the master case for wrapping with a Sprialgrip wrapper 38 .
  • an L Bar sealer 39 and Heat shrink tunnel 40 may be used to seal the packaged product.
  • the acidification of the food serves the purpose of “scarring” the surface to increase surface area, and making microscopic holes, which enhance permeability of water through the surface.
  • the acidulent also acts as a preservative.
  • the acid forms a barrier, beneath the surface of the fruit, which limits the movement of natural sugars and the like from the core of the food toward the surface.
  • the acid bath will remove a small portion of the natural sugar near the surface. The result is a food product which has reduced sugar near the surface, and reduced bleeding of sugars, which help prevent clumping and stickiness.
  • the infusate may include heat labile components, such as vitamins and volatile components.
  • the acid tends to neutralize the natural taste of the food product, while the infusate tends to have a high concentration at the surface. Therefore, it is feasible to alter the basic flavor characteristics of the food, for example making it taste like a different food.
  • dried fruit products particularly raisins, having flavors which do not correspond to the natural flavor of the dried fruits and having desirable nutritional, texture and aroma qualities may be efficiently produced.
  • fortified products, and coated products are also possible.
  • the acidulant need not be citric or malic acid, and, for example, tartaric acid, ascorbic acid, phosphoric acid, fumaric acid, or other acceptable acid for use in foods may be used.
  • the infusion solution may additionally contain a humectant such as glycerol and sorbitol.
  • a humectant such as glycerol and sorbitol.
  • Sodium citrate may also be added to provide a more tart taste, for example when preparing a lemon/lime flavored dried fruit product.
  • times and temperatures noted herein represent a preferred embodiment, and in general, such times and temperatures may be modified with the expected results, and are not deemed limiting on the scope of the invention. However, to achieve a particular desired result, the process described above is satisfactory.
  • the present process produces a product which has a uniform infusion, lower density than typical processes (see U.S. Pat. No. 5,188,861), and an attractive texture.
  • the raisins are initially hydrated in a wash with sprayed water, which removes any stems, captems, and debris from the raw raisins, which fall through perforated holes around the rotating drum.
  • a catch basin is provided below, which filters the stems, capstems and debris.
  • the raisins are then subjected to an acidification spray and then bath, which is a citric acid solution or a malic acid solution. This acid solution is heat jacketed at approximately 170°-180° Fahrenheit, which allows the acid solution to permeate the outer surface of the raisin.
  • the raisins are then fed through a drying tunnel system, where glycerin is optionally added. It is then cooled down to a temperature of approximately 70° Fahrenheit, where it is then spray flavored, and then goes to a staging area where it is cooled again to a temperature of approximately 50° Fahrenheit, then to another staging area where it is frozen with a nitrogen flash freeze bath. The produce is then packaged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

A process and apparatus for preparing a dried food product said process comprising treating a dried food with an aqueous acidulant, in an amount and for a period of time which is sufficient to modify a surface of the food to increase water permeability; dehydrating the acidified food to obtain a desired moisture content with heat; cooling the heated dehydrated acidified food; and infusing the cooled dehydrated acidified food with an infusate.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a division of U.S. patent application Ser. No. No. 12/114,077, filed May 2, 2008, now U.S. Pat. No. 8,460,731, issued Jun. 11, 2013, and a division of U.S. Patent Application No. 13/426.468, filed March 21, 2012, now pending, which is a non-Provisional of U.S. Provisional Patent Application No. 60/915,870, filed May 3, 2007, each of which is expressly incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to the field of dehydrated food products, and more particularly to food products which are modified by the addition of constituents, such as flavors, nutrients, preservatives, colorings, coatings, etc.
  • BACKGROUND OF THE INVENTION
  • Dried fruits such as raisins, prunes, apples, apricots, and peaches are recognized as highly nutritious food products. Raisins, for example, are a good source of iron, and they supply calcium, magnesium, potassium, phosphorous, B vitamins, protein and dietary fiber. (Foods and Food Production Encyclopedia, Considine, D. M. ed., Van Nostrand Reinhold Company, New York 1982, pages 1639-1942). Dried fruits are utilized as snack foods, confectionaries, etc., and as ingredients in foods such as snack foods, confectionaries, biscuits, cookies, cakes, dairy products, cereals, etc. Dried fruits are typically sweet, chewy, and resilient to mechanical food processing equipment.
  • U.S. Pat. No. 1,717,489 (issued Jun. 18, 1929 to Barlow) discloses a method of changing the flavor of dried fruits comprising combining the expressed juice of one fruit with another fruit which has been sun-dried or evaporated or which is in the process of drying. In one method disclosed a dry or drying fruit is immersed in the fruit juice of another fruit for a short time and then put again to dry; the process being repeated until the desired result is fully obtained. The method disclosed in the reference leaves much to be desired in terms of processing efficiency and processing costs and the tendency of the fruit juice to ferment over time may result in a product having an alcoholic taste. In addition, the absence of preservatives in the fruit juice and/or repeated applications of the fruit juice to the dry or drying fruit may introduce undesirable microorganisms into the dried fruit product shortening the shelf life of the product and more importantly, rendering the product harmful to consumers. Further, the repeated application of the fruit juice to the dry or drying fruit increases the sugar content resulting in a sticky product which is nutritionally less desirable. Repeated drying of the fruit also reduces the content of nutrients and volatiles in the fruit which effects the nutritional, and aroma and flavor qualities, respectively of the product.
  • See, U.S. Pat. Nos. 5,188,861, 1,609,720, 1,717,489, 4,542,033, expressly incorporated herein by reference. See also JP 61-216641 (Sep., 1986), Furia, CRC Handbook of Food Additives, vol. I, 1972, CRC Press Inc., Cleveland, pp. 225-253.
  • A number of technologies are available for infusing fruits with carbohydrates, flavors, colors, and the like. See, U.S. Pat. Nos. 7,188,772, and 6,159,527, each of which is expressly incorporated herein by reference.
  • SUMMARY OF THE INVENTION
  • The present invention provides a system and method for modifying a dried food product to enhancing the ability to infuse substances within its body. As used herein, the word “dried” is intended to mean that the product has a reduced moisture content as compared to a corresponding fresh agricultural product, and is not intended to require any particular moisture reduction or maximum moisture level unless particularly noted herein.
  • For example, an unmodified raisin has a relatively impervious skin, which impedes liquid absorption. This leads to relatively slow uptake of liquids and slow dehydration after processing. The present invention modifies the surface or shell of a dried fruit to increase permeability and surface area, without substantially changing its appearance, texture, or usage properties in food.
  • In conjunction with the surface modification, the present invention also permits the spatial control or modification of soluble components within the dried food. For example, in accordance with one aspect of the invention, the naturally occurring sugar distribution in a raisin can be reduced in the outer regions, leading to a product which has diminished bleeding tendencies and stickiness.
  • It is therefore an object to provide a process and apparatus therefore, for preparing a dried food product comprising treating a dried food with an aqueous acidulant, in an amount and for a period of time which is sufficient to modify a surface of the food to increase water permeability; dehydrating the acidified food to obtain a desired moisture content with heat; cooling the heated dehydrated acidified food; and infusing the cooled dehydrated acidified food with an infusate.
  • The dried food preferably comprises a dried fruit. The infused food may be further cooled to a temperature below about 50F and then packaged. For example, the packaging may be a moisture barrier sealed bag or pouch. The infusate may be a heat labile composition, and thus the cooling step cools the dehydrated acidified food to a temperature below about 100F from a temperature above about 150F, preferably the cooling step cools the dehydrated acidified food to a temperature below about 80F from a temperature above about 160F, and most preferably the cooling step cools the dehydrated acidified food to a temperature of about 70F from a temperature between about 160E-180F.
  • Another object of the invention is to provide a dried food product produced by a process comprising treating the dried food with an aqueous acidulant, in an amount and for a period of time which is sufficient to modify a surface of the food to increase water permeability; dehydrating the acidified food to obtain a desired moisture content with heat; cooling the heated dehydrated acidified food; and infusing the cooled dehydrated acidified food with an infusate. The infusate may, for example, comprise a flavoring, preservative, coloring, humectant, fortification (vitamins, minerals, nutritional supplement), alcohol, sweetener (sugar or a low calorie substitute or a sugar alcohol, etc.). In fact, in alcohol fortified product, the alcohol may be added at any stage subsequent to the drying, and for example, may be added during packaging, since the alcohol will tend to redistribute evenly through the product after packaging in a vapor barrier package.
  • According to a particularly advantageous aspect of the invention a heat labile infusate, for example a volatile flavoring, or certain vitamins, is added to the product after all substantial heating steps are concluded, for example where the remainder of the process does not subject the heat labile infusate to process temperatures above about 100F.
  • It is a further aspect of the invention to provide an apparatus for preparing a dried food product, comprising a tumbler, receiving a dried food, and treating the dried food with an acid solution; a heater, for dehydrating the acidified food; a cooler, for reducing a temperature of the heated dehydrated acidified food; and a spray infuser, for coating the cooled dehydrated acidified food with an infusant. The dried food preferably comprises a fruit, and more preferably comprises a berry or small fruit with a surrounding skin. Preferably, the food is seedless, either as a seedless variety, or having been de-pitted. Exemplary dried foods are raisins and currants. The apparatus may further comprise a chiller for further cooling the infused dehydrated acidified food to a temperature below about 50F, and preferably to about 35F.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a side view of a tumbler system according to the present invention, showing the various fluids and controls;
  • FIG. 2 shows a semi-schematic view of an acid station, including controls, for providing the acid to the tumbler system;
  • FIG. 3 shows an end view of the tumbler system with the inlet transfer conveyor;
  • FIG. 4 shows a top view of the system showing a spreader feeding dried food to the tumbler, a conveyor leading from the tumbler to the staging area, and a tracer conveyor leading to the dryer; and
  • FIG. 5 shows a top view of the entire apparatus, including optional components.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One typically application for the invention is for flavoring raisins.
  • One embodiment of a food processing apparatus and method according to the invention employs a special tumbling system (scissor mesh cascading drum) which receives the food product and declumps it, acidifies it, and cleans debris, such as stems, capstems, and foreign objects from the product, using a rotary perforated conveyor system. This tumbling system receives a food product to be processed, which is typically a dehydrated food, which, after processing, is tolerant, or indeed, benefited by the acidification. This declumping system is designed to minimize tear or damage to the surface of the dried food. Typical food products are dried fruits, though vegetables and other foods may also be appropriate. Especially preferred are raisins, currants, and cranberries. Pomegranate may also be processed.
  • A typical configuration provides a conveyor belt with the dried food spread across, which leads to a staging area where the dried food is engaged, by a set of pins and paddles, and drawn into the tumbling system. The configuration of the conveyor and pins may be modified to suit the dried food to be processed.
  • The tumbler is preferably inclined to provide a gravity feed of the dried food therethrough. Of course, other methods of feed are possible, and therefore the tumbler system is not limited to inclined designs.
  • As shown in FIGS. 1 (side view), 3 (end view) and 2 (schematic view), the tumbling system has a set of liquid conduits to hydrate the dried food. As the dried food enters the tumbling system having tumbler 6, it is mixed with water, which may be recycled. This water assists in separating clumps of dried food, and removing debris, stems, capstems, and the like, which may be adherent to the food. For example, a 12 foot long, 4 foot diameter tumbler 6 rotates at about 6 rotations per minute. The tumbler 6 is perforated, with holes designed to retain the food, but permit the debris to pass through. A heated acid mix 50 is pumped with pump 55 to an upper, inlet portion of the tumbler 6, and the fluid 53 flows downward toward the exit, pooling 52 near the bottom, such that the previously dried food is completely covered in acid fluid and rehydrated to a significant extent. The level of the fluid is maintained by an inlet 56, which sprays the dried food, from the pump 55, through valve 58, and a return 54, which leads back to the acid mix 50 container for filtering. A float valve 51 maintains a constant level. Excess fluid is fed to a drain, and the acid fluid in the acid mix 50 container is filtered in filter unit 60. The dried food, for example raisins, are thus treated by spraying with an acid, and immersed in a heated acid solution, in a vibrating rotary tumbler 6 system.
  • FIGS. 4 and 5 show a system layout for a system according to the present invention. The elements shown are:
  • 1 Pallet; 2 Roller conveyor; 3 standing platform with stairs; 4 Feed-in table; 5 Accumulator & Regulator conveyor; 6 12′ Tumbler Declumper Cleaner Acidifier; 7 Upright transfer conveyor; 8 8′ staging conveyor; 9 Acidification dispenser; 10 Tracer-raisins spreader (A & B); 11 Accumulator production; 12 Dryer (A line); 13 Control—Electric Panel (A line); 14 Cooling Unit; 15 Flavor Unit; 16 Flavoring Dispenser; 17 Upright transfer conveyor; 18 Tracer—raisins spreader (A & B); 19 Accumulator packaging; 20 Bucket lift; 21 Staging conveyor with divider (A); 22 Stoke packaging machine; 23 Mirapack packaging machine; 24 Hanzella packaging machine; 25 Monobag packaging machine; 26 Main electrical control; 27 Staging conveyor control; 28 Conveyor control; 29 Packaging take-out conveyor; 30 Upright transfer conveyor; 31 Inspection conveyor; 32 Display pack-up conveyor; 33 Transfer conveyor to Langen; 34 Langen conveyor; 35 Langen boxing machine; 36 Rolling conveyor (A, B); 37 Padlocker; 38 Sprialgrip wrapper; 39 L Bar sealer; 40 Heat shrink tunnel; 41 Control—Electric panel (B line); 42 Dryer (B line); and 43 Chilling unit system.
  • As shown in FIGS. 4 and 5, cased raisins (or other dried fruit) are placed on the roller conveyor 2, and are then manually placed on the raisin case table, removed from the respective case, and automatically agitated and spread with the raisin spreader 5, which automatically transfers the spread raisins into the 12′ tumbler 6, which acts to declump, acidify, and clean the raisins.
  • About one third along the tumbler 6, a set of nozzles sprays an acid solution on the food. The acid is, for example, a citric or malic acid solution, from about 1-6% by weight. A sufficient quantity of acid solution is provided to wet the surface of the food, and form a pool toward the exit of the tumbler 6, which is then filtered and recycled. A typical ratio of acid spray to hydration water is 10:1. Near the exit of the tumbler 6, the food is submerged in an acid solution. Typical transit time through the tumbler 6 system is about 3 minutes. For example, a raisin enters the transfer conveyor with a water percentage of 10-15%, and when exiting the tumbling system has about 16-20% water. The acid spray is warm, for example about 110F.
  • The partially hydrated and acidified food is then fed, from the tumbling 6 system, by a set of pins and paddles on the tumbler, to an exit conveyor, and is fed to a staging area, to form a mound. A separate conveyor transfers the food from the staging area to a tracing area as a uniform sheet, for example 1 inch thick.
  • From the tumbler 6, the acified raisins are transferred via an upright conveyor 7 to the staging conveyor 8, which, in turn, leads to a set of tracer- raisin spreaders 10A, 10B, which spread the acidified raisins evenly, and transfer them to an accumulator 11, allowing the acidified raisins to cure with the acidulant.
  • After an appropriate curing period, the raisins are dried in a drier 12 reaching a temperature of about 160-180F, and subsequently cooled in a cooler 14, for example, to 70-80F, with chilled air. The water percentage of the food drops about 4-7% in the dryer. For example, the water content is about the same entering the tumbler and leaving the dryer. Typically, the time between exiting the tumbling system and entering the dryer is, for example, about 30 minutes. The dryer is, for example, an 18 foot long, 3.5 foot wide conduit, held at a temperature of 160E-180F. A preferred dryer is gas fired, and provides a turbulent air flow of about 30 miles per hour, from the exit toward the entrance, above, below and through the conveyor belt, which is itself a metal mesh.
  • The hot food is then fed to a chiller, where the temperature is reduced to about 70F by blowing cold air. According to one embodiment of the invention, the cooling of the food after the dryer is immediate, and without substantial passive cooling. This, for example, helps reduce clumping, and reduces the time for which the food is maintained in a headed condition.
  • The cooled raisins are then flavored in a flavoring unit 15, fed with flavorant from the flavoring dispenser 16, and transferred by an upright transfer conveyor 17 to a set of Tracer- raisin spreaders 18A, 18B. The spread raisins are then accumulated at an accumulator 19, for cooling via chilling system 43 and packaging.
  • The cooled food is then fed by another conveyor to an infusing tunnel, where an infusate solution is sprayed on the dried food, which contains, for example, a flavor, fortifying agent, coating, or the like. The infusate is a water spray with a solids concentration of about 1-2%. The infusing tunnel typically does not agitate the food, though in some cases, it may be desirable to tumble the dried food, for example where it is desired for the infusate to evenly coat the food.
  • The infused food is then fed to another staging area to a cooling tunnel, which chills the food to near freezing, e.g., 35F, by blowing cold air. The product is then ready to be packaged.
  • The acidified raisins are thus dried to a suitable moisture content and then cooled to about 70-80F. A flavoring agent, in for example an oil or glycerin based spray, is provided, which is absorbed through the skin into the raisin, but also remains on the skin. After the flavoring agent is provided, the raisins are further cooled and packaged.
  • The packaging section, which is separated from the initial processing stages, and especially the drier 12, by a partition 60, in order to facilitate cooling of the raisins for packaging, provides a Bucket lift 20, which feeds a staging conveyor with divider 21, from which the raisins are packaged, for example in a Stoke packaging machine 22, a Mirapack packaging machine 23, a Hanzella packaging machine 24, or a Monobag packaging machine 25. The packaged raisins from the packaging machines 22, 23, 24, 25, are transferred with a packaging take-out conveyor 29, and an upright transfer conveyor 30, past a gated inspection conveyor 31, to either a display pack-up conveyor 32 or a transfer conveyor 33 to a Langen boxing machine 35 via a Langen conveyor 34. The rolling conveyor 36A transfers the packaged goods to a padlocker 37 which groups the small “grocery store” cases into a master case. Rolling conveyor 36B transfers the master case for wrapping with a Sprialgrip wrapper 38. Alternately, an L Bar sealer 39 and Heat shrink tunnel 40 may be used to seal the packaged product.
  • The acidification of the food serves the purpose of “scarring” the surface to increase surface area, and making microscopic holes, which enhance permeability of water through the surface. The acidulent also acts as a preservative.
  • The acid forms a barrier, beneath the surface of the fruit, which limits the movement of natural sugars and the like from the core of the food toward the surface. In addition, the acid bath will remove a small portion of the natural sugar near the surface. The result is a food product which has reduced sugar near the surface, and reduced bleeding of sugars, which help prevent clumping and stickiness.
  • Because the infusion is done at about 70F, and the temperatures thereafter reduced, the infusate may include heat labile components, such as vitamins and volatile components. The acid tends to neutralize the natural taste of the food product, while the infusate tends to have a high concentration at the surface. Therefore, it is feasible to alter the basic flavor characteristics of the food, for example making it taste like a different food.
  • For example, dried fruit products, particularly raisins, having flavors which do not correspond to the natural flavor of the dried fruits and having desirable nutritional, texture and aroma qualities may be efficiently produced. Likewise, fortified products, and coated products, are also possible.
  • The acidulant need not be citric or malic acid, and, for example, tartaric acid, ascorbic acid, phosphoric acid, fumaric acid, or other acceptable acid for use in foods may be used.
  • The infusion solution may additionally contain a humectant such as glycerol and sorbitol. Sodium citrate may also be added to provide a more tart taste, for example when preparing a lemon/lime flavored dried fruit product.
  • It is noted that the times and temperatures noted herein represent a preferred embodiment, and in general, such times and temperatures may be modified with the expected results, and are not deemed limiting on the scope of the invention. However, to achieve a particular desired result, the process described above is satisfactory.
  • The present process produces a product which has a uniform infusion, lower density than typical processes (see U.S. Pat. No. 5,188,861), and an attractive texture.
  • EXAMPLE 1
  • 112 kg of Australia sultana raisins were fed through the declumping rotating drum. The raisins were then treated with warm (110F) 1.25% citric acid solution. The speed of the drum was adjusted so that the raisins did not get substantially damaged. The acidic spray was continued for 30 minutes before conveying the acidified raisins to a staging area, where they were held for 20 minutes to stabilize. The raisins were then transferred to an Epson Eclipse dryer where they were dried for about 5 minutes at 180F, adjusted according to the amount of acid solution absorbed. The redried raisins were then cooled down to about 70F and jet sprayed with natural orange flavor (AFI #10589-12795) at 1.5% by weight. The raisins were allowed to soak for 15 minutes before transferring into a chilling tunnel where they were cooled to about 50F before packaging.
  • EXAMPLE 2
  • 112 kg of Australia sultana raisins were fed through the declumping rotating drum. The raisins were then treated with warm (110F) 1.25% citric acid solution. The speed of the drum was adjusted so that the raisins did not get substantially damaged. The acidic spray was continued for 45 minutes before conveying the acidified raisins to a staging area, where they were held for 20 minutes to stabilize. The raisins were then transferred to an Epson Eclipse dryer where they were dried for about 7 minutes at 180F, adjusted according to the amount of acid solution absorbed. The redried raisins were then cooled down to about 70F and jet sprayed with natural lemon flavor (AFI #10589-12887) at 1.5% by weight. The raisins were allowed to soak for 15 minutes before transferring into a chilling tunnel where they were cooled to about 50F before packaging.
  • EXAMPLE 3
  • 112 kg of Australia sultana raisins were fed through the declumping rotating drum. The raisins were then treated with warm (110F) 1.25% citric acid solution. The speed of the drum was adjusted so that the raisins did not get substantially damaged. The acidic spray was continued for 20 minutes before conveying the acidified raisins to a staging area, where they were held for 20 minutes to stabilize. The raisins were then transferred to an Epson Eclipse dryer where they were dried for about 7 minutes at 180F, adjusted according to the amount of acid solution absorbed. The redried raisins were then cooled down to about 70F and jet sprayed with natural cherry lemon flavor (AFI #81213-3243) at 1.5% by weight. The raisins were allowed to soak for 15 minutes before transferring into a chilling tunnel where they were cooled to about 50F before packaging.
  • EXAMPLE 4
  • About 14 kilograms of boxed raisins are brought to a staging area, broken up slightly, and fed to the entrance of a caterpillar conveyor system tumbler, and fed into the rotating perforated drum. Pins and paddles on interior of the drum draw the raisins in, and assist in the agitation, which declump the raisins.
  • The raisins are initially hydrated in a wash with sprayed water, which removes any stems, captems, and debris from the raw raisins, which fall through perforated holes around the rotating drum. A catch basin is provided below, which filters the stems, capstems and debris. The raisins are then subjected to an acidification spray and then bath, which is a citric acid solution or a malic acid solution. This acid solution is heat jacketed at approximately 170°-180° Fahrenheit, which allows the acid solution to permeate the outer surface of the raisin.
  • The raisins are then fed through a drying tunnel system, where glycerin is optionally added. It is then cooled down to a temperature of approximately 70° Fahrenheit, where it is then spray flavored, and then goes to a staging area where it is cooled again to a temperature of approximately 50° Fahrenheit, then to another staging area where it is frozen with a nitrogen flash freeze bath. The produce is then packaged.
  • While certain representative embodiments of the invention have been described herein for the purpose of illustration, it will be apparent to those skilled in the art that modifications therein may be made without departing from the spirit and scope of the invention.

Claims (17)

I claim:
1. An apparatus for preparing a dried food product, comprising:
(a) a tumbler, receiving a dried food, and treating the dried food with an acid solution;
(b) a heater, for dehydrating the acidified food;
(c) a cooler, for reducing a temperature of the heated dehydrated acidified food; and
(d) a spray infuser, for coating the cooled dehydrated acidified food with an infusant.
2. The apparatus according to claim 1, wherein the dried food comprises a fruit.
3. The apparatus according to claim 1, wherein the dried food comprises raisins or currants.
4. The apparatus according to claim 1, further comprising a chiller for further cooling the infused dehydrated acidified food to a temperature below about 50F.
5. An apparatus for preparing a dried food product, comprising:
(a) means for treating a dried food with an aqueous acidulant, in an amount and for a period of time which is sufficient to modify a surface of the food to increase water permeability and rehydrate the dried food;
(b) means for dehydrating the treated dried food at a temperature above about 150F, until a desired moisture content is achieved;
(c) first means for cooling the dehydrated treated food to a temperature below about 150F;
(d) means for infusing the cooled dehydrated treated food with a heat labile infusate; and
(e) second means for cooling the infused cooled dehydrated treated food to a temperature of between about 50F to 35F for packaging.
6. The apparatus according to claim 5, wherein:
the treating means comprises a structure which agitates the dried food while subject to the aqueous acidulent;
the dehydrating means comprises a heater;
the first cooling means comprises a blower, configured to cool the dehydrated treated food from a temperature of above about 150F to a temperature of between about 70F to 100F;
the infusing means comprises an infusate dispenser; and
the second cooling means comprises a chiller.
7. The apparatus according to claim 5, further comprising a packager configured to package the cooled infused dehydrated treated food in a sealed package, operating at the cooled temperature of between about 35F to 50F.
8. The apparatus according to claim 5, wherein said means for treating comprises a tumbler, configured to receive the dried food, and submerse the received dried food in an aqueous acidulent solution during operation of the tumbler; and said means for infusing comprises a spray infuser configured to coat the cooled dehydrated treated food.
9. A method of forming a food product, comprising:
rehydrating a dried fruit with an aqueous acidulant during tumbling in a continuous process cascading drum, to increase a porosity of a dried fruit skin and remove non-fruit components and dissolve at least a portion of soluble fruit components to produce a rehydrated fruit;
draining aqueous acidulent and debris;
dehydrating the drained rehydrated fruit at a temperature above about 150F, until a desired moisture content is achieved, to produce a porosified dehydrated fruit;
cooling the porosified dehydrated fruit to a temperature below about 100F;
infusing the cooled porosified dehydrated fruit with a liquid heat labile infusate which adds at least one flavor or nutritional component, to produce an infused dried fruit.
10. The method according to claim 9, further comprising packaging the infused dried fruit in a moisture barrier package at a packaging temperature of between about 50F to 35F.
11. The method according to claim 9, wherein the porosified dehydrated fruit is infused at a temperature of between about 70F to 100F.
12. The method according to claim 9, wherein the infusate comprises a heat labile flavorant.
13. The method according to claim 9, wherein the infusate comprises a vitamin.
14. The method according to claim 9, wherein the rehydrated fruit is dehydrated at a temperature of between about 160E-180F, and the porosified dehydrated fruit is infused at a temperature of about 70F.
15. The method according to claim 9, wherein the aqueous acidulent comprises a citric acid solution or a malic acid solution.
16. The method according to claim 9, wherein said continuous process cascading drum receives the dried food on a first conveyor, submerses the dried food in the aqueous acidulent during cascading drum tumbling, and provides the porosified rehydrated fruit on a second conveyor, wherein excess aqueous acidulent drains from the porosified rehydrated fruit on the second conveyor during transfer.
17. The method according to claim 9, wherein said rehydrating wherein reduces a concentration of sugar near a surface with respect to the dried fruit, wherein the porosified dehydrated fruit displays reduced clumping and stickiness than the dried fruit.
US13/913,636 2007-05-03 2013-06-10 System and method for producing a dehydrated food product Abandoned US20140154379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/913,636 US20140154379A1 (en) 2007-05-03 2013-06-10 System and method for producing a dehydrated food product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91587007P 2007-05-03 2007-05-03
US12/114,077 US8460731B2 (en) 2007-05-03 2008-05-02 System and method for producing a dehydrated food product
US13/426,468 US20120237638A1 (en) 2007-05-03 2012-03-21 System and method for producing a dehydrated food product
US13/913,636 US20140154379A1 (en) 2007-05-03 2013-06-10 System and method for producing a dehydrated food product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/114,077 Division US8460731B2 (en) 2007-05-03 2008-05-02 System and method for producing a dehydrated food product

Publications (1)

Publication Number Publication Date
US20140154379A1 true US20140154379A1 (en) 2014-06-05

Family

ID=39939717

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/114,077 Active 2031-03-09 US8460731B2 (en) 2007-05-03 2008-05-02 System and method for producing a dehydrated food product
US13/426,468 Abandoned US20120237638A1 (en) 2007-05-03 2012-03-21 System and method for producing a dehydrated food product
US13/913,636 Abandoned US20140154379A1 (en) 2007-05-03 2013-06-10 System and method for producing a dehydrated food product

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/114,077 Active 2031-03-09 US8460731B2 (en) 2007-05-03 2008-05-02 System and method for producing a dehydrated food product
US13/426,468 Abandoned US20120237638A1 (en) 2007-05-03 2012-03-21 System and method for producing a dehydrated food product

Country Status (6)

Country Link
US (3) US8460731B2 (en)
EP (1) EP2152086B1 (en)
JP (1) JP2010525825A (en)
AU (1) AU2008247516B2 (en)
WO (1) WO2008137712A1 (en)
ZA (1) ZA200908555B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220030925A1 (en) * 2018-09-19 2022-02-03 Polar Systems Limited System for Processing Foodstuff
US11292706B2 (en) * 2014-12-30 2022-04-05 Edward Showalter Apparatus, systems and methods for preparing and dispensing foods

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012011832A2 (en) * 2009-11-17 2015-09-15 Innodrying Gmbh process for conservation of organic material units and process for conservation of organic material units.
US10506817B2 (en) 2012-08-03 2019-12-17 Pace International, Llc Filtration system
US20140033926A1 (en) 2012-08-03 2014-02-06 Robert Scott Fassel Filtration System
US9747625B2 (en) * 2014-04-16 2017-08-29 Dean Travis Device for adding enhancers to pet food and method of using same
US9615604B2 (en) 2014-02-06 2017-04-11 David Russick Food waste dehydrator
CN103815012B (en) * 2014-03-08 2015-04-01 衢州乐创节能科技有限公司 Drum type orange drug-dipping fresh-keeping machine
EP3653060B1 (en) 2015-01-16 2024-05-01 Cocoterra Company Chocolate processing system and method
US20170099857A1 (en) * 2015-10-13 2017-04-13 Agri-King, Inc. Drying process for agricultural feedstuffs
US20170156390A1 (en) 2015-12-08 2017-06-08 Smartwash Solutions, Llc Short-term wash treatment of produce
US11576415B2 (en) * 2015-12-08 2023-02-14 Smartwash Solutions, Llc Short-term wash treatment of produce
CN106579492A (en) * 2017-02-22 2017-04-26 南通金牛机械制造有限公司 Porphyra drying processing equipment
CA3008858A1 (en) 2017-06-19 2018-12-19 Marija Djekic-Ivankovic Prune-based nutrient-rich materials and related processes
EP3758507B1 (en) 2018-03-02 2023-09-06 Kellogg Company Method for producing a reduced sugar-coated food product by dual application
CN108634162A (en) * 2018-04-26 2018-10-12 佛山市甄睿智能科技有限公司 A kind of food materials pretreatment unit of quick pan feeding
US11470853B2 (en) 2019-03-15 2022-10-18 CocoTerra Company Interface and application for designing a chocolate-making experience
CN112931603B (en) * 2021-01-26 2023-04-07 聊城市至诚蔬果有限公司 Vacuum packaging machine after vegetable dehydration
CN115068331A (en) * 2021-04-04 2022-09-20 哈尔滨商业大学 Temperature control herbal medicine roaster containing circular medicine frying pan for processing traditional Chinese medicine decoction pieces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032406A (en) * 1933-06-23 1936-03-03 Sun Maid Raisin Growers Of Cal Raisin treatment method and apparatus
US3101040A (en) * 1957-07-15 1963-08-20 Ralston Purina Co Apparatus for manufacturing stable pelleted foods
US4479776A (en) * 1981-07-22 1984-10-30 Smith Donald P Thermal treatment of food products
US4556572A (en) * 1977-10-05 1985-12-03 Dca Food Industries Inc. Method of fixing an edible coating to a food product
US5282438A (en) * 1992-09-04 1994-02-01 Technical Support Services Inc. Aquarium
US20020025364A1 (en) * 2000-03-10 2002-02-28 Stephane Audy Food disinfection using ozone
US20040050662A1 (en) * 2002-08-29 2004-03-18 Vanberlo Peter Elevator
US20040237800A1 (en) * 2001-10-17 2004-12-02 Adam Franck Apparatus for continuously pasteurizing meat and food products
US20060233922A1 (en) * 2004-05-28 2006-10-19 Andrew Kegler Packaged flavor enhanced fruits or vegetables products with extended shelf-life for mass market distribution and consumption

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1609720A (en) 1922-12-13 1926-12-07 George F Humphrey Method of preserving fruits and vegetables
US1717489A (en) 1924-08-04 1929-06-18 Barlow Bronson Fruit product and method of making the same
US4103035A (en) * 1971-08-11 1978-07-25 Kellogg Company Method for retaining softness in raisins
US3894157A (en) * 1973-06-04 1975-07-08 Gen Foods Corp Color stabilization in freeze-dried carrots with ascorbic and erythorbic acids
US4542033A (en) 1983-02-24 1985-09-17 Gen Mills Inc Sugar and acid infused fruit products and process therefor
JPS61216641A (en) 1985-03-22 1986-09-26 Takao Momose Production of dried apple
US4764385A (en) * 1987-02-10 1988-08-16 Peter Butland Process for preserving fresh fruit and vegetables
US5000972A (en) * 1989-06-21 1991-03-19 Del Monte Corporation Method of making dried fruits
US5188861A (en) * 1990-05-31 1993-02-23 Royal Domaine Inc. Process for preparing a dried fruit product
US5747088A (en) * 1996-07-03 1998-05-05 Fletcher; Leroy W. Method of producing fruit juices and an edible infused solid fruit product
DE69733499T2 (en) * 1996-07-19 2006-03-23 Wettlaufer, Dale E. PROCESS AND DEVICE FOR LOADING FRUITS
US6103285A (en) * 1998-11-16 2000-08-15 Mariani Packing Company, Inc. Method for improving the softness of raisins
US6858242B1 (en) * 2000-03-08 2005-02-22 Formost Packaging Machines, Inc. Double bagging system
US6824802B2 (en) * 2001-10-02 2004-11-30 Nestec S.A. On-demand neutralization of acid-preserved food
US20040009267A1 (en) * 2002-07-15 2004-01-15 Muggride Samuel Clayton Frozen fruit filled pie production
GB0319040D0 (en) * 2003-08-13 2003-09-17 Unilever Plc Blanching vegetables
US7311038B2 (en) * 2003-09-17 2007-12-25 Pitco Frialater, Inc. Filter system for a deep fat fryer
WO2005109236A2 (en) 2004-05-06 2005-11-17 Acco Brands, Inc. Apparatus and method for determining an optimal ergonomic setup

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032406A (en) * 1933-06-23 1936-03-03 Sun Maid Raisin Growers Of Cal Raisin treatment method and apparatus
US3101040A (en) * 1957-07-15 1963-08-20 Ralston Purina Co Apparatus for manufacturing stable pelleted foods
US4556572A (en) * 1977-10-05 1985-12-03 Dca Food Industries Inc. Method of fixing an edible coating to a food product
US4479776A (en) * 1981-07-22 1984-10-30 Smith Donald P Thermal treatment of food products
US5282438A (en) * 1992-09-04 1994-02-01 Technical Support Services Inc. Aquarium
US20020025364A1 (en) * 2000-03-10 2002-02-28 Stephane Audy Food disinfection using ozone
US20040237800A1 (en) * 2001-10-17 2004-12-02 Adam Franck Apparatus for continuously pasteurizing meat and food products
US20040050662A1 (en) * 2002-08-29 2004-03-18 Vanberlo Peter Elevator
US20060233922A1 (en) * 2004-05-28 2006-10-19 Andrew Kegler Packaged flavor enhanced fruits or vegetables products with extended shelf-life for mass market distribution and consumption

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292706B2 (en) * 2014-12-30 2022-04-05 Edward Showalter Apparatus, systems and methods for preparing and dispensing foods
US20220030925A1 (en) * 2018-09-19 2022-02-03 Polar Systems Limited System for Processing Foodstuff
US11974593B2 (en) * 2018-09-19 2024-05-07 Polar Systems Limited System for processing foodstuff

Also Published As

Publication number Publication date
JP2010525825A (en) 2010-07-29
ZA200908555B (en) 2012-01-25
WO2008137712A1 (en) 2008-11-13
US8460731B2 (en) 2013-06-11
AU2008247516A1 (en) 2008-11-13
EP2152086B1 (en) 2012-10-17
AU2008247516B2 (en) 2013-11-21
EP2152086A1 (en) 2010-02-17
US20080274263A1 (en) 2008-11-06
EP2152086A4 (en) 2010-12-08
US20120237638A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US8460731B2 (en) System and method for producing a dehydrated food product
CN104381998A (en) Preparation method of instant vacuum freeze-dried tremella fuciformis after brewing
CN104095261A (en) Production method for walnut kernel can
CN106974261A (en) A kind of instant edible mushroom mushroom crisp chip and its oil-free processing method
CA1174900A (en) Article of manufacture and process
CN104921199A (en) Processing method for fragrant and crisp peanuts
US3157514A (en) Method for preparing quickcooking rice
CN108813438A (en) A kind of processing method of quick-frozen seasoning steamed crab
CN106262120A (en) The preparation method of the Abelmoschus esculentus instant crispy slice of fruit
Panda The Complete Book on Fruits, Vegetables and Food Processing: Fruit Processing Business Plan, Business Plan for Vegetable Processing, Small Scale Industries in India, Margarine Manufacturing Based Small Business Ideas in India, Small Scale Industry You Can Start on Your Own, Business Plan for Small Scale Industries, Set Up Butter Production, Profitable Small Scale Manufacturing, How to Start Small Business in India, Free Manufacturing Business Plans, Small and Medium Scale Manufacturing, Profitable Small Business Industries Ideas, Business Ideas for Startup, Most Profitable Food Processing Business Ideas, Food Processing Industry
CN105962186A (en) Preparation technology of ready-to-eat broccoli food
CN104413354A (en) Process for seasoning crisp noodles and equipment for seasoning crisp noodles by implementing same
KR20140125103A (en) The Dried Citrus Snacks and the Manufacturing Method of the Same
CN105685867A (en) Preparation method of sandwiched crispy Chinese dates
US7087262B2 (en) Process for manufacturing dehydrated precooked flaked pinto beans
CN109601614A (en) A kind of cucumber composite preservative and preservation method
CN107048308A (en) A kind of spicy is small wet to boil peanut and its processing method
CN106690095A (en) Stewing method of marinade-stewed pig feet
CN105982252A (en) Processing method of vacuum freeze-dried kelp
ES2803249T3 (en) Device for applying flavors in collagen casings
KR20200027104A (en) Method and apparatus for laver snack
CN108902826A (en) A kind of nut potato chips and preparation method thereof
CN104207230A (en) Production method for almond can
CN109258800A (en) A kind of method of honey peach post-harvest fresh-keeping storing
CN101553131A (en) French fry production method with reduced crumb generation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION