US20130101723A1 - Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms - Google Patents

Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms Download PDF

Info

Publication number
US20130101723A1
US20130101723A1 US13/504,148 US201013504148A US2013101723A1 US 20130101723 A1 US20130101723 A1 US 20130101723A1 US 201013504148 A US201013504148 A US 201013504148A US 2013101723 A1 US2013101723 A1 US 2013101723A1
Authority
US
United States
Prior art keywords
oil
seeds
instance
pufa
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/504,148
Inventor
Daniel Verkoeijen
Kristian Zuur
Hendrik Louis Bijl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Priority to US13/504,148 priority Critical patent/US20130101723A1/en
Assigned to DSM IP ASSETS B.V. reassignment DSM IP ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VERKOEIJEN, DANIEL, ZUUR, KRISTIAN, BIJL, HENDRIK LOUIS
Publication of US20130101723A1 publication Critical patent/US20130101723A1/en
Assigned to DSM IP ASSETS B.V. reassignment DSM IP ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERKOEIJEN, DANIEL, BIJL, HENDRIK LOUIS, ZUUR, KRISTIAN
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/003Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to a process for obtaining a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA) or an oil comprising a LC-PUFA from seeds.
  • the invention further relates to a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), and uses thereof.
  • Seeds are known sources of polyunsaturated fatty acids having 18 carbon atoms such as linoleic acid and gamma linolenic acid. It is also known that plants can be genetically modified such that the seeds contain LC-PUFAs. This is for instance disclosed in WO2008009600.
  • the present inventors realized that recovery of the LC-PUFA or oil containing the LC-PUFA according to WO2008009600 results in oil of insufficient quality.
  • the inventors realized that the quality of the LC-PUFA and oil comprising the LC-PUFA is of particular concern, since LC-PUFAs are highly sensitive to oxidation. Such sensitivity to oxidation is found to increase further with increasing number of double bonds of the LC-PUFA and/or increasing content of LC-PUFAs.
  • LC-PUFA polyunsaturated fatty acid having at least 20 carbon atoms
  • LC-PUFA polyunsaturated fatty acid having at least 20 carbon atoms
  • a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), which oil has
  • the invention provides a process for obtaining a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA) or an oil comprising a LC-PUFA from seeds, said process comprising
  • the invention provides an oil obtainable by the process according to the second aspect.
  • the seeds may be any seeds containing a LC-PUFA and may be the seed of any suitable plant.
  • the seeds are the seeds of a transgenic plant. Suitable plants and seeds are for instance described in WO 2005/083093, WO 2008/009600, and WO 2009/130291, the contents of which are hereby incorporated by reference. Other plants and seeds that can be used in the invention are for instance disclosed in WO 2008/100545, WO 2008/124806, WO 2008/124048, WO 2008/128240, WO 2004/071467, WO 2005/059130, the contents of which are hereby incorporated by reference.
  • the seeds may be (transgene) soybeans or (transgene) canola seeds.
  • the plant may be a (transgene) soybean plant or a (transgene) canola plant.
  • the seeds are of a (transgenic) plant of the family Brassicaceae, for instance the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabidopsis , for example the genera and species Brassica alba, Brassica carinata, Brassica hirta, Brassica napus, Brassica rapa ssp., Sinapis arvensis, Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolla, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis, Brassica oleracea or Arabidopsis thaliana.
  • a (transgenic) plant of the family Brassicaceae for instance the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabidopsis , for example the genera and species Brassica alba, Brassica carinata,
  • the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • less than 12% of the seeds are total damaged seeds, preferably less than 8%, preferably less than 5%, preferably less than 3% of the seeds are total damaged seeds.
  • less than 6% of the seeds are distinctly green seeds, preferably less than 4%, preferably less than 2%, preferably less than 1% of the seeds are distinctly green seeds.
  • less than 0.5% of the seeds are heated seeds, preferably less than 0.3%, preferably less than 0.1%, preferably less than 0.05% of the seeds are heated seeds.
  • less than 8% of the seeds are total damaged seeds, less than 4% of the seeds are distinctly green seeds, and less than 0.3% of the seeds are heated seeds. In another preferred embodiment, less than 5% of the seeds are total damaged seeds, less than 2% of the seeds are distinctly green seeds, and less than 0.1% of the seeds are heated seeds. In another preferred embodiment, less than 3% of the seeds are total damaged seeds, less than 1% of the seeds are distinctly green seeds, and less than 0.05% the seeds are heated seeds.
  • Seeds having the preferred percentages of total damaged seeds, distinctly green seeds and/or heated seeds can be obtained by appropriate selection of the seeds after harvest.
  • the invention provides seeds comprising an LC-PUFA, and which have percentages of total damaged seeds, distinctly green seeds and/or heated seeds as disclosed hereinabove.
  • the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of an LC-PUFA (for instance an LC-PUFA as described hereinbelow, with respect to the total fatty acids in the seeds.
  • an LC-PUFA for instance an LC-PUFA as described hereinbelow
  • the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of an ⁇ -6 LC-PUFA, with respect to the total fatty acids in the seeds.
  • the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of ARA, with respect to the total fatty acids in the seeds.
  • the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of an ⁇ -3 LC-PUFA, with respect to the total fatty acids in the seeds.
  • the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of DHA, with respect to the total fatty acids in the seeds.
  • the seeds comprise less than 2 wt. % of erucic acid, preferably less than 1 wt. %, preferably less than 0.5 wt. % based on the total fatty acids in the seeds.
  • the process comprises drying the seeds. It is found that decreasing the drying temperature improves the quality of the LC-PUFA or oil containing the LC-PUFA.
  • the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • the process according to the invention comprises drying the seeds at a temperature of below 40° C., preferably below 35° C., more preferably below 30° C., more preferably below 25° C.
  • the drying temperatures refer to the temperature of the product in the dryer.
  • the drying temperature refers to the temperature of the bed. if It is found that decreasing the temperatures to below the preferred upper limits improves the quality of the oil and/or the LC-PUFA.
  • the drying may be by any suitable method.
  • the drying may be by natural air drying.
  • a dryer is used which prevents or minimizes the formation of hot spots.
  • drying is effected using a fluid bed dryer.
  • conditioned air is used, preferably having a dew point of ⁇ 15° C., preferably ⁇ 10° C., preferably ⁇ 5° C. This further improves the quality of the oil.
  • the seeds Prior to drying the seeds may have a moisture content of for instance 10 to 25 wt. %, such as 15 to 25 wt. %.
  • the process according to the invention may comprise drying the seeds, resulting a moisture content of less than 15 wt. %, for instance less than 12 wt. %, for instance less than 10 wt. %, for instance less 9.5 wt. %, for instance above 6 wt. %, for instance above 7 wt. %, for instance above 8 wt. %.
  • the moisture content may for instance be between 6 and 15 wt. %, for instance between 7 and 12 wt. %, for instance between 8 and 10 wt. %.
  • Obtaining seeds having a moisture content between the above-mentioned ranges improves the quality of the oil and/or LC-PUFA.
  • the moisture content is calculated on a wet weight basis, i.e. on the basis of the total weight of the seeds, (including dry matter, lipids, and moisture). It and can be determined by the skilled person.
  • the invention provides seeds comprising a LC-PUFA, which have a moisture content of less than 15 wt. %, for instance less than 12 wt. %, for instance less than 10 wt. %, for instance less 9.5 wt. %, for instance above 6 wt. %, for instance above 7 wt. %, for instance above 8 wt. %.
  • the moisture content may for instance be between 6 and 15 wt. %, for instance between 7 and 12 wt. %, for instance between 8 and 10 wt. %.
  • the seeds have a percentage of total damaged seeds, distinctly green seeds and/or heated seeds as disclosed hereinabove.
  • the seeds are obtainable by the drying process as disclosed hereinabove.
  • the process comprises drying seeds having the preferred values for the total damaged seeds, distinctly green seeds as mentioned hereinabove.
  • the seeds may be stored. It is found that a decrease of the storage temperature improves the quality of the LC-PUFA and/or oil containing the LC-PUFA.
  • the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • the process comprising storing the seeds at a temperature of below 10° C., preferably below 5° C., preferably below 0° C., preferably below minus 5° C., preferably below minus 10° C.
  • the process may comprise storing the seeds at a temperature of above minus 30° C.
  • seeds are stored having a moisture content of less than 15 wt. %, for instance less than 12 wt. %, for instance less than 10 wt. %, for instance less 9.5 wt. %, for instance above 6 wt. %, for instance above 7 wt. %, for instance above 8 wt. %.
  • the moisture content may for instance be between 6 and 15 wt. %, for instance between 7 and 12 wt. %, for instance between 8 and 10 wt. %.
  • Obtaining seeds having a moisture content between the abovementioned ranges improves the quality of the oil and/or LC-PUFA.
  • the moisture content is calculated on a wet weight basis, i.e. on the basis of the total weight of the seeds (including dry matter, lipids, and moisture). It and can be determined by the skilled person.
  • the preferred moisture contents can be obtained by drying the seeds as described hereinabove.
  • the invention provides a process for storing seeds comprising a LC-PUFA, which process comprises storing the storing the seeds at a temperature of below 10° C., preferably below 5° C., preferably below 0° C., preferably below minus 5° C., preferably below minus 10° C. There is no specific lower limit for the storage temperature.
  • the process may comprise storing the seeds at a temperature above minus 30° C.
  • the process comprises storing seeds have a moisture content as disclosed hereinabove.
  • the process comprises storing seeds having a percentage of total damaged seeds, distinctly green seeds and/or heated seeds as disclosed hereinabove.
  • the process comprises storing seeds obtainable by the drying process as disclosed hereinabove.
  • the seeds may be stored for any suitable period.
  • the seeds may for instance be stored for at least 1 day, for instance at least 1 week, for instance at least 2 weeks, for instance at least 1 months, for instance at least 3 months. There is no specific upper limit for the storage period.
  • the seeds may for instance be stored for less than 12 months, for instance less than 6 months.
  • the process may comprising crushing or flaking, of the seeds, This may facilitate recovery of the LC-PUFA or oil containing the LC-PUFA.
  • the process comprises heating the seeds, for instance at a temperature above 60° C.
  • the process according to the invention may comprise heating the seeds at a relatively low temperature.
  • the process may for instance comprise heating the seeds at a temperature between 50 and 90° C., for instance between 60 and 80° C., preferably for a period of between 2 to 60 minutes, preferably between 5 to 30 minutes. If an increased temperature is selected, the duration of the heating is preferably decreased.
  • the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • the process according to the invention may comprise heating the seeds at a high rate.
  • the process may for instance comprise heating the seeds, whereby the temperature passes from 40 to 70° C. in less than 1 minute, preferably less than 30 seconds, preferably less than 20 seconds.
  • the process may for instance comprise heating the seeds, whereby the temperature passes from 40 to 100° C. in less than 1 minute, preferably less than 30 seconds, preferably less than 20 seconds.
  • the process according to the invention may comprises heating the seeds using superheated steam.
  • the process according to the invention may for instance comprise contacting the seeds with superheated steam.
  • the process according to the invention comprises heating the seeds at a relatively high temperature, e.g. between 120 and 160° C. for a relatively short period.
  • the process may for instance comprise maintaining the seeds at a temperature above 120° C., for instance below 160° C., for a period of less than 8 minutes, for instance less than 5 minutes, for instance less than 3 minutes, for instance less than 2 minutes. Maintaining the seeds at a temperature between 120, for instance below and 160° C. may be for a period of at least 5 seconds, preferably at least 10 seconds.
  • the seeds are cooled at a relatively high rate.
  • the temperature of the seeds is decreased from the maximum temperature to a temperature of 40° C. in less than 60 minutes, preferably less than 30 minutes, preferably less than 15 minutes.
  • the protocols may be used separately or in combination.
  • the heating at a high rate may be combined with maintaining the seeds at a preferred temperature for a relatively short period and/or with a rapid cooling rate.
  • the heating is not limited to a specific stage of the process.
  • the heating may be effected prior to or after any comminuting (e.g. crushing or flaking) of the seeds.
  • the invention provides a process for heating seeds comprising a LC-PUFA, whereby the seeds are heated as disclosed hereinabove.
  • Pressing the seeds such as to expell a fraction of oil may be performed using methods known in the art.
  • a screw press may be used.
  • the invention comprises pressing the seeds to expell oil using a press, for instance a screw press, which is cooled.
  • the process according to the invention may comprise extracting oil from the seeds with a solvent.
  • a solvent Any suitable solvent may be used, for instance a C 1-10 alkyl ester (e.g. ethyl or butyl acetate), toluene, a C 1-3 alcohol (e.g. methanol, propanol), a C 3-6 alkanes (e.g. hexane) or a supercritical fluid (e.g. liquid CO 2 or supercritical propane).
  • the solvent is a non-polar solvent, for instance a C 3 -C 8 alkane (preferably hexane) or a supercritical fluid (preferably supercritical CO 2 or supercritical propane). Extracting the oil with a non-polar solvent has the advantage that an oil with an increased triglyceride content is obtained.
  • the weight ratio solvent: seeds is at least 3:1, preferably at least 5:1. This enables a more complete extraction of the oil, thereby contributing to the safety of the spent cake resulting after extraction of the oil from the seeds.
  • the process according to the invention comprises pressing the seeds to expell the oil, resulting in pressed oil and a press cake, and obtaining oil from the press cake by solvent extraction.
  • Purifying of the oil may comprise degumming, refining, bleaching and/or deodorizing. These are known steps, and can be carried out by the skilled person.
  • deodorizing is effected at a temperature below 200° C., preferably below 190° C., preferably below 185° C. Decreasing the deodorization temperature to below the preferred values improves the quality of the oil.
  • the invention provides a process for purifying a vegetable oil comprising an LC-PUFA, said process comprising deodorizing the oil at a temperature of below 200° C., preferably below 190° C., preferably below 185° C.
  • the oil according to the invention is a crude oil
  • the invention provides a process for obtaining a purified vegetable oil comprising an LC-PUFA, said process comprising purifying the crude oil.
  • the invention is not limited to a specific LC-PUFA.
  • the LC-PUFA has at least three double bonds.
  • the LC-PUFA has at least four double bonds. The benefits are even more pronounced for LC-PUFAs having an increasing number of double bonds, as the sensitivity to oxidation increases with increasing number of double bonds.
  • the LC-PUFA may be an ⁇ -3 LC-PUFA or an ⁇ -6 LC-PUFA
  • LC-PUFAs include for instance:
  • DGLA dihomo- ⁇ -linolenic acid
  • arachidonic acid (ARA, 20:4 ⁇ -6)
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • Preferred LC-PUFAs include arachidonic acid (ARA) and docosahexaenoic acid (DHA).
  • ARA arachidonic acid
  • DHA docosahexaenoic acid
  • ARA is preferred.
  • the vegetable oil may be any vegetable oil containing a LC-PUFA.
  • the vegetable oil may be obtained from a plant, for instance a transgenic plant, or seeds of a (transgenic) plant. Examples of plants are disclosed hereinabove.
  • the invention provides a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), which oil has at least one of the following characteristics
  • the vegetable oil according to the invention has an anisidine value (AnV) of less than 25.
  • the oil according to the invention has an AnV ⁇ 20, preferably ⁇ 15, preferably ⁇ 10, preferably ⁇ 5, preferably ⁇ 3, preferably ⁇ 2.
  • the vegetable oil may for instance have an AnV >0.1, for instance >0.5, for instance >1.
  • the AnV may be measured according to AOCS Cd-18-90.
  • the vegetable oil according to the invention has a peroxide value (POV) of less than 10.
  • POV peroxide value
  • the oil according to the invention has a POV ⁇ 5, preferably ⁇ 2, preferably ⁇ 1.5, preferably ⁇ 1, preferably ⁇ 0.5.
  • the vegetable oil may for instance have a POV >0.1, for instance >0.2.
  • the POV may be measured according to AOCS Cd-8-53.
  • the unit (for POV) is usually meq/kg.
  • the vegetable oil according to the invention has a triglyceride content of greater than 85%.
  • the oil according to the invention has a triglyceride content >90%, for instance >91%, for instance >93%, for instance >95%, for instance >96%, for instance >97%.
  • the oil according to the invention may for instance have a triglyceride content ⁇ 99%, for instance ⁇ 98%.
  • the triglyceride content may be measured using NMR.
  • the vegetable oil according to the invention has a diglyceride content or less than 8%.
  • the oil according to the invention has a diglyceride content ⁇ 5%, preferably ⁇ 3%, preferably ⁇ 2%, preferably ⁇ 1%.
  • the oil according to the invention may for instance have a diglyceride content >0.1%, for instance >0.2%, for instance >0.5%.
  • the diglyceride content may be determined using NMR.
  • the vegetable oil according to the invention has a free fatty acid content of less than 5%.
  • the oil according to the invention has a free fatty acid content ⁇ 3%, preferably ⁇ 2%, preferably ⁇ 1%, preferably ⁇ 0.5%, preferably ⁇ 0.2%, preferably ⁇ 0.1%.
  • the oil according to the invention may for instance have a free fatty acid content >0.01%, for instance >0.02%.
  • the free fatty acid content may be determined using AOCS Ca 5a-40.
  • the vegetable oil according to the invention has a sterol content of less than 3%.
  • the oil according to the invention has a sterol content of preferably ⁇ 2%, preferably ⁇ 1.5%, preferably ⁇ 1%, preferably ⁇ 0.8%, preferably ⁇ 0.5%.
  • the oil according to the invention may for instance have a sterol content >0.1%, for instance >0.2%.
  • the sterol content refers to the total sterol content, including free sterols and sterol esters. The sterol content may be measured using NMR.
  • the vegetable oil according to the invention has a phytosterol content of less than 3%.
  • the oil according to the invention has a phytosterol content ⁇ 2%, preferably ⁇ 1.5%, preferably ⁇ 1%, preferably ⁇ 0.8%, preferably ⁇ 0.6%, preferably ⁇ 0.5%.
  • the oil according to the invention may for instance comprise phytosterol, and may for instance have a phytosterol content >0.05%, for instance >0.1%, for instance >0.2%.
  • the phytosterol content refers to the total phytosterol content, including free phytosterol and phytosterol esters.
  • the phytosterol content may be determined using NMR.
  • the vegetable oil according to the invention has an Oil Stability Index (OSI) of greater than 5 hours at 80° C.
  • OSI Oil Stability Index
  • the oil according to the invention has an OSI >8 hours at 80° C., preferably >10 hours at 80° C., preferably >15 hours at 80° C., preferably >20 hours at 80° C., for instance ⁇ 50 hours at 80° C., for instance ⁇ 30 hours at 80° C., for instance ⁇ 25 hours at 80° C.
  • the OSI may be measured according to AOCS Cd 12b-92.
  • the vegetable oil according to the invention may comprise an LC-PUFA at any concentration.
  • the oil comprises a LC-PUFA, for instance an LC-HUFA, at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %.
  • the oil may for instance comprise a LC-PUFA, for instance an LC-HUFA, at a concentration of ⁇ 50 wt. %, for instance ⁇ 40 wt. %, for instance ⁇ 25 wt. %, for instance ⁇ 22 wt. % with respect to the total fatty acids in the oil.
  • the oil comprises a LC-PUFA selected from the group consisting of dihomo- ⁇ -linolenic acid (DGLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA, 22:5 ⁇ -3, or DPA 22:5, ⁇ -6) and docosahexaenoic acid (DHA) at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt.
  • DGLA dihomo- ⁇ -linolenic acid
  • ARA arachidonic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • the oil may for instance comprise a LC-PUFA selected from the group consisting of dihomo- ⁇ -linolenic acid (DGLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA, 22:5 ⁇ -3, or DPA 22:5, ⁇ -6) and docosahexaenoic acid (DHA), at a concentration of ⁇ 50 wt. %, for instance ⁇ 40 wt. %, for instance ⁇ 25 wt. %, for instance ⁇ 22 wt. % with respect to the total fatty acids in the oil.
  • DGLA dihomo- ⁇ -linolenic acid
  • ARA arachidonic acid
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic acid
  • DHA docosahexaenoic acid
  • the oil comprises arachidonic acid (ARA) at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %.
  • the oil may for instance comprise arachidonic acid (ARA) at a concentration of ⁇ 50 wt. %, for instance ⁇ 40 wt. %, for instance ⁇ 25 wt. %, for instance ⁇ 22 wt. % with respect to the total fatty acids in the oil.
  • ARA arachidonic acid
  • the oil comprises docosahexaenoic acid (DHA) at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %.
  • the oil may for instance docosahexaenoic acid (DHA), at a concentration of ⁇ 50 wt. %, for instance ⁇ 40 wt. %, for instance ⁇ 25 wt. %, for instance ⁇ 22 wt. % with respect to the total fatty acids in the oil.
  • DHA docosahexaenoic acid
  • the sum concentration of PUFAs having at least 3 double bonds is at least 20 wt. % with respect to the total fatty acids in the oil, for instance at least 30 wt. %, for instance at least 35 wt. %, for instance at least 40 wt. %.
  • the sum concentration of PUFAs having at least 3 double bonds may for instance be less than 90 wt. %, for instance less than 80 wt. %, for instance less than 70 wt. %, for instance less than 60 wt. %.
  • Seeds containing 19% Arachidonic acid are obtained from transgenic Brassica plants that are transformed using the procedures described in WO2008009600.
  • the seeds have the following specifications (determined in accordance with the Official Grain Grading Guide, 2001 of the Canadian Grain Commission): distinctly green ⁇ 2%, total damaged ⁇ 5%.
  • the seeds having a moisture content of 17 wt. %, are dried using a fluid bed drier.
  • the bed temperature is 28° C.
  • Conditioned air is used having a dew point of 10° C.
  • the dried seeds have a moisture content of 8.5 wt. %.
  • the dried seeds Prior to further processing the dried seeds are stored at a temperature of minus 20° C.
  • the flakes are subsequently heated to reach a temperature of 130° C. in 20 seconds using superheated steam.
  • the flakes are maintained at this temperature for 1 minute, and cooled to 40° C. in 30 minutes.
  • the flakes are fed to a cooled expeller to obtain a pressed oil.
  • the hexane is evaporated, yielding a hexane-extracted oil.
  • the pressed oil and hexane-extracted oil are combined resulting in a crude oil.
  • the crude oil is purified using degumming (acid treatment), alkali purifying (neutralization), and bleaching using standard techniques. After bleaching the oil is steam deodorized under vacuum at a temperature of 180° C.
  • Seeds as described in example 1 are treated as follows to recover the oil.
  • the seeds having a moisture content of 17 wt. % are dried using a vertical open-flame grain dryer at a temperature of 70° C. resulting in a moisture content of 8.5 wt. %. Prior to further processing the dried seeds are stored at ambient temperature.
  • the flakes are fed to an expeller to obtain a pressed oil.
  • the hexane is evaporated, yielding a hexane-extracted oil.
  • the pressed oil and hexane-extracted oil are combined resulting in a crude oil.
  • the crude oil is purified using degumming (acid treatment), alkali purifying (neutralization), and bleaching using standard techniques. After bleaching the oil is steam deodorized under vacuum at a temperature of 180° C.

Abstract

The present invention describes a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), which oil has (a) an anisidine value (AnV) of less than 25; (b) a peroxide value (POV) of less than 10; (c) a triglyceride content of greater than 90%; and/or (d) an Oil Stability Index (OSI) of greater than 5 hours at 80° C.

Description

  • The invention relates to a process for obtaining a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA) or an oil comprising a LC-PUFA from seeds. The invention further relates to a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), and uses thereof.
  • Seeds are known sources of polyunsaturated fatty acids having 18 carbon atoms such as linoleic acid and gamma linolenic acid. It is also known that plants can be genetically modified such that the seeds contain LC-PUFAs. This is for instance disclosed in WO2008009600.
  • The present inventors realized that recovery of the LC-PUFA or oil containing the LC-PUFA according to WO2008009600 results in oil of insufficient quality.
  • The inventors realized that the quality of the LC-PUFA and oil comprising the LC-PUFA is of particular concern, since LC-PUFAs are highly sensitive to oxidation. Such sensitivity to oxidation is found to increase further with increasing number of double bonds of the LC-PUFA and/or increasing content of LC-PUFAs.
  • It is an object of the invention to provide a process for obtaining a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA) or an oil comprising a LC-PUFA from seeds, wherein the LC-PUFA or the oil containing the LC-PUFA has an improved quality.
  • It is a further object of the invention to provide a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), wherein the oil has an improved quality.
  • According to a first aspect of the invention, there is provided a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), which oil has
  • (a) an anisidine value (AnV) of less than 25;
  • (b) a peroxide value (POV) of less than 10;
  • (c) a triglyceride content of greater than 90%;
  • (d) an Oil Stability Index (OSI) of greater than 5 hours at 80° C.
  • (e) a diglyceride content of less than 8%;
  • (f) a free fatty acid content of less than 5%;
  • (g) a sterol content of less than 3%; and/or
  • (h) a phytosterol content of less than 3%;
  • In a second aspect, the invention provides a process for obtaining a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA) or an oil comprising a LC-PUFA from seeds, said process comprising
    • (A)
      • (i) providing seeds comprising a LC-PUFA and/or an oil comprising a LC-PUFA; and/or
      • (ii) drying the seeds; and/or
      • (iii) storing the seeds; and/or
      • (iv) grinding and/or flaking the seeds; and/or
      • (v) heating the seeds; and/or
      • (vi) pressing the seeds such as to expell a fraction of oil
      • And,
    • (B) obtaining the LC-PUFA or oil comprising the LC-PUFA from the seeds, optionally by extraction with a solvent.
  • In a third aspect, the invention provides an oil obtainable by the process according to the second aspect.
  • (i) Plants and Seeds Comprising a LC-PUFA and/or an Oil Comprising a LC-PUFA
  • The seeds may be any seeds containing a LC-PUFA and may be the seed of any suitable plant. Preferably, the seeds are the seeds of a transgenic plant. Suitable plants and seeds are for instance described in WO 2005/083093, WO 2008/009600, and WO 2009/130291, the contents of which are hereby incorporated by reference. Other plants and seeds that can be used in the invention are for instance disclosed in WO 2008/100545, WO 2008/124806, WO 2008/124048, WO 2008/128240, WO 2004/071467, WO 2005/059130, the contents of which are hereby incorporated by reference. The seeds may be (transgene) soybeans or (transgene) canola seeds. The plant may be a (transgene) soybean plant or a (transgene) canola plant.
  • In a preferred embodiment, the seeds are of a (transgenic) plant of the family Brassicaceae, for instance the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabidopsis, for example the genera and species Brassica alba, Brassica carinata, Brassica hirta, Brassica napus, Brassica rapa ssp., Sinapis arvensis, Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolla, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis, Brassica oleracea or Arabidopsis thaliana.
  • It is found that a keeping the keeping the percentage of damaged seeds low, improves the quality of the LC-PUFA or oil containing the LC-PUFA. The (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • Preferably, less than 12% of the seeds are total damaged seeds, preferably less than 8%, preferably less than 5%, preferably less than 3% of the seeds are total damaged seeds.
  • Preferably, less than 6% of the seeds are distinctly green seeds, preferably less than 4%, preferably less than 2%, preferably less than 1% of the seeds are distinctly green seeds.
  • Preferably, less than 0.5% of the seeds are heated seeds, preferably less than 0.3%, preferably less than 0.1%, preferably less than 0.05% of the seeds are heated seeds.
  • In a preferred embodiment, less than 8% of the seeds are total damaged seeds, less than 4% of the seeds are distinctly green seeds, and less than 0.3% of the seeds are heated seeds. In another preferred embodiment, less than 5% of the seeds are total damaged seeds, less than 2% of the seeds are distinctly green seeds, and less than 0.1% of the seeds are heated seeds. In another preferred embodiment, less than 3% of the seeds are total damaged seeds, less than 1% of the seeds are distinctly green seeds, and less than 0.05% the seeds are heated seeds.
  • As used herein the percentages of total damaged seeds, distinctly green seeds and heated seeds are determined in accordance with the Official Grain Grading Guide. 2001 of the Canadian Grain Commission (for Canola and Rapeseed)
  • Seeds having the preferred percentages of total damaged seeds, distinctly green seeds and/or heated seeds can be obtained by appropriate selection of the seeds after harvest.
  • In a further aspect of the invention there, the invention provides seeds comprising an LC-PUFA, and which have percentages of total damaged seeds, distinctly green seeds and/or heated seeds as disclosed hereinabove.
  • Preferably, the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of an LC-PUFA (for instance an LC-PUFA as described hereinbelow, with respect to the total fatty acids in the seeds.
  • Preferably, the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of an ω-6 LC-PUFA, with respect to the total fatty acids in the seeds.
  • Preferably, the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of ARA, with respect to the total fatty acids in the seeds.
  • Preferably, the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of an ω-3 LC-PUFA, with respect to the total fatty acids in the seeds.
  • Preferably, the seeds comprise at least 5 wt. %, preferably at least 10 wt. %, preferably at least 15 wt. %, preferably at least 20 wt. % of DHA, with respect to the total fatty acids in the seeds.
  • Preferably, the seeds comprise less than 2 wt. % of erucic acid, preferably less than 1 wt. %, preferably less than 0.5 wt. % based on the total fatty acids in the seeds.
  • (ii) Drying the Seeds
  • In an embodiment of the invention, the process comprises drying the seeds. It is found that decreasing the drying temperature improves the quality of the LC-PUFA or oil containing the LC-PUFA. For instance, the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • In a preferred embodiment, the process according to the invention comprises drying the seeds at a temperature of below 40° C., preferably below 35° C., more preferably below 30° C., more preferably below 25° C. As used herein, the drying temperatures refer to the temperature of the product in the dryer. For instance, if the drier is a fluid bed drier, the drying temperature refers to the temperature of the bed. if It is found that decreasing the temperatures to below the preferred upper limits improves the quality of the oil and/or the LC-PUFA.
  • The drying may be by any suitable method. The drying may be by natural air drying. Preferably a dryer is used which prevents or minimizes the formation of hot spots. In a preferred embodiment drying is effected using a fluid bed dryer. In a preferred embodiment, conditioned air is used, preferably having a dew point of <15° C., preferably <10° C., preferably <5° C. This further improves the quality of the oil.
  • Prior to drying the seeds may have a moisture content of for instance 10 to 25 wt. %, such as 15 to 25 wt. %.
  • The process according to the invention may comprise drying the seeds, resulting a moisture content of less than 15 wt. %, for instance less than 12 wt. %, for instance less than 10 wt. %, for instance less 9.5 wt. %, for instance above 6 wt. %, for instance above 7 wt. %, for instance above 8 wt. %. The moisture content may for instance be between 6 and 15 wt. %, for instance between 7 and 12 wt. %, for instance between 8 and 10 wt. %. Obtaining seeds having a moisture content between the above-mentioned ranges improves the quality of the oil and/or LC-PUFA. As used herein, the moisture content is calculated on a wet weight basis, i.e. on the basis of the total weight of the seeds, (including dry matter, lipids, and moisture). It and can be determined by the skilled person.
  • In a further aspect, the invention provides seeds comprising a LC-PUFA, which have a moisture content of less than 15 wt. %, for instance less than 12 wt. %, for instance less than 10 wt. %, for instance less 9.5 wt. %, for instance above 6 wt. %, for instance above 7 wt. %, for instance above 8 wt. %. The moisture content may for instance be between 6 and 15 wt. %, for instance between 7 and 12 wt. %, for instance between 8 and 10 wt. %. Preferably, the seeds have a percentage of total damaged seeds, distinctly green seeds and/or heated seeds as disclosed hereinabove. In a preferred embodiment, the seeds are obtainable by the drying process as disclosed hereinabove.
  • In a preferred embodiment, the process comprises drying seeds having the preferred values for the total damaged seeds, distinctly green seeds as mentioned hereinabove.
  • (iii) Storing the Seeds
  • In various stages the seeds may be stored. It is found that a decrease of the storage temperature improves the quality of the LC-PUFA and/or oil containing the LC-PUFA. For instance, the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • Preferably, the process comprising storing the seeds at a temperature of below 10° C., preferably below 5° C., preferably below 0° C., preferably below minus 5° C., preferably below minus 10° C. There is no specific lower limit for the storage temperature. The process may comprise storing the seeds at a temperature of above minus 30° C.
  • Preferably, seeds are stored having a moisture content of less than 15 wt. %, for instance less than 12 wt. %, for instance less than 10 wt. %, for instance less 9.5 wt. %, for instance above 6 wt. %, for instance above 7 wt. %, for instance above 8 wt. %. The moisture content may for instance be between 6 and 15 wt. %, for instance between 7 and 12 wt. %, for instance between 8 and 10 wt. %. Obtaining seeds having a moisture content between the abovementioned ranges improves the quality of the oil and/or LC-PUFA. As used herein, the moisture content is calculated on a wet weight basis, i.e. on the basis of the total weight of the seeds (including dry matter, lipids, and moisture). It and can be determined by the skilled person.
  • The preferred moisture contents can be obtained by drying the seeds as described hereinabove.
  • In a further aspect, the invention provides a process for storing seeds comprising a LC-PUFA, which process comprises storing the storing the seeds at a temperature of below 10° C., preferably below 5° C., preferably below 0° C., preferably below minus 5° C., preferably below minus 10° C. There is no specific lower limit for the storage temperature. The process may comprise storing the seeds at a temperature above minus 30° C.
  • Preferably, the process comprises storing seeds have a moisture content as disclosed hereinabove.
  • Preferably, the process comprises storing seeds having a percentage of total damaged seeds, distinctly green seeds and/or heated seeds as disclosed hereinabove.
  • Preferably, the process comprises storing seeds obtainable by the drying process as disclosed hereinabove.
  • The seeds may be stored for any suitable period. The seeds may for instance be stored for at least 1 day, for instance at least 1 week, for instance at least 2 weeks, for instance at least 1 months, for instance at least 3 months. There is no specific upper limit for the storage period. The seeds, may for instance be stored for less than 12 months, for instance less than 6 months.
  • (iv) Crushing and/or Flaking of the Seeds
  • The process may comprising crushing or flaking, of the seeds, This may facilitate recovery of the LC-PUFA or oil containing the LC-PUFA.
  • (v) Heating the Seeds
  • In a preferred embodiment of the invention the process comprises heating the seeds, for instance at a temperature above 60° C.
  • The process according to the invention may comprise heating the seeds at a relatively low temperature. The process may for instance comprise heating the seeds at a temperature between 50 and 90° C., for instance between 60 and 80° C., preferably for a period of between 2 to 60 minutes, preferably between 5 to 30 minutes. If an increased temperature is selected, the duration of the heating is preferably decreased.
  • It is found that heating the seeds according to preferred protocols disclosed herein improves the quality of the LC-PUFA and/or oil containing the LC-PUFA. For instance, the (isolated) oil may have a lower AnV, POV, a higher OSI and/or a higher triglyceride content.
  • In a preferred embodiment, the process according to the invention may comprise heating the seeds at a high rate. The process may for instance comprise heating the seeds, whereby the temperature passes from 40 to 70° C. in less than 1 minute, preferably less than 30 seconds, preferably less than 20 seconds. The process may for instance comprise heating the seeds, whereby the temperature passes from 40 to 100° C. in less than 1 minute, preferably less than 30 seconds, preferably less than 20 seconds.
  • The process according to the invention may comprises heating the seeds using superheated steam. The process according to the invention may for instance comprise contacting the seeds with superheated steam.
  • Preferably, the process according to the invention comprises heating the seeds at a relatively high temperature, e.g. between 120 and 160° C. for a relatively short period. The process may for instance comprise maintaining the seeds at a temperature above 120° C., for instance below 160° C., for a period of less than 8 minutes, for instance less than 5 minutes, for instance less than 3 minutes, for instance less than 2 minutes. Maintaining the seeds at a temperature between 120, for instance below and 160° C. may be for a period of at least 5 seconds, preferably at least 10 seconds.
  • Preferably, the seeds are cooled at a relatively high rate. Preferably, the temperature of the seeds is decreased from the maximum temperature to a temperature of 40° C. in less than 60 minutes, preferably less than 30 minutes, preferably less than 15 minutes.
  • According to the invention the protocols may be used separately or in combination. For instance, the heating at a high rate may be combined with maintaining the seeds at a preferred temperature for a relatively short period and/or with a rapid cooling rate.
  • The heating is not limited to a specific stage of the process. The heating may be effected prior to or after any comminuting (e.g. crushing or flaking) of the seeds. In a further aspect, the invention provides a process for heating seeds comprising a LC-PUFA, whereby the seeds are heated as disclosed hereinabove.
  • (vi) Pressing the Seeds Such as to Expell a Fraction of Oil
  • Pressing the seeds such as to expell a fraction of oil may be performed using methods known in the art. A screw press may be used. In a preferred embodiment, the invention comprises pressing the seeds to expell oil using a press, for instance a screw press, which is cooled.
  • (vii) Extracting Oil from the Seeds with a Solvent.
  • The process according to the invention may comprise extracting oil from the seeds with a solvent. Any suitable solvent may be used, for instance a C1-10 alkyl ester (e.g. ethyl or butyl acetate), toluene, a C1-3 alcohol (e.g. methanol, propanol), a C3-6 alkanes (e.g. hexane) or a supercritical fluid (e.g. liquid CO2 or supercritical propane). Preferably, the solvent is a non-polar solvent, for instance a C3-C8 alkane (preferably hexane) or a supercritical fluid (preferably supercritical CO2 or supercritical propane). Extracting the oil with a non-polar solvent has the advantage that an oil with an increased triglyceride content is obtained.
  • In a preferred embodiment of the invention, the weight ratio solvent: seeds is at least 3:1, preferably at least 5:1. This enables a more complete extraction of the oil, thereby contributing to the safety of the spent cake resulting after extraction of the oil from the seeds.
  • In a preferred embodiment, the process according to the invention comprises pressing the seeds to expell the oil, resulting in pressed oil and a press cake, and obtaining oil from the press cake by solvent extraction.
  • Purifying the Oil
  • Purifying of the oil may comprise degumming, refining, bleaching and/or deodorizing. These are known steps, and can be carried out by the skilled person.
  • In a preferred embodiment, deodorizing is effected at a temperature below 200° C., preferably below 190° C., preferably below 185° C. Decreasing the deodorization temperature to below the preferred values improves the quality of the oil.
  • In another aspect, the invention provides a process for purifying a vegetable oil comprising an LC-PUFA, said process comprising deodorizing the oil at a temperature of below 200° C., preferably below 190° C., preferably below 185° C.
  • In another aspect of the invention the oil according to the invention is a crude oil, and the invention provides a process for obtaining a purified vegetable oil comprising an LC-PUFA, said process comprising purifying the crude oil.
  • PUFAs and Oils
  • As used herein, the following abbreviations are used throughout the entire application:
      • PUFA refers to a polyunsaturated fatty acid
      • LC-PUFA (long chain polyunsaturated fatty acid) refers to a PUFA having at least 20 carbon atoms
      • HUFA (highly unsaturated fatty acid) refers to a PUFA having at least three double bonds
      • LC-HUFA (long chain highly unsaturated fatty acid) refers to a polyunsaturated fatty acid having at least 20 carbon atoms and at least three double bonds.
  • The invention is not limited to a specific LC-PUFA. In an embodiment of the invention, the LC-PUFA has at least three double bonds. In a further embodiment of the invention, the LC-PUFA has at least four double bonds. The benefits are even more pronounced for LC-PUFAs having an increasing number of double bonds, as the sensitivity to oxidation increases with increasing number of double bonds.
  • The LC-PUFA may be an ω-3 LC-PUFA or an ω-6 LC-PUFA
  • LC-PUFAs include for instance:
  • dihomo-γ-linolenic acid (DGLA, 20:3 ω-6)
  • arachidonic acid (ARA, 20:4 ω-6)
  • eicosapentaenoic acid (EPA, 20:5 ω-3)
  • docosapentaenoic acid (DPA, 22:5 ω-3, or DPA 22:5, ω-6),
  • docosahexaenoic acid (DHA: 22:6 ω-3)
  • Preferred LC-PUFAs include arachidonic acid (ARA) and docosahexaenoic acid (DHA). In particular ARA is preferred.
  • The vegetable oil may be any vegetable oil containing a LC-PUFA. The vegetable oil may be obtained from a plant, for instance a transgenic plant, or seeds of a (transgenic) plant. Examples of plants are disclosed hereinabove.
  • The invention provides a vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA), which oil has at least one of the following characteristics
  • (a) an anisidine value (AnV) of less than 25;
  • (b) a peroxide value (POV) of less than 10;
  • (c) a triglyceride content of greater than 90%;
  • (d) an Oil Stability Index (OSI) of greater than 5 hours at 80° C.
  • (e) a diglyceride content of less than 8%;
  • (f) a free fatty acid content of less than 5%;
  • (g) a sterol content of less than 3%; and/or
  • (h) a phytosterol content of less than 3%
  • In a preferred embodiment, the vegetable oil according to the invention has an anisidine value (AnV) of less than 25. Preferably, the oil according to the invention has an AnV <20, preferably <15, preferably <10, preferably <5, preferably <3, preferably <2. The vegetable oil may for instance have an AnV >0.1, for instance >0.5, for instance >1. The AnV may be measured according to AOCS Cd-18-90.
  • In a preferred embodiment, the vegetable oil according to the invention has a peroxide value (POV) of less than 10. Preferably, the oil according to the invention has a POV <5, preferably <2, preferably <1.5, preferably <1, preferably <0.5. The vegetable oil may for instance have a POV >0.1, for instance >0.2. The POV may be measured according to AOCS Cd-8-53. The unit (for POV) is usually meq/kg.
  • In a preferred embodiment, the vegetable oil according to the invention has a triglyceride content of greater than 85%. Preferably, the oil according to the invention has a triglyceride content >90%, for instance >91%, for instance >93%, for instance >95%, for instance >96%, for instance >97%. The oil according to the invention may for instance have a triglyceride content <99%, for instance <98%. The triglyceride content may be measured using NMR.
  • In a preferred embodiment, the vegetable oil according to the invention has a diglyceride content or less than 8%. Preferably, the oil according to the invention has a diglyceride content <5%, preferably <3%, preferably <2%, preferably <1%. The oil according to the invention may for instance have a diglyceride content >0.1%, for instance >0.2%, for instance >0.5%. The diglyceride content may be determined using NMR.
  • In a preferred embodiment, the vegetable oil according to the invention has a free fatty acid content of less than 5%. Preferably, the oil according to the invention has a free fatty acid content <3%, preferably <2%, preferably <1%, preferably <0.5%, preferably <0.2%, preferably <0.1%. The oil according to the invention may for instance have a free fatty acid content >0.01%, for instance >0.02%. The free fatty acid content may be determined using AOCS Ca 5a-40.
  • In a preferred embodiment, the vegetable oil according to the invention has a sterol content of less than 3%. Preferably, the oil according to the invention has a sterol content of preferably <2%, preferably <1.5%, preferably <1%, preferably <0.8%, preferably <0.5%. The oil according to the invention may for instance have a sterol content >0.1%, for instance >0.2%. As used herein the sterol content refers to the total sterol content, including free sterols and sterol esters. The sterol content may be measured using NMR.
  • In a preferred embodiment, the vegetable oil according to the invention has a phytosterol content of less than 3%. Preferably, the oil according to the invention has a phytosterol content <2%, preferably <1.5%, preferably <1%, preferably <0.8%, preferably <0.6%, preferably <0.5%. The oil according to the invention may for instance comprise phytosterol, and may for instance have a phytosterol content >0.05%, for instance >0.1%, for instance >0.2%. As used herein, the phytosterol content refers to the total phytosterol content, including free phytosterol and phytosterol esters. The phytosterol content may be determined using NMR.
  • In a preferred embodiment, the vegetable oil according to the invention has an Oil Stability Index (OSI) of greater than 5 hours at 80° C. Preferably, the oil according to the invention has an OSI >8 hours at 80° C., preferably >10 hours at 80° C., preferably >15 hours at 80° C., preferably >20 hours at 80° C., for instance <50 hours at 80° C., for instance <30 hours at 80° C., for instance <25 hours at 80° C. The OSI may be measured according to AOCS Cd 12b-92.
  • The vegetable oil according to the invention may comprise an LC-PUFA at any concentration. Preferably, the oil comprises a LC-PUFA, for instance an LC-HUFA, at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %. The oil may for instance comprise a LC-PUFA, for instance an LC-HUFA, at a concentration of <50 wt. %, for instance <40 wt. %, for instance <25 wt. %, for instance <22 wt. % with respect to the total fatty acids in the oil.
  • Preferably, the oil comprises a LC-PUFA selected from the group consisting of dihomo-γ-linolenic acid (DGLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA, 22:5 ω-3, or DPA 22:5, ω-6) and docosahexaenoic acid (DHA) at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %. The oil may for instance comprise a LC-PUFA selected from the group consisting of dihomo-γ-linolenic acid (DGLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA, 22:5 ω-3, or DPA 22:5, ω-6) and docosahexaenoic acid (DHA), at a concentration of <50 wt. %, for instance <40 wt. %, for instance <25 wt. %, for instance <22 wt. % with respect to the total fatty acids in the oil.
  • Preferably, the oil comprises arachidonic acid (ARA) at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %. The oil may for instance comprise arachidonic acid (ARA) at a concentration of <50 wt. %, for instance <40 wt. %, for instance <25 wt. %, for instance <22 wt. % with respect to the total fatty acids in the oil.
  • Preferably, the oil comprises docosahexaenoic acid (DHA) at a concentration >5 wt. % with respect to the total fatty acids in the oil, preferably >10 wt. %, preferably >15 wt. %, preferably >18 wt. %, preferably >20 wt. %, preferably >25 wt. %, preferably >30 wt. %. The oil may for instance docosahexaenoic acid (DHA), at a concentration of <50 wt. %, for instance <40 wt. %, for instance <25 wt. %, for instance <22 wt. % with respect to the total fatty acids in the oil.
  • Preferably, the sum concentration of PUFAs having at least 3 double bonds is at least 20 wt. % with respect to the total fatty acids in the oil, for instance at least 30 wt. %, for instance at least 35 wt. %, for instance at least 40 wt. %. The sum concentration of PUFAs having at least 3 double bonds may for instance be less than 90 wt. %, for instance less than 80 wt. %, for instance less than 70 wt. %, for instance less than 60 wt. %.
  • Further preferred aspects, embodiments and features are disclosed in the claims
  • Preferred features and characteristics of one embodiment and/or aspect of the invention are applicable to another embodiment mutatis mutandis. As used herein, the preferred features and characteristics of the LC-PUFA apply to the LC-PUFAs in all aspects and embodiments of the invention.
  • The invention is further disclosed with reference to the following examples without being limited thereto.
  • EXAMPLES
  • Seeds containing 19% Arachidonic acid (with respect to total fatty acids) are obtained from transgenic Brassica plants that are transformed using the procedures described in WO2008009600.
  • The seeds have the following specifications (determined in accordance with the Official Grain Grading Guide, 2001 of the Canadian Grain Commission): distinctly green <2%, total damaged <5%.
  • The seeds, having a moisture content of 17 wt. %, are dried using a fluid bed drier. The bed temperature is 28° C. Conditioned air is used having a dew point of 10° C. The dried seeds have a moisture content of 8.5 wt. %.
  • Prior to further processing the dried seeds are stored at a temperature of minus 20° C.
  • After storage (3 months), the seeds are flaked using a conventional flaking process.
  • The flakes are subsequently heated to reach a temperature of 130° C. in 20 seconds using superheated steam. The flakes are maintained at this temperature for 1 minute, and cooled to 40° C. in 30 minutes.
  • Following the heat treatment, the flakes are fed to a cooled expeller to obtain a pressed oil. The biomass exiting the expeller is extracted using hexane (ratio hexane:biomass=5:1) in a submerged counter-current extractor at a temperature of 40° C. The hexane is evaporated, yielding a hexane-extracted oil. The pressed oil and hexane-extracted oil are combined resulting in a crude oil.
  • The crude oil is purified using degumming (acid treatment), alkali purifying (neutralization), and bleaching using standard techniques. After bleaching the oil is steam deodorized under vacuum at a temperature of 180° C.
  • The characteristics of the crude and refined oil are given in the table below.
  • EXAMPLE REFERENCE EXPERIMENT
    Crude oil Refined oil Crude oil Refined oil
    Anisidine 20 9 55 27
    POV 5 <1 11 <1
    Triglyceride  95% 97% 86% 88%
    content
    OSI at 80° C. >10 hrs >10 hrs 2 hrs 4 hrs
  • Reference Experiment
  • Seeds as described in example 1 are treated as follows to recover the oil.
  • The seeds, having a moisture content of 17 wt. % are dried using a vertical open-flame grain dryer at a temperature of 70° C. resulting in a moisture content of 8.5 wt. %. Prior to further processing the dried seeds are stored at ambient temperature.
  • After storage (3 months), the seeds are flaked using a conventional flaking process.
  • After flaking the seeds are steamed at a temperature of 100° C. for 30 minutes.
  • Following the heat treatment, the flakes are fed to an expeller to obtain a pressed oil. The biomass exiting the expeller is extracted using hexane (ratio hexane:biomass=5:1) in a submerged counter-current extractor at a temperature of 40° C. The hexane is evaporated, yielding a hexane-extracted oil. The pressed oil and hexane-extracted oil are combined resulting in a crude oil.
  • The crude oil is purified using degumming (acid treatment), alkali purifying (neutralization), and bleaching using standard techniques. After bleaching the oil is steam deodorized under vacuum at a temperature of 180° C.
  • 1H-NMR (to Determine Triglyceride Content)
  • About 12 mg of an oil sample is weighted accurately into a glass vial and about 12 mg p-nitrotoluene is weighted accurately on top. The sample is dissolved in CDCl3 and 1H-NMR spectrum were recorded on a Bruker Avance III 600, equipped with a cryoprobe, operating at a proton frequency of 600 MHz and at a probe temperature of 300 K. The spectrum for quantification was recorded with a 60-90° excitation pulse using standard quantitative parameters with a relaxation delay of 30 s.

Claims (22)

1-49. (canceled)
50. A vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA) having at least 3 double bonds, which oil has
(a) an anisidine value (AnV) of less than 20; and
(b) a peroxide value (POV) of less than 5.
51. The oil according to claim 50, wherein said oil has a triglyceride content of at least 90%.
52. The oil according to claim 50, wherein said oil has a POV of less than 2.
53. The oil according to claim 51, wherein said oil has a POV of less than 2.
54. The oil according to claim 50, wherein the LC-PUFA is an ω-3 or an ω-6 PUFA.
55. The oil according to claim 54, wherein the LC-PUFA is selected from the group consisting of dihomo-γ-linolenic acid (DGLA, 20:3 ω-6), arachidonic acid (ARA, 20:4 ω-6), eicosapentaenoic acid (EPA, 20:5 ω-3), docosahexaenoic acid (DHA: 22:6 ω-3), docosapentaenoic acid (DPA 22:5 ω-3, and DPA 22:5, ω-6).
56. The oil according to claim 55, wherein the LC-PUPA is arachidonic acid (ARA).
57. The oil according to claim 55, wherein the LC-PUPA is docosahexaenoic acid (DHA).
58. The oil according to claim 50, wherein said oil contains said LC-PUFA at a concentration of at least 5 wt. % with respect to the total fatty acids in said oil.
59. The oil according to claim 50, wherein said oil has an arachidonic acid (ARA) content of at least 5 wt. % with respect to the total fatty acids in the oil.
60. The oil according to claim 50, wherein said oil has a docosahexaenoic acid (DHA) content of at least 5 wt. % with respect to the total fatty acids in the oil.
61. The oil according to claim 50, wherein the sum concentration of PUFAs having at least 3 double bonds is at least 20 wt. % with respect to the total fatty acids in the oil.
62. The oil according to claim 50, wherein said oil is obtained from a transgenic plant.
63. The oil according to claim 50, wherein said oil is obtained from a plant of the family Brassicaceae.
64. The oil according to claim 63, wherein said oil is obtained from a plant of the genus Brassica.
65. The oil according to claim 50, wherein said oil is a crude oil.
66. A process for obtaining a purified vegetable oil comprising an LC-PUFA, said process comprising purifying a crude oil as defined in claim 65.
67. A food product for humans or animals, comprising said oil according to claim 50.
68. An infant formula comprising said oil according to claim 50.
69. A process for preparing a food product for humans or animals, said process comprising incorporating said oil according to claim 50 in said food product.
70. A process for preparing an infant formula, said process comprising incorporating said oil according to claim 50 in said infant formula.
US13/504,148 2009-11-03 2010-11-02 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms Abandoned US20130101723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/504,148 US20130101723A1 (en) 2009-11-03 2010-11-02 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25777209P 2009-11-03 2009-11-03
EP2009065593 2009-11-22
EPPCT/EP2009/065593 2009-11-22
PCT/EP2010/066599 WO2011054801A1 (en) 2009-11-03 2010-11-02 Vegatable oil comprising a polyunsaturaded fatty acid having at least 20 carbon atoms
US13/504,148 US20130101723A1 (en) 2009-11-03 2010-11-02 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/066599 A-371-Of-International WO2011054801A1 (en) 2009-11-03 2010-11-02 Vegatable oil comprising a polyunsaturaded fatty acid having at least 20 carbon atoms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/557,303 Continuation US20150089692A1 (en) 2009-11-03 2014-12-01 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms

Publications (1)

Publication Number Publication Date
US20130101723A1 true US20130101723A1 (en) 2013-04-25

Family

ID=43969588

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/504,148 Abandoned US20130101723A1 (en) 2009-11-03 2010-11-02 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms
US14/557,303 Abandoned US20150089692A1 (en) 2009-11-03 2014-12-01 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms
US17/171,748 Pending US20210163843A1 (en) 2009-11-03 2021-02-09 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/557,303 Abandoned US20150089692A1 (en) 2009-11-03 2014-12-01 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms
US17/171,748 Pending US20210163843A1 (en) 2009-11-03 2021-02-09 Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms

Country Status (8)

Country Link
US (3) US20130101723A1 (en)
CN (2) CN102595918A (en)
AU (1) AU2010317140B2 (en)
CA (1) CA2779552C (en)
DK (1) DK2496091T3 (en)
ES (1) ES2750241T3 (en)
IN (1) IN2012DN03815A (en)
WO (1) WO2011054801A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130177692A1 (en) * 2011-12-30 2013-07-11 Dow Agrosciences Llc Dha retention during canola processing
CN108138079A (en) * 2015-08-25 2018-06-08 帝斯曼知识产权资产管理有限公司 Refined fluid composition and the method being used to prepare
EP3766357A1 (en) * 2015-12-02 2021-01-20 Agrisoma Biosciences Inc. Method for removing glucosinolates from oilseed meals
US11096403B1 (en) * 2017-03-21 2021-08-24 Covercress Inc. Low glucosinolate pennycress meal and methods of making

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10610280B1 (en) 2019-02-02 2020-04-07 Ayad K. M. Agha Surgical method and apparatus for destruction and removal of intraperitoneal, visceral, and subcutaneous fat

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323753A1 (en) * 1987-12-31 1989-07-12 Pioneer Hi-Bred International, Inc. Production of improved rapeseed exhibiting an enhanced oleic acid content
EP0813357A1 (en) * 1995-03-07 1997-12-29 Pioneer Hi-Bred International, Inc. Improved oilseed brassica bearing an endogenous oil with desirable levels of unsaturated and saturated fatty acids
US20050008756A1 (en) * 1993-04-27 2005-01-13 Cargill, Incorporated, A Delaware Corporation Non-Hydrogenated canola oil for food applications
US20060110521A1 (en) * 2004-11-04 2006-05-25 Monsanto Technology, Llc High PUFA oil compositions
US20070065565A1 (en) * 2005-08-10 2007-03-22 Frank Kincs Edible oils and methods of making edible oils
US20070141222A1 (en) * 2005-12-20 2007-06-21 Binder Thomas P Processes of improving the quality of oil and products produced therefrom
US7419596B2 (en) * 2001-12-12 2008-09-02 Martek Biosciences Corporation Extraction and winterization of lipids from oilseed and microbial sources
US20090169650A1 (en) * 2008-01-02 2009-07-02 Wilkes Richard S Food compositions incorporating stearidonic acid
US20090222951A1 (en) * 2004-02-27 2009-09-03 Petra Cirpus Method for producing polyunsaturated fatty acids in transgenic plants
US20100227924A1 (en) * 2006-02-21 2010-09-09 Basf Plant Science Gmbh Method For Producing Polyunsaturated Fatty Acids
US8084074B2 (en) * 2003-02-12 2011-12-27 E. I. Du Pont De Nemours And Company Production of very long chain polyunsaturated fatty acids in oil seed plants

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005416A1 (en) * 1999-07-15 2001-01-25 Pushpa Khanna Oil from momordica charantia l., its method of preparation and uses
US20040172682A1 (en) 2003-02-12 2004-09-02 Kinney Anthony J. Production of very long chain polyunsaturated fatty acids in oilseed plants
CN1894405B (en) 2003-12-17 2011-02-02 三得利控股株式会社 Arachidonic acid-containing plant and utilization of the same
ES2375363T3 (en) * 2004-02-27 2012-02-29 Basf Plant Science Gmbh METHOD FOR THE PREPARATION OF OMEGA-3 FATTY ACIDS INSURED IN TRANSGENIC ORGANISMS.
CA2559360A1 (en) 2004-02-27 2005-09-09 Basf Plant Science Gmbh Method for producing c18, c20 and c22 polyunsaturated fatty acids in transgenic plants
CN101098629B (en) * 2004-11-04 2010-10-13 孟山都技术公司 High PUFA oil compositions
NZ547429A (en) * 2006-05-24 2009-09-25 Ind Res Ltd Extraction of highly unsaturated lipids with liquid dimethyl ether
DE102006034313A1 (en) * 2006-07-21 2008-01-24 Basf Plant Science Gmbh Process for the preparation of arachidonic acid and / or eicosapentaenoic acid
BRPI0806354A2 (en) 2007-02-12 2011-09-06 Du Pont transgender oilseeds, seeds, oils, food or food analogues, medicinal food products or medicinal food analogues, pharmaceuticals, beverage formulas for babies, nutritional supplements, pet food, aquaculture feed, animal feed, whole seed products , mixed oil products, partially processed products, by-products and by-products
US8828690B2 (en) 2007-04-03 2014-09-09 E I Du Pont De Nemours And Company Multizymes comprising delta-9 elongase and delta-8 desaturase and their use in making polyunsaturated fatty acids
US7790156B2 (en) 2007-04-10 2010-09-07 E. I. Du Pont De Nemours And Company Δ-8 desaturases and their use in making polyunsaturated fatty acids
US8119860B2 (en) 2007-04-16 2012-02-21 E. I. Du Pont De Nemours And Company Delta-9 elongases and their use in making polyunsaturated fatty acids
JP2011519552A (en) 2008-04-25 2011-07-14 ビーエーエスエフ プラント サイエンス ゲーエムベーハー Plant seed oil

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323753A1 (en) * 1987-12-31 1989-07-12 Pioneer Hi-Bred International, Inc. Production of improved rapeseed exhibiting an enhanced oleic acid content
US20050008756A1 (en) * 1993-04-27 2005-01-13 Cargill, Incorporated, A Delaware Corporation Non-Hydrogenated canola oil for food applications
EP0813357A1 (en) * 1995-03-07 1997-12-29 Pioneer Hi-Bred International, Inc. Improved oilseed brassica bearing an endogenous oil with desirable levels of unsaturated and saturated fatty acids
US7419596B2 (en) * 2001-12-12 2008-09-02 Martek Biosciences Corporation Extraction and winterization of lipids from oilseed and microbial sources
US8084074B2 (en) * 2003-02-12 2011-12-27 E. I. Du Pont De Nemours And Company Production of very long chain polyunsaturated fatty acids in oil seed plants
US20090222951A1 (en) * 2004-02-27 2009-09-03 Petra Cirpus Method for producing polyunsaturated fatty acids in transgenic plants
US20060110521A1 (en) * 2004-11-04 2006-05-25 Monsanto Technology, Llc High PUFA oil compositions
US7741500B2 (en) * 2004-11-04 2010-06-22 Monsanto Technology Llc Processes for preparation of oil compositions
US7902388B2 (en) * 2004-11-04 2011-03-08 Heise Jerald D High PUFA oil compositions
US20060111578A1 (en) * 2004-11-04 2006-05-25 Monsanto Technology, Llc Processes for preparation of oil compositions
US20070065565A1 (en) * 2005-08-10 2007-03-22 Frank Kincs Edible oils and methods of making edible oils
US20070141222A1 (en) * 2005-12-20 2007-06-21 Binder Thomas P Processes of improving the quality of oil and products produced therefrom
US20100227924A1 (en) * 2006-02-21 2010-09-09 Basf Plant Science Gmbh Method For Producing Polyunsaturated Fatty Acids
US20090169650A1 (en) * 2008-01-02 2009-07-02 Wilkes Richard S Food compositions incorporating stearidonic acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130177692A1 (en) * 2011-12-30 2013-07-11 Dow Agrosciences Llc Dha retention during canola processing
KR20190129136A (en) * 2011-12-30 2019-11-19 다우 아그로사이언시즈 엘엘씨 Dha retention during canola processing
KR102214275B1 (en) 2011-12-30 2021-02-09 다우 아그로사이언시즈 엘엘씨 Dha retention during canola processing
CN108138079A (en) * 2015-08-25 2018-06-08 帝斯曼知识产权资产管理有限公司 Refined fluid composition and the method being used to prepare
US11672258B2 (en) * 2015-08-25 2023-06-13 Dsm Ip Assets B.V. Refined oil compositions and methods for making
EP3766357A1 (en) * 2015-12-02 2021-01-20 Agrisoma Biosciences Inc. Method for removing glucosinolates from oilseed meals
US20220015389A1 (en) * 2015-12-02 2022-01-20 Agrisoma Biosciences Inc. Method for removing glucosinolates from oilseed meals
US11825863B2 (en) * 2015-12-02 2023-11-28 Agrisoma Biosciences Inc. Method for removing glucosinolates from oilseed meals
US11889850B2 (en) * 2015-12-02 2024-02-06 Agrisoma Biosciences Inc. Method for removing glucosinolates from oilseed meals
US11096403B1 (en) * 2017-03-21 2021-08-24 Covercress Inc. Low glucosinolate pennycress meal and methods of making

Also Published As

Publication number Publication date
US20210163843A1 (en) 2021-06-03
CA2779552C (en) 2019-04-09
IN2012DN03815A (en) 2015-08-28
CN102595918A (en) 2012-07-18
AU2010317140A1 (en) 2012-05-24
DK2496091T3 (en) 2019-11-04
ES2750241T3 (en) 2020-03-25
CN107258936A (en) 2017-10-20
WO2011054801A1 (en) 2011-05-12
CA2779552A1 (en) 2011-05-12
AU2010317140B2 (en) 2016-04-21
US20150089692A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
US20210163843A1 (en) Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms
JP6855249B2 (en) Lipids containing docosapentaenoic acid
TWI384951B (en) Seed oil compositions
US8586104B2 (en) Plant derived seed extract rich in essentially fatty acids derived from Salvia hispanica L. seed: composition of matter, manufacturing process and use
AU2012362825B2 (en) DHA retention during canola processing
AU2015246105B2 (en) Composition comprising cells and a polyunsaturated fatty acid having at least 20 carbon atoms (lc-pufa)
EP2496091B1 (en) Vegetable oil comprising a polyunsaturated fatty acid having at least 20 carbon atoms
Taseski Supercritical fluid extraction of Sclerocarya birrea kernel oil
EP2496092A1 (en) Composition comprising cells and a polyunsaturated fatty acid having at least 20 carbon atoms (lc-pufa)
CN104982920A (en) Composition comprising cells and a polyunsaturated fatty acid having at least 20 carbon atoms (LC-PUFA)
Kovačíková et al. Thermo-oxidative stability of mixtures of vegetable oils
MXPA01003395A (en) Vegetable oil having elevated stearic acid content

Legal Events

Date Code Title Description
AS Assignment

Owner name: DSM IP ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VERKOEIJEN, DANIEL;ZUUR, KRISTIAN;BIJL, HENDRIK LOUIS;SIGNING DATES FROM 20120322 TO 20120412;REEL/FRAME:028109/0354

AS Assignment

Owner name: DSM IP ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERKOEIJEN, DANIEL;ZUUR, KRISTIAN;BIJL, HENDRIK LOUIS;SIGNING DATES FROM 20120304 TO 20120412;REEL/FRAME:031247/0463

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION