US20140131591A1 - Electricity-less water disinfection - Google Patents

Electricity-less water disinfection Download PDF

Info

Publication number
US20140131591A1
US20140131591A1 US13/970,042 US201313970042A US2014131591A1 US 20140131591 A1 US20140131591 A1 US 20140131591A1 US 201313970042 A US201313970042 A US 201313970042A US 2014131591 A1 US2014131591 A1 US 2014131591A1
Authority
US
United States
Prior art keywords
array
light emitting
emitting diodes
container
photovoltaic cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/970,042
Inventor
Anirban Basu
Stephen W. Bedell
Devendra K. Sadana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US13/970,042 priority Critical patent/US20140131591A1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BASU, ANIRBAN, BEDELL, STEPHEN W., SADANA, DEVENDRA K.
Publication of US20140131591A1 publication Critical patent/US20140131591A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3227Units with two or more lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/02Location of water treatment or water treatment device as part of a bottle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/04Location of water treatment or water treatment device as part of a pitcher or jug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the present disclosure relates generally to water disinfection and relates more specifically to electricity-less water disinfection systems.
  • UV germicidal irradiation typically uses a mercury vapor lamp to deliver germicidal UV radiation.
  • mercury vapor lamp typically uses a mercury vapor lamp to deliver germicidal UV radiation.
  • UV ultraviolet
  • a full-spectrum mercury vapor lamp will produce ozone at certain wavelengths.
  • exposure to germicidal wavelengths of UV radiation can be harmful to humans (e.g., resulting in sunburn, skin cancer, or vision impairment).
  • a system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells coupled to the container for converting solar radiation into a current, and an array of light emitting diodes coupled to the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation.
  • Another system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells encircling an exterior wall of the container, for converting solar radiation into a current, and an array of light emitting diodes encircling an interior wall of the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation.
  • FIG. 1A is a plan view illustrating one embodiment of a water disinfection system, according to the present invention.
  • FIG. 1B is a cross-sectional view of the water disinfection system illustrated in FIG. 1A , taken along line A-A′ of FIG. 1A ;
  • FIG. 2 is a flow diagram illustrating one embodiment of a method for disinfecting water, according to the present invention.
  • FIG. 3 is a flow diagram illustrating one embodiment of a method for manufacturing the water disinfection system illustrated in FIGS. 1A-1B .
  • the present invention is a method and apparatus for electricity-less water disinfection.
  • “electricity-less” is understood to refer to the absence of a conventional infrastructure for delivering electricity (e.g., a power distribution grid).
  • embodiments of the present invention employ mechanisms for converting renewable sources of energy into direct current electricity.
  • embodiments of the present invention disinfect water using an array of light emitting diodes (LEDs) powered by photovoltaic cells, thereby obviating the need for a conventional source of electricity.
  • LEDs light emitting diodes
  • FIG. 1A is a plan view illustrating one embodiment of a water disinfection system 100 , according to the present invention.
  • FIG. 1B is a cross-sectional view of the water disinfection system 100 illustrated in FIG. 1A , taken along line A-A′ of FIG. 1A .
  • the water disinfection system 100 employs a chemical-free process that directly attacks the vital deoxyribonucleic acid (DNA) of microorganisms (e.g., bacteria, mold, yeast, viruses, protozoa, etc.) in a water sample, thereby sterilizing the microorganisms and rendering the water sample suitable for human consumption.
  • DNA vital deoxyribonucleic acid
  • the system 100 generally comprises a rigid container 102 , such as a jug or a bottle.
  • the container 102 includes a neck 112 or other opening that allows water to be poured into the container 102 and a lid or cap 114 that seals the neck 112 (and thus the container 102 ).
  • the container 102 thus defines a volume within which a quantity of water can be contained and disinfected according to the embodiments described below.
  • the container 102 holds up to approximately five gallons of liquid, although the container 102 can be manufactured in any size.
  • the container 102 is formed from a material that is known to be environmentally and health-safe (i.e., does not cause any significant negative environmental or health-related side effects), such as a Bisphenol A (BPA)-free polymer or plastic.
  • BPA Bisphenol A
  • the system 100 further comprises an array 104 of photovoltaic cells (i.e., semiconductors that convert solar radiation to direct current electricity) coupled to the exterior wall 106 of the container 102 .
  • the array 104 of photovoltaic cells encircles an entire perimeter of the exterior wall 106 .
  • the array 104 comprises a plurality of micro-photovoltaic cells (e.g., photovoltaic cells having a size between approximately ten and one hundred micron).
  • the photovoltaic cells are spalled (i.e., thin-film), flexible photovoltaic cells.
  • one or more of the photovoltaic cells is formed from at least one of: amorphous silicon, crystalline silicon, silicon germanium (SiGe), germanium (Ge), indium gallium arsenide (InGaAs), or indium arsenide (InAs).
  • an array 108 of LEDs is coupled to the interior wall 110 of the container 102 .
  • the array 108 of LEDs encircles an entire perimeter of the interior wall 110 .
  • the array 108 of LEDs is also connected (e.g., by a system of interconnects) to the array 104 of photovoltaic cells such that current can pass from the photovoltaic cells to the LEDs.
  • the array 108 comprises a plurality of micro-LEDs (e.g., LEDs having dimensions less than or equal to one hundred micrometers x one hundred micrometers).
  • the LEDs are spalled, flexible micro-LEDs arranged on a substrate (e.g., a silicon substrate) and coupled via a system of interconnects.
  • the micro LEDs are formed from aluminum gallium nitride (AlGaN) and/or gallium nitride (GaN).
  • AlGaN aluminum gallium nitride
  • GaN gallium nitride
  • each of the LEDs has a power output of approximately one milliwatt.
  • the system 100 has been demonstrated to be capable of sterilizing up to at least ninety-nine percent of many different types of microorganisms in water. Water that has been sterilized to this degree would generally be considered potable.
  • FIG. 2 is a flow diagram illustrating one embodiment of a method 200 for disinfecting water, according to the present invention.
  • FIG. 2 illustrates how water may be disinfected using the water disinfection system 100 illustrated in FIGS. 1A-1B .
  • FIGS. 1A-1B illustrate the water disinfection system 100 illustrated in FIGS. 1A-1B .
  • FIGS. 1A-1B illustrate various items illustrated in FIGS. 1A-1B .
  • step 202 the container 102 is filled with a quantity of water to be treated.
  • the container 102 including the water, is then placed in a location where it will be exposed to radiation (e.g., sunlight) in step 206 .
  • radiation e.g., sunlight
  • the array 104 of photovoltaic cells generates a current in response to the radiation.
  • the current generated by the array 104 of photovoltaic cells is in the milliwatt range.
  • the array 108 of LEDs is activated and emits germicidal radiation in response to the current provided by the array 104 of photovoltaic cells.
  • the germicidal radiation is UV radiation (e.g., having a wavelength in the range of approximately 265 to 280 nanometers). Prolonged exposure to this germicidal radiation results in the sterilization of microorganisms in the water that is held within the container 102 . As a result, the water is disinfected and rendered suitable for human consumption.
  • the length of time for which the water must be exposed to the germicidal radiation depends at least on the amount of water to be treated, the desired percentage and type of microorganisms to be sterilized, and the intensity of the germicidal radiation emitted by the array 108 of LEDs.
  • the water is exposed to the germicidal radiation for at least one minute; in further embodiments, the water is exposed to the germicidal radiation for up to an hour. Disinfection of the water is thus a product of the intensity of the germicidal radiation emitted by the array 108 of LEDs over the time of exposure and within the given area (i.e., the volume of the container 102 ). This exposure may be expressed in microwatt seconds per square centimeter.
  • the method 200 ends in step 212 .
  • the method 200 thus employs a physical, chemical-free process that effectively and efficiently disinfects water without consuming electricity or causing any significant environmental side effects. Because the system 100 is compact and does not require electricity or fuel other than sunlight, it can be used in substantially any environment.
  • the system 100 is cost effective to manufacture and to use.
  • certain techniques such as spalling, may be used to manufacture the system 100 in a manner that minimizes waste of materials or energy.
  • FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for manufacturing the water disinfection system 100 illustrated in FIGS. 1A-1B .
  • the method 300 is one embodiment of a method for producing the array 108 of LEDs on the interior wall 110 of the container 102 .
  • the particular method 300 illustrated in FIG. 3 relies on a spalling technique to produce the LED array 108 .
  • the method 300 begins in step 302 .
  • an array of LED structures is produced on a wafer (e.g., a silicon substrate).
  • the array of LED structures may be produced using any one or more known manufacturing techniques. For instance, a stack of layers comprising a silicon substrate, an aluminum nitride layer formed on the silicon substrate, and a gallium nitride layer formed on the aluminum nitride layer can be fabricated.
  • the stack may additionally comprise a plurality of contacts (e.g., p- and n-type contacts).
  • Dry etching of the aluminum nitride and gallium nitride layers can expose the silicon substrate, which may then be anisotropically etched using potassium hydroxide (KOH), leaving an array of anchored gallium nitride/aluminum nitride structures.
  • KOH potassium hydroxide
  • the array of LED structures is transferred from the wafer to a stamp.
  • a stamp For instance, a patterned polydimethylsiloxane (PDMS) stamp may be brought into contact with the wafer and then quickly removed, causing chips of gallium nitride/aluminum nitride to be released from the wafer and adhered to the stamp as a plurality of discrete thin film devices. This technique may also be referred to as “spalling.”
  • PDMS polydimethylsiloxane
  • the array of LED structures is transferred from the stamp to a substrate.
  • the stamp may be brought into contact with the substrate and then slowly removed, causing the array of LED structures to adhere to the substrate as a plurality of discrete thin film devices (i.e., the array of LEDs).
  • the substrate already includes a layer of interconnects (and adhesive) onto which the thin film devices are deposited.
  • An additional layer of interconnects may then be deposited on the thin film devices (e.g., after planarization of the thin film devices).
  • a printed array of micro LEDs is fabricated upon the substrate.
  • the substrate is or will become the inner surface 110 of the container 102 .
  • the substrate is a BPA-free polymer.
  • the method 300 ends in step 310 .
  • the method 300 thus results in the application of an array 108 of thin-film LEDs to the inner surface 110 of the container 102 .
  • spalling can also be used to apply the array 104 of photovoltaic cells to the outer surface 106 of the container 102 . This technique allows a dense array to be distributed on a sparse array, thereby making economical use of materials by reducing the cost and area of material used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Physical Water Treatments (AREA)

Abstract

A system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells coupled to the container for converting solar radiation into a current, and an array of light emitting diodes coupled to the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation. Another system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells encircling an exterior wall of the container, for converting solar radiation into a current, and an array of light emitting diodes encircling an interior wall of the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 13/673,520, filed Nov. 9, 2012, which is herein incorporated by reference in its entirety.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates generally to water disinfection and relates more specifically to electricity-less water disinfection systems.
  • BACKGROUND OF THE DISCLOSURE
  • Recent studies by the World Health Organization indicate that as many as one billion people lack access to a source of improved drinking water. Consequently, more than two million people die per year of waterborne disease, and more still are afflicted with non-fatal waterborne diseases. Most of these people live in developing countries, refugee camps, or disaster relief shelters, where conventional water treatment systems may be cost-prohibitive (or the resources required to power such systems—e.g., electricity, fuel, etc.—may not be readily available).
  • Conventional approaches to electricity-less water disinfection include of ultraviolet (UV) germicidal irradiation, which typically uses a mercury vapor lamp to deliver germicidal UV radiation. Although such systems compare favorably with other water disinfection systems, they also introduce environmental hazards that other systems do not. For instance, a full-spectrum mercury vapor lamp will produce ozone at certain wavelengths. Moreover, exposure to germicidal wavelengths of UV radiation can be harmful to humans (e.g., resulting in sunburn, skin cancer, or vision impairment).
  • SUMMARY OF THE DISCLOSURE
  • A system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells coupled to the container for converting solar radiation into a current, and an array of light emitting diodes coupled to the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation.
  • Another system for disinfecting a sample of water includes a container for holding the sample of water, an array of photovoltaic cells encircling an exterior wall of the container, for converting solar radiation into a current, and an array of light emitting diodes encircling an interior wall of the container and powered by the current, wherein the array of light emitting diodes emits a germicidal wavelength of radiation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The teachings of the present disclosure can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
  • FIG. 1A is a plan view illustrating one embodiment of a water disinfection system, according to the present invention;
  • FIG. 1B is a cross-sectional view of the water disinfection system illustrated in FIG. 1A, taken along line A-A′ of FIG. 1A;
  • FIG. 2 is a flow diagram illustrating one embodiment of a method for disinfecting water, according to the present invention; and
  • FIG. 3 is a flow diagram illustrating one embodiment of a method for manufacturing the water disinfection system illustrated in FIGS. 1A-1B.
  • To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the Figures.
  • DETAILED DESCRIPTION
  • In one embodiment, the present invention is a method and apparatus for electricity-less water disinfection. Within the context of the present invention, “electricity-less” is understood to refer to the absence of a conventional infrastructure for delivering electricity (e.g., a power distribution grid). However, as will become apparent, embodiments of the present invention employ mechanisms for converting renewable sources of energy into direct current electricity. In particular, embodiments of the present invention disinfect water using an array of light emitting diodes (LEDs) powered by photovoltaic cells, thereby obviating the need for a conventional source of electricity. The water is efficiently and effectively disinfected using a system that is more compact, consumes less power, and is safer environmentally than conventional disinfection systems.
  • FIG. 1A is a plan view illustrating one embodiment of a water disinfection system 100, according to the present invention. FIG. 1B is a cross-sectional view of the water disinfection system 100 illustrated in FIG. 1A, taken along line A-A′ of FIG. 1A. The water disinfection system 100 employs a chemical-free process that directly attacks the vital deoxyribonucleic acid (DNA) of microorganisms (e.g., bacteria, mold, yeast, viruses, protozoa, etc.) in a water sample, thereby sterilizing the microorganisms and rendering the water sample suitable for human consumption.
  • Referring simultaneously to FIGS. 1A-1B, the system 100 generally comprises a rigid container 102, such as a jug or a bottle. The container 102 includes a neck 112 or other opening that allows water to be poured into the container 102 and a lid or cap 114 that seals the neck 112 (and thus the container 102). The container 102 thus defines a volume within which a quantity of water can be contained and disinfected according to the embodiments described below. In one embodiment, the container 102 holds up to approximately five gallons of liquid, although the container 102 can be manufactured in any size. In one embodiment, the container 102 is formed from a material that is known to be environmentally and health-safe (i.e., does not cause any significant negative environmental or health-related side effects), such as a Bisphenol A (BPA)-free polymer or plastic.
  • The system 100 further comprises an array 104 of photovoltaic cells (i.e., semiconductors that convert solar radiation to direct current electricity) coupled to the exterior wall 106 of the container 102. In one embodiment, the array 104 of photovoltaic cells encircles an entire perimeter of the exterior wall 106. In one embodiment, the array 104 comprises a plurality of micro-photovoltaic cells (e.g., photovoltaic cells having a size between approximately ten and one hundred micron). In a further embodiment, the photovoltaic cells are spalled (i.e., thin-film), flexible photovoltaic cells. In one embodiment, one or more of the photovoltaic cells is formed from at least one of: amorphous silicon, crystalline silicon, silicon germanium (SiGe), germanium (Ge), indium gallium arsenide (InGaAs), or indium arsenide (InAs).
  • In addition, an array 108 of LEDs is coupled to the interior wall 110 of the container 102. In one embodiment, the array 108 of LEDs encircles an entire perimeter of the interior wall 110. The array 108 of LEDs is also connected (e.g., by a system of interconnects) to the array 104 of photovoltaic cells such that current can pass from the photovoltaic cells to the LEDs. In one embodiment, the array 108 comprises a plurality of micro-LEDs (e.g., LEDs having dimensions less than or equal to one hundred micrometers x one hundred micrometers). In a further embodiment, the LEDs are spalled, flexible micro-LEDs arranged on a substrate (e.g., a silicon substrate) and coupled via a system of interconnects. In one embodiment, the micro LEDs are formed from aluminum gallium nitride (AlGaN) and/or gallium nitride (GaN). In one embodiment, each of the LEDs has a power output of approximately one milliwatt. The system 100 has been demonstrated to be capable of sterilizing up to at least ninety-nine percent of many different types of microorganisms in water. Water that has been sterilized to this degree would generally be considered potable.
  • FIG. 2 is a flow diagram illustrating one embodiment of a method 200 for disinfecting water, according to the present invention. In particular, FIG. 2 illustrates how water may be disinfected using the water disinfection system 100 illustrated in FIGS. 1A-1B. As such, reference is made in the discussion of the method 200 to various items illustrated in FIGS. 1A-1B.
  • The method begins in step 202. In step 204, the container 102 is filled with a quantity of water to be treated. The container 102, including the water, is then placed in a location where it will be exposed to radiation (e.g., sunlight) in step 206.
  • In step 208, the array 104 of photovoltaic cells generates a current in response to the radiation. In one embodiment, the current generated by the array 104 of photovoltaic cells is in the milliwatt range.
  • In step 210, the array 108 of LEDs is activated and emits germicidal radiation in response to the current provided by the array 104 of photovoltaic cells. In one embodiment, the germicidal radiation is UV radiation (e.g., having a wavelength in the range of approximately 265 to 280 nanometers). Prolonged exposure to this germicidal radiation results in the sterilization of microorganisms in the water that is held within the container 102. As a result, the water is disinfected and rendered suitable for human consumption. In one embodiment, the length of time for which the water must be exposed to the germicidal radiation depends at least on the amount of water to be treated, the desired percentage and type of microorganisms to be sterilized, and the intensity of the germicidal radiation emitted by the array 108 of LEDs. For instance, in one embodiment, the water is exposed to the germicidal radiation for at least one minute; in further embodiments, the water is exposed to the germicidal radiation for up to an hour. Disinfection of the water is thus a product of the intensity of the germicidal radiation emitted by the array 108 of LEDs over the time of exposure and within the given area (i.e., the volume of the container 102). This exposure may be expressed in microwatt seconds per square centimeter.
  • The method 200 ends in step 212.
  • The method 200 thus employs a physical, chemical-free process that effectively and efficiently disinfects water without consuming electricity or causing any significant environmental side effects. Because the system 100 is compact and does not require electricity or fuel other than sunlight, it can be used in substantially any environment.
  • Moreover, the system 100 is cost effective to manufacture and to use. In particular, certain techniques, such as spalling, may be used to manufacture the system 100 in a manner that minimizes waste of materials or energy.
  • FIG. 3 is a flow diagram illustrating one embodiment of a method 300 for manufacturing the water disinfection system 100 illustrated in FIGS. 1A-1B. In particular, the method 300 is one embodiment of a method for producing the array 108 of LEDs on the interior wall 110 of the container 102. The particular method 300 illustrated in FIG. 3 relies on a spalling technique to produce the LED array 108.
  • The method 300 begins in step 302. In step 304, an array of LED structures is produced on a wafer (e.g., a silicon substrate). The array of LED structures may be produced using any one or more known manufacturing techniques. For instance, a stack of layers comprising a silicon substrate, an aluminum nitride layer formed on the silicon substrate, and a gallium nitride layer formed on the aluminum nitride layer can be fabricated. The stack may additionally comprise a plurality of contacts (e.g., p- and n-type contacts). Dry etching of the aluminum nitride and gallium nitride layers can expose the silicon substrate, which may then be anisotropically etched using potassium hydroxide (KOH), leaving an array of anchored gallium nitride/aluminum nitride structures.
  • In step 306, the array of LED structures is transferred from the wafer to a stamp. For instance, a patterned polydimethylsiloxane (PDMS) stamp may be brought into contact with the wafer and then quickly removed, causing chips of gallium nitride/aluminum nitride to be released from the wafer and adhered to the stamp as a plurality of discrete thin film devices. This technique may also be referred to as “spalling.”
  • In step 308, the array of LED structures is transferred from the stamp to a substrate. For instance, the stamp may be brought into contact with the substrate and then slowly removed, causing the array of LED structures to adhere to the substrate as a plurality of discrete thin film devices (i.e., the array of LEDs). This may be accomplished using a transfer printing technique. In one embodiment, the substrate already includes a layer of interconnects (and adhesive) onto which the thin film devices are deposited. An additional layer of interconnects may then be deposited on the thin film devices (e.g., after planarization of the thin film devices). As a result, a printed array of micro LEDs is fabricated upon the substrate. In one embodiment, the substrate is or will become the inner surface 110 of the container 102. Thus, in one embodiment, the substrate is a BPA-free polymer.
  • The method 300 ends in step 310.
  • The method 300 thus results in the application of an array 108 of thin-film LEDs to the inner surface 110 of the container 102. As discussed above, spalling can also be used to apply the array 104 of photovoltaic cells to the outer surface 106 of the container 102. This technique allows a dense array to be distributed on a sparse array, thereby making economical use of materials by reducing the cost and area of material used.
  • Although various embodiments which incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.

Claims (20)

1. A system for disinfecting a sample of water, the system comprising:
a container for holding the sample of water;
an array of photovoltaic cells coupled to the container for converting solar radiation into a current; and
an array of flexible light emitting diodes coupled directly to an interior wall of the container and powered by the current, wherein the array of flexible light emitting diodes emits a germicidal wavelength of radiation.
2. The system of claim 1, wherein the current is in a milliwatt range.
3. The system of claim 1, wherein the array of photovoltaic cells comprises a plurality of micro photovoltaic cells.
4. The system of claim 3, wherein the plurality of micro photovoltaic cells includes flexible thin-film photovoltaic cells.
5. The system of claim 1, wherein the array of photovoltaic cells comprises a plurality of photovoltaic cells formed from at least one of: amorphous silicon, crystalline silicon, silicon germanium, germanium, indium gallium arsenide, or indium arsenide.
6. The system of claim 1, wherein the array of flexible light emitting diodes comprises a plurality of micro light emitting diodes.
7. The system of claim 6, wherein each light emitting diode in the plurality of micro light emitting diodes has dimensions of less than or equal to one hundred micrometers by one hundred micrometers.
8. The system of claim 6, wherein the plurality of micro light emitting diodes includes flexible thin-film light emitting diodes.
9. The system of claim 1, wherein the array of flexible light emitting diodes comprises a plurality of light emitting diodes formed from at least one of:
aluminum gallium nitride or gallium nitride.
10. The system of claim 1, wherein the array of flexible light emitting diodes comprises a plurality of light emitting diodes each having a power output of approximately one milliwatt.
11. The system of claim 1, wherein the germicidal wavelength of radiation is an ultraviolet wavelength.
12. The system of claim 1, wherein the array of photovoltaic cells encircles an exterior wall of the container.
13. The system of claim 1, wherein the array of flexible light emitting diodes encircles the interior wall of the container.
14. The system of claim 1, wherein the container is formed from a Bisphenol A-free polymer.
15. A system for disinfecting a sample of water, the system comprising:
a container for holding the sample of water;
an array of photovoltaic cells encircling an exterior wall of the container, for converting solar radiation into a current; and
an array of flexible light emitting diodes directly applied to encircling an interior wall of the container and powered by the current, wherein the array of flexible light emitting diodes emits a germicidal wavelength of radiation.
16. The system of claim 15, wherein the array of photovoltaic cells comprises a plurality of photovoltaic cells formed from at least one of: amorphous silicon, crystalline silicon, silicon germanium, germanium, indium gallium arsenide, or indium arsenide.
17. The system of claim 15, wherein the array of flexible light emitting diodes comprises a plurality of light emitting diodes formed from at least one of:
aluminum gallium nitride or gallium nitride.
18. The system of claim 15, wherein the germicidal wavelength of radiation is an ultraviolet wavelength.
19. The system of claim 15, wherein each light emitting diode in the array of flexible light emitting diodes has dimensions of less than or equal to one hundred micrometers by one hundred micrometers
20. The system of claim 15, wherein the container is formed from a Bisphenol A-free polymer.
US13/970,042 2012-11-09 2013-08-19 Electricity-less water disinfection Abandoned US20140131591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/970,042 US20140131591A1 (en) 2012-11-09 2013-08-19 Electricity-less water disinfection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/673,520 US9150434B2 (en) 2012-11-09 2012-11-09 Electricity-less water disinfection
US13/970,042 US20140131591A1 (en) 2012-11-09 2013-08-19 Electricity-less water disinfection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/673,520 Continuation US9150434B2 (en) 2012-11-09 2012-11-09 Electricity-less water disinfection

Publications (1)

Publication Number Publication Date
US20140131591A1 true US20140131591A1 (en) 2014-05-15

Family

ID=50680663

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/673,520 Expired - Fee Related US9150434B2 (en) 2012-11-09 2012-11-09 Electricity-less water disinfection
US13/970,042 Abandoned US20140131591A1 (en) 2012-11-09 2013-08-19 Electricity-less water disinfection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/673,520 Expired - Fee Related US9150434B2 (en) 2012-11-09 2012-11-09 Electricity-less water disinfection

Country Status (1)

Country Link
US (2) US9150434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
US11369704B2 (en) * 2019-08-15 2022-06-28 Vyv, Inc. Devices configured to disinfect interiors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016377341B2 (en) 2015-12-22 2019-05-30 3M Innovative Properties Company Disinfecting system with performance monitoring

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2500430A1 (en) 1981-02-26 1982-08-27 Commissariat Energie Atomique DEVICE FOR THE PURIFICATION OF WATER
US4740431A (en) 1986-12-22 1988-04-26 Spice Corporation Integrated solar cell and battery
US5013417A (en) 1990-05-23 1991-05-07 Judd Jr Lawrence M Water purifier
US6299770B1 (en) 2000-07-24 2001-10-09 Ray R. Diener Portable ultraviolet water disinfection device
EP1337280B1 (en) 2000-11-13 2013-09-04 Bayer Intellectual Property GmbH Method of inactivating microorganisms in a fluid using ultraviolet radiation
US20030170151A1 (en) 2002-03-08 2003-09-11 Hunter Charles Eric Biohazard treatment systems
CN100443011C (en) 2002-09-26 2008-12-17 海德罗-光子公司 UV LED based water purification module for intermittently operable flow-through hydration systems
US20050258108A1 (en) * 2004-05-24 2005-11-24 Eric Sanford Container with purifier
US7544291B2 (en) 2004-12-21 2009-06-09 Ranco Incorporated Of Delaware Water purification system utilizing a plurality of ultraviolet light emitting diodes
US7151264B2 (en) * 2004-12-21 2006-12-19 Ranco Incorporated Of Delaware Inline air handler system and associated method of use
US20070181508A1 (en) * 2006-02-09 2007-08-09 Gui John Y Photocatalytic fluid purification systems and methods for purifying a fluid
US7550089B2 (en) 2006-08-10 2009-06-23 Meridian Design, Inc. Floating ultraviolet water purification device
NL1032315C2 (en) 2006-08-14 2008-02-15 Nedap Nv Control system for UV lamps, as well as control system for determining the viability of microorganisms.
US7862728B2 (en) 2007-09-27 2011-01-04 Water Of Life, Llc. Ultraviolet water purification system
EP2254839B1 (en) 2008-02-27 2014-07-16 Pure Green Technologies B.V. Device and method for disinfecting a fluid
KR101590074B1 (en) * 2008-06-09 2016-01-29 니텍 인코포레이티드 Ultraviolet light emitting diode with ac voltage operation
DE102008047069A1 (en) 2008-09-12 2010-03-18 Ksb Aktiengesellschaft Device with a spout for a liquid
US8685238B2 (en) 2008-12-18 2014-04-01 Andrew Gunter Point-of-use solar powered water disinfection device and associated custom water storage container
US8802477B2 (en) 2009-06-09 2014-08-12 International Business Machines Corporation Heterojunction III-V photovoltaic cell fabrication
US9202954B2 (en) * 2010-03-03 2015-12-01 Q1 Nanosystems Corporation Nanostructure and photovoltaic cell implementing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
US11369704B2 (en) * 2019-08-15 2022-06-28 Vyv, Inc. Devices configured to disinfect interiors
US11717583B2 (en) 2019-08-15 2023-08-08 Vyv, Inc. Devices configured to disinfect interiors

Also Published As

Publication number Publication date
US9150434B2 (en) 2015-10-06
US20140131287A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
Lui et al. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters
CN102318872B (en) Light-emitting diode (LED) ultraviolet fluid disinfection method and device thereof
US6766097B2 (en) UV portal-based appliances and containers
US9150434B2 (en) Electricity-less water disinfection
US20220395592A1 (en) Apparatus for irradiation
US11945735B2 (en) Ultraviolet irradiation of a flowing fluid
CN202175579U (en) LED UV sterilization device for fluids
Tran et al. Comparison of continuous versus pulsed ultraviolet light emitting diode use for the inactivation of Bacillus globigii spores
US20130193053A1 (en) Water Container Having Germicidal Water Purification Unit
US20190142986A1 (en) Flowing fluid disinfectors and submersible uv light devices
US20150307368A1 (en) Ultraviolet Light Purification Drinking System
US9227855B2 (en) Large-scale electricity-less disinfection of fluent water
Taghipour UV LED technology: The times they are A-Changin’
EP3676227A1 (en) Water treatment apparatus
KR101466610B1 (en) Led lamp using uv led chip, and ultraviolet generation having the same
Mahvi Feasibility of solar energy in disinfection of drinking water in Iran
Banas et al. Final LDRD report: ultraviolet water purification systems for rural environments and mobile applications.
Gray Water treatment: The future is bright
Yin et al. UV LED 101: fundamentals and applications of UV LEDs in Water Treatment
CN204561714U (en) Bactericidal composite chopsticks
CN210810357U (en) Ultraviolet light induction type luminous water cup
CN210736263U (en) Water body disinfection and sterilization instrument
WO2007078294A1 (en) Drinking water pitcher incorporating ultraviolet (uv) disinfection feature
CN209217012U (en) A kind of deep UV light emitting diode construction
Liang A Study on Packaging and Disinfection Effect of AlGaN Nanowire Deep UV LEDs

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BASU, ANIRBAN;BEDELL, STEPHEN W.;SADANA, DEVENDRA K.;REEL/FRAME:031648/0648

Effective date: 20121108

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION