US20130314188A1 - Magnetic Structure for Large Air Gap - Google Patents

Magnetic Structure for Large Air Gap Download PDF

Info

Publication number
US20130314188A1
US20130314188A1 US13/887,345 US201313887345A US2013314188A1 US 20130314188 A1 US20130314188 A1 US 20130314188A1 US 201313887345 A US201313887345 A US 201313887345A US 2013314188 A1 US2013314188 A1 US 2013314188A1
Authority
US
United States
Prior art keywords
magnetic
ear
ears
air gap
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/887,345
Inventor
Ionel Jitaru
Marco Antonio Davila
Andrei Savu
Andrei Ion Radulescu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Thailand PCL
Original Assignee
DET International Holding Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DET International Holding Ltd filed Critical DET International Holding Ltd
Priority to US13/887,345 priority Critical patent/US20130314188A1/en
Assigned to DET INTERNATIONAL HOLDING LIMITED reassignment DET INTERNATIONAL HOLDING LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVILA, MARCO ANTONIO, JITARU, IONEL, RODULESCU, ANDREI ION, Savu, Andrei
Publication of US20130314188A1 publication Critical patent/US20130314188A1/en
Assigned to DELTA ELECTRONICS (THAILAND) PUBLIC CO., LTD. reassignment DELTA ELECTRONICS (THAILAND) PUBLIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DET INTERNATIONAL HOLDING LIMITED
Priority to US16/778,738 priority patent/US11756726B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F2003/005Magnetic cores for receiving several windings with perpendicular axes, e.g. for antennae or inductive power transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • FIGS. 1-13 This application is accompanied by FIGS. 1-13 which are reproduced and described in the description that follows.
  • FIG. 1 shows a category of wireless transformers known as circular pads
  • FIG. 2 shows a category of wireless transformers known as circular couplers and flat power pads
  • FIG. 3 shows a first magnetic structure according to the present invention
  • FIG. 4 shows a second version of this invention
  • FIG. 5 shows a third version of the invention
  • FIG. 6 shows a fourth version of the invention
  • FIG. 7 shows a fifth version of the invention
  • FIG. 8 shows a sixth version of the invention
  • FIG. 9 shows a seventh version of the invention
  • FIG. 10 shows an eighth version of the invention
  • FIG. 11 shows a ninth version of the invention
  • FIG. 12 shows a tenth version of the invention
  • FIG. 13 shows an eleventh version of the invention.
  • IPT Inductive Power Transfer
  • wireless transformers are split in 2 categories: Circular Pads [ FIG. 1 ] or circular couplers and flat power pads [ FIG. 2 ].
  • An investigation and analysis of circular pads is performed by John T. Boys and Grant A. Covic in [2].
  • Circular pads also known as pot core pads are composed of a magnetic material and copper or aluminium coils. Transformer's primary and secondary are identical in shape and size. The drawback of the pot core pads is the fact that high coupling is limited by the distance between the center post and the outer circular post.
  • FIG. 2 shows a flat power pad comprising a ferrite core and two parallel connected windings. The windings are wrapped around the ferrite neck. There are two separate zones for the windings. Ferrite extensions called wings are assigned on the outer edges.
  • FIG. 2 shows the primary or secondary of the wireless transformer, where both primary and secondary sides are identical in size and shape.
  • FIG. 3 shows a first magnetic structure according to the present invention. It comprises of a primary side and a secondary side which are identical in form and size.
  • the primary side includes a rod 6 , and ears 7 , 8 (which are formed of magnetic, e.g. ferrite material) and conductive windings 4 , 5 (e.g. formed of copper).
  • the two windings are in series creating an “eight shape winding”.
  • the windings can be made of regular copper wire or litz wire. Also the shape of the wire can be circular or rectangular.
  • the rod and ears can be made of any high permeability magnetic material such as si-steel or ferrite.
  • the distance between primary and secondary assembly is defined as the magnetic air gap.
  • the size of the ears compensate for the high reluctance resulted from a large air gap.
  • the reluctance of the gap is equal to
  • gap l gap ⁇ gap ⁇ Area gap
  • l gap is the gap length
  • ⁇ gap is the permeability of the gap
  • Area gap is the area of the gap.
  • the purpose of decreasing the gap reluctance is to force the magnetic field produced by the primary to follow a desired path.
  • Windings 4 and 5 are connected in series forming a magnetic dipole, north and south.
  • the desired path of the magnetic field generated by the primary side is that the field lines travel from ear 8 in the rod 6 , into the ear 7 , through the air gap into the secondary ear 9 , through the secondary rod 10 , through the secondary ear 11 , through the air gap and back into the primary ear 8 .
  • the secondary windings 12 and 13 are energized by this magnetic field.
  • Using the ears decreases the gap reluctance but also creates two leakage paths in the primary side.
  • One leakage path is created between the ears 7 and 8 .
  • a second path is created between each ear 7 , 8 and the rod 6 .
  • the permeability of the rod can be different from the permeability of the ears.
  • FIG. 4 shows a second version of this invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad the only difference is that the winding is compacted onto a single leg.
  • the reluctance analysis is the same as the C-shaped Power Pad.
  • the ideal magnetic path is through rod 17 , ear 14 , air gap, ear 18 , rod 19 , rod 21 , air gap and ear 16 .
  • Leakage field lined exist between ear 14 and 16 and between ear 16 to rod 17 .
  • FIG. 5 shows a third version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad, the only difference is that the winding is compacted on the rods 24 and 28 .
  • the desired path of the magnetic field is through rod 24 through ear 22 , through the air gap through ear 26 through rod 27 through ear 29 , through the air gap and through ear 25 .
  • the advantage of using the windings 23 and 28 on the rods 24 and 27 is that the undesired leakage flux between the ears and the rod does not exist anymore.
  • the disadvantage is that the winding arrangement creates leakage flux on the opposite side of the gap.
  • FIG. 6 shows a fourth version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad with center rod winding. The difference is that the rods 27 and 31 have a circular shape.
  • the desired path of the magnetic field is from rod 28 to ear 26 , through the air gap, through ear 30 , through rod 31 , through ear 33 , through the air gap and through ear 29 .
  • the advantage of this concept is the minimisation of the rods 27 and 31 reluctances by decreasing the average length of the rod using a circular shape.
  • FIG. 7 shows a fifth version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad. There are cutouts in the rods 35 and 41 and in the ears 34 , 38 , 39 and 43 .
  • the desired magnetic flux path is through rod 35 , through ear 34 , through the air gap, through ear 39 , through rod 41 , through ear 43 , through the air gap, through ear 38 .
  • the advantage of this design is that the magnetic material cutouts decrease the leakage flux line between the ears 34 , 38 , and 39 , 43 . It also decreases the leakage field lines between the ears 34 , 38 and the rod 35 , and between the ears 39 and 43 and the rod 41 .
  • FIG. 8 shows a sixth version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size.
  • the primary and secondary are made of magnetic material, ferrite or si-steel, and a copper winding.
  • the ferrite is split between two sections: the ears 44 , 47 and 48 , 51 and the rods 45 , 50 .
  • the windings 46 , 49 are spread on the entire length of the ferrite rods 45 , 50 .
  • the ferrite ears play the same role of decreasing the air gap reluctance like the C-shaped Power Pad.
  • the desired magnetic field path is from rod 45 through ear 44 , through the air gap, through ear 48 , through rod 50 , through ear 51 , through the air gap and through ear 47 .
  • a disadvantage of this winding arrangement is that the windings 46 and 49 are not shielded from the magnetic field in any way, and as a result they will exhibit a high AC impedance. This will lower the system efficiency.
  • This arrangement creates a leakage field between ears 44 and 47 and between ears 48 and 51 .
  • This leakage field has three components: above the plane of the ears, below the plane of the ears and in the plane of the ears. Because the structure is symmetrical, the leakage field below the plane of the ears will be as intense as the leakage field above the place of the ears.
  • windings 46 and 49 make them closer to each other, and as a result some of the leakage field produced by winding 46 could be captured by secondary winding 49 .
  • FIG. 9 shows a seventh version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size.
  • the structure is similar to the Symmetrical Power Pad. The difference is that the ears 39 , 42 , 43 and 46 have cuts which converge toward the rods 40 , 44 .
  • the desired magnetic field path is from rod 40 through ear 39 , through the air gap, through ear 43 , through rod 44 , through ear 46 , through the air gap, through ear 42 .
  • FIG. 10 shows an eighth version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size.
  • the primary and secondary assemblies are made from magnetic material and copper windings.
  • Each primary and secondary is made out of two windings 49 , 52 , 56 , 59 , two ferrite ears 47 , 53 , 54 , 60 , two ferrite rods 48 , 51 , 55 , 58 and one center ferrite pad 50 , 57 .
  • Windings 49 and 52 have the polarity set that the magnetic field produced travels towards the center pad 50 .
  • the center ferrite pad 50 becomes a magnetic field transmitter and the two outer ears 47 and 53 are the magnetic field return paths.
  • the desired magnetic field path from primary to secondary is: field is created by windings 49 and 52 , travels from rods 48 and 51 through center pad 50 , through the air gap, through center pad 57 , it is split between rod 55 and rod 58 , each split travels through ear 54 respectively ear 60 , then through the air gap, an each split travels through return ears 47 respectively 53 .
  • the advantage of this arrangement is that the air gap reluctance of the center pads 50 , 57 is minimized due to the increase in the pads area.
  • the total magnetic field is split between the windings 49 , 52 and 56 , 59 .
  • Unwanted Leakage field lines on the back side on the primary exist because of the structure primary symmetry.
  • FIG. 11 shows a ninth version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size, but also can be combined with all the magnetic structures described here, and as a result will become non symmetrical primaries and secondaries.
  • the primary and the secondary assemblies are made of magnetic material and copper windings.
  • the primary and secondary windings are split on three legs.
  • the polarity of winding 65 is set that the magnetic field created is orientated towards center pad 64 .
  • Windings 62 and 66 have the polarity that the magnetic field enters the rod 63 .
  • the same winding polarity is se for the secondary side.
  • the desired path for the magnetic field is from center pad 64 , through the air gap, through center pad 71 , split into the rod 70 , half of the magnetic field goes into ear 68 , through the air gap, through ear 61 , through rod 63 , and the other half through ear 73 , through the air gap, through ear 67 and through rod 63 .
  • the advantage of this structure is that it minimizes the leakage lines between ears 61 , 67 and between ears 68 and 73 . Also splitting the winding into three separate sections makes the windings better shielded against the magnetic field lines. As a result, the AC impedance of the windings is reduced, resulting in a higher system efficiency.
  • a drawback of this assembly is that the center pad 64 has a low reluctance path to rod 63 , and as a result creates unwanted leakage lines to rod 63 .
  • FIG. 12 shows a tenth version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size, but also can be combined with all the magnetic structures described here, and as a result will become non symmetrical primaries and secondaries.
  • the structure can have also a C-shape connection between ears.
  • the primary and secondary are made of magnetic material and copper windings.
  • the magnetic material is made up of magnetic ears 75 , 78 , 81 , 83 , 89 , 86 , and magnetic rods 76 , 82 , 79 , 84 , 87 , 90 .
  • the primary windings can be energized with 120 degree separation in phase.
  • ears 86 and 78 will be the field return path and ears 75 , 83 , 81 , 89 will be the transmission path.
  • the path of the magnetic field at zero phase will be: from ear 78 will split to rod 76 and rod 79 . From rod 76 will go to ear 75 , through the air gap, through ear 83 through rod 84 , through ear 86 , through the air gap and back to ear 78 . From rod 79 will go to ear 81 , through the air gap, through ear 89 , through rod 87 , through ear 86 , through the air gap and back to ear 78 .
  • phase ears 75 and 83 will be the field return path and ears 78 , 81 , 86 , 89 will be the field transmission path.
  • At 240 degree phase ears 81 and 89 will be the field return path and ears 78 , 83 , 86 , 75 will be the field transmission path.
  • This tri-phase system creates a rotational magnetic field between all ears.
  • the windings can be arranged into multiple phases similar to the electric motors phases.
  • FIG. 13 shows an eleventh version of the invention.
  • the magnetic structure comprises of two primary and secondary assemblies identical in shape and size, but also can be combined with all the magnetic structures described here, and as a result will become non symmetrical primaries and secondaries.
  • the structure can have also a C-shape connection between ears
  • the primary and secondary are made of magnetic material and copper windings.
  • the magnetic material is made up of magnetic ears 93 , 96 , 101 , 102 , 110 , 105 , and magnetic rods 94 , 97 , 100 , 103 , 106 , 109 .
  • the primary windings can be energized with 120 degree separation in phase.
  • the magnetic field will travel from ear 96 through rod 97 , through rod 94 , through ear 93 , through the air gap, through ear 102 , through rod 103 , through rod 106 , through ear 105 , through the air gap and back to ear 96 .
  • This tri-phase system creates a rotational magnetic field between all ears.
  • the magnetic field will travel from ear 93 through rod 94 , through rod 100 , through ear 101 , through the air gap, through ear 110 , through rod 109 , through rod 103 , through ear 102 , through the air gap and back to rod 93 .
  • the magnetic field will travel from ear 101 through rod 100 , through rod 97 , through ear 96 , through the air gap, through the ear 105 , through the rod 106 , through the rod 109 , and back to ear 110 .
  • This tri-phase system creates a rotational magnetic field between all ears.
  • the windings can be arranged into multiple phases similar to the electric motors phases.
  • one feature of the present invention is that the magnetic structures are configured to help minimize the air gap reluctance, improving the magnetic structure's coupling coefficient. Another feature is that reducing the windings AC impedance of a magnetic structure is produced by shielding the winding under ears formed of magnetic material. Still another feature is that leakage inductance of a magnetic structure is reduced, by making ears with cuts which converge toward the magnetic rods that are used in the formation of the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

New and Useful magnetic structures are provided. One feature of the magnetic structures is that they are configured to help minimize the air gap reluctance, improving the magnetic structure's coupling coefficient. Another feature is that reducing the windings AC impedance of a magnetic structure is produced by shielding the winding under ears formed of magnetic material. Still another feature is that leakage inductance of a magnetic structure is reduced, by making ears with cuts which converge toward the magnetic rods that are used in the formation of the structure.

Description

    RELATED APPLICATION/CLAIM OF PRIORITY
  • This application is related to and claims priority from U.S. Provisional application Ser. No. 61/642,764, entitled Magnetic Structures for Large Air Gap, filed May 4, 2012, which provisional application is incorporated herein by reference.
  • 1. INTRODUCTION
  • The increasing popularity of wireless power supplies has created a new set of challenges in designing the required power transformers. Large air gaps between primary and secondary decrease the coupling of the power transformer. A decrease in the transformer's coupling translates into a decrease in the overall power converter's efficiency.
  • Large air gaps exhibit a large magnetic path reluctance. Keeping the value of this reluctance small, determined the development of new magnetic structures and wireless power transformers. Also leakage inductance of the transformer increases with the increase of the air gap and the mutual inductance of the transformer decreases. Decreasing the gap reluctance together with minimising the leakage inductance and reducing AC copper loss in the transformer is the main purpose of large air gap magnetic structures.
  • This application is accompanied by FIGS. 1-13 which are reproduced and described in the description that follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a category of wireless transformers known as circular pads;
  • FIG. 2 shows a category of wireless transformers known as circular couplers and flat power pads;
  • FIG. 3 shows a first magnetic structure according to the present invention;
  • FIG. 4 shows a second version of this invention;
  • FIG. 5 shows a third version of the invention;
  • FIG. 6 shows a fourth version of the invention;
  • FIG. 7 shows a fifth version of the invention;
  • FIG. 8 shows a sixth version of the invention;
  • FIG. 9 shows a seventh version of the invention;
  • FIG. 10 shows an eighth version of the invention;
  • FIG. 11 shows a ninth version of the invention;
  • FIG. 12 shows a tenth version of the invention; and
  • FIG. 13 shows an eleventh version of the invention.
  • 2. PRIOR ART
  • A method of transferring power at a large distance is defined as Inductive Power Transfer (IPT) which is achieved through mutual coupling in a similar manner to conventional tight coupled transformers. IPT systems have coupling coefficients between 0.01 and 0.5 due to large air gaps compared to over 0.95 in transformers.
  • One of the most important part of an IPT system is the wireless transformer. Magnetic structures for the wireless transformer have been studied by John T. Boys and Grant A. Covic in[1].
  • According to [1] wireless transformers are split in 2 categories: Circular Pads [FIG. 1] or circular couplers and flat power pads [FIG. 2]. An investigation and analysis of circular pads is performed by John T. Boys and Grant A. Covic in [2].
  • Circular pads also known as pot core pads are composed of a magnetic material and copper or aluminium coils. Transformer's primary and secondary are identical in shape and size. The drawback of the pot core pads is the fact that high coupling is limited by the distance between the center post and the outer circular post.
  • FIG. 2 shows a flat power pad comprising a ferrite core and two parallel connected windings. The windings are wrapped around the ferrite neck. There are two separate zones for the windings. Ferrite extensions called wings are assigned on the outer edges. FIG. 2 shows the primary or secondary of the wireless transformer, where both primary and secondary sides are identical in size and shape.
  • Description of the Present Invention 3. C-SHAPED POWER PAD
  • FIG. 3 shows a first magnetic structure according to the present invention. It comprises of a primary side and a secondary side which are identical in form and size. The primary side includes a rod 6, and ears 7, 8 (which are formed of magnetic, e.g. ferrite material) and conductive windings 4, 5 (e.g. formed of copper).
  • The two windings are in series creating an “eight shape winding”. The windings can be made of regular copper wire or litz wire. Also the shape of the wire can be circular or rectangular.
  • The rod and ears can be made of any high permeability magnetic material such as si-steel or ferrite.
  • The distance between primary and secondary assembly is defined as the magnetic air gap. The size of the ears compensate for the high reluctance resulted from a large air gap. The reluctance of the gap is equal to
  • gap = l gap μ gap · Area gap
  • where lgap is the gap length, μgap is the permeability of the gap and Areagap is the area of the gap. As a result, in order to decrease the gap reluctance we can decrease the length of the gap, increase the gap permeability or increase the area of the gap. The first two options can not be accomplished from a physical point of view. Increasing the area of the gap is the only option left. The gap area is increased by increasing the magnetic ears in two dimensions: 1 and 2.
  • The purpose of decreasing the gap reluctance is to force the magnetic field produced by the primary to follow a desired path. Windings 4 and 5 are connected in series forming a magnetic dipole, north and south. The desired path of the magnetic field generated by the primary side is that the field lines travel from ear 8 in the rod 6, into the ear 7, through the air gap into the secondary ear 9, through the secondary rod 10, through the secondary ear 11, through the air gap and back into the primary ear 8. The secondary windings 12 and 13 are energized by this magnetic field.
  • Another advantage obtained by using magnetic ears in this C-shaped Power Pad is the fact that the windings 4, 5, 12, 13 are shielded from the magnetic field lines. In this shielding case the winding AC loss is reduced resulting in a higher system efficiency.
  • High coupling is obtained if all the magnetic field lines follow the path described above. There are some drawbacks because not all the field lines couple to the secondary. The lines which couple to the secondary are called mutual lines and form the mutual inductance, and the lines which do not couple to the secondary are called leakage lines and form the leakage inductance.
  • Using the ears decreases the gap reluctance but also creates two leakage paths in the primary side. One leakage path is created between the ears 7 and 8. A second path is created between each ear 7, 8 and the rod 6. The permeability of the rod can be different from the permeability of the ears.
  • 4. C-SHAPED POWER PAD WITH SINGLE LEG WINDING
  • FIG. 4 shows a second version of this invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad the only difference is that the winding is compacted onto a single leg. The reluctance analysis is the same as the C-shaped Power Pad.
  • The ideal magnetic path is through rod 17, ear 14, air gap, ear 18, rod 19, rod 21, air gap and ear 16. Leakage field lined exist between ear 14 and 16 and between ear 16 to rod 17.
  • The advantage of this design is that leakage flux from ear 14 to rod 17 is not existent because the winding does not exist in the leg below ear 14.
  • 5. C-SHAPED POWER PAD WITH CENTER ROD WINDING
  • FIG. 5 shows a third version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad, the only difference is that the winding is compacted on the rods 24 and 28.
  • The desired path of the magnetic field is through rod 24 through ear 22, through the air gap through ear 26 through rod 27 through ear 29, through the air gap and through ear 25.
  • The advantage of using the windings 23 and 28 on the rods 24 and 27 is that the undesired leakage flux between the ears and the rod does not exist anymore. The disadvantage is that the winding arrangement creates leakage flux on the opposite side of the gap.
  • 6. C-SHAPED POWER PAD WITH CENTER ROD WINDING AND CIRCULAR ROD
  • FIG. 6 shows a fourth version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad with center rod winding. The difference is that the rods 27 and 31 have a circular shape.
  • The desired path of the magnetic field is from rod 28 to ear 26, through the air gap, through ear 30, through rod 31, through ear 33, through the air gap and through ear 29.
  • The advantage of this concept is the minimisation of the rods 27 and 31 reluctances by decreasing the average length of the rod using a circular shape.
  • 7. C-SHAPED POWER PAD WITH MAGNETIC MATERIAL CUTOUTS
  • FIG. 7 shows a fifth version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size. It is similar to the C-shaped Power Pad. There are cutouts in the rods 35 and 41 and in the ears 34, 38, 39 and 43.
  • The desired magnetic flux path is through rod 35, through ear 34, through the air gap, through ear 39, through rod 41, through ear 43, through the air gap, through ear 38.
  • The advantage of this design is that the magnetic material cutouts decrease the leakage flux line between the ears 34, 38, and 39, 43. It also decreases the leakage field lines between the ears 34, 38 and the rod 35, and between the ears 39 and 43 and the rod 41.
  • 8. SYMMETRICAL POWER PAD
  • FIG. 8 shows a sixth version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size.
  • The primary and secondary are made of magnetic material, ferrite or si-steel, and a copper winding. The ferrite is split between two sections: the ears 44, 47 and 48, 51 and the rods 45, 50.
  • The windings 46, 49 are spread on the entire length of the ferrite rods 45, 50. The ferrite ears play the same role of decreasing the air gap reluctance like the C-shaped Power Pad.
  • The desired magnetic field path is from rod 45 through ear 44, through the air gap, through ear 48, through rod 50, through ear 51, through the air gap and through ear 47.
  • A disadvantage of this winding arrangement is that the windings 46 and 49 are not shielded from the magnetic field in any way, and as a result they will exhibit a high AC impedance. This will lower the system efficiency.
  • This arrangement creates a leakage field between ears 44 and 47 and between ears 48 and 51. This leakage field has three components: above the plane of the ears, below the plane of the ears and in the plane of the ears. Because the structure is symmetrical, the leakage field below the plane of the ears will be as intense as the leakage field above the place of the ears.
  • The placement of the windings 46 and 49 makes them closer to each other, and as a result some of the leakage field produced by winding 46 could be captured by secondary winding 49.
  • 9. SYMMETRICAL POWER PAD WITH FERRITE CUTS
  • FIG. 9 shows a seventh version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size.
  • The structure is similar to the Symmetrical Power Pad. The difference is that the ears 39, 42, 43 and 46 have cuts which converge toward the rods 40,44.
  • The desired magnetic field path is from rod 40 through ear 39, through the air gap, through ear 43, through rod 44, through ear 46, through the air gap, through ear 42.
  • The advantage of this concept is that the leakage lines from the plane of ears 39, 42 and 43, 46 is minimised due to effective distance increase between them by the cuts which converge toward the rods 40, 44.
  • 10. LINEAR POWER PAD
  • FIG. 10 shows an eighth version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size. The primary and secondary assemblies are made from magnetic material and copper windings. Each primary and secondary is made out of two windings 49, 52, 56, 59, two ferrite ears 47, 53, 54, 60, two ferrite rods 48, 51, 55, 58 and one center ferrite pad 50, 57.
  • Windings 49 and 52 have the polarity set that the magnetic field produced travels towards the center pad 50. For the primary side the center ferrite pad 50 becomes a magnetic field transmitter and the two outer ears 47 and 53 are the magnetic field return paths.
  • The desired magnetic field path from primary to secondary is: field is created by windings 49 and 52, travels from rods 48 and 51 through center pad 50, through the air gap, through center pad 57, it is split between rod 55 and rod 58, each split travels through ear 54 respectively ear 60, then through the air gap, an each split travels through return ears 47 respectively 53.
  • The advantage of this arrangement is that the air gap reluctance of the center pads 50, 57 is minimized due to the increase in the pads area. The total magnetic field is split between the windings 49, 52 and 56, 59. Unwanted Leakage field lines on the back side on the primary exist because of the structure primary symmetry.
  • 11. E-SHAPED POWER PAD
  • FIG. 11 shows a ninth version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size, but also can be combined with all the magnetic structures described here, and as a result will become non symmetrical primaries and secondaries.
  • The primary and the secondary assemblies are made of magnetic material and copper windings. The primary and secondary windings are split on three legs. The polarity of winding 65 is set that the magnetic field created is orientated towards center pad 64. Windings 62 and 66 have the polarity that the magnetic field enters the rod 63. The same winding polarity is se for the secondary side.
  • The desired path for the magnetic field is from center pad 64, through the air gap, through center pad 71, split into the rod 70, half of the magnetic field goes into ear 68, through the air gap, through ear 61, through rod 63, and the other half through ear 73, through the air gap, through ear 67 and through rod 63.
  • The advantage of this structure is that it minimizes the leakage lines between ears 61, 67 and between ears 68 and 73. Also splitting the winding into three separate sections makes the windings better shielded against the magnetic field lines. As a result, the AC impedance of the windings is reduced, resulting in a higher system efficiency.
  • A drawback of this assembly is that the center pad 64 has a low reluctance path to rod 63, and as a result creates unwanted leakage lines to rod 63.
  • 12. DELTA SHAPED POWER PAD
  • FIG. 12 shows a tenth version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size, but also can be combined with all the magnetic structures described here, and as a result will become non symmetrical primaries and secondaries. The structure can have also a C-shape connection between ears.
  • The primary and secondary are made of magnetic material and copper windings. The magnetic material is made up of magnetic ears 75, 78, 81, 83, 89, 86, and magnetic rods 76, 82, 79, 84, 87, 90.
  • There are three windings in the primary side 77, 92, 80 and three windings in the secondary side 85, 88, 91. The primary windings can be energized with 120 degree separation in phase.
  • At zero degree phase ears 86 and 78 will be the field return path and ears 75, 83, 81, 89 will be the transmission path. The path of the magnetic field at zero phase will be: from ear 78 will split to rod 76 and rod 79. From rod 76 will go to ear 75, through the air gap, through ear 83 through rod 84, through ear 86, through the air gap and back to ear 78. From rod 79 will go to ear 81, through the air gap, through ear 89, through rod 87, through ear 86, through the air gap and back to ear 78. At 120 degree phase ears 75 and 83 will be the field return path and ears 78, 81, 86, 89 will be the field transmission path. At 240 degree phase ears 81 and 89 will be the field return path and ears 78, 83, 86, 75 will be the field transmission path. This tri-phase system creates a rotational magnetic field between all ears.
  • The drawback of this assembly is that the symmetry of the primary creates unwanted leakage lines below the plane of the ears. Also the symmetry of the secondary creates unwanted leakage lines below the plane of the ears.
  • The windings can be arranged into multiple phases similar to the electric motors phases.
  • 13. Y-SHAPED POWER PAD
  • FIG. 13 shows an eleventh version of the invention. The magnetic structure comprises of two primary and secondary assemblies identical in shape and size, but also can be combined with all the magnetic structures described here, and as a result will become non symmetrical primaries and secondaries. The structure can have also a C-shape connection between ears
  • The primary and secondary are made of magnetic material and copper windings. The magnetic material is made up of magnetic ears 93, 96, 101, 102, 110, 105, and magnetic rods 94, 97, 100, 103, 106, 109.
  • There are three windings in the primary side 95, 98, 99 and three windings in the secondary side 107, 104, 108. The primary windings can be energized with 120 degree separation in phase.
  • At zero degree phase the magnetic field will travel from ear 96 through rod 97, through rod 94, through ear 93, through the air gap, through ear 102, through rod 103, through rod 106, through ear 105, through the air gap and back to ear 96. This tri-phase system creates a rotational magnetic field between all ears. At 120 degree phase the magnetic field will travel from ear 93 through rod 94, through rod 100, through ear 101, through the air gap, through ear 110, through rod 109, through rod 103, through ear 102, through the air gap and back to rod 93. At 240 degree phase the magnetic field will travel from ear 101 through rod 100, through rod 97, through ear 96, through the air gap, through the ear 105, through the rod 106, through the rod 109, and back to ear 110. This tri-phase system creates a rotational magnetic field between all ears.
  • The drawback of this assembly is that the symmetry of the primary creates unwanted leakage lines below the plane of the ears. Also the symmetry of the secondary creates unwanted leakage lines below the plane of the ears.
  • The windings can be arranged into multiple phases similar to the electric motors phases.
  • 14. SUMMARY
  • Thus, as seen from the foregoing description, one feature of the present invention is that the magnetic structures are configured to help minimize the air gap reluctance, improving the magnetic structure's coupling coefficient. Another feature is that reducing the windings AC impedance of a magnetic structure is produced by shielding the winding under ears formed of magnetic material. Still another feature is that leakage inductance of a magnetic structure is reduced, by making ears with cuts which converge toward the magnetic rods that are used in the formation of the structure.
  • REFERENCES
    • [1] Budhia, M.; Boys, J.; Covic, G.; Huang, C. “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems”, Industrial Electronics, IEEE Transactions on, Volume: PP, Issue: 99, Publication Year: 2011, Page(s): 1-1.
    • [2] Budhia, M.; Boys, J.; Covic, “Design and optimisation of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems”, Power Electronics, IEEE Transactions on, Volume: 26, Issue: 11. Publication Year: 2011, Page(s): 3096-3108.

Claims (6)

1. Novel magnetic structures configured to help minimize the air gap reluctance improving the magnetic structure's coupling coefficient.
2. A method of reducing the windings AC impedance of a magnetic structure comprising shielding the winding under the ears formed of magnetic material.
3. A method of reducing the leakage inductance of a magnetic structure by making ears with cuts which converge towards the rods, that are used in the formation of the structure.
4. A method of combining the described magnetic structures with different shapes for the primary and the secondary, and as a result becoming non symmetrical structures.
5. A Tri-phase large air gap magnetic structure.
6. A Multiple-phase large air gap magnetic structure.
US13/887,345 2012-05-04 2013-05-05 Magnetic Structure for Large Air Gap Abandoned US20130314188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/887,345 US20130314188A1 (en) 2012-05-04 2013-05-05 Magnetic Structure for Large Air Gap
US16/778,738 US11756726B2 (en) 2012-05-04 2020-01-31 Magnetic structures for large air gap

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261642764P 2012-05-04 2012-05-04
US13/887,345 US20130314188A1 (en) 2012-05-04 2013-05-05 Magnetic Structure for Large Air Gap

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/778,738 Division US11756726B2 (en) 2012-05-04 2020-01-31 Magnetic structures for large air gap

Publications (1)

Publication Number Publication Date
US20130314188A1 true US20130314188A1 (en) 2013-11-28

Family

ID=48470887

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/887,345 Abandoned US20130314188A1 (en) 2012-05-04 2013-05-05 Magnetic Structure for Large Air Gap
US16/778,738 Active US11756726B2 (en) 2012-05-04 2020-01-31 Magnetic structures for large air gap

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/778,738 Active US11756726B2 (en) 2012-05-04 2020-01-31 Magnetic structures for large air gap

Country Status (2)

Country Link
US (2) US20130314188A1 (en)
EP (2) EP3226266B8 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123486A1 (en) * 2012-05-21 2015-05-07 Technova Inc. Contactless power transfer transformer for moving body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223647B (en) * 2020-03-05 2021-06-29 抚州市双菱磁性材料有限公司 High-frequency transformer magnetic core structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266121A (en) * 1996-03-29 1997-10-07 Matsushita Electric Ind Co Ltd Non-contact type power supply
US20010038280A1 (en) * 2000-04-27 2001-11-08 Jyunichi Aizawa Non-contact signal transmission apparatus
JP2002199598A (en) * 2000-12-27 2002-07-12 Toko Inc Contactless battery charger
JP2004119748A (en) * 2002-09-27 2004-04-15 Aichi Electric Co Ltd Iron core structure for contactless power supply apparatus
JP2004126750A (en) * 2002-09-30 2004-04-22 Toppan Forms Co Ltd Information write/read device, antenna and rf-id medium
US20080296983A1 (en) * 2005-12-16 2008-12-04 Watson Douglas C Ci-core actuator for long travel in a transverse direction

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876451A (en) * 1932-09-06 r gurtler
FR2448722A1 (en) 1979-02-09 1980-09-05 Enertec METHODS AND APPARATUSES FOR PERIODIC WAVEFORM ANALYSIS
DE69210458T2 (en) 1991-01-30 1996-09-05 Boeing Co Bus coupler in current mode with flat coils and shields
US5467718A (en) * 1992-07-20 1995-11-21 Daifuku Co., Ltd. Magnetic levitation transport system with non-contact inductive power supply and battery charging
EP0727105B1 (en) * 1993-10-21 2003-03-12 Auckland Uniservices Limited Inductive power pick-up coils
JP3476831B2 (en) * 1995-06-30 2003-12-10 日立金属株式会社 Magnetic core
JP3518161B2 (en) * 1996-05-02 2004-04-12 株式会社ダイフク Data communication device
JP3482772B2 (en) * 1996-07-03 2004-01-06 株式会社豊田自動織機 Pickup coil unit for non-contact power supply
US5956073A (en) * 1996-12-19 1999-09-21 Lucent Technologies Inc. Noise-limiting transformer apparatus and method for making
JP3837834B2 (en) * 1997-06-05 2006-10-25 神鋼電機株式会社 Non-contact power feeding device
US6273022B1 (en) * 1998-03-14 2001-08-14 Applied Materials, Inc. Distributed inductively-coupled plasma source
DE19856937A1 (en) * 1998-12-10 2000-06-21 Juergen Meins Arrangement for the contactless inductive transmission of energy
US7126450B2 (en) 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
AU6341200A (en) * 1999-07-02 2001-01-22 Magnemotion, Inc. System for inductive transfer of power, communication and position sensing to a guideway-operated vehicle
AU6788600A (en) 1999-08-27 2001-03-26 Illumagraphics, Llc Induction electroluminescent lamp
JP2001076598A (en) 1999-09-03 2001-03-23 Omron Corp Detecting coil and proximity switch using it
JP2002134340A (en) * 2000-10-20 2002-05-10 Shinko Electric Co Ltd Non-contact power supply transformer
US7218196B2 (en) 2001-02-14 2007-05-15 Fdk Corporation Noncontact coupler
DE10112892B4 (en) 2001-03-15 2007-12-13 Paul Vahle Gmbh & Co. Kg Device for transmitting data within a system for non-contact inductive energy transmission
GB0210886D0 (en) 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
AU2004241916A1 (en) 2003-05-23 2004-12-02 Auckland Uniservices Limited Frequency controlled resonant converter
US7170203B2 (en) * 2004-05-06 2007-01-30 The Hong Kong Polytechnic University Two-dimensional variable reluctance planar motor
JP4209437B2 (en) * 2006-11-10 2009-01-14 三菱重工業株式会社 Non-contact power feeding device for mobile body and protection device therefor
CA2687060C (en) 2007-05-10 2019-01-22 Auckland Uniservices Limited Multi power sourced electric vehicle
JP5118394B2 (en) 2007-06-20 2013-01-16 パナソニック株式会社 Non-contact power transmission equipment
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
JP5363719B2 (en) 2007-11-12 2013-12-11 リコーエレメックス株式会社 Non-contact transmission device and core
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
GB2458476A (en) 2008-03-19 2009-09-23 Rolls Royce Plc Inductive electrical coupler for submerged power generation apparatus
JP5255881B2 (en) * 2008-03-28 2013-08-07 パナソニック株式会社 Non-contact power feeding device
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
WO2010090538A1 (en) 2009-02-05 2010-08-12 Auckland Uniservices Limited Inductive power transfer apparatus
JP6230776B2 (en) * 2009-02-05 2017-11-15 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Inductive power transmission device
DE102009013103B4 (en) * 2009-03-03 2012-08-02 Sew-Eurodrive Gmbh & Co. Kg Plant with vehicles movable over the ground
JP2011142177A (en) 2010-01-06 2011-07-21 Kobe Steel Ltd Contactless power transmission device, and coil unit for contactless power transmission device
CN102906832B (en) 2010-05-28 2017-06-09 皇家飞利浦电子股份有限公司 For the transmitter module used in Modular electrical force transmission system
KR101134625B1 (en) 2010-07-16 2012-04-09 주식회사 한림포스텍 Core assembly for wireless power transmission, power supplying apparatus for wireless power transmission having the same, and method for manufacturing core assembly for wireless power transmission
US20130270921A1 (en) * 2010-08-05 2013-10-17 Auckland Uniservices Limited Inductive power transfer apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266121A (en) * 1996-03-29 1997-10-07 Matsushita Electric Ind Co Ltd Non-contact type power supply
US20010038280A1 (en) * 2000-04-27 2001-11-08 Jyunichi Aizawa Non-contact signal transmission apparatus
JP2002199598A (en) * 2000-12-27 2002-07-12 Toko Inc Contactless battery charger
JP2004119748A (en) * 2002-09-27 2004-04-15 Aichi Electric Co Ltd Iron core structure for contactless power supply apparatus
JP2004126750A (en) * 2002-09-30 2004-04-22 Toppan Forms Co Ltd Information write/read device, antenna and rf-id medium
US20080296983A1 (en) * 2005-12-16 2008-12-04 Watson Douglas C Ci-core actuator for long travel in a transverse direction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123486A1 (en) * 2012-05-21 2015-05-07 Technova Inc. Contactless power transfer transformer for moving body
US9793045B2 (en) * 2012-05-21 2017-10-17 Technova Inc. Contactless power transfer transformer for moving body

Also Published As

Publication number Publication date
US20200243255A1 (en) 2020-07-30
US11756726B2 (en) 2023-09-12
EP2682959A3 (en) 2014-05-21
EP3226266B8 (en) 2019-03-06
EP2682959A2 (en) 2014-01-08
EP3226266B1 (en) 2018-12-12
EP3226266A1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
CN101661825B (en) Power converter magnetic devices
US11756726B2 (en) Magnetic structures for large air gap
US20150170828A1 (en) Three-phase reactor
CA2981778C (en) Ground-side coil unit
EP2660834B1 (en) Magnetic structures for large air gap
EP2698799B1 (en) Magnetic configuration for High Efficiency Power Processing
US9251941B2 (en) Transformer
CN208478093U (en) The transformer of winding construction
KR101595774B1 (en) Composite Coil Module for Transmitting Wireless Power
JP5923908B2 (en) Reactor
US10325719B2 (en) Magnetically permeable core and an inductive power transfer coil arrangement
Zhong et al. Study on the effect of ferrite layers in a wireless charging system with automotive chassis
EP4002644A1 (en) Inductive power transfer with reduced electromagnetic interactions within a conductor arrangement
Sato et al. Effectiveness of Magnetic Composite Material on Copper Loss Reductions and Misalignment in Copper‐Plate‐Coils for Wireless Power Transmission
CN105826048B (en) A kind of trapezoid cross section detachable Transformer
CN202930162U (en) High-leakage reactance transformer
US10840004B2 (en) Reducing reluctance in magnetic devices
CN215988364U (en) Ultra-wideband compact transformer
CN210606932U (en) Novel low-frequency transformer structure
CN207883465U (en) A kind of electrical transformer cores structure
US10269486B2 (en) Magnetically permeable core and inductive power transfer coil arrangement

Legal Events

Date Code Title Description
AS Assignment

Owner name: DET INTERNATIONAL HOLDING LIMITED, CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JITARU, IONEL;DAVILA, MARCO ANTONIO;SAVU, ANDREI;AND OTHERS;SIGNING DATES FROM 20130808 TO 20130809;REEL/FRAME:030998/0921

AS Assignment

Owner name: DELTA ELECTRONICS (THAILAND) PUBLIC CO., LTD., THA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DET INTERNATIONAL HOLDING LIMITED;REEL/FRAME:048585/0802

Effective date: 20190121

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION