US20140052779A1 - Surveillance, monitoring and real-time events platform - Google Patents

Surveillance, monitoring and real-time events platform Download PDF

Info

Publication number
US20140052779A1
US20140052779A1 US14/065,316 US201314065316A US2014052779A1 US 20140052779 A1 US20140052779 A1 US 20140052779A1 US 201314065316 A US201314065316 A US 201314065316A US 2014052779 A1 US2014052779 A1 US 2014052779A1
Authority
US
United States
Prior art keywords
data
information
real
surveillance
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/065,316
Inventor
Colin P. Britton
Howard Greenblatt
Alan Greenblatt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versata Development Group Inc
ObjectStore Inc
Original Assignee
ObjectStore Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/917,264 external-priority patent/US7058637B2/en
Priority claimed from US10/051,619 external-priority patent/US6856992B2/en
Priority claimed from US10/138,725 external-priority patent/US20030208499A1/en
Priority claimed from US10/302,764 external-priority patent/US6925457B2/en
Priority claimed from US10/302,727 external-priority patent/US7302440B2/en
Priority claimed from US10/680,049 external-priority patent/US6954749B2/en
Application filed by ObjectStore Inc filed Critical ObjectStore Inc
Priority to US14/065,316 priority Critical patent/US20140052779A1/en
Publication of US20140052779A1 publication Critical patent/US20140052779A1/en
Assigned to OBJECTSTORE, INC. reassignment OBJECTSTORE, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: METATOMIX, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H04L67/42
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/338Presentation of query results
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Alarm Systems (AREA)

Abstract

Systems and methods according to the invention provide a surveillance, monitoring and real-time events platform to (i) enable the integration and communication of information between government agencies and organizations specifically tasked with ensuring the security and safety of our nation and its communities, (ii) to integrate information systems from federal, state and/or local agencies (from disparate data sources if necessary) in order to obtain a single, real-time view of the entire organization, and (iii) to extract more complete, actionable information from their existing systems, thereby dramatically improving decision making speed and accuracy.

Description

    BACKGROUND OF THE INVENTION
  • This application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 60/485,200, filed Jul. 7, 2003, entitled “Surveillance, Monitoring and Real-Time Events Platform,” the teachings of which are incorporated herein by reference. This application is a continuation in part of and claims the benefit of priority of the following copending, commonly-assigned patent applications, the teachings of all of which are incorporated herein by reference: U.S. patent application Ser. No. 10/680,049, filed Oct. 7, 2003, entitled “Methods and apparatus for Identifying Related Nodes in a Directed Graph Having Named Arcs”; U.S. Provisional Patent Application Ser. No. 60/416,616, filed Oct. 7, 2002, entitled “Method and Apparatus for Identifying Related Nodes in a Directed Graph Having Named Arcs”; U.S. patent application Ser. No. 09/917,264, filed Jul. 27, 2001, entitled “Methods and Apparatus for Enterprise Application Integration”; U.S. Provisional Patent Application Ser. No. 60/291,185, filed May 15, 2001, entitled “Methods and Apparatus for Enterprise Application Integration”; U.S. patent application Ser. no. 10/051,619, filed Oct. 29, 2001, entitled “Methods and Apparatus for Real-Time Business Visibility Using Persistent Schema-Less Data Storage”; U.S. Provisional Patent Application Ser. No. 60/324,037, filed Sep. 21, 2001, entitled “Methods and Apparatus for Real-Time Business Visibility Using Persistent Schema-Less Data Storage”; U.S. patent application Ser. No. 10/302,764, filed Nov. 21, 2002, entitled “Methods and Apparatus for Querying a Relational Data Store Using Schema-Less Queries”; U.S. Provisional Patent Application Ser. No. 60/332,053, filed Nov. 21, 2001, entitled “Methods and Apparatus for Querying a Relational Database of RDF Triples in a System for Real-Time Business Visibility”; U.S. Provisional Patent Application Ser. No. 60/332,219, filed Nov. 21, 2001, entitled “Methods and Apparatus for Calculation and Reduction of Time-Series Metrics from Event Streams or Legacy Databases in a System for Real-Time Business Visibility”; U.S. patent application Ser. No. 10/302,727, filed Nov. 21, 2002, entitled “Methods and Apparatus for Statistical Data Analysis and Reduction for an Enterprise Application”; U.S. patent application Ser. No. 10/138,727, filed May 3, 2002, entitled “Methods and Apparatus for Visualizing Relationships Among Triples of Resource Description Framework (RDF) Data Sets.”
  • The invention pertains to surveillance, monitoring and real-time event processing. It has application in public health & bioterrorism, border and port security, public and community safety, and government data integration, to name a few.
  • Today, national, state, and local governments are challenged to achieve unprecedented levels of cooperation in and among agencies and organizations charged with protecting the safety of communities. Many of these organizations use similar proprietary or incompatible technology infrastructures that need to be integrated in order to provide real-time, critical information for effective event monitoring and coordinated emergency response. Information must be shared instantaneously and among numerous entities to effectively identify and respond to a potential threat or emergency-related event.
  • Significant efforts are underway along these lines, for example, in the public health and bioterrorism arena. The Centers for Disease Control and Prevention (CDC) of the U.S. Department of Health and Human Sciences has launched several initiatives toward forming nationwide networks of shared health-related information that, when fully implemented, will facilitate the rapid identification of, and response to, health and bioterrorism threats. The CDC plans the Health alert Network (HAN), for example, to provide infrastructure supporting for distribution of health alerts, disease surveillance, and laboratory reporting. The Public Health Information Network (PHIN) is another CDC initiative that will provide detailed specifications for the acquisition, management, analysis and dissemination of health-related information, building upon the HAN and other CDC initiatives, such as the National Electronic Disease Surveillance System (NEDSS).
  • While these initiatives, and others like them in both health and non-health-related fields, define functional requirements and set standards for interoperability of the TV systems that hospitals, laboratories, government agencies and others will use in forming the nationwide networks, they do not solve the problem of finding data processing equipment capable of meeting those requirements and standards.
  • It is not uncommon for a single enterprise, such as a hospital, for example, to have several separate database systems to track medical records, patient biographical data, hospital bed obligation, vendors, and so forth. The same is true of the government agencies charged with monitoring local, state and national health. In each enterprise, different data processing systems might have been added at different times throughout the history of the enterprise and, therefore, represent differing generations of computer technology. Integration of these systems at the enterprise level is difficult enough; it would be impossible on any grander scale. This is a major impediment to surveillance monitoring and real-time events processing in public health and bioterrorism. Similar issues result in parallel problems in border and port security, public and community safety, and government data integration, is the consolidation of data from disparate databases and other sources.
  • An object of this invention is to provide improved methods and apparatus surveillance, monitoring and real-time events processing.
  • A related object is to provide such methods and apparatus as can applied in public health and bioterrorism, e.g., to facilitate CDC initiatives in this area.
  • A further object of the invention is to provide such methods and apparatus as can be applied border and port security, public and community safety, and government data integration.
  • A still further object of the invention is to provide such methods and apparatus as can be implemented inexpensively, incrementally or otherwise without interruption of IT functions that they bring together.
  • SUMMARY OF THE INVENTION
  • To meet these challenges, systems and methods described herein provide a surveillance, monitoring and real-time platform to (i) enable the integration and communication of information between government agencies and organizations specifically tasked with ensuring the security and safety of our nation and its communities, (ii) to integrate information systems from federal, state and/or local agencies (from disparate data sources if necessary) in order to obtain a single, real-time view of the entire organization, and (iii) to extract more complete, actionable information from their existing systems, thereby dramatically improving decision making speed and accuracy.
  • The platform has application in a variety of areas, including, public health & bioterrorism, border and port security, public and community safety, and government data integration, to name a few.
  • Public Health & BioTerrorism
  • Effective and timely surveillance and monitoring of health-related events is essential for early detection and management of a public health threats, whether a naturally occurring disease, such as West Nile Virus, or a biological or chemical attack. State and local public health officials must have the ability to identify the specific nature and scope of an event and launch a tightly coordinated response, all in real-time.
  • In one aspect of the invention, the surveillance, monitoring and real-time events platform is adapted for use, e.g., as a local, state or federal node, in a network conforming to the Public Health Information Network (PHIN) initiative of the Centers for Disease Control and Prevention (CDC) of the U.S. Department of Health and Human Services, or as an infrastructure element of that network. This provides a real-time solution that:
      • Delivers a dual purpose real-time syndromic surveillance system covering both bioterrorism and targeted communicable diseases
      • Transforms data from a variety of protocols (CSV, EDI, Excel, XML) into industry standard formats HL7 and HIPPA
      • Integrates disparate data systems (hospitals, labs, clinics, pharmacies) from any format or location quickly and without custom coding
      • Enables synchronous and asynchronous collaboration between participating departments and personnel
      • Provides real-time customizable reporting and GIS mapping via web-based graphical interface
      • Initiates and manages real-time notifications to first responders and public health officials via web, email, phone, wireless PDA and mobile phone
      • Complies with the CDC's NEDSS, HAN and PHIN architectures
  • Systems and methods according to this aspect of the invention are designed as for multi-purposes. They function as a real-time surveillance system, a bioterrorism detection and response system and a collaborative network for distance learning and communication.
  • As the CDC develops standards and mandated reporting protocols such as the National Electronic Disease Surveillance System (NEDSS), Health Alert Network (HAN) and Public Health Information Network (PHIN), it is up to state and local health officials to understand these new requirements and develop a system to comply. Systems and methods according to this aspect of the invention are designed to satisfy all NEDSS, HAN and PHIN requirements and more. They provide a platform technology that is highly flexible and scalable meaning that it can adapt and stay current with new requirements and specifications with minimal effort. This feature allows health agencies to add data systems and functionality to the platform easily without impacting the current architecture.
  • Border & Port Security
  • Border and port security represent complex security challenges. These sites represent vulnerable points of entry and require monitoring of ocean vessel arrivals and departures, assessing potentially hazardous cargo, responding to immigration challenges, terrorist threats and managing the proximity risk to civilians and land-based targets such as nuclear facilities, dams, power plants, gas lines and other biological and chemical facilities. Due to the complex and porous natures of borders and ports, many distinct organizations are required to work in close cooperation and effectively share critical information.
  • In one aspect of the invention, the surveillance, monitoring and real-time events platform is adapted for border and port security applications, providing;
      • Real-time information in a secure web-based user interface
      • Providing a consolidated view of port security status by integrating multiple agencies and organizations existing information systems to appear as one, in real-time.
      • Integration of meteorological or other environmental information
      • GIS (geo-spatial mapping) for rapid local assessment and visibility
      • Time-critical risk assessment based on local, state and federal data sources
      • Scenario-based event management for medical, emergency and public safety responders with immediate notifications to key safety personnel
  • Public & Community Safety
  • Local law enforcement agencies are increasingly involved in complex public safety issues. Today, airports, construction sites, concerts, and other large, high-profile community events require greater levels of security, including biometric identification and other methods of individual scanning and surveillance. The surveillance, monitoring and real-time events platform can be deployed in applications designed to identify community threats or security breaches in a wide range of settings including inter-agency solutions for superior security surveillance and response. This platform provides:
      • Real-time reporting with secure web-based user interface enabling a single view of a multi-agency operation
      • Integration of critical data from existing data sources (any data in any format) to create better public safety information
      • GIS (geo-spatial mapping) for rapid local assessment and visibility
      • Real-time risk assessment based on local, state and federal data sources
      • Coordinated communication and immediate notifications to key safety personnel and responders
  • Government Solution for Data Visibility
  • Government agencies are challenged with the daunting task of improving agency-wide and inter-agency information flow and visibility, especially in today's volatile environment. True agency-wide information access for real-time analysis is only achieved by being able to tie together all existing disparate data sources, from any location, and offer a consolidated view of critical information.
  • In one aspect of the invention, the surveillance, monitoring and real-time events platform provides a single point of access to all state security-related IT systems (Justice Dept, Law Enforcement, Dept of Health) to expedite identifying potential threats. The platform can also provide information visibility across an organizations systems. The platform:
      • Leverages investments in existing IT infrastructure
      • Provides a single, comprehensive view of critical information from all data sources
      • Provides a solution that is operational in a fraction of the time a “traditional” data integration project would take.
      • Benefits from a flexible, scalable, interoperable platform capable of integrating any agency's data sources for optimal visibility and operational readiness
  • The aforementioned and other aspects of the invention are evident in the drawings and in the description that follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following detailed description of the drawings in which:
  • FIG. 1 depicts a surveillance, monitoring and real-time events system 100 according to the invention suitable for the adaptation to a public health & bioterrorism application, e.g., as part of PHIN, HAN or NEDSS-compatible networks;
  • FIG. 2A depicts an architecture for a hologram data store used in the system of FIG. 1;
  • FIG. 2B depicts the tables in a model store and a triples store of the hologram data store of FIG. 2A;
  • FIG. 3 depicts an expert engine to identify information in the data store or from the other information in the system of FIG. 1; and
  • FIG. 4-16 depict a visual display used in the system of FIG. 1 to call alerts and other information to the attention of the user.
  • DETAILED DESCRIPTION OF THE ILLUSTRATE EMBODIMENT
  • FIG. 1 depicts a surveillance, monitoring and real-time events system 100 according to the invention suitable for the adaptation to a public health & bioterrorism application, e.g., as part of PHIN, HAN or NEDSS networks. Illustrated system 100 represents a data processing station (or stations) resident at a node in such a network, such as, for example, a clinical care provider, a laboratory, a local or state health department, the CDC headquarters, a local or national law enforcement office, or otherwise. Though the illustrate system is used in a public health & bioterrorism application, it will be appreciated that a similar such system can be applied in border & port security, public & community safety, and government data integration applications, described above, among others.
  • Illustrated system 100, which can be embodied in conventional digital data processing apparatus (including attendant processor(s), display units, store units, and communications devices) of the type conventional in the art, comprises connectors 108 that provide software interfaces to legacy and other databases, data streams, and sources of information—collectively, databases 140—in clinical care facilities or other entities (such as agency field offices or laboratories), organizations (such as a governmental agencies) or enterprises, such as the PHIN network, the HAN network or otherwise. A “hologram” data store 114 (hereinafter, “data store” or “hologram data store”), which is coupled to the databases 140 via the connectors 108, stores data from those databases 140. A framework server 116 accesses the data store 114, presenting selected data to (and permitting queries from) a user browser 118. The server 116 can also permit updates to data in the data store 114 and, thereby, in the databases 140. These updates can include both the addition of new data and the modification of old data.
  • In the illustration, databases 140 include a database 140 a maintained with a Sybase® database management system, a database 140 b maintained with an Oracle® database management system. The “databases” 140 also include a data stream 140 c providing information from other nodes 100 b, 100 c, 100 d, 100 e, of the PHIN, HAN, NEDSS or other network 120. Those other nodes can be constructed and operated in the manner of system 100 (as suggested in the illustration by their depiction using like silhouettes) or in any other manner consistent with PHIN, HAN, NEDSS or other network operations. The network 120 represents the Internet, wide area network or other medium or collection of media that permit the transfer of information (continuous, periodic or otherwise) between the nodes in a manner consistent with requirements of PHIN, HAN, NEDSS or other applicable network standards.
  • Of course, these are merely examples of the variety of databases or other sources of information with which methods and apparatus as described herein can be used. Common features of illustrated databases 148 are that they provide access to information of actual or potential interest to the node in which system 100 resides and that they can be accessed via application program interfaces (API) or other mechanisms dictated by the PHIN, HAN, NEDSS or other applicable network.
  • Connectors 108 serve as interfaces to databases, streams and other information sources 140. Each connector applies requests to, and receives information from, a respective database, using that database's API or other interface mechanism, e.g., as dictated by the PHIN, HAN or other otherwise. Thus, for example, connector 108 b applies requests to database 140 a using the corresponding SAP API; connector 108 b applies requests to database 140 b using the Oracle API; and connector 108 c applies requests to and/or receives information from the stream or information source 140 c use PHIN-appropriate, HAN-appropriate, NEDSS-appropriate or other stream or network-appropriate requests. Thus, by way of non-limiting example, the connector 108 c can generate requests to the network 120 to obtain data from health care institutions and other nodes on the network.
  • The requests can be simple queries, such as SQL queries and the like (e.g., depending on the type of the underlying database and its API) or more complex sets of queries, such as those commonly used in data mining. For example, one or more of the connectors can use decision trees, statistical techniques or other query and analysis mechanisms knows in the art of data mining to extract information from the databases. Specific queries and analysis methodologies can be specified by the hologram data store 114 or the framework server 116 for application by the connectors. Alternatively, the connectors themselves can construct specific queries and methodologies from more general queries received from the data store 114 or server 116. For example, request-specific items can be “plugged” into query templates thereby effecting greater speed and efficiency.
  • Regardless of their origins, the requests can be stored in the connectors 108 for application and/or reapplication to the respective databases 108 to provide one-time or periodic data store updates. Connectors can use expiration date information to determine which of a plurality of similar data to return to the data store, or if dates are absent, the connectors can mark returned data as being of lower confidence levels.
  • In a system 100 according to the invention used as part of the PHIN network, the connector 108 c (and/or other functionality not shown) provides for the automated exchange of data between public health partners, as required of nodes in the PHIN network. Thus the connector 108 c (and/or other functionality) comprises an ebXML compliant SOAP web service that can be reached via an HTTPS connection after appropriate authentication and comprises. or is coupled to, an HTTPS port. It also supports messaging in the industry standard requisite formats and message content specified by the PHIN standard. The connector 108 c also provides for translation of messages received from the network 120 into a format compatible with the NEDSS and/or other requisite data models specified by the PHIN standards for storage in the data store 114 as detailed further below. And, the connector 108 c (or other functionality) facilitates the exchange and management of specimen and lab result information, as required under the PHIN standard. Systems 100 according to the invention used as part of HAN or NEDSS-compatible networks provide similar functionality, as particularly required under those initiatives.
  • Data and other information (collectively, “messages”) generated by the databases, streams and other information sources 140 in response to the requests are routed by connectors to the hologram data store 114. That other information can include, for example, expiry or other adjectival data for use by the data store in caching, purging, updating and selecting data. The messages can be cached by the connectors 108, though, they are preferably immediately routed to the store 114.
  • Information updates entered, for example, by a user who is accessing the store 114 via a server 116 and browser 118, are transmitted by server 116 to data store 114. There, any triples implicated by the change are created or changed in store 114C, as are the corresponding RDF document objects in store 114A. An indication of these changes can be forwarded to the respective databases, streams or other information sources 140 via the connectors 108, which utilize the corresponding API (or other interface mechanisms) to alert those sources 140 of updates. Likewise, changes made directly to the store 114C, e.g., using a WebDAV client or otherwise, can be forwarded by the connector 108 to the respective sources 140.
  • The hologram data store 114 stores data from the databases 140 (and from the framework server 116, as discussed below) as RDF triples. The data store 114 can be embodied on any digital data processing system or systems that are in communications coupling (e.g., as defined above) with the connectors 108 and the framework server 116. Typically, the data store 114 is embodied in a workstation or other high-end computing device with high capacity storage devices or arrays, though, this may not be required for any given implementation.
  • Though the hologram data store 114 may be contained on an optical storage device, this is not the sense in which the term “hologram” is used. Rather, it refers to its storage of data from multiple sources (e.g., the databases 140) in a form which permits that data to be queried and coalesced from a variety of perspectives, depending on the needs of the user and the capabilities of the framework server 116.
  • To this end, a preferred data store 114 stores the data item the databases 140 in subject-predicate-object form, e.g., RDF triples, though those of ordinary skill in the art will appreciate that either forms may be used as well, or instead. By way of background, RDF is a way of expressing the properties of items of data. Those items are referred to as subjects. Their properties are referred to predicates. And, the values of those properties are referred to as objects. In RDF, an expression of a property of an item is referred to as a triple, a convenience reflecting that the expression contains three parts: subject, predicate and object.
  • Listed below is a portion of a data set of the type with which the invention can be practiced. The listing contains RDF triples, here, expressed in extensible markup language (XML) syntax. Those skilled in the art will, of course, appreciate that RDF triples can be expressed in other syntaxes and that the teachings hereof are equally applicable to those syntaxes. Further, the listing shows only a sampling of the triples in a data store 114, which typically would contain tens of thousands or more of such triples.
  • <rdf:RDF...xmlns=”http://www/metatomix.com/postalCode/1.0#>
    <rdf:Description rdf:about=”postal://zip#02886″>
    <town>Warwick></town>
    <state>RI</state>
    <country>USA</country>
    <zip>02886</zip>
    <rdf:Description>
    <rdf:Descrription rdf:about=″postal://zip#02901″>
    <town>Providence</town>
    <state>RI>/state>
    <country>USA</country>
    <zip>02901</zip>
    </rdf:Description>
  • Subjects are indicated within the listing using a “rdf:about” statement. For example, the second line of the listing defines a subject as a resource named “postal//zip#2886.” That subject has predicates and objects that follow the subject declaration. One predicate, <town>, is associated with a value “Warwick”. Another predicate, <state>, is associated with a value “RI”. The same follows for the predicates <country> and <zip>, which are associated with values “USA” and “02886” respectively. Similarly, the listing shows properties for the subject “postal://zip#02901,” namely, <town> “Providence,” <state> “RI,” <country> “US” and <zip> “02901.”
  • In the listing, the subjects and predicates are expressed as uniform resource indicators (URIs), e.g., of the type defined in Berniers-Lee et al, Uniform Resource Identifiers (URI): Generic Syntax (RFC 2396) (August 1998), and can be said to be expressed in a form <scheme>://<path>#<fragment>. For the subjects given in the example, <scheme> is “postal,” <path> is “zip,” and <fragment> is, for example, “02886” and “02901.”
  • The predicates, too, are expressed in the form <scheme>://<path>#<fragment>, as is evident to those in ordinary skill in the art. In accord with XML syntax, the predicates in lines two, et seq., of the listing must be interpreted as suffixes to the string provided in the namespace directive “xmlns=http://www.metatomix.com/postalCode/1.0#” in line one of the listing. This results in predicates that are formally expressed as: “http://www.metatomix.com/postalCode/1.0#town,” “http://www.metatomix.com/postalCode/1.0#state,” “http://www.metatomix.com/postalCode/1.0#country” and “http://www.metatomix.com/postalCode/1.0#zip.”
  • Hence, the <scheme> for the predicates is “http” and <path> is “www.metatomix.com/postalCode/1.0.” The <fragment> portions are <town>, <state>, <country> and <zip>, respectively. It is important to note that the listing is in some ways simplistic in that each of its objects is a literal value. Commonly, an object may itself be another subject, with its own objects and predicates. In such cases, a resource can be both a subject and an object, e.g., an object to all “upstream” resources and a subject to all “downstream” resources and properties. Such “branching” allows for complex relationships to be modeled within the RDF triple framework.
  • FIG. 2 a depicts an architecture for a preferred hologram data store 114 according to the invention. The illustrate store 114 includes a model document store 114A and a model document manager 114B. It also includes a relational triples store 114C, a relational triples store manager 114D, and a parser 114E interconnected as shown in the drawing.
  • As indicated in the drawing, RDF triples maintained by the store 114 are received—from the databases 140 (via connectors 108) and/or from time-based data reduction module 150 (described below)—in the form of document objects, e.g., of the type generated from a Document Object Model (DOM) in a JAVA, C++ or other application. In the illustrated embodiment, these are stored in the model document store 114A as such (i.e., document objects) particularly, using the tables and inter-table relationships shown in FIG. 1B (see dashed box labelled 114B).
  • The model document manager 114B manages storage/retrieval of the document object to/from the model document store 114A. In the illustrated embodiment, the manager 114B comprises the Slide content management and integration framework, publicly available through the Apache Software Foundation. It stores (and retrieves) document objects to (and from) the store 114A in accord with the WebDAV protocol. Those skilled in the art will, of course, appreciate that other applications can be used in place of Slide and that document objects can be stored/retrieved from the store 114A in accord with other protocols, industry-standard, proprietary or otherwise.
  • However, use of the WebDAV protocol allows for adding, updating and deleting RDF document objects using a variety of WebDAV client tools (e.g., Microsoft Windows Explorer, Microsoft Office, XML Spy or other such tools available from a variety of vendors), in addition to adding, updating and deleting document objects via correctors 108 and/or time-based data reduction module 150. This also allows for presenting the user with a view of a traversable file system, with RDF documents that cans be opened directly in XML editing tools or from Java programs supporting WebDAV protocols, or from processes on remote machines via any HTTP protocol on which WebDAV is based.
  • RDF triples received by the store 114 are also stored to a relational database, here, store 114C, that is managed and accessed by a conventional relational database management system (RDBMS) 114D, operating in accord with the teachings hereof. In that database, the triples are divided into their constituent components (subject, predicate, and object), which are indexed and stored to respective tables in the manner of a “hashed with origin” approach. Whenever an RDF document is added, updated or deleted, a parser 114E extracts its triples and conveys them to the RDBMS 114D with a corresponding indicator that they are to be added, updated or deleted from the relational database. Such a parser 114E operates in the conventional manner known in the art for extracting triples from RDF documents.
  • The illustrated database store 114C has live tables interrelated as particularly shown in FIG. 2B (see dashed box labelled 114C). In general, these tables rely on indexes generated by hashing the triples' respective subjects, predicates and objects using a 64-bit hashing algorithm based on cyclical redundancy codes (CRCs)—though, it will be appreciated that the indexes can be generated by other techniques as well, industry-standard, proprietary or otherwise.
  • Referring to FIG. 2B the “triples” table 534 maintains one record for each stored triple. Each record contains an aforementioned hash code for each of the subject, predicate and object that make up the respective triple, along with a resource flag (“resource_flg”) indicating whether that object is of the resource or literal type. Each record also includes an aforementioned hash code (“m_hash”) identifying the document object (stored in model document store 114A) from which the triple was parsed, e.g., by parser 114E.
  • In the illustrated embodiment, the values of the subjects, predicates and objects are not stored in the triples table. Rather, those values are stored in the resources table 530, namespaces table 532 and literals table 536. Particularly, the resources table 530, in conjunction with the namespaces table 532, stores the subjects, predicates and resource-type objects; whereas, the literals table 536 stores the literal-type objects.
  • The resources table 530 maintains one record for each unique subject, predicate or resource-type object. Each record contains the value of the resource, along with its aforementioned 64-bit hash. It is the latter on which the table is indexed. To conserve space, portions of those values common to multiple resources (e.g., common <scheme>://<path> identifiers) are stored in the namespaces table 532. Accordingly the field, “r_value,” contained in each record of the resources table 530 reflects only the unique portion e.g., <fragment> identifier) of each resource.
  • The namespaces table 532 maintains one record for each unique common portion referred to in the prior paragraph (hereinafter, “namespace”). Each record contains the value of that namespace, along with its aforementioned 64-bit hash. As above, it is the latter on which this table is indexed.
  • The literals table 536 maintains one record for each unique literal-type object. Each record contains the value of the object, along with its aforementioned 64-bit hash. Each record also includes an indicator of the type of that literal (e.g., integer, string, and so forth). Again, it is the latter on which this table is indexed.
  • The models table 538 maintains one record for each RDF document object contained in the model document store 114A. Each record contains the URI of the corresponding document object (“uri_string”), along with its aforementioned 64-bit hash (“m_hash”). It is the latter on which this table is indexed. To facilitate associating document objects identified in the models table 538 with document objects maintained by the model document store 114A, each record of the models table 538 also contains the ID of the corresponding document object in the store 114A. That ID can be assigned by the model document manager 114B, or otherwise.
  • From the above, it can be appreciated that the relational triples store 114C is a schemaless-structure for storing RDF triples. As suggested by Melnik, an author well known to those skilled in the art of RDF and SQL, triples maintained is that store can be reconstituted via an SQL query. For example, to reconstitute the RDF triple having a subject equal to “postal://zip#02886”, a predicate equal to “http://www.metatomix.com/postalCode/1.0#town”, and an object equal to “Warwick”, the following SQL statement is applied:
  • SELECT m.uri_string, t.resource_flg,
    concat (n1.n_value, r1.r_value) as subj,
    concat (n2.n_value, r2.r_value) as pred,
    concat (n3.n_value,r3.r_value),
    1.1_value
    FROM triples t, models m, resources r1, resources r2, namespaces n1, namespaces n2
    LEFT JOIN literals 1 on t.object=1.1_hash
    LEFT JOIN resources r3 on t.object=r3.r_hash
    LEFT JOIN namespaces n3 on r3.r_value=n3.n_value
    WHERE t.subject=r1.r_hash AND r1.n_hash=n1.n_hash AND
    t.predicate=r2.r_hash AND r2.n_hash=n2.n_hash AND
    m.uri_id=t.m_hash AND t.subject=hash(″postal://zip#02886″) AND
    t.predicate=hash(‘http://www.metatomix.com/postalcode/1.0#town’) AND
    t.object=hash(‘warwick’)
  • Those skilled in the art will, of course, appreciate that RDF documents and, more generally, objects maintained in the store 114 can be contained in other stores—structured relationally, hierarchically or otherwise—as well, in addition to or instead of stores 114A and 114C.
  • In a system 100 according to the invention used as part of the PHIN network, the maintenance of data in the store 114 is accomplished in a manner compatible with the applicable PHIN standards, e.g., for the use of electronic clinical data for event detection. Thus, for example, data storage is compatible with the applicable logical data model(s), can associate incoming data with appropriate existing data (e.g., a report of a disease in a person who had another condition previously reported), permits potential cases should be “linked” and traceable from detection via electronic sources of clinical data or manual entry of potential case data through confirmation via laboratory result reporting, and permits data to be accessed far reporting, statistical analysis, geographic mapping and automated outbreak detection algorithms, and so forth, all as required under the PHIN standards and further discussed below. Whether maintained in the data store 114, or otherwise, a system 100 according to the invention used as part of the PHIN network, provides directories of public health and clinical personnel accessible as required under the PHIN standards. Systems 100 according to the invention used as part of HAN or NEDSS-compatible networks provide similar functionality, as particularly required under those initiatives.
  • Referring to FIGS. 2A, the relational triples store manager 114D supports SQL queries such as the one exemplified above (for extracting a triple with the subject “postal://zip#02886”, the predicate “http://www.metatomix.com/postalCode/1.0#town”, and the object “Warwick”), in the manner described in commonly assigned U.S. patent application Ser. No. 10/302,764, filed Nov. 21, 2002, entitled METHODS AND APPARATUS FOR QUERYING A RELATIONAL DATA STORE USING SCHEMA-LESS QUERIES, now published as PCT WO 03044634 (Application WO2002U.S.0037729), the teachings of which are incorporated herein by reference (see, specifically, for example, FIG. 3 thereof and the accompanying text), and a copy of which may be attached as an appendix hereto (and, if so, as Appendix A).
  • The data store 114 can likewise include time-wise data reduction component of the type described in commonly assigned U.S. patent application Ser. No. 10/302,727, filed Nov. 21, 2002, entitled METHODS AND APPARATUS FDR STATISTICAL DATA ANALYSIS AMD REDUCTION FOR AN ENTERPRISE APPLICATION, now published as PCT WO 03046769 (Application WO2002U.S.003727), the teachings of which are incorporated herein by reference (see, specifically, for example, FIG. 3 thereof and the accompanying text), a copy of which may be attached as an appendix hereto (and, if so, as Appendix B), to perform a time-wise reduction, on data from the database, streams or other sources 140.
  • According to one practices of the invention, data store 114 includes a graph generator that uses RDF triples to generate directed graphs in response to queries made—e.g., by a user accessing the store via the browser 118 and server 116, by a surveillance, monitoring and real-time events application executing on the server 116 or in connection with the browser 118, by another node on the network 120 and received electronically or otherwise, or made otherwise—for information reflected by triples originating from data in one or more of the databases, streams or other sources 140. Such generation of directed graphs from triples can be accomplished in any conventional manner known the art (e.g., as appropriate to RDF triples or other manner in which the information is stored) or, preferably, in the manner described in co-pending, commonly assigned U.S. patent application Ser. No. 10/138,725, filed May 3 2002, entitled METHODS AND APPARATUS FOR VISUALIZING RELATIONSHIPS AMONG TRIPLES OF RESOURCE DESCRIPTION FRAMEWORK (RDF) DATA SETS, now-published as PCT WO 03094142A1 (Application WO2003U.S.0012479), and U.S. Patent Application Ser. No. 60/416,616, filed Oct. 7, 2002, entitled METHODS AND APPARATUS FOR IDENTIFYING RELATED NODES IN A DIRECTED GRAPH HAVING NAMED ARCS, now published as PCT WO 04034625 (Application WO2003U.S.0031636), a copy of which may be attached as an appendix hereto (and, if so, as Appendix C), the teachings of both of which are incorporated herein by reference. Directed graphs so generated can be passed back to the server 116 for presentation to the user via browser 118, they can be “walked” by the server 116 to identify specific information responsive to queries, or otherwise.
  • Alternatively, or in addition, to the graph generator, the data store 114 can utilize genetic, self-adapting, algorithms to traverse the RDF triples in response to such queries. To this end, the data store utilizes a genetic algorithm that performs several searches, each utilizing a different methodology but all based on the underlying query from the framework server, against the RDF triples. It compares the results of the searches quantitatively to discern which produce(s) the best results and reapplies that search with additional terms or further granularity.
  • In some practices of the invention, surveillance, monitoring and real-time events applications executing on the connecters 108, the server 116, the browser and/or the data store 114 utilize an expert engine-based system 8 of the type shown in FIG. 3 to identify information in the data store 114 and/or from sources 140 responsive to queries and/or otherwise for presentation via browser 118, e.g., in the form of alerts, reports, or otherwise. The information so identified can, instead or in addition, form the basis of further processing, e.g., by such surveillance, monitoring and real-time events applications, in the form of broadcasts or messages to other nodes in the network 120, or otherwise, consistent with requirements of PHIN, HAN or other applicable standards.
  • Thus, for example, in a system 100 adapted for use in a node on the PHIN, the system 8 can be used to process data incoming from the sources 140 to determine whether it should be ignored, stored, logged for alert or classified otherwise. Data reaching a certain classification limit, moreover, can be displayed via the browser 118 and, more particularly, the dashboard discussed below, e.g., along with a map of the state, country or other relevant geographic region and/or along with other similar data.
  • Alternatively, in a system 100 adapted for use in a NEDSS compliant node, the expert engine-based system 8 can be used to detect the numbers of instances occurring over time and, if the number exceeds a threshold, to generate a report, e.g., for display via a dashboard window, or generate alert messages, for transfer over the network 120 to targeted personnel (e.g., as identified by action of further rules or otherwise). In such a system 100, the expert engine can also be used to subset data used for display or reporting in connection with the collaborative function, e.g., specified under the CDC's HAN guidelines.
  • Referring to FIG. 3, the system 8 includes a module 12 that executes a set of rules 18 with respect to a set of facts 16 representing criteria in order to (i) generate a subset 20 of a set of facts 10 representing an input data set, (ii) trigger a further rule, and/or (iii) generate an alert, broadcast, message, or otherwise. For simplicity, in the discussion that follows the set of facts 16 representing criteria are referred to as “criteria” or “criteria 16,” while the set of facts 10 representing data are referred to as “data” or “data 10.”
  • Illustrated module 12 is an executable program (compiled, interpreted or otherwise) embodying the rules 18 and operating in the manner described herein for identifying subsets of directed graphs. In the illustrated embodiment, module 12 is implemented is Jess (Java Expert System Shell), a rule-based expert system shell, commercially available from Sandia National Laboratories. However, it can be implemented using any other “expert system” engine, if-then-else network, or other software, firmware and/or hardware environment (whether or not expert system-based) suitable for adaptation in accord with the teachings hereof.
  • The module 12 embodies the rules 18 in a network representation 14, e.g., an if-then-else network, or the like, native to the Jess environment. The network nodes are preferably executed so as to effect substantially parallel operation of the rules 18, though they can be executed so as to effect serial and/or iterative operation as well or in addition. In other embodiments, the rules are represented in accord with the specifics of the corresponding engine, if-then-else network, or other software, firmware and/or hardware environment on which the embodiment is implemented. These likewise preferably effect parallel execution of the rules 18, though they may effect serial or iterative execution instead or in addition.
  • The data set 10 can comprise any directed graph, e.g., a collection of nodes representing data and directed arcs connecting nodes to one another, though in the illustrated embodiment it comprises RDF triples contained in the data store 114 and/or generated from information received from the sources 140 via connectors 108. Alternatively, or in addition, the data set can comprise data structures representing a meta directed graph of the type disclosed in co-pending, commonly assigned U.S. patent application Ser. No. 10/138,725, filed May 3, 2002, entitled METHODS AND APPARATUS FOR VISUALIZING RELATIONSHIPS AMONG TRIPLES OF RESOURCE DESCRIPTION FRAMEWORK (RDF) DATA SETS, e.g., at FIG. 4A-6B and accompanying text, all of which incorporated herein by reference.
  • Criteria 16 contains expressions including, for example, literals, wildcards, Boolean operators and so forth, against which nodes in the data set are tested. In embodiments that operate on RDF data sets, the criteria can specify subject, predicate and/or object values or other attributes. In embodiments that operate on directed graphs of other types other appropriate values and attributes may be specified. The criteria can be input by a user, e.g., via browser 118, e.g., on an ad hoc basis. Alternatively or in addition, they can be generated by surveillance, monitoring and real-time events applications executing on the connectors 108, the server 116, the browser and/or the data store 114.
  • Rules 18 define the tests for identifying data in the data set 28 that match the criteria or, where applicable, are related thereto. These are expressed in terms of the types and values of the data items as well as their interrelationships or connectedness. By way of example, a set of rules applicable to a data set comprised of RDF triples for identifying triples that match or are related to the criteria are disclosed in aforementioned incorporated by reference U.S. Patent Application Ser. No 60/416,616, filed Oct. 7, 2002, entitled METHODS AND APPARATUS FOR IDENTIFYING RELATED NODES IN A DIRECTED GRAPH HAVING NAMED ARCS (see, Appendix C hereof). Those skilled in the art will, of course, appreciate that different rules may be applicable depending on the nature and focus of the information sought by any given surveillance, monitoring and real-time events application and that construction of such roles is within the ken of those skilled in the art based on the teachings hereof.
  • Referring to back to FIG. 3, the data 20 output or otherwise generated by module 12 represents those triples matching (or, where applicable, related) to the criteria as determined by exercise of the rules. The data 20 can be output as triples or some alternate form, e.g., pointers or other references to identified data within the data set 10, depending on the needs of the surveillance, monitoring and real-time events application that invoked the system 8. As noted above, instead of or in addition to outputting data 20, the module 12 triggers execution of further rules, generate alerts, broadcasts, messages, or otherwise, consistent with requirements of PHIN, HAN or other applicable standards.
  • The framework server 116 presents information from the data store 114 and/or sources 140 via browser 118. This can be based on requests entered directly by the user directly, e.g., in response to selections/responses to questions, dialog boxes or other user-input controls generated by a surveillance, monitoring and real-time events application executing on the server 116 or in connection with the browser 118. It can also be based, for example, on information obtained from the database 114 and/or sources 140 by the expert engine-based system 8 described above.
  • A further understanding of the operation of the framework server 116 may be attained by reference to the appendix filed with U.S. patent application Ser. No. 09/917,264, filed Jul. 27, 2001, now published as PCT WO02093319A2 and EP 1405219A2 (Application EP2002000741711), and entitled METHODS AND APPARATUS FOR ENTERPRISE APPLICATION INTEGRATION, which appendix is incorporated herein by reference.
  • According to one practice of the invention, a surveillance, monitoring and real-time events application includes a “dashboard” with display windows or panels that provide comprehensive real-time displays of information gathered from the data store 114 or other sources 140, as well as “alerts” resulting from anomalous situations detected by the surveillance, monitoring and real-time events application. The dashboard and alerts can be generated by an application executing on the server 116 and/or the browser 118 or otherwise.
  • Surveillance, monitoring and real-time events dashboards can display information and alerts that are specific to predefined categories, such as border and port security, health and bioterrorism, or public and community safety. These can be configured by users to display information from ad hoc combinations of data sources and user-defined alerts. For the purpose of describing the structure and operation of the surveillance, monitoring and real-time events dashboards, reference will be made to two representative examples (border/port security and health/bioterrorism), although these descriptions apply to other predefined and user-defined categories of information.
  • FIG. 4 illustrates a border/port security dashboard 400. The dashboard displays several panels 402, 404, 406, 408, 410, 412 and 414. Panel 402 can be used to display information relating to an alert, if one has been issued, by the surveillance, monitoring and real-time events application or by an external system. Panel 402 is described in more detail below. Each panel 404-414 displays information from a particular data source or an aggregation of data from several data sources. For example, panel 404 can contain real-time radar data from the US Coast Guard superimposed on a satellite image of Boston's inner harbor. The panel 404 display can be augmented with other Coast Guard data. For example, global positioning system (GPS) data from US Coast Guard vessels and vehicles (collectively “units”) can be used to identify and then look up information related to these units. The unit identities can be superimposed on the image displayed in panel 404, as shown at 416, 418 and 420. Double-clicking on one of these units can cause the surveillance, monitoring and real-time events application to display information about the unit. This information, can include, for example, contact information (e.g. frequency, call sign, name of person in charge, etc.), capabilities (e.g. maximum speed, crew size, weaponry, fire-fighting equipment, etc.) and status (e.g. docked, patrolling, busy intercepting a vessel, etc.).
  • Panel 406 can contain real-time data from a port authority superimposed on a map of the inner harbor. Note that port authority data can include information related to the inner harbor that is different than information provided by the US Coast Guard. For example, the port authority data can include information on vessels traveling or docked within the inner harbor. Furthermore, the port authority data can relate to more than just the inner harbor. For example, the port authority data can include information related to an airport and a rail yard.
  • Other panels 410 and 412 can display information from other data sources, such as US Customs and local or state police. Panel 408 displays a current Homeland Security Advisory System threat level. Panel 414 displays contact information for agencies, such as the US Coast Guard, US Customs, port authority and state police, that might be invoked in case of an alert.
  • A user can double-click on any panel to display a separate window containing the panel. By this mechanism, the user can enlarge any panel. In addition, through appropriate mouse or keyboard commands, the user can zoom in on a portion of the image displayed by a panel. For example, the user can select a point on the panel display to re-center the display to the selected point and zoom in on that point. Alternatively, the user can select a rectangular portion of the panel display using a “rubber band” cursor and instruct the system to fill the entire panel with the selected portion. FIG. 5 illustrates an example of such a window 500 displaying the port authority panel 406 of FIG. 4. A user can, for example, double-click on a vessel 502 to display information about the vessel. FIG. 6 illustrates an example of a pop-up window 600 that displays information about the selected vessel.
  • Although panels 402-414 contain graphical displays, other panels (not shown) can contain textural or numeric data. For example, panels containing shipping schedules, airline schedules, port volume statistics, recent headlines, weather forecasts, etc. can be available for display. Of course, other graphical panels, such as current meteorological data for various portions of the world, can also be available. The surveillance, monitoring and real-time events application can make available more panels than can be displayed at one time on the dashboard 400 (FIG. 4). The dashboard 400 can display a default set of panels, such as panels 404-414. Optionally, the user can select which panels to display in the dashboard 400, as well as arrange the panels within the dashboard and control the size of each panel. If it is deemed desirable to display more panels than can be displayed at one time, some or all of the desired panels can be displayed on a round-robin basis.
  • In addition to allowing users to select items on panels to obtain further information about these items, the surveillance, monitoring and real-time events application can include roles and/or heuristics to automatically detect anomalies and alert users to these anomalies (hereinafter referred to as “alerts”). As a result of one of these alerts, the surveillance, monitoring and real-time events application preferably can select one or more panels containing particularly relevant information and display or enlarge those panels. The selected panels need not be ones that the user could select. For example, the surveillance, monitoring and real-time events application can create a new panel that includes a combination of data from several sources, the sources being selected by rule(s) that caused the alert to be issued.
  • The following example illustrates how an alert can be issued. As shown in FIG. 7, the inner harbor can be partitioned into shipping lanes 700 and 702. The surveillance, monitoring and real-time events application can include rules describing permitted, required and/or prohibited behavior of vessels in these shipping lanes 700 and 702. Some rules can apply to all vessels. Other rules can apply to only certain vessels, for example according to the vessels' types, cargos, speeds, country of registry, as well as according to data unrelated to the vessels, such as time of day, day of week, season, Homeland Security Advisory System, threat level, amount of other harbor traffic or amount or schedule of non-harbor traffic, such as aircraft at an adjacent airport. Other rules can apply to docked vessels, vessels under tow, etc. Similarly, rules can apply to aircraft, vehicles, or any measurable quantity, such as air quality in a subway station, seismic data, voltage in a portion of a power grid or vibration in a building, bridge or other structure. Rules can also apply to data entered by humans, such as the number of reported cases of food poisoning or quantities of antibiotics prescribed, ordered or on hand during a selected period of time.
  • Under normal circumstances, i.e. when no alerts are pending, the dashboard 400 (FIG. 4) displays a default set of panels or a set of panels selected by the user, as previously described. If, for example, the previously mentioned tanker vessel 502 (FIG. 7) carrying a hazardous cargo, such as liquefied natural gas (LNG), deviates 704 from a prescribed course, the surveillance, monitoring and real-time events application can issue an alert. Note that rules for vessels carrying hazardous cargos can be different than for vessels carrying non-hazardous cargos. In addition, other vessels can trigger the alert. For example, if the LNG tanker 502 is traveling within its prescribed course, but a high-speed vessel (not shown) or an aircraft is on a collision course with the LNG tanker, the surveillance, monitoring and real-time events application can issue an alert.
  • As a result of the alert, the surveillance, monitoring and real-time events application displays the alert panel 402 (FIG. 4) and an alert message 422. In this case, the alert panel 402 displays a zoomed-in portion of the port authority panel 406. In addition, the surveillance, monitoring and real-time events application can automatically notify a predetermined list of people or agencies. The particular people or agencies can depend on factors, such as the time of day of the day of the week of the alert. Optionally, the surveillance, monitoring and real-time events application can notify other users at other nodes, such as nodes 100 b, 100 c, 100 d and/or 100 e (FIG. 1). Information displayed on dashboards (not shown) at these other nodes 100 b-e need not be the same as information displayed on the dashboard 400. In particular, the information displayed on these other nodes 100 b-e can be more or less detailed than the information displayed on the dashboard 400. For example, summary information, such as an icon displayed on a map of the United States, can be displayed at command/control node to indicate an alert in Boston, without necessarily displaying all details related to the alert. A user at the command/control node can double-click on the icon to obtain more detailed information.
  • FIGS. 8-16 illustrate an exemplary dashboard that can be used in a health and bioterrorism context. FIG. 8 illustrates a dashboard 800 that contains several panels 802, 804, 806, 808 and 810. Panel 802 contains a map of the United States with icons 812, 814, 816 indicating locations of three alerts. Panel 804 contains emergency contact information that is relevant to the alerts. Panel 806 contains hyperlinks to discussion forums, in which agency representatives and other authorized groups and people can post messages and replies, as is well known in the art. Panel 808 contains hyperlinks to information that is relevant to the alerts. Panel 810 displays the current Homeland Security Advisor System threat level. These panels will be described in more detail below.
  • In this example, the icons 812, 814 and 816 represent medical care providers that have experienced noteworthy events or levels of activity. As previously described, an alert can be issued if, for example, the number of cases of disease, such as influenza, exceeds a predetermined threshold. In this example, Provider 3 has encountered patients with pneumonia that does not respond to antibiotics. The other alerts could relate to other anomalous events or levels of activity. Clicking the icon 816 causes the system to display information 818 related to the selected alert. Clicking on a link 820 causes the system to display more detailed information about the alert. For example, FIG. 9 illustrates two panels 902 and 904, as well as a user selection area 906, that can be displayed. Panel 902 contains a more detailed map of the area in which the event occurred. Panel 904 list the number of cases by zip code of the patients. User selection area 906 enables the user to select one or more of the alerts, thereby selecting or aggregating data from the selected provider(s) for display in panels 902 and 904.
  • Returning for a moment to FIG. 8, panel 804 contains icons for government agencies and other individuals or organizations (collectively “responders”) that might be called upon to respond to manage a biological, nuclear, foodborne or other situations identified by the expert engine-based system 8 (e.g., as where the number of instances matching a specified critereon exceeds a threshold). Clicking link 822 displays a window containing emergency contact information for these responders, as shown in FIG. 10 at 1000. Panel 1002 contains several emergency callout options, by which the user can manage the alerts. For example, clicking “Message Board” link 1004 displays a window containing messages posted in relation to this alert, as shown in FIG. 11 at 1100. This message board enables users and responders to communicate with each other in relation to the alert. An “Initiate a new Callout” link 1102 enables the user to initiate a new situation, as shown in FIG. 12.
  • In response to an alert, the surveillance, monitoring and real-time events application automatically performs searches of the Internet and responder intranets for information relevant to the alert. As previously mentioned, panel 808 (FIG. 8) contains hyperlinks to information that is relevant to the alerts, including results from these searches and predefined information sources that have been identified as relevant. The surveillance, monitoring and real-time events application can, for example, have a database of information sources catalogued according to alert type. As shown in FIG. 13, clicking on one of the hyperlinks in the panel 808 opens a new window 1300 displaying contents identified by the hyperlink.
  • Returning again to the dashboard 800 shown in FIG. 8, the user can select a module via a pull-down list 824. For example, the user can select “Reports”, in which case the system displays a window similar to that shown in FIG. 14. After selecting one or more providers 1402 and 1404, the system displays a report in a report panel 1400.
  • FIG. 15 illustrates another graphical display 1500, by which the system can display an alert. In the example of FIG. 15, two potential outbreaks of anthrax are shown. For each potential outbreak, the system displays information, such as proximity of the outbreak to the nearest residential area, as well as the population of the residential area, proximity to the nearest emergency medical center and the number of free beds in the medical center. Being tied into existing hospital systems, the surveillance, monitoring and real-time events application can query those hospital systems and display relevant information, as shown in FIG. 16.
  • Described herein are methods and apparatus meeting the above-mentioned objects. It will be appreciated that the illustrated embodiment is merely an example of the invention and that other embodiments, incorporating changes to those described herein, fall within the scope of the invention. Thus, for example, as noted earlier, although the illustrated embodiment is adapted for use in public health & bioterrorism application (with additional examples provided with respect to border and port security) it will be appreciated that a similar such systems can be applied in public & community safety, and government data integration applications, described above, among others.

Claims (2)

1. A digital data processing system for surveillance, monitoring and real-time events handling, the system comprising
a plurality of data sources,
query functionality, coupled to the data sources, to identify information from the data sources responsive to one or more queries,
a framework server, coupled to the query functionality, that presents information selected identified by the expert engine to a web browser.
2-38. (canceled)
US14/065,316 2001-05-15 2013-10-28 Surveillance, monitoring and real-time events platform Abandoned US20140052779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/065,316 US20140052779A1 (en) 2001-05-15 2013-10-28 Surveillance, monitoring and real-time events platform

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US29118501P 2001-05-15 2001-05-15
US09/917,264 US7058637B2 (en) 2001-05-15 2001-07-27 Methods and apparatus for enterprise application integration
US32403701P 2001-09-21 2001-09-21
US10/051,619 US6856992B2 (en) 2001-05-15 2001-10-29 Methods and apparatus for real-time business visibility using persistent schema-less data storage
US33205301P 2001-11-21 2001-11-21
US33221901P 2001-11-21 2001-11-21
US10/138,725 US20030208499A1 (en) 2002-05-03 2002-05-03 Methods and apparatus for visualizing relationships among triples of resource description framework (RDF) data sets
US41661602P 2002-10-07 2002-10-07
US10/302,764 US6925457B2 (en) 2001-07-27 2002-11-21 Methods and apparatus for querying a relational data store using schema-less queries
US10/302,727 US7302440B2 (en) 2001-07-27 2002-11-21 Methods and apparatus for statistical data analysis and reduction for an enterprise application
US48520003P 2003-07-07 2003-07-07
US10/680,049 US6954749B2 (en) 2002-10-07 2003-10-07 Methods and apparatus for identifying related nodes in a directed graph having named arcs
US10/886,515 US8572059B2 (en) 2001-05-15 2004-07-07 Surveillance, monitoring and real-time events platform
US14/065,316 US20140052779A1 (en) 2001-05-15 2013-10-28 Surveillance, monitoring and real-time events platform

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/886,515 Continuation US8572059B2 (en) 2001-05-15 2004-07-07 Surveillance, monitoring and real-time events platform

Publications (1)

Publication Number Publication Date
US20140052779A1 true US20140052779A1 (en) 2014-02-20

Family

ID=34375218

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/886,515 Expired - Lifetime US8572059B2 (en) 2001-05-15 2004-07-07 Surveillance, monitoring and real-time events platform
US14/065,316 Abandoned US20140052779A1 (en) 2001-05-15 2013-10-28 Surveillance, monitoring and real-time events platform

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/886,515 Expired - Lifetime US8572059B2 (en) 2001-05-15 2004-07-07 Surveillance, monitoring and real-time events platform

Country Status (3)

Country Link
US (2) US8572059B2 (en)
EP (1) EP1690210A2 (en)
WO (1) WO2005029365A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130332873A1 (en) * 2012-06-12 2013-12-12 Qvera, Llc Health Information Mapping System With Graphical Editor
US20160275782A1 (en) * 2004-03-04 2016-09-22 United States Postal Service System and method for providing centralized management and distribution of information to remote users
CN108228691A (en) * 2017-06-30 2018-06-29 勤智数码科技股份有限公司 The processing method of data element in a kind of government affairs information management
US10910095B1 (en) * 2012-06-12 2021-02-02 Qvera Llc Mapping systems

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770102B1 (en) 2000-06-06 2010-08-03 Microsoft Corporation Method and system for semantically labeling strings and providing actions based on semantically labeled strings
US7716163B2 (en) 2000-06-06 2010-05-11 Microsoft Corporation Method and system for defining semantic categories and actions
US7788602B2 (en) * 2000-06-06 2010-08-31 Microsoft Corporation Method and system for providing restricted actions for recognized semantic categories
US7712024B2 (en) 2000-06-06 2010-05-04 Microsoft Corporation Application program interfaces for semantically labeling strings and providing actions based on semantically labeled strings
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US7778816B2 (en) * 2001-04-24 2010-08-17 Microsoft Corporation Method and system for applying input mode bias
US20030208499A1 (en) * 2002-05-03 2003-11-06 David Bigwood Methods and apparatus for visualizing relationships among triples of resource description framework (RDF) data sets
US7890517B2 (en) * 2001-05-15 2011-02-15 Metatomix, Inc. Appliance for enterprise information integration and enterprise resource interoperability platform and methods
US6925457B2 (en) * 2001-07-27 2005-08-02 Metatomix, Inc. Methods and apparatus for querying a relational data store using schema-less queries
WO2005029365A2 (en) 2003-07-07 2005-03-31 Metatomix, Inc. Surveillance, monitoring and real-time events platform
US7058637B2 (en) * 2001-05-15 2006-06-06 Metatomix, Inc. Methods and apparatus for enterprise application integration
US6856992B2 (en) * 2001-05-15 2005-02-15 Metatomix, Inc. Methods and apparatus for real-time business visibility using persistent schema-less data storage
US7707496B1 (en) 2002-05-09 2010-04-27 Microsoft Corporation Method, system, and apparatus for converting dates between calendars and languages based upon semantically labeled strings
US7707024B2 (en) * 2002-05-23 2010-04-27 Microsoft Corporation Method, system, and apparatus for converting currency values based upon semantically labeled strings
US7742048B1 (en) 2002-05-23 2010-06-22 Microsoft Corporation Method, system, and apparatus for converting numbers based upon semantically labeled strings
US7281245B2 (en) * 2002-06-05 2007-10-09 Microsoft Corporation Mechanism for downloading software components from a remote source for use by a local software application
US7827546B1 (en) 2002-06-05 2010-11-02 Microsoft Corporation Mechanism for downloading software components from a remote source for use by a local software application
US7356537B2 (en) * 2002-06-06 2008-04-08 Microsoft Corporation Providing contextually sensitive tools and help content in computer-generated documents
US7716676B2 (en) 2002-06-25 2010-05-11 Microsoft Corporation System and method for issuing a message to a program
US7392479B2 (en) * 2002-06-27 2008-06-24 Microsoft Corporation System and method for providing namespace related information
US7209915B1 (en) 2002-06-28 2007-04-24 Microsoft Corporation Method, system and apparatus for routing a query to one or more providers
CA2501847A1 (en) * 2002-10-07 2004-04-22 Metatomix, Inc Methods and apparatus for identifying related nodes in a directed graph having named arcs
EP1551281A4 (en) * 2002-10-09 2007-11-21 Bodymedia Inc Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
US7418666B2 (en) 2002-10-21 2008-08-26 Bentley Systems, Incorporated System, method and computer program product for managing CAD data
US9412141B2 (en) * 2003-02-04 2016-08-09 Lexisnexis Risk Solutions Fl Inc Systems and methods for identifying entities using geographical and social mapping
US7783614B2 (en) 2003-02-13 2010-08-24 Microsoft Corporation Linking elements of a document to corresponding fields, queries and/or procedures in a database
US20040172584A1 (en) * 2003-02-28 2004-09-02 Microsoft Corporation Method and system for enhancing paste functionality of a computer software application
US7711550B1 (en) 2003-04-29 2010-05-04 Microsoft Corporation Methods and system for recognizing names in a computer-generated document and for providing helpful actions associated with recognized names
US7739588B2 (en) 2003-06-27 2010-06-15 Microsoft Corporation Leveraging markup language data for semantically labeling text strings and data and for providing actions based on semantically labeled text strings and data
US7405739B2 (en) * 2003-08-22 2008-07-29 Honeywell International Inc. System and method for changing the relative size of a displayed image
US20050182617A1 (en) * 2004-02-17 2005-08-18 Microsoft Corporation Methods and systems for providing automated actions on recognized text strings in a computer-generated document
WO2005081963A2 (en) * 2004-02-23 2005-09-09 Metatomix, Inc. Appliance for enterprise information integration and enterprise resource interoperability platform and methods
US7665063B1 (en) 2004-05-26 2010-02-16 Pegasystems, Inc. Integration of declarative rule-based processing with procedural programming
US20060187082A1 (en) * 2004-08-31 2006-08-24 Santiago Estefania Processing observed data received over a network
US20060069593A1 (en) * 2004-08-31 2006-03-30 Estefania Santiago S Notification transmission over a network based on observed data
US7703671B2 (en) * 2005-01-28 2010-04-27 Arrowhead Center, Inc. Monitoring device and security system
US8335704B2 (en) 2005-01-28 2012-12-18 Pegasystems Inc. Methods and apparatus for work management and routing
US20060248586A1 (en) * 2005-04-27 2006-11-02 Tekelec Methods, systems, and computer program products for surveillance monitoring in a communication network based on a national surveillance database
US7843356B2 (en) * 2005-09-06 2010-11-30 Infraegis, Inc. Threat detection and monitoring apparatus with integrated display system
US8428961B2 (en) * 2005-09-14 2013-04-23 Emsystem, Llc Method and system for data aggregation for real-time emergency resource management
US20080046285A1 (en) * 2006-08-18 2008-02-21 Greischar Patrick J Method and system for real-time emergency resource management
US20070174093A1 (en) * 2005-09-14 2007-07-26 Dave Colwell Method and system for secure and protected electronic patient tracking
US7788590B2 (en) * 2005-09-26 2010-08-31 Microsoft Corporation Lightweight reference user interface
US7992085B2 (en) 2005-09-26 2011-08-02 Microsoft Corporation Lightweight reference user interface
US8706514B1 (en) 2005-10-18 2014-04-22 At&T Intellectual Property Ii, L.P. Case management system and method for mediating anomaly notifications in health data to health alerts
US10354760B1 (en) 2005-10-18 2019-07-16 At&T Intellectual Property Ii, L.P. Tool for visual exploration of medical data
US7725325B2 (en) * 2006-01-18 2010-05-25 International Business Machines Corporation System, computer program product and method of correlating safety solutions with business climate
US7515974B2 (en) * 2006-02-21 2009-04-07 Honeywell International Inc. Control system and method for compliant control of mission functions
US20070226013A1 (en) * 2006-03-07 2007-09-27 Cardiac Pacemakers, Inc. Method and apparatus for automated generation and transmission of data in a standardized machine-readable format
US20070220006A1 (en) * 2006-03-07 2007-09-20 Cardiac Pacemakers, Inc. Method and apparatus for automated generation and transmission of data in a standardized machine-readable format
US20090132232A1 (en) * 2006-03-30 2009-05-21 Pegasystems Inc. Methods and apparatus for implementing multilingual software applications
US8924335B1 (en) 2006-03-30 2014-12-30 Pegasystems Inc. Rule-based user interface conformance methods
US8762395B2 (en) 2006-05-19 2014-06-24 Oracle International Corporation Evaluating event-generated data using append-only tables
US8131696B2 (en) * 2006-05-19 2012-03-06 Oracle International Corporation Sequence event processing using append-only tables
WO2008013553A2 (en) 2006-07-25 2008-01-31 Northrop Grumman Corporation Global disease surveillance platform, and corresponding system and method
NZ574850A (en) * 2006-08-10 2011-02-25 Univ Loma Linda Med Advanced emergency geographical information system
US7962955B2 (en) * 2006-08-15 2011-06-14 International Business Machines Corporation Protecting users from malicious pop-up advertisements
US8036632B1 (en) 2007-02-02 2011-10-11 Resource Consortium Limited Access of information using a situational network
US9152706B1 (en) * 2006-12-30 2015-10-06 Emc Corporation Anonymous identification tokens
US20080319796A1 (en) * 2007-02-16 2008-12-25 Stivoric John M Medical applications of lifeotypes
US8250525B2 (en) 2007-03-02 2012-08-21 Pegasystems Inc. Proactive performance management for multi-user enterprise software systems
US8166465B2 (en) * 2007-04-02 2012-04-24 International Business Machines Corporation Method and system for composing stream processing applications according to a semantic description of a processing goal
US8370812B2 (en) 2007-04-02 2013-02-05 International Business Machines Corporation Method and system for automatically assembling processing graphs in information processing systems
US8117233B2 (en) * 2007-05-14 2012-02-14 International Business Machines Corporation Method and system for message-oriented semantic web service composition based on artificial intelligence planning
US8078332B2 (en) 2007-07-26 2011-12-13 Areva T & D, Inc. Methods for managing high or low voltage conditions from selected areas of a power system of a utility company
WO2009081393A2 (en) * 2007-12-21 2009-07-02 Semantinet Ltd. System and method for invoking functionalities using contextual relations
US20090177626A1 (en) * 2008-01-05 2009-07-09 Robert Lottero Apparatus and method for investigative analysis of law enforcement cases
US10481878B2 (en) * 2008-10-09 2019-11-19 Objectstore, Inc. User interface apparatus and methods
US8843435B1 (en) 2009-03-12 2014-09-23 Pegasystems Inc. Techniques for dynamic data processing
US8468492B1 (en) 2009-03-30 2013-06-18 Pegasystems, Inc. System and method for creation and modification of software applications
US20110202326A1 (en) * 2010-02-17 2011-08-18 Lockheed Martin Corporation Modeling social and cultural conditions in a voxel database
WO2011137935A1 (en) * 2010-05-07 2011-11-10 Ulysses Systems (Uk) Limited System and method for identifying relevant information for an enterprise
US8266551B2 (en) * 2010-06-10 2012-09-11 Nokia Corporation Method and apparatus for binding user interface elements and granular reflective processing
US9558250B2 (en) * 2010-07-02 2017-01-31 Alstom Technology Ltd. System tools for evaluating operational and financial performance from dispatchers using after the fact analysis
US8972070B2 (en) 2010-07-02 2015-03-03 Alstom Grid Inc. Multi-interval dispatch system tools for enabling dispatchers in power grid control centers to manage changes
US20110071690A1 (en) * 2010-07-02 2011-03-24 David Sun Methods that provide dispatchers in power grid control centers with a capability to manage changes
US20110029142A1 (en) * 2010-07-02 2011-02-03 David Sun System tools that provides dispatchers in power grid control centers with a capability to make changes
US9093840B2 (en) * 2010-07-02 2015-07-28 Alstom Technology Ltd. System tools for integrating individual load forecasts into a composite load forecast to present a comprehensive synchronized and harmonized load forecast
US9251479B2 (en) * 2010-07-02 2016-02-02 General Electric Technology Gmbh Multi-interval dispatch method for enabling dispatchers in power grid control centers to manage changes
US9727828B2 (en) 2010-07-02 2017-08-08 Alstom Technology Ltd. Method for evaluating operational and financial performance for dispatchers using after the fact analysis
US8538593B2 (en) * 2010-07-02 2013-09-17 Alstom Grid Inc. Method for integrating individual load forecasts into a composite load forecast to present a comprehensive synchronized and harmonized load forecast
MY180571A (en) * 2010-12-10 2020-12-02 Mimos Berhad A system and method for providing interface for real-time surveillance
US8880487B1 (en) 2011-02-18 2014-11-04 Pegasystems Inc. Systems and methods for distributed rules processing
KR101720316B1 (en) * 2011-10-18 2017-04-05 한국전자통신연구원 Method and apparatus for providing information for sensor network
US20130094403A1 (en) * 2011-10-18 2013-04-18 Electronics And Telecommunications Research Institute Method and apparatus for providing sensor network information
US9129039B2 (en) * 2011-10-18 2015-09-08 Ut-Battelle, Llc Scenario driven data modelling: a method for integrating diverse sources of data and data streams
US8996729B2 (en) 2012-04-12 2015-03-31 Nokia Corporation Method and apparatus for synchronizing tasks performed by multiple devices
RU2600106C2 (en) 2011-12-28 2016-10-20 Нокиа Текнолоджиз Ой Application switcher
US9195936B1 (en) 2011-12-30 2015-11-24 Pegasystems Inc. System and method for updating or modifying an application without manual coding
US20140047129A1 (en) * 2012-08-09 2014-02-13 Mckesson Financial Holdings Method, apparatus, and computer program product for interfacing with an unidentified health information technology system
EP3063670A2 (en) 2013-10-31 2016-09-07 Isis Innovation Limited Parallel materialisation of a set of logical rules on a logical database
US9262740B1 (en) * 2014-01-21 2016-02-16 Utec Survey, Inc. Method for monitoring a plurality of tagged assets on an offshore asset
US10084995B2 (en) 2014-04-10 2018-09-25 Sensormatic Electronics, LLC Systems and methods for an automated cloud-based video surveillance system
US11120274B2 (en) 2014-04-10 2021-09-14 Sensormatic Electronics, LLC Systems and methods for automated analytics for security surveillance in operation areas
US11093545B2 (en) 2014-04-10 2021-08-17 Sensormatic Electronics, LLC Systems and methods for an automated cloud-based video surveillance system
US10057546B2 (en) 2014-04-10 2018-08-21 Sensormatic Electronics, LLC Systems and methods for automated cloud-based analytics for security and/or surveillance
US10217003B2 (en) 2014-04-10 2019-02-26 Sensormatic Electronics, LLC Systems and methods for automated analytics for security surveillance in operation areas
US10469396B2 (en) 2014-10-10 2019-11-05 Pegasystems, Inc. Event processing with enhanced throughput
US10185807B2 (en) * 2014-11-18 2019-01-22 Mastercard International Incorporated System and method for conducting real time active surveillance of disease outbreak
US10698599B2 (en) 2016-06-03 2020-06-30 Pegasystems, Inc. Connecting graphical shapes using gestures
US10698647B2 (en) 2016-07-11 2020-06-30 Pegasystems Inc. Selective sharing for collaborative application usage
JP6310532B1 (en) * 2016-11-24 2018-04-11 ヤフー株式会社 Generating device, generating method, and generating program
US11294641B2 (en) 2017-05-30 2022-04-05 Dimitris Lyras Microprocessor including a model of an enterprise
US11709946B2 (en) 2018-06-06 2023-07-25 Reliaquest Holdings, Llc Threat mitigation system and method
US10848512B2 (en) 2018-06-06 2020-11-24 Reliaquest Holdings, Llc Threat mitigation system and method
US11048488B2 (en) 2018-08-14 2021-06-29 Pegasystems, Inc. Software code optimizer and method
USD926809S1 (en) 2019-06-05 2021-08-03 Reliaquest Holdings, Llc Display screen or portion thereof with a graphical user interface
USD926810S1 (en) 2019-06-05 2021-08-03 Reliaquest Holdings, Llc Display screen or portion thereof with a graphical user interface
USD926782S1 (en) 2019-06-06 2021-08-03 Reliaquest Holdings, Llc Display screen or portion thereof with a graphical user interface
USD926200S1 (en) 2019-06-06 2021-07-27 Reliaquest Holdings, Llc Display screen or portion thereof with a graphical user interface
USD926811S1 (en) 2019-06-06 2021-08-03 Reliaquest Holdings, Llc Display screen or portion thereof with a graphical user interface
US20210398236A1 (en) * 2020-06-19 2021-12-23 Abhijit R. Nesarikar Remote Monitoring with Artificial Intelligence and Awareness Machines
US11567945B1 (en) 2020-08-27 2023-01-31 Pegasystems Inc. Customized digital content generation systems and methods
US11132552B1 (en) * 2021-02-12 2021-09-28 ShipIn Systems Inc. System and method for bandwidth reduction and communication of visual events

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115509A (en) * 1994-03-10 2000-09-05 International Business Machines Corp High volume document image archive system and method
US20020024424A1 (en) * 2000-04-10 2002-02-28 Burns T. D. Civil defense alert system and method using power line communication
US20020073236A1 (en) * 2000-01-14 2002-06-13 Helgeson Christopher S. Method and apparatus for managing data exchange among systems in a network
US20030093187A1 (en) * 2001-10-01 2003-05-15 Kline & Walker, Llc PFN/TRAC systemTM FAA upgrades for accountable remote and robotics control to stop the unauthorized use of aircraft and to improve equipment management and public safety in transportation
US20030126136A1 (en) * 2001-06-22 2003-07-03 Nosa Omoigui System and method for knowledge retrieval, management, delivery and presentation

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US582252A (en) * 1897-05-11 Valve
US4701130A (en) 1985-01-11 1987-10-20 Access Learning Technology Corporation Software training system
US4895518A (en) * 1987-11-02 1990-01-23 The University Of Michigan Computerized diagnostic reasoning evaluation system
US4953106A (en) * 1989-05-23 1990-08-28 At&T Bell Laboratories Technique for drawing directed graphs
US5119465A (en) * 1989-06-19 1992-06-02 Digital Equipment Corporation System for selectively converting plurality of source data structures through corresponding source intermediate structures, and target intermediate structures into selected target structure
US5129043A (en) * 1989-08-14 1992-07-07 International Business Machines Corporation Performance improvement tool for rule based expert systems
US5301270A (en) * 1989-12-18 1994-04-05 Anderson Consulting Computer-assisted software engineering system for cooperative processing environments
JP3245655B2 (en) * 1990-03-05 2002-01-15 インキサイト ソフトウェア インコーポレイテッド Workspace display processing method
US6185516B1 (en) * 1990-03-06 2001-02-06 Lucent Technologies Inc. Automata-theoretic verification of systems
US5761493A (en) 1990-04-30 1998-06-02 Texas Instruments Incorporated Apparatus and method for adding an associative query capability to a programming language
US5311422A (en) * 1990-06-28 1994-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration General purpose architecture for intelligent computer-aided training
SE9002558D0 (en) * 1990-08-02 1990-08-02 Carlstedt Elektronik Ab PROCESSOR
US5199068A (en) * 1991-01-22 1993-03-30 Professional Achievement Systems, Inc. Computer-based training system with student verification
US5270920A (en) 1991-05-13 1993-12-14 Hughes Training, Inc. Expert system scheduler and scheduling method
US5326270A (en) * 1991-08-29 1994-07-05 Introspect Technologies, Inc. System and method for assessing an individual's task-processing style
US5395243A (en) * 1991-09-25 1995-03-07 National Education Training Group Interactive learning system
US5333254A (en) * 1991-10-02 1994-07-26 Xerox Corporation Methods of centering nodes in a hierarchical display
US5421730A (en) * 1991-11-27 1995-06-06 National Education Training Group, Inc. Interactive learning system providing user feedback
US5381332A (en) * 1991-12-09 1995-01-10 Motorola, Inc. Project management system with automated schedule and cost integration
US5259766A (en) 1991-12-13 1993-11-09 Educational Testing Service Method and system for interactive computer science testing, anaylsis and feedback
US5267865A (en) 1992-02-11 1993-12-07 John R. Lee Interactive computer aided natural learning method and apparatus
US5310349A (en) * 1992-04-30 1994-05-10 Jostens Learning Corporation Instructional management system
US5463682A (en) * 1992-08-25 1995-10-31 Bell Communications Research, Inc. Method of creating user-defined call processing procedures
US5450480A (en) * 1992-08-25 1995-09-12 Bell Communications Research, Inc. Method of creating a telecommunication service specification
US5579486A (en) 1993-01-14 1996-11-26 Apple Computer, Inc. Communication node with a first bus configuration for arbitration and a second bus configuration for data transfer
WO1994020918A1 (en) * 1993-03-11 1994-09-15 Fibercraft/Descon Engineering, Inc. Design and engineering project management system
US5809212A (en) * 1993-07-12 1998-09-15 New York University Conditional transition networks and computational processes for use interactive computer-based systems
US5374932A (en) 1993-08-02 1994-12-20 Massachusetts Institute Of Technology Airport surface surveillance system
US5519618A (en) * 1993-08-02 1996-05-21 Massachusetts Institute Of Technology Airport surface safety logic
US5548506A (en) * 1994-03-17 1996-08-20 Srinivasan; Seshan R. Automated, electronic network based, project management server system, for managing multiple work-groups
US5655118A (en) * 1994-03-21 1997-08-05 Bell Communications Research, Inc. Methods and apparatus for managing information on activities of an enterprise
US5597312A (en) * 1994-05-04 1997-01-28 U S West Technologies, Inc. Intelligent tutoring method and system
US5862321A (en) 1994-06-27 1999-01-19 Xerox Corporation System and method for accessing and distributing electronic documents
JPH0876680A (en) 1994-09-02 1996-03-22 Fujitsu Ltd Management education system
US5732192A (en) * 1994-11-30 1998-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Global qualitative flow-path modeling for local state determination in simulation and analysis
US5745753A (en) 1995-01-24 1998-04-28 Tandem Computers, Inc. Remote duplicate database facility with database replication support for online DDL operations
US5499293A (en) * 1995-01-24 1996-03-12 University Of Maryland Privacy protected information medium using a data compression method
JP2765506B2 (en) 1995-01-30 1998-06-18 日本電気株式会社 Logic circuit delay information retention method
US5701451A (en) 1995-06-07 1997-12-23 International Business Machines Corporation Method for fulfilling requests of a web browser
US5907837A (en) * 1995-07-17 1999-05-25 Microsoft Corporation Information retrieval system in an on-line network including separate content and layout of published titles
US5634053A (en) * 1995-08-29 1997-05-27 Hughes Aircraft Company Federated information management (FIM) system and method for providing data site filtering and translation for heterogeneous databases
US5873076A (en) * 1995-09-15 1999-02-16 Infonautics Corporation Architecture for processing search queries, retrieving documents identified thereby, and method for using same
US5788504A (en) * 1995-10-16 1998-08-04 Brookhaven Science Associates Llc Computerized training management system
US6546406B1 (en) * 1995-11-03 2003-04-08 Enigma Information Systems Ltd. Client-server computer system for large document retrieval on networked computer system
US5765140A (en) * 1995-11-17 1998-06-09 Mci Corporation Dynamic project management system
US5832483A (en) 1995-12-15 1998-11-03 Novell, Inc. Distributed control interface for managing the interoperability and concurrency of agents and resources in a real-time environment
US5852715A (en) 1996-03-19 1998-12-22 Emc Corporation System for currently updating database by one host and reading the database by different host for the purpose of implementing decision support functions
US5795155A (en) * 1996-04-01 1998-08-18 Electronic Data Systems Corporation Leadership assessment tool and method
JPH09297768A (en) 1996-05-07 1997-11-18 Fuji Xerox Co Ltd Management device and retrieval method for document data base
US5826252A (en) 1996-06-28 1998-10-20 General Electric Company System for managing multiple projects of similar type using dynamically updated global database
US5881269A (en) 1996-09-30 1999-03-09 International Business Machines Corporation Simulation of multiple local area network clients on a single workstation
US6137797A (en) 1996-11-27 2000-10-24 International Business Machines Corporation Process definition for source route switching
US5822780A (en) 1996-12-31 1998-10-13 Emc Corporation Method and apparatus for hierarchical storage management for data base management systems
US5818463A (en) * 1997-02-13 1998-10-06 Rockwell Science Center, Inc. Data compression for animated three dimensional objects
US5935249A (en) 1997-02-26 1999-08-10 Sun Microsystems, Inc. Mechanism for embedding network based control systems in a local network interface device
US5995958A (en) 1997-03-04 1999-11-30 Xu; Kevin Houzhi System and method for storing and managing functions
US6122632A (en) * 1997-07-21 2000-09-19 Convergys Customer Management Group Inc. Electronic message management system
US6052685A (en) * 1997-08-13 2000-04-18 Mosaix, Inc. Integration of legacy database management systems with ODBC-compliant application programs
US5983267A (en) 1997-09-23 1999-11-09 Information Architects Corporation System for indexing and displaying requested data having heterogeneous content and representation
US5974443A (en) 1997-09-26 1999-10-26 Intervoice Limited Partnership Combined internet and data access system
US6044373A (en) * 1997-09-29 2000-03-28 International Business Machines Corporation Object-oriented access control method and system for military and commercial file systems
US6044466A (en) * 1997-11-25 2000-03-28 International Business Machines Corp. Flexible and dynamic derivation of permissions
US6769019B2 (en) 1997-12-10 2004-07-27 Xavier Ferguson Method of background downloading of information from a computer network
US6151624A (en) 1998-02-03 2000-11-21 Realnames Corporation Navigating network resources based on metadata
US6012098A (en) * 1998-02-23 2000-01-04 International Business Machines Corp. Servlet pairing for isolation of the retrieval and rendering of data
US6185534B1 (en) * 1998-03-23 2001-02-06 Microsoft Corporation Modeling emotion and personality in a computer user interface
US6078982A (en) 1998-03-24 2000-06-20 Hewlett-Packard Company Pre-locking scheme for allowing consistent and concurrent workflow process execution in a workflow management system
US6154738A (en) 1998-03-27 2000-11-28 Call; Charles Gainor Methods and apparatus for disseminating product information via the internet using universal product codes
US6085188A (en) * 1998-03-30 2000-07-04 International Business Machines Corporation Method of hierarchical LDAP searching with relational tables
US6125363A (en) * 1998-03-30 2000-09-26 Buzzeo; Eugene Distributed, multi-user, multi-threaded application development method
US6360330B1 (en) 1998-03-31 2002-03-19 Emc Corporation System and method for backing up data stored in multiple mirrors on a mass storage subsystem under control of a backup server
US6369819B1 (en) * 1998-04-17 2002-04-09 Xerox Corporation Methods for visualizing transformations among related series of graphs
US6151595A (en) 1998-04-17 2000-11-21 Xerox Corporation Methods for interactive visualization of spreading activation using time tubes and disk trees
US6509898B2 (en) * 1998-04-17 2003-01-21 Xerox Corporation Usage based methods of traversing and displaying generalized graph structures
US6389460B1 (en) * 1998-05-13 2002-05-14 Compaq Computer Corporation Method and apparatus for efficient storage and retrieval of objects in and from an object storage device
US6182085B1 (en) 1998-05-28 2001-01-30 International Business Machines Corporation Collaborative team crawling:Large scale information gathering over the internet
US6094652A (en) * 1998-06-10 2000-07-25 Oracle Corporation Hierarchical query feedback in an information retrieval system
US6594662B1 (en) * 1998-07-01 2003-07-15 Netshadow, Inc. Method and system for gathering information resident on global computer networks
US6583800B1 (en) * 1998-07-14 2003-06-24 Brad Ridgley Method and device for finding, collecting and acting upon units of information
US6266668B1 (en) * 1998-08-04 2001-07-24 Dryken Technologies, Inc. System and method for dynamic data-mining and on-line communication of customized information
US6177932B1 (en) * 1998-08-21 2001-01-23 Kana Communications, Inc. Method and apparatus for network based customer service
US6243713B1 (en) * 1998-08-24 2001-06-05 Excalibur Technologies Corp. Multimedia document retrieval by application of multimedia queries to a unified index of multimedia data for a plurality of multimedia data types
GB2343763B (en) 1998-09-04 2003-05-21 Shell Services Internat Ltd Data processing system
US6725227B1 (en) * 1998-10-02 2004-04-20 Nec Corporation Advanced web bookmark database system
US6415283B1 (en) * 1998-10-13 2002-07-02 Orack Corporation Methods and apparatus for determining focal points of clusters in a tree structure
US8006177B1 (en) * 1998-10-16 2011-08-23 Open Invention Network, Llc Documents for commerce in trading partner networks and interface definitions based on the documents
US6341277B1 (en) 1998-11-17 2002-01-22 International Business Machines Corporation System and method for performance complex heterogeneous database queries using a single SQL expression
JP3760057B2 (en) * 1998-11-19 2006-03-29 株式会社日立製作所 Document search method and document search service for multiple document databases
US6941321B2 (en) * 1999-01-26 2005-09-06 Xerox Corporation System and method for identifying similarities among objects in a collection
US6418413B2 (en) 1999-02-04 2002-07-09 Ita Software, Inc. Method and apparatus for providing availability of airline seats
JP2000235493A (en) 1999-02-12 2000-08-29 Fujitsu Ltd Trading device
US6246320B1 (en) * 1999-02-25 2001-06-12 David A. Monroe Ground link with on-board security surveillance system for aircraft and other commercial vehicles
JP3484096B2 (en) * 1999-03-03 2004-01-06 インターナショナル・ビジネス・マシーンズ・コーポレーション Logical zoom method in logical zoom device for directed graph
US6308163B1 (en) 1999-03-16 2001-10-23 Hewlett-Packard Company System and method for enterprise workflow resource management
US6751663B1 (en) * 1999-03-25 2004-06-15 Nortel Networks Limited System wide flow aggregation process for aggregating network activity records
US6405251B1 (en) * 1999-03-25 2002-06-11 Nortel Networks Limited Enhancement of network accounting records
US6446200B1 (en) 1999-03-25 2002-09-03 Nortel Networks Limited Service management
US6625657B1 (en) 1999-03-25 2003-09-23 Nortel Networks Limited System for requesting missing network accounting records if there is a break in sequence numbers while the records are transmitting from a source device
US6393423B1 (en) 1999-04-08 2002-05-21 James Francis Goedken Apparatus and methods for electronic information exchange
US6463440B1 (en) 1999-04-08 2002-10-08 International Business Machines Corporation Retrieval of style sheets from directories based upon partial characteristic matching
US6530079B1 (en) * 1999-06-02 2003-03-04 International Business Machines Corporation Method for optimizing locks in computer programs
US6778971B1 (en) * 1999-06-03 2004-08-17 Microsoft Corporation Methods and apparatus for analyzing computer-based tasks to build task models
US6330554B1 (en) 1999-06-03 2001-12-11 Microsoft Corporation Methods and apparatus using task models for targeting marketing information to computer users based on a task being performed
US6606613B1 (en) * 1999-06-03 2003-08-12 Microsoft Corporation Methods and apparatus for using task models to help computer users complete tasks
US6539374B2 (en) * 1999-06-03 2003-03-25 Microsoft Corporation Methods, apparatus and data structures for providing a uniform representation of various types of information
US6427151B1 (en) 1999-06-29 2002-07-30 International Business Machines Corporation Method, computer program product, system and data structure for formatting transaction results data
US6446256B1 (en) 1999-06-30 2002-09-03 Microsoft Corporation Extension of parsable structures
US6405211B1 (en) * 1999-07-08 2002-06-11 Cohesia Corporation Object-oriented representation of technical content and management, filtering, and synthesis of technical content using object-oriented representations
US6381738B1 (en) * 1999-07-16 2002-04-30 International Business Machines Corporation Method for optimizing creation and destruction of objects in computer programs
US6389429B1 (en) 1999-07-30 2002-05-14 Aprimo, Inc. System and method for generating a target database from one or more source databases
US6577769B1 (en) * 1999-09-18 2003-06-10 Wildtangent, Inc. Data compression through adaptive data size reduction
US6598043B1 (en) * 1999-10-04 2003-07-22 Jarg Corporation Classification of information sources using graph structures
US20030050927A1 (en) 2001-09-07 2003-03-13 Araha, Inc. System and method for location, understanding and assimilation of digital documents through abstract indicia
US6496833B1 (en) 1999-11-01 2002-12-17 Sun Microsystems, Inc. System and method for generating code for query object interfacing
US20020069134A1 (en) * 1999-11-01 2002-06-06 Neal Solomon System, method and apparatus for aggregation of cooperative intelligent agents for procurement in a distributed network
US6714952B2 (en) * 1999-11-10 2004-03-30 Emc Corporation Method for backup and restore of a multi-lingual network file server
US6901438B1 (en) 1999-11-12 2005-05-31 Bmc Software System selects a best-fit form or URL in an originating web page as a target URL for replaying a predefined path through the internet
US6418448B1 (en) * 1999-12-06 2002-07-09 Shyam Sundar Sarkar Method and apparatus for processing markup language specifications for data and metadata used inside multiple related internet documents to navigate, query and manipulate information from a plurality of object relational databases over the web
US7047411B1 (en) 1999-12-17 2006-05-16 Microsoft Corporation Server for an electronic distribution system and method of operating same
US7064241B2 (en) 2000-01-05 2006-06-20 The United States Of America As Represented By The Secretary Of The Navy Chemical and biological warfare decontaminating solution using peracids and germinants in microemulsions, process and product thereof
US6529899B1 (en) 2000-01-12 2003-03-04 International Business Machines Corporation System and method for registering and providing a tool service
US6556983B1 (en) * 2000-01-12 2003-04-29 Microsoft Corporation Methods and apparatus for finding semantic information, such as usage logs, similar to a query using a pattern lattice data space
AU2001229371A1 (en) * 2000-01-14 2001-07-24 Saba Software, Inc. Information server
WO2001052054A2 (en) * 2000-01-14 2001-07-19 Saba Software, Inc. Method and apparatus for a business applications server
AU2001229464A1 (en) * 2000-01-14 2001-07-24 Saba Software, Inc. Method and apparatus for a web content platform
US6701314B1 (en) * 2000-01-21 2004-03-02 Science Applications International Corporation System and method for cataloguing digital information for searching and retrieval
US7117260B2 (en) 2000-01-27 2006-10-03 American Express Travel Related Services Company, Inc. Content management application for an interactive environment
WO2001063462A2 (en) 2000-02-25 2001-08-30 Saba Software, Inc. Method for enterprise workforce planning
US6757708B1 (en) 2000-03-03 2004-06-29 International Business Machines Corporation Caching dynamic content
DE60113073T2 (en) * 2000-03-10 2006-08-31 Smiths Detection Inc., Pasadena CONTROL FOR AN INDUSTRIAL PROCESS WITH ONE OR MULTIPLE MULTIDIMENSIONAL VARIABLES
WO2001069466A1 (en) 2000-03-15 2001-09-20 British Telecommunications Public Limited Company Apparatus and method of allocating communications resources
DE60143491D1 (en) * 2000-03-16 2010-12-30 Poly Vista Inc SYSTEM AND METHOD FOR ANALYZING AN INQUIRY AND FOR GENERATING ANSWERS AND ASSOCIATED QUESTIONS
US7249006B2 (en) * 2000-03-23 2007-07-24 The Johns Hopkins University Method and system for bio-surveillance detection and alerting
US6643638B1 (en) 2000-03-25 2003-11-04 Kevin Houzhi Xu System and method for storing and computing data and functions
JP3562572B2 (en) 2000-05-02 2004-09-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Detect and track new items and new classes in database documents
US6640284B1 (en) 2000-05-12 2003-10-28 Nortel Networks Limited System and method of dynamic online session caching
US6636848B1 (en) 2000-05-31 2003-10-21 International Business Machines Corporation Information search using knowledge agents
US7313588B1 (en) 2000-07-13 2007-12-25 Biap Systems, Inc. Locally executing software agent for retrieving remote content and method for creation and use of the agent
US20020059566A1 (en) * 2000-08-29 2002-05-16 Delcambre Lois M. Uni-level description of computer information and transformation of computer information between representation schemes
US7533107B2 (en) * 2000-09-08 2009-05-12 The Regents Of The University Of California Data source integration system and method
US6678679B1 (en) * 2000-10-10 2004-01-13 Science Applications International Corporation Method and system for facilitating the refinement of data queries
US20020118688A1 (en) * 2000-10-25 2002-08-29 Ravi Jagannathan Generation of fast busy signals in data networks
US7290061B2 (en) * 2000-12-05 2007-10-30 Citrix Systems, Inc. System and method for internet content collaboration
US20020091678A1 (en) * 2001-01-05 2002-07-11 Miller Nancy E. Multi-query data visualization processes, data visualization apparatus, computer-readable media and computer data signals embodied in a transmission medium
US20020133502A1 (en) * 2001-01-05 2002-09-19 Rosenthal Richard Nelson Method and system for interactive collection of information
US6804677B2 (en) * 2001-02-26 2004-10-12 Ori Software Development Ltd. Encoding semi-structured data for efficient search and browsing
US20020143759A1 (en) 2001-03-27 2002-10-03 Yu Allen Kai-Lang Computer searches with results prioritized using histories restricted by query context and user community
US20030088639A1 (en) 2001-04-10 2003-05-08 Lentini Russell P. Method and an apparatus for transforming content from one markup to another markup language non-intrusively using a server load balancer and a reverse proxy transcoding engine
US6934702B2 (en) 2001-05-04 2005-08-23 Sun Microsystems, Inc. Method and system of routing messages in a distributed search network
US7171415B2 (en) * 2001-05-04 2007-01-30 Sun Microsystems, Inc. Distributed information discovery through searching selected registered information providers
WO2005029365A2 (en) 2003-07-07 2005-03-31 Metatomix, Inc. Surveillance, monitoring and real-time events platform
US6925457B2 (en) * 2001-07-27 2005-08-02 Metatomix, Inc. Methods and apparatus for querying a relational data store using schema-less queries
US6856992B2 (en) * 2001-05-15 2005-02-15 Metatomix, Inc. Methods and apparatus for real-time business visibility using persistent schema-less data storage
US7890517B2 (en) 2001-05-15 2011-02-15 Metatomix, Inc. Appliance for enterprise information integration and enterprise resource interoperability platform and methods
US20030004934A1 (en) 2001-06-29 2003-01-02 Richard Qian Creating and managing portable user preferences for personalizion of media consumption from device to device
US6792420B2 (en) 2001-06-29 2004-09-14 International Business Machines Corporation Method, system, and program for optimizing the processing of queries involving set operators
US7130861B2 (en) * 2001-08-16 2006-10-31 Sentius International Corporation Automated creation and delivery of database content
US20030050834A1 (en) * 2001-09-07 2003-03-13 Sergio Caplan System and method for dynamic customizable interactive portal active during select computer time
AUPR796801A0 (en) 2001-09-27 2001-10-25 Plugged In Communications Pty Ltd Computer user interface tool for navigation of data stored in directed graphs
AUPR796701A0 (en) * 2001-09-27 2001-10-25 Plugged In Communications Pty Ltd Database query system and method
US7289793B2 (en) 2001-12-03 2007-10-30 Scott Gilbert Method and apparatus for displaying real-time information objects between a wireless mobile user station and multiple information sources based upon event driven parameters and user modifiable object manifest
US20040054690A1 (en) * 2002-03-08 2004-03-18 Hillerbrand Eric T. Modeling and using computer resources over a heterogeneous distributed network using semantic ontologies
US7286997B2 (en) * 2002-05-07 2007-10-23 Cembex Care Solutions, Llc Internet-based, customizable clinical information system
US7519541B2 (en) * 2003-01-29 2009-04-14 Cerner Innovation, Inc. System and method in a computer system for managing a number of attachments associated with a patient
US20050060372A1 (en) 2003-08-27 2005-03-17 Debettencourt Jason Techniques for filtering data from a data stream of a web services application
JP2005149126A (en) 2003-11-14 2005-06-09 Sony Corp Information acquiring system and method, and information processing program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115509A (en) * 1994-03-10 2000-09-05 International Business Machines Corp High volume document image archive system and method
US20020073236A1 (en) * 2000-01-14 2002-06-13 Helgeson Christopher S. Method and apparatus for managing data exchange among systems in a network
US6643652B2 (en) * 2000-01-14 2003-11-04 Saba Software, Inc. Method and apparatus for managing data exchange among systems in a network
US20020024424A1 (en) * 2000-04-10 2002-02-28 Burns T. D. Civil defense alert system and method using power line communication
US20030126136A1 (en) * 2001-06-22 2003-07-03 Nosa Omoigui System and method for knowledge retrieval, management, delivery and presentation
US20030093187A1 (en) * 2001-10-01 2003-05-15 Kline & Walker, Llc PFN/TRAC systemTM FAA upgrades for accountable remote and robotics control to stop the unauthorized use of aircraft and to improve equipment management and public safety in transportation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160275782A1 (en) * 2004-03-04 2016-09-22 United States Postal Service System and method for providing centralized management and distribution of information to remote users
US9767678B2 (en) * 2004-03-04 2017-09-19 United States Postal Service System and method for providing centralized management and distribution of information to remote users
US10055972B2 (en) 2004-03-04 2018-08-21 United States Postal Service System and method for providing centralized management and distribution of information to remote users
US10223900B2 (en) 2004-03-04 2019-03-05 United States Postal Service System and method for providing centralized management and distribution of information to remote users
US20130332873A1 (en) * 2012-06-12 2013-12-12 Qvera, Llc Health Information Mapping System With Graphical Editor
US9395880B2 (en) * 2012-06-12 2016-07-19 Qvera Llc Health information mapping system with graphical editor
US10229246B2 (en) * 2012-06-12 2019-03-12 Qvera Llc Health information mapping system with graphical editor
US10910095B1 (en) * 2012-06-12 2021-02-02 Qvera Llc Mapping systems
US11404157B2 (en) * 2012-06-12 2022-08-02 Qvera Llc Health information mapping system
US20230023838A1 (en) * 2012-06-12 2023-01-26 Qvera Llc Health information mapping system
US11875891B2 (en) * 2012-06-12 2024-01-16 Qvera Llc Health information mapping system
CN108228691A (en) * 2017-06-30 2018-06-29 勤智数码科技股份有限公司 The processing method of data element in a kind of government affairs information management

Also Published As

Publication number Publication date
EP1690210A2 (en) 2006-08-16
WO2005029365A2 (en) 2005-03-31
US20050055330A1 (en) 2005-03-10
US8572059B2 (en) 2013-10-29
WO2005029365A3 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US8572059B2 (en) Surveillance, monitoring and real-time events platform
US7890517B2 (en) Appliance for enterprise information integration and enterprise resource interoperability platform and methods
US10872388B2 (en) Global disease surveillance platform, and corresponding system and method
US8108435B2 (en) Systems and methods for the management of information to enable the rapid dissemination of actionable information
US8112453B2 (en) Systems and methods for retrieving data
US8423374B2 (en) Method and system for processing intelligence information
US20040008125A1 (en) System and method for emergency response
US20070005654A1 (en) Systems and methods for analyzing relationships between entities
CN101436274A (en) Method for across-platform monitoring enterprise application system performance
US7587404B1 (en) Enhanced dynamic decision support processing using fused multiple disparate data sources
US10846151B2 (en) Notifying entities of relevant events removing private information
US20190252077A1 (en) Biosurveillance Notifications
WO2005081963A2 (en) Appliance for enterprise information integration and enterprise resource interoperability platform and methods
Bateman et al. Characteristics of emergency evacuations in airport terminal buildings: A new event database
Kerman et al. Event detection challenges, methods, and applications in natural and artificial systems
Zoppi et al. Labelling relevant events to support the crisis management operator
Zeng et al. West nile virus and botulism portal: a case study in infectious disease informatics
KR101835778B1 (en) Apparatus and method for providing public data open interface
Burkom et al. ESSENCE, the Electronic Surveillance System for the Early Notification of Community-Based Epidemics
Tay et al. An architecture for network centric operations in unconventional crisis: lessons learnt from Singapore's SARS experience
Tsoi Development of a Cross-Domain Web-Based GIS Platform to Support Surveillance and Control of Communicable Diseases
Vergeti et al. Semantically Enhanced Interoperability in Health Emergency Management
Rice Improving emergency responder situational awareness for incident command systems (ICS) using critical information management, simulation, and analysis
Abbott et al. Integrated Biological Warfare Technology Platform (IBWTP). Intelligent Software Supporting Situation Awareness, Response
Choo et al. Information Operations Innovation Network (IOIN) Demonstration

Legal Events

Date Code Title Description
AS Assignment

Owner name: OBJECTSTORE, INC., TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:METATOMIX, INC.;REEL/FRAME:034057/0348

Effective date: 20121219

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE