US20130058158A1 - Method, system, and device for l-shaped memory component - Google Patents
Method, system, and device for l-shaped memory component Download PDFInfo
- Publication number
- US20130058158A1 US20130058158A1 US13/224,268 US201113224268A US2013058158A1 US 20130058158 A1 US20130058158 A1 US 20130058158A1 US 201113224268 A US201113224268 A US 201113224268A US 2013058158 A1 US2013058158 A1 US 2013058158A1
- Authority
- US
- United States
- Prior art keywords
- storage component
- storage
- electrode
- trenches
- additional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015654 memory Effects 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 97
- 238000003860 storage Methods 0.000 claims abstract description 128
- 239000000463 material Substances 0.000 claims abstract description 76
- 210000000352 storage cell Anatomy 0.000 claims abstract 7
- 239000011232 storage material Substances 0.000 claims abstract 4
- 239000007772 electrode material Substances 0.000 claims description 46
- 239000003989 dielectric material Substances 0.000 claims description 37
- 238000000151 deposition Methods 0.000 claims description 33
- 238000005530 etching Methods 0.000 claims description 20
- 230000008021 deposition Effects 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 18
- 150000004767 nitrides Chemical class 0.000 claims description 13
- 239000005387 chalcogenide glass Substances 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 239000012782 phase change material Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 56
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000007769 metal material Substances 0.000 description 9
- 230000009466 transformation Effects 0.000 description 8
- 238000003491 array Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005233 quantum mechanics related processes and functions Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/20—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
- H10B63/24—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/068—Shaping switching materials by processes specially adapted for achieving sub-lithographic dimensions, e.g. using spacers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
- H10N70/8265—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa-shaped or cup-shaped devices
Definitions
- Subject matter disclosed herein may relate to integrated circuit devices, and may relate, more particularly, to circuitry related to a memory array.
- Integrated circuit devices such as memory devices, for example, may be found in a wide range of electronic devices.
- memory devices may be used in computers, digital cameras, cellular telephones, personal digital assistants, etc.
- Factors related to a memory device may include, physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption, for example.
- Other example factors that may be of interest to system designers include cost of manufacture, and/or ease of manufacture.
- FIG. 1 is an illustration depicting a cross-sectional view of a phase change memory with a selector (PCMS) device, according to an embodiment.
- PCMS selector
- FIG. 2 is an illustration depicting a top view of a portion of a memory device, according to an embodiment.
- FIG. 3 a is an illustration depicting a cross-sectional view of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 b is an illustration depicting a cross-sectional view of an additional portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 c is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 d is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an, embodiment.
- FIG. 3 e is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 f is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 g is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 h is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 i is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 j is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 3 k is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment.
- FIG. 4 is a schematic block diagram depicting a system, including a cross-point array memory device, according to an embodiment.
- Non-volatile memory devices may be found in a wide range of electronic devices.
- Non-volatile memory devices may be used in computers, digital cameras, cellular telephones, and/or personal digital assistants, to name but a few examples.
- Factors related to a memory device may include physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption.
- Other example factors that may be of interest may include cost of manufacture, and/or ease of manufacture.
- One example aspect of memory array design that may affect one or more factors may include integrated circuit die size.
- One or more process technologies utilized to manufacture a memory device may at least in part determine at least some of the factors, such as those mentioned above, including storage density, physical size, and/or cost/ease of manufacture, for example.
- An example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing a storage component material over and/or on an insulation layer having one or more trenches formed therein to affect a first dimension of one or more storage components.
- An example process may further comprise forming one or more trenches in one or more materials of the memory array to affect a second dimension of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask.
- relatively high density storage arrays may be accomplished while reducing programming current.
- individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension.
- a reduced aspect ratio may allow for a reduction in programming current.
- a horizontal portion of the “L” shaped storage component, hereafter called lower leg of an “L” shape, for an individual storage component may contact an electrode positioned between a storage component and a selector.
- a lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing.
- an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component. In this manner, reduced programming current may be achieved and improved manufacturing yield may also be achieved.
- claimed subject matter is not limited in scope in these respects.
- FIG. 1 is an illustration depicting a cross-sectional view of an example embodiment 100 of a memory array.
- memory array 100 may comprise a phase change memory switch (PCMS) array.
- PCMS device may also be referred to as a “phase change memory with selector” device.
- a phase change memory switch device such as PCMS 100
- PCMS 100 may be implemented as a cross-point memory array.
- a plurality of approximately orthogonally directed electrically conductive lines referred to as “electrodes” may be formed, with one subset of orthogonally directed electrodes in a material positioned below an array of storage components and another subset of orthogonally directed electrodes in a material positioned above the array of storage components.
- cross-point memory array refers to a memory array having two or more approximately orthogonally directed sets of electrodes.
- an example embodiment of a cross-point memory array may comprise one set of electrodes, such as electrodes depicted in electrode material 110 , positioned along a direction approximately orthogonal to a direction of another set of electrodes, such as electrodes depicted in electrode material 140 .
- An electrically conductive component refers to component that may be utilized to route signals and/or supply voltages within a metal material and/or within a memory array.
- An electrically conductive component, such as an electrode may comprise a sufficiently electrically conductive material, such as polysilicon, carbon, and/or metallic material, such as tungsten, titanium nitride, and/or titanium aluminum nitride, for example, for use in a memory device.
- a sufficiently electrically conductive material such as polysilicon, carbon, and/or metallic material, such as tungsten, titanium nitride, and/or titanium aluminum nitride, for example, for use in a memory device.
- an electrode material such as electrode material 140
- An electrode material, such as electrode material 110 may be positioned above a selector material, such as material 120 , and/or a storage component material, such as material 130 , in an embodiment.
- Semiconductor and metal material 150 may, for example, comprise one or more decoder circuits, such as one or more data/sense lines, for example a bit-line, decoder circuits and/or one or more access lines, for example a word-line, decoder circuits, in an embodiment.
- Semiconductor and metal material 150 may further comprise, in an embodiment, one or more metal materials comprising electrodes utilized to route signals and/or supply voltages to electrode material 140 and/or electrode material 110 , in an embodiment.
- semiconductor and metal material 150 may comprise electrically conductive interconnect that may electrically couple a decoder circuit to an electrode in electrode material 140 , although claimed subject matter is not limited in this respect.
- electrically conductive electrodes of electrode material 140 may lie along a direction approximately orthogonal to a direction of electrically conductive electrodes of electrode material 110 .
- a storage component material 130 , and/or a selector material, such as selector material 120 may be formed and/or positioned between two or more electrode materials, such as electrode material 140 and/or electrode material 110 , in an embodiment.
- one or more decks of memory may be formed.
- memory device 100 may comprise a one-deck memory array.
- Other embodiments may comprise a greater amount of decks.
- other embodiments may comprise four decks, although claimed subject matter is not limited in this respect.
- a “deck” of memory may comprise an array of memory cells and a plurality of electrodes.
- a first deck may comprise a plurality of access line, for example word-line, electrodes, an array of storage components formed over and/or on a plurality of word-line electrodes, and a plurality of bit-line electrodes formed over and/or on a plurality of storage components, for example.
- a second deck may comprise a plurality of bit-line electrodes shared with a first deck and may further comprise an additional array of storage components positioned over and/or on a plurality of bit-line electrodes, according to an embodiment. Also, for a second deck, an additional plurality of word-line electrodes may be formed over and/or on an additional array of storage components.
- claimed subject matter is not limited in scope in these respects.
- a storage component may comprise a chalcogenide glass material, in an embodiment.
- a PCMS storage component may be configured to retain or store memory in at least two different selectable states.
- the states are considered either a “0” or a “1,”, where a “set” state, representing a binary value of ‘1’, for example, may correspond to a more crystalline , more conductive state for a material of a storage component and a “reset” state, representing a binary value of ‘0’, for example, corresponding to a more amorphous, more resistive state of a storage component material.
- at least some individual memory cells may be configured to store more than two levels or states of information.
- cross-point memory arrays may comprise one or more technologies other than PCMS, such as resistive memory technologies and/or other types of memory, and claimed subject matter is not limited in scope in this respect.
- FIG. 2 is an illustration depicting a top view of a portion of example PCMS cross-point memory array 100 .
- an electrode material 110 comprising a plurality of electrically conductive electrodes laying in a direction and an electrode material 140 comprising a plurality of electrically conductive electrodes laying in a direction approximately orthogonal to the direction of electrode material 110 .
- FIG. 2 additionally shows cross-sectional line segments ‘A’, and ‘B’ that correspond to cross sectional views A and B.
- a storage component 105 of PCMS array 100 located between electrode materials 110 and/or 140 , may be selected and/or accessed in part by energizing appropriate electrodes in electrode material 140 and/or electrode material 110 .
- one or more driver circuits may transmit one or more signals, such as one or more word-line select signals and/or one or more bit-line select signals, to one or more electrodes of electrode material 110 and/or electrode material 140 .
- electrode material 140 may comprise a plurality of word-line electrodes, for example.
- electrode material 110 may comprise a plurality of bit-line electrodes, although claimed subject matter is not limited in these respects.
- an example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing storage component material over and/or on one or more trenches in a dielectric material to decrease die size.
- One or more trenches may be formed in an area above a plurality of rows individually comprising an electrode and a selector such that bottom portions a storage component may contact an electrode positioned between a storage component and a selector, in an embodiment.
- An example process may further comprise forming a trench in a material of the memory array to affect a size of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask.
- Individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension.
- a reduced aspect ratio may allow for a reduction in programming current.
- a horizontal potion of the “L” shaped storage component, hereafter called lower leg of an “L” shape for an individual storage component may contact an electrode positioned between a storage component and a selector.
- a lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing.
- an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component.
- claimed subject matter is not limited in scope in these respects.
- FIGS. 3 a through 3 k illustrate a process of forming PCMS 100 in accordance with an embodiment of the present technology.
- Cross Section A depicts a cross-sectional view of a portion of PCMS array 100 looking in an ‘x’ direction
- Cross Section B depicts a cross-sectional view of a portion of PCMS array 100 looking in a ‘y’ direction that is approximately orthogonal to an ‘x’ direction.
- FIGS. 3 a through 3 k depict an example technique for forming at least some aspects of PCMS array 100 .
- claimed subject matter is not limited in scope to the particular examples described herein and as depicted in FIGS. 3 a through 3 k.
- a dielectric material 302 such as a nitride, may be formed by deposition and/or other known processes over and/or on a semiconductor and metal material 150 , in an embodiment.
- a material, such as tungsten may be deposited or otherwise formed by known methods over and/or on a dielectric, such as a nitride, to produce an electrode material 140 .
- Electrode material 140 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment.
- Dielectric material 302 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Embodiments are not limited to a particular type of dielectric material or electrode material. Note that at this point in an example process, electrode material 140 may comprise a deposited sheet of material, and so may not yet comprise individual electrodes. In an implementation, electrode material 140 may eventually comprise one or more electrodes approximately in parallel and approximately along an ‘x’ direction. Also, in an embodiment, an additional dielectric material 306 may be formed by deposition and/or other known processes over and/or on electrode material 140 , for example. Dielectric material 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment.
- FIG. 3 b shows a subsequent stage of the process following the process described in FIG. 3 a .
- a trench 301 may be formed by etching and/or other known processes in a dielectric material 306 , for example.
- an etching process may stop approximately at electrode material 140 , for example.
- a photoresist etch mask may be formed utilizing a lithographic technique, for example, to substantially protect PCMS array 100 outside of an area designated for trench 301 during an etching process, although the scope of claimed subject matter is not limited in this respect.
- a storage component material 340 may be formed by deposition and/or other known processes over and/or on a surface of PCMS array 100 , including within trench 301 .
- storage component material 340 may be deposited in a conformal manner.
- storage component material 340 may comprise a chalcogenide glass material, for example.
- An additional dielectric material 307 may be formed by deposition and/or other known processes over and/or on storage component material 340 , in an embodiment.
- Dielectric material 307 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Again, other materials are also possible in other embodiments.
- FIG. 3 c shows a subsequent stage of the process following the process described in FIG. 3 b .
- a dielectric material 308 such as an oxide, may be formed by deposition and/or other known processes over and/or on PCMS array 100 , including filling trench 301 .
- dielectric material 308 may comprise silicon oxide, for example.
- FIG. 3 d shows a subsequent stage of the process following the process described in FIG. 3 c .
- PCMS array 100 may be substantially planarized to remove portions of dielectric material 308 not within trench 301 and/or storage component material 340 not within trench 301 .
- Planarization in an embodiment, may further expose portions of storage component material 340 at a top surface of PCMS 100 .
- an example planarization process may comprise a chemical/mechanical polish (CMP) technique, although claimed subject matter is not limited in scope in this respect.
- CMP chemical/mechanical polish
- the term “wall” as it relates to a trench refers to an approximately vertical boundary of a trench formed, for example, by an etching process.
- FIG. 3 e shows a subsequent stage of the process following the process described in FIG. 3 d .
- an electrode material such as middle electrode 360
- middle electrode 360 may comprise carbon, titanium nitride, and/or titanium aluminum nitride, for example, although claimed subject matter is not limited in this respect.
- a selector material 120 may be formed by deposition and/or other known processes over and/or on middle electrode 360 .
- selector material 120 may comprise a chalcogenide glass material.
- selector material 120 may comprise a different chalcogenide material than that utilized for storage component material 340 .
- FIG. 3 f shows a subsequent stage of the process following the process described in FIG. 3 e .
- FIG. 3 f illustrates a plurality of trenches, such as trenches 303 , formed by etching and/or other known processes in PCMS array 100 to provide a plurality of rows along a ‘y’ direction.
- an example etching process may etch upper electrode 370 , selector material 120 , and/or middle electrode 360 , as illustrated by trenches 303 in FIG. 3 f .
- An example etching process may further etch dielectric material 308 previously deposited in trench 301 and/or a portion of an approximately horizontal section of storage component material 340 previously positioned at a bottom of trench 301 , as also illustrated by trenches 303 . Additionally, in an embodiment, an example etching process may etch through sections of dielectric material 306 and further may partially etch sections of dielectric material 302 , as additionally illustrated by trenches 303 .
- components of storage component material 340 located within filled trench 301 may be partially and/or substantially protected by portions of dielectric material 308 and/or by portions of dielectric material 307 located within filled trench 301 , except for portions of storage component material 340 at the bottom of trench 301 .
- An example etching process may form a plurality of individual electrodes in electrode material 140 , in an embodiment.
- a plurality of electrodes of electrode material 140 may comprise a plurality of word-line electrodes for PCMS array 100 , although claimed subject matter is not limited in this respect.
- Storage components 305 may, in an example embodiment, comprise an “L”-shaped storage component.
- storage components 305 may be formed in one dimension in accordance with a deposition of storage component material over and/or on approximately vertical walls of a trench, such as trench 301 .
- a width of a storage component in a dimension formed by deposition of storage component material may comprise a width that is smaller than would otherwise be available through conventional lithographic techniques. In this manner, a reduced-size storage component relative to standard pitch, for example, for a PCMS array, such as PCMS array 100 , may be realized.
- FIG. 3 g shows a subsequent stage of the process following the process described in FIG. 3 f .
- trenches 303 may be filled by deposition of additional dielectric material, such as nitride 320 , to provide some additional stability and/or electrical isolation, for example.
- Nitride 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment, although claimed subject matter is not limited in scope in this respect.
- FIG. 3 h shows a subsequent stage of the process following the process described in FIG. 3 g .
- dielectric material such as nitride 320
- an example planarization process may comprise a CMP technique, although claimed subject matter is not limited in scope in this respect.
- FIG. 3 i shows a subsequent stage of the process following the process described in FIG. 3 h .
- a metallic material such as tungsten
- Electrode material 110 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment.
- FIG. 3 j shows a subsequent stage of the process following the process described in FIG. 3 i .
- a plurality of trenches 313 may be formed by etching and/or other known processes into PCMS array 100 .
- trenches 313 may be positioned along a direction approximately orthogonal to trenches 303 .
- an example etching process may etch sections of electrode material 110 , upper electrode 370 , selector material 120 , middle electrode 360 , and/or dielectric material 306 .
- an example etching process in accordance with an embodiment may etch electrode material 140 , at least partially.
- an anisotropic etch may be used.
- an etching process may be accomplished utilizing a photolithographic operation. During the etch process, portions of PCMS array 100 not intended to be etched may be protected by a mask. Additionally, it may be noted that trenches, such as trenches 313 , may define an additional dimension of an aspect ratio, also referred to as a cross-section, of approximately vertical portions of one or more storage components, such as storage components 305 .
- one dimension of an aspect ratio, or cross section, of approximately vertical portions of storage components 305 may be at least partially affected by a thickness of a deposition of storage component material on a wall of trench 301
- another dimension of an aspect ratio, or cross-section, of approximately vertical portions of storage components 305 may at least partially be affected by an example etching process utilizing a lithographic operation.
- claimed subject matter is not limited in scope in these respects.
- FIG. 3 k shows a subsequent stage of the process following the process described in FIG. 3 j .
- additional dielectric material such as nitride 320
- Deposition of additional dielectric material 320 may provide structural stability, as well as electrical isolation for individual aspects of PCMS array 100 .
- claimed subject matter is not limited in scope in these respects.
- FIG. 4 is a schematic block diagram depicting an example system 400 including an example PCMS 420 .
- PCMS 420 may comprise a storage area 422 including a PCMS cross-point memory array, such as in accordance with one or more of examples.
- PCMS 420 may, in an example embodiment, be coupled to a processor 410 by way of an interconnect 415 .
- PCMS 420 in an embodiment may comprise a control unit 426 .
- storage area 422 may store instructions 424 that may include one or more applications that may be executed by processor 410 , according with an embodiment.
- Processor 410 may transmit a memory access command to PCMS 420 , for example.
- Control unit 426 may access one or more memory cells of storage area 422 at least in part in response to receiving the memory access command from processor 410 , according to an embodiment.
- computing platform 400 is merely one example of a system implemented in accordance with claimed subject matter, and the scope of claimed subject matter is not limited in these respects.
- computing platform refers to a system and/or a device that includes the ability to process and/or store data in the form of signals or states.
- a computing platform in this context, may comprise hardware, software, firmware or any combination thereof (other than software per se).
- Computing platform 400 as depicted in FIG. 4 , is merely one such example, and the scope of claimed subject matter is not limited in these respects.
- a computing platform may comprise any of a wide range of digital electronic devices, including, but not limited to, personal desktop or notebook computers, high-definition televisions, digital versatile disc (DVD) players or recorders, game consoles, satellite television receivers, cellular telephones, personal digital assistants, mobile audio or video playback or recording devices, or any combination of the above.
- digital electronic devices including, but not limited to, personal desktop or notebook computers, high-definition televisions, digital versatile disc (DVD) players or recorders, game consoles, satellite television receivers, cellular telephones, personal digital assistants, mobile audio or video playback or recording devices, or any combination of the above.
- DVD digital versatile disc
- a process as described herein, with reference to flow diagrams or otherwise may also be executed and/or controlled, in whole or in part, by a computing platform.
- a processing unit may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other devices units designed to perform the functions described herein, or combinations thereof.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors controllers, micro-controllers, microprocessors, electronic devices, other devices units designed to perform the functions described herein, or combinations thereof.
- such quantities may take the form of electrical and/or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated as electronic signals representing information. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals, information, or the like. It should be understood, however, that all of these or similar terms are to be associated with appropriate physical quantities and are merely convenient labels.
- a special purpose computer and/or a similar special purpose electronic computing device is capable of manipulating and/or transforming signals, typically represented as physical electronic and/or magnetic quantities within memories, registers, and/or other information storage devices, transmission devices, or display devices of the special purpose computer and/or similar special purpose electronic computing device.
- the term “specific apparatus” may include a general purpose computer once it is programmed to perform particular functions pursuant to instructions from program software.
- operation of a memory device may comprise a transformation, such as a physical transformation.
- a physical transformation may comprise a physical transformation of an article to a different state or thing.
- a change in state may involve an accumulation and/or storage of charge or a release of stored charge.
- a change of state may comprise a physical change and/or transformation in magnetic orientation or a physical change and/or transformation in molecular structure, such as from crystalline to amorphous or vice-versa.
- a change in physical state may involve quantum mechanical phenomena, such as, superposition, entanglement, or the like, which may involve quantum bits (qubits), for example.
- quantum mechanical phenomena such as, superposition, entanglement, or the like
- quantum bits quantum bits
- a computer-readable (storage) medium typically may be non-transitory and/or comprise a non-transitory device.
- a non-transitory storage medium may include a device that is tangible, meaning that the device has a concrete physical form, although the device may change its physical state.
- non-transitory refers to a device remaining tangible despite this change in state.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
- 1. Field
- Subject matter disclosed herein may relate to integrated circuit devices, and may relate, more particularly, to circuitry related to a memory array.
- 2. Information
- Integrated circuit devices, such as memory devices, for example, may be found in a wide range of electronic devices. For example, memory devices may be used in computers, digital cameras, cellular telephones, personal digital assistants, etc. Factors related to a memory device that may be of interest to a system designer in considering a memory device's suitability for any particular application may include, physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption, for example. Other example factors that may be of interest to system designers include cost of manufacture, and/or ease of manufacture.
- Claimed subject matter is particularly pointed out and distinctly claimed in the concluding portion of the specification. However, both as to organization and/or method of operation, together with objects, features, and/or advantages thereof, it may best be understood by reference to the following detailed description if read with the accompanying drawings in which:
-
FIG. 1 is an illustration depicting a cross-sectional view of a phase change memory with a selector (PCMS) device, according to an embodiment. -
FIG. 2 is an illustration depicting a top view of a portion of a memory device, according to an embodiment. -
FIG. 3 a is an illustration depicting a cross-sectional view of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 b is an illustration depicting a cross-sectional view of an additional portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 c is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 d is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an, embodiment. -
FIG. 3 e is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 f is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 g is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 h is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 i is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 j is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 3 k is an illustration depicting a cross-sectional view of a subsequent processing step of a portion of an example technique for forming storage components in a cross-point memory array, according to an embodiment. -
FIG. 4 is a schematic block diagram depicting a system, including a cross-point array memory device, according to an embodiment. - Reference is made in the following detailed description to the accompanying drawings, which form a part hereof, wherein like numerals may designate like parts throughout to indicate corresponding and/or analogous elements. It will be appreciated that elements illustrated in the figures have not necessarily been drawn to scale, such as for simplicity and/or clarity of illustration. For example, dimensions of some elements may be exaggerated relative to other elements for clarity. Further, it is to be understood that other embodiments may be utilized. Furthermore, structural and/or logical changes may be made without departing from the scope of claimed subject matter. It should also be noted that directions and/or references, for example, up, down, top, bottom, and so on, may be used to facilitate discussion of drawings and/or are not intended to restrict application of claimed subject matter. Therefore, the following detailed description is not to be taken to limit the scope of claimed subject matter and/or equivalents.
- Integrated circuit devices, such as non-volatile memory devices, may be found in a wide range of electronic devices. Non-volatile memory devices may be used in computers, digital cameras, cellular telephones, and/or personal digital assistants, to name but a few examples. Factors related to a memory device that may be of interest in considering a memory device's suitability for a particular application may include physical size, storage density, operating voltages, granularity of read/write operations, throughput, transmission rate, and/or power consumption. Other example factors that may be of interest may include cost of manufacture, and/or ease of manufacture. One example aspect of memory array design that may affect one or more factors may include integrated circuit die size. One or more process technologies utilized to manufacture a memory device may at least in part determine at least some of the factors, such as those mentioned above, including storage density, physical size, and/or cost/ease of manufacture, for example.
- An example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing a storage component material over and/or on an insulation layer having one or more trenches formed therein to affect a first dimension of one or more storage components. An example process may further comprise forming one or more trenches in one or more materials of the memory array to affect a second dimension of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask. In an embodiment, for example, relatively high density storage arrays may be accomplished while reducing programming current.
- In an example embodiment, individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension. A reduced aspect ratio, for example, may allow for a reduction in programming current. Also in an example embodiment, a horizontal portion of the “L” shaped storage component, hereafter called lower leg of an “L” shape, for an individual storage component may contact an electrode positioned between a storage component and a selector. A lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing. In one or more example embodiments, an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component. In this manner, reduced programming current may be achieved and improved manufacturing yield may also be achieved. However, claimed subject matter is not limited in scope in these respects.
-
FIG. 1 is an illustration depicting a cross-sectional view of anexample embodiment 100 of a memory array. In an embodiment,memory array 100 may comprise a phase change memory switch (PCMS) array. A PCMS device may also be referred to as a “phase change memory with selector” device. For an embodiment, a phase change memory switch device, such as PCMS 100, may be implemented as a cross-point memory array. In an embodiment of a PCMS cross-point array, a plurality of approximately orthogonally directed electrically conductive lines, referred to as “electrodes”, may be formed, with one subset of orthogonally directed electrodes in a material positioned below an array of storage components and another subset of orthogonally directed electrodes in a material positioned above the array of storage components. As used herein, the term “cross-point memory array” refers to a memory array having two or more approximately orthogonally directed sets of electrodes. For example, as depicted inFIG. 1 , an example embodiment of a cross-point memory array may comprise one set of electrodes, such as electrodes depicted inelectrode material 110, positioned along a direction approximately orthogonal to a direction of another set of electrodes, such as electrodes depicted inelectrode material 140. - An electrically conductive component, such as an “electrode”, refers to component that may be utilized to route signals and/or supply voltages within a metal material and/or within a memory array. An electrically conductive component, such as an electrode, may comprise a sufficiently electrically conductive material, such as polysilicon, carbon, and/or metallic material, such as tungsten, titanium nitride, and/or titanium aluminum nitride, for example, for use in a memory device. Of course, claimed subject matter is not limited in scope in these respects. Other materials may, of course, also be used in an embodiment.
- In an embodiment, an electrode material, such as
electrode material 140, may be formed above one or more materials, such asmaterial 150, comprising one or more semiconductor materials and/or one or more metal materials. An electrode material, such aselectrode material 110, may be positioned above a selector material, such asmaterial 120, and/or a storage component material, such asmaterial 130, in an embodiment. Semiconductor andmetal material 150 may, for example, comprise one or more decoder circuits, such as one or more data/sense lines, for example a bit-line, decoder circuits and/or one or more access lines, for example a word-line, decoder circuits, in an embodiment. Semiconductor andmetal material 150 may further comprise, in an embodiment, one or more metal materials comprising electrodes utilized to route signals and/or supply voltages toelectrode material 140 and/orelectrode material 110, in an embodiment. For example, semiconductor andmetal material 150 may comprise electrically conductive interconnect that may electrically couple a decoder circuit to an electrode inelectrode material 140, although claimed subject matter is not limited in this respect. - In an embodiment, electrically conductive electrodes of
electrode material 140 may lie along a direction approximately orthogonal to a direction of electrically conductive electrodes ofelectrode material 110. Also, in an embodiment, astorage component material 130, and/or a selector material, such asselector material 120, may be formed and/or positioned between two or more electrode materials, such aselectrode material 140 and/orelectrode material 110, in an embodiment. - Also, in an example embodiment, one or more decks of memory may be formed. For example,
memory device 100 may comprise a one-deck memory array. Other embodiments may comprise a greater amount of decks. For example, other embodiments may comprise four decks, although claimed subject matter is not limited in this respect. As used herein, a “deck” of memory may comprise an array of memory cells and a plurality of electrodes. For example, a first deck may comprise a plurality of access line, for example word-line, electrodes, an array of storage components formed over and/or on a plurality of word-line electrodes, and a plurality of bit-line electrodes formed over and/or on a plurality of storage components, for example. A second deck may comprise a plurality of bit-line electrodes shared with a first deck and may further comprise an additional array of storage components positioned over and/or on a plurality of bit-line electrodes, according to an embodiment. Also, for a second deck, an additional plurality of word-line electrodes may be formed over and/or on an additional array of storage components. Of course, claimed subject matter is not limited in scope in these respects. - For a memory array, such as
PCMS array 100, a storage component may comprise a chalcogenide glass material, in an embodiment. A PCMS storage component may be configured to retain or store memory in at least two different selectable states. For example in a binary system, the states are considered either a “0” or a “1,”, where a “set” state, representing a binary value of ‘1’, for example, may correspond to a more crystalline , more conductive state for a material of a storage component and a “reset” state, representing a binary value of ‘0’, for example, corresponding to a more amorphous, more resistive state of a storage component material. In other systems, at least some individual memory cells may be configured to store more than two levels or states of information. In a PCMS memory array, heat sufficient to change a phase of a storage component may be achieved by application of a current and/or voltage pulse to the storage component, in an embodiment. Further, in one or more example embodiments, cross-point memory arrays may comprise one or more technologies other than PCMS, such as resistive memory technologies and/or other types of memory, and claimed subject matter is not limited in scope in this respect. -
FIG. 2 is an illustration depicting a top view of a portion of example PCMScross-point memory array 100. Depicted inFIG. 2 is anelectrode material 110 comprising a plurality of electrically conductive electrodes laying in a direction and anelectrode material 140 comprising a plurality of electrically conductive electrodes laying in a direction approximately orthogonal to the direction ofelectrode material 110.FIG. 2 additionally shows cross-sectional line segments ‘A’, and ‘B’ that correspond to cross sectional views A and B. In an embodiment, astorage component 105 ofPCMS array 100, located betweenelectrode materials 110 and/or 140, may be selected and/or accessed in part by energizing appropriate electrodes inelectrode material 140 and/orelectrode material 110. For an example, PCMS cross-point memory array, such asarray 100, one or more driver circuits, such as one or more word-line driver circuits and/or one or more bit-line driver circuits, may transmit one or more signals, such as one or more word-line select signals and/or one or more bit-line select signals, to one or more electrodes ofelectrode material 110 and/orelectrode material 140. In an embodiment,electrode material 140 may comprise a plurality of word-line electrodes, for example. Also, in an embodiment,electrode material 110 may comprise a plurality of bit-line electrodes, although claimed subject matter is not limited in these respects. By transmitting a word-line select signal to a word-line electrode ofelectrode material 140 and/or by transmitting a bit-select signal to a bit-line electrode of electrode material 110 a particular storage component withinarray 100 may be selected, for example. - In one or more embodiments, it may be advantageous to provide higher density storage arrays, for example, while also providing reduced storage component programming current. It may further be advantageous to provide higher density storage arrays and/or reduced storage component programming current without significantly increasing cost and/or difficulty of manufacture, for example. Of course, claimed subject matter is not limited in these respects. These are merely non-limiting examples.
- As mentioned previously, an example process for forming one or more storage components in a phase change with selector (PCMS) memory array may comprise depositing storage component material over and/or on one or more trenches in a dielectric material to decrease die size. One or more trenches may be formed in an area above a plurality of rows individually comprising an electrode and a selector such that bottom portions a storage component may contact an electrode positioned between a storage component and a selector, in an embodiment. An example process may further comprise forming a trench in a material of the memory array to affect a size of the storage components at least in part through a lithographic operation utilizing a reduced pitch mask. Individual storage components may comprise an “L” shape, wherein an approximately vertical portion of an “L” shape comprises an aspect ratio at least partially affected by a thickness of a deposition of storage component material on an approximately vertical wall of a trench in one dimension and by an additional trench formed in an approximately orthogonal direction using a reduced pitch photolithographic mask in another dimension. A reduced aspect ratio, for example, may allow for a reduction in programming current. Also in an example embodiment, a horizontal potion of the “L” shaped storage component, hereafter called lower leg of an “L” shape, for an individual storage component may contact an electrode positioned between a storage component and a selector. A lower leg of an “L” shaped storage component may provide increased contact area with an electrode, providing an improved electrical connection with reduced resistance and further help increase yield during manufacturing. In one or more example embodiments, an increased contact area between a storage component and an electrode may be provided while still providing a reduced aspect ratio storage component. However, claimed subject matter is not limited in scope in these respects.
-
FIGS. 3 a through 3 k illustrate a process of formingPCMS 100 in accordance with an embodiment of the present technology. Referring toFIG. 3 a, Cross Section A depicts a cross-sectional view of a portion ofPCMS array 100 looking in an ‘x’ direction, and Cross Section B depicts a cross-sectional view of a portion ofPCMS array 100 looking in a ‘y’ direction that is approximately orthogonal to an ‘x’ direction.FIGS. 3 a through 3 k depict an example technique for forming at least some aspects ofPCMS array 100. Of course, claimed subject matter is not limited in scope to the particular examples described herein and as depicted inFIGS. 3 a through 3 k. - As illustrated in
FIG. 3 a, As illustrated inFIG. 3 a, adielectric material 302, such as a nitride, may be formed by deposition and/or other known processes over and/or on a semiconductor andmetal material 150, in an embodiment. Also in an embodiment, a material, such as tungsten, may be deposited or otherwise formed by known methods over and/or on a dielectric, such as a nitride, to produce anelectrode material 140.Electrode material 140 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment.Dielectric material 302 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Embodiments are not limited to a particular type of dielectric material or electrode material. Note that at this point in an example process,electrode material 140 may comprise a deposited sheet of material, and so may not yet comprise individual electrodes. In an implementation,electrode material 140 may eventually comprise one or more electrodes approximately in parallel and approximately along an ‘x’ direction. Also, in an embodiment, an additionaldielectric material 306 may be formed by deposition and/or other known processes over and/or onelectrode material 140, for example.Dielectric material 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. -
FIG. 3 b shows a subsequent stage of the process following the process described inFIG. 3 a. As illustrated inFIG. 3 b, atrench 301 may be formed by etching and/or other known processes in adielectric material 306, for example. In an embodiment, an etching process may stop approximately atelectrode material 140, for example. In an embodiment, a photoresist etch mask may be formed utilizing a lithographic technique, for example, to substantially protectPCMS array 100 outside of an area designated fortrench 301 during an etching process, although the scope of claimed subject matter is not limited in this respect. Astorage component material 340 may be formed by deposition and/or other known processes over and/or on a surface ofPCMS array 100, including withintrench 301. In an embodiment,storage component material 340 may be deposited in a conformal manner. In an embodiment,storage component material 340 may comprise a chalcogenide glass material, for example. An additionaldielectric material 307 may be formed by deposition and/or other known processes over and/or onstorage component material 340, in an embodiment.Dielectric material 307 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment. Again, other materials are also possible in other embodiments. -
FIG. 3 c shows a subsequent stage of the process following the process described inFIG. 3 b. As illustrated inFIG. 3 c, adielectric material 308, such as an oxide, may be formed by deposition and/or other known processes over and/or onPCMS array 100, including fillingtrench 301. In an embodiment,dielectric material 308 may comprise silicon oxide, for example. -
FIG. 3 d shows a subsequent stage of the process following the process described inFIG. 3 c. As illustrated inFIG. 3 d,PCMS array 100 may be substantially planarized to remove portions ofdielectric material 308 not withintrench 301 and/orstorage component material 340 not withintrench 301. Planarization, in an embodiment, may further expose portions ofstorage component material 340 at a top surface ofPCMS 100. Also, in an embodiment, an example planarization process may comprise a chemical/mechanical polish (CMP) technique, although claimed subject matter is not limited in scope in this respect. As used herein, the term “wall” as it relates to a trench refers to an approximately vertical boundary of a trench formed, for example, by an etching process. -
FIG. 3 e shows a subsequent stage of the process following the process described inFIG. 3 d. As depicted inFIG. 3 e, an electrode material, such asmiddle electrode 360, may be formed by deposition and/or other known processes over and/or onPCMS array 100. In an embodiment,middle electrode 360 may comprise carbon, titanium nitride, and/or titanium aluminum nitride, for example, although claimed subject matter is not limited in this respect. Additionally, aselector material 120 may be formed by deposition and/or other known processes over and/or onmiddle electrode 360. In an embodiment,selector material 120 may comprise a chalcogenide glass material. However, in an embodiment,selector material 120 may comprise a different chalcogenide material than that utilized forstorage component material 340. -
FIG. 3 f shows a subsequent stage of the process following the process described inFIG. 3 e.FIG. 3 f illustrates a plurality of trenches, such astrenches 303, formed by etching and/or other known processes inPCMS array 100 to provide a plurality of rows along a ‘y’ direction. In an embodiment, an example etching process may etchupper electrode 370,selector material 120, and/ormiddle electrode 360, as illustrated bytrenches 303 inFIG. 3 f. An example etching process may further etchdielectric material 308 previously deposited intrench 301 and/or a portion of an approximately horizontal section ofstorage component material 340 previously positioned at a bottom oftrench 301, as also illustrated bytrenches 303. Additionally, in an embodiment, an example etching process may etch through sections ofdielectric material 306 and further may partially etch sections ofdielectric material 302, as additionally illustrated bytrenches 303. - During etching, in an example embodiment, components of
storage component material 340 located within filledtrench 301 may be partially and/or substantially protected by portions ofdielectric material 308 and/or by portions ofdielectric material 307 located within filledtrench 301, except for portions ofstorage component material 340 at the bottom oftrench 301. An example etching process may form a plurality of individual electrodes inelectrode material 140, in an embodiment. In an embodiment, a plurality of electrodes ofelectrode material 140 may comprise a plurality of word-line electrodes forPCMS array 100, although claimed subject matter is not limited in this respect. - An example etching process may further partially and/or substantially result in forming
storage components 305, in an embodiment.Storage components 305 may, in an example embodiment, comprise an “L”-shaped storage component. In an embodiment,storage components 305 may be formed in one dimension in accordance with a deposition of storage component material over and/or on approximately vertical walls of a trench, such astrench 301. In an embodiment, a width of a storage component in a dimension formed by deposition of storage component material may comprise a width that is smaller than would otherwise be available through conventional lithographic techniques. In this manner, a reduced-size storage component relative to standard pitch, for example, for a PCMS array, such asPCMS array 100, may be realized. -
FIG. 3 g shows a subsequent stage of the process following the process described inFIG. 3 f. As illustrated inFIG. 3 g,trenches 303 may be filled by deposition of additional dielectric material, such asnitride 320, to provide some additional stability and/or electrical isolation, for example.Nitride 306 may comprise, for example, silicon nitride and/or silicon oxynitride, in an embodiment, although claimed subject matter is not limited in scope in this respect. -
FIG. 3 h shows a subsequent stage of the process following the process described inFIG. 3 g. As depicted inFIG. 3 h, dielectric material, such asnitride 320, may be planarized untilupper electrode 370 is substantially exposed. Also, in an embodiment, an example planarization process may comprise a CMP technique, although claimed subject matter is not limited in scope in this respect. -
FIG. 3 i shows a subsequent stage of the process following the process described inFIG. 3 h. As illustrated atFIG. 3 i, a metallic material, such as tungsten, may be formed by deposition and/or other known processes over and/or onPCMS array 100 to formelectrode material 110.Electrode material 110 may further comprise, for example, platinum, carbon, titanium nitride, and/or titanium aluminum nitride, among others, in an embodiment. -
FIG. 3 j shows a subsequent stage of the process following the process described inFIG. 3 i. As depicted inFIG. 3 j, a plurality oftrenches 313 may be formed by etching and/or other known processes intoPCMS array 100. In an embodiment,trenches 313 may be positioned along a direction approximately orthogonal totrenches 303. In an embodiment, an example etching process may etch sections ofelectrode material 110,upper electrode 370,selector material 120,middle electrode 360, and/ordielectric material 306. Also, an example etching process in accordance with an embodiment may etchelectrode material 140, at least partially. In an example embodiment, an anisotropic etch may be used. - In an embodiment, an etching process may be accomplished utilizing a photolithographic operation. During the etch process, portions of
PCMS array 100 not intended to be etched may be protected by a mask. Additionally, it may be noted that trenches, such astrenches 313, may define an additional dimension of an aspect ratio, also referred to as a cross-section, of approximately vertical portions of one or more storage components, such asstorage components 305. In this manner, one dimension of an aspect ratio, or cross section, of approximately vertical portions ofstorage components 305 may be at least partially affected by a thickness of a deposition of storage component material on a wall oftrench 301, and another dimension of an aspect ratio, or cross-section, of approximately vertical portions ofstorage components 305 may at least partially be affected by an example etching process utilizing a lithographic operation. However, claimed subject matter is not limited in scope in these respects. -
FIG. 3 k shows a subsequent stage of the process following the process described inFIG. 3 j. As illustrated inFIG. 3 k, additional dielectric material, such asnitride 320, may be deposited over and/or onPCMS 100 and withintrenches 313 to encapsulatestorage components 305, in an embodiment, for example. Deposition of additionaldielectric material 320 may provide structural stability, as well as electrical isolation for individual aspects ofPCMS array 100. However, claimed subject matter is not limited in scope in these respects. -
FIG. 4 is a schematic block diagram depicting anexample system 400 including anexample PCMS 420. In an embodiment,PCMS 420 may comprise astorage area 422 including a PCMS cross-point memory array, such as in accordance with one or more of examples.PCMS 420 may, in an example embodiment, be coupled to aprocessor 410 by way of aninterconnect 415. -
PCMS 420 in an embodiment may comprise acontrol unit 426. Additionally,storage area 422 may storeinstructions 424 that may include one or more applications that may be executed byprocessor 410, according with an embodiment.Processor 410 may transmit a memory access command toPCMS 420, for example.Control unit 426 may access one or more memory cells ofstorage area 422 at least in part in response to receiving the memory access command fromprocessor 410, according to an embodiment. Of course,computing platform 400 is merely one example of a system implemented in accordance with claimed subject matter, and the scope of claimed subject matter is not limited in these respects. - The term “computing platform” as used herein refers to a system and/or a device that includes the ability to process and/or store data in the form of signals or states. Thus, a computing platform, in this context, may comprise hardware, software, firmware or any combination thereof (other than software per se).
Computing platform 400, as depicted inFIG. 4 , is merely one such example, and the scope of claimed subject matter is not limited in these respects. For one or more embodiments, a computing platform may comprise any of a wide range of digital electronic devices, including, but not limited to, personal desktop or notebook computers, high-definition televisions, digital versatile disc (DVD) players or recorders, game consoles, satellite television receivers, cellular telephones, personal digital assistants, mobile audio or video playback or recording devices, or any combination of the above. Further, unless specifically stated otherwise, a process as described herein, with reference to flow diagrams or otherwise, may also be executed and/or controlled, in whole or in part, by a computing platform. - The terms, “and”, “or”, and “and/or” as used herein may include a variety of meanings that also are expected to depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein may be used to describe any feature, structure, or characteristic in the singular or may be used to describe a plurality or some other combination of features, structures or characteristics. Though, it should be noted that this is merely an illustrative example and claimed subject matter is not limited to this example.
- Methodologies described herein may be implemented by various techniques depending, at least in part, on applications according to particular features or examples. For example, methodologies may be implemented in hardware, firmware, or combinations thereof, along with software (other than software per se). In a hardware embodiment, for example, a processing unit may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other devices units designed to perform the functions described herein, or combinations thereof.
- In the preceding detailed description, numerous specific details have been set forth to provide a thorough understanding of claimed subject matter. However, it will be understood by those skilled in the art that claimed subject matter may be practiced without these specific details. In other instances, methods and/or apparatuses that would be known by one of ordinary skill have not been described in detail so as not to obscure claimed subject matter.
- Some portions of the preceding detailed description have been presented in terms of logic, algorithms and/or symbolic representations of operations on binary states stored within a memory of a specific apparatus or special purpose computing device or platform. In the context of this particular specification, the term specific apparatus or the like includes a general purpose computer once it is programmed to perform particular functions pursuant to instructions from program software. Algorithmic descriptions and/or symbolic representations are examples of techniques used by those of ordinary skill in the signal processing and/or related arts to convey the substance of their work to others skilled in the art. An algorithm is here, and generally, is considered to be a self-consistent sequence of operations and/or similar signal processing leading to a desired result. In this context, operations and/or processing involve physical manipulation of physical quantities. Typically, although not necessarily, such quantities may take the form of electrical and/or magnetic signals capable of being stored, transferred, combined, compared or otherwise manipulated as electronic signals representing information. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, numerals, information, or the like. It should be understood, however, that all of these or similar terms are to be associated with appropriate physical quantities and are merely convenient labels. Unless specifically stated otherwise, as apparent from the following discussion, it is appreciated that throughout this specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining”, “establishing”, “obtaining”, “identifying”, “selecting”, “generating”, or the like may refer to actions and/or processes of a specific apparatus, such as a special purpose computer or a similar special purpose electronic computing device. In the context of this specification, therefore, a special purpose computer and/or a similar special purpose electronic computing device is capable of manipulating and/or transforming signals, typically represented as physical electronic and/or magnetic quantities within memories, registers, and/or other information storage devices, transmission devices, or display devices of the special purpose computer and/or similar special purpose electronic computing device. In the context of this particular patent application, the term “specific apparatus” may include a general purpose computer once it is programmed to perform particular functions pursuant to instructions from program software.
- In some circumstances, operation of a memory device, such as a change in state from a binary one to a binary zero or vice-versa, for example, may comprise a transformation, such as a physical transformation. With particular types of memory devices, such a physical transformation may comprise a physical transformation of an article to a different state or thing. For example, but without limitation, for some types of memory devices, a change in state may involve an accumulation and/or storage of charge or a release of stored charge. Likewise, in other memory devices, a change of state may comprise a physical change and/or transformation in magnetic orientation or a physical change and/or transformation in molecular structure, such as from crystalline to amorphous or vice-versa. In still other memory devices, a change in physical state may involve quantum mechanical phenomena, such as, superposition, entanglement, or the like, which may involve quantum bits (qubits), for example. The foregoing is not intended to be an exhaustive list of all examples in which a change in state for a binary one to a binary zero or vice-versa in a memory device may comprise a transformation, such as a physical transformation. Rather, the foregoing are intended as illustrative examples.
- A computer-readable (storage) medium typically may be non-transitory and/or comprise a non-transitory device. In this context, a non-transitory storage medium may include a device that is tangible, meaning that the device has a concrete physical form, although the device may change its physical state. Thus, for example, non-transitory refers to a device remaining tangible despite this change in state.
- While there has been illustrated and/or described what are presently considered to be example features, it will be understood by those skilled in the art that various other modifications may be made, and/or equivalents may be substituted, without departing from claimed subject matter. Additionally, many modifications may be made to adapt a particular situation to the teachings of claimed subject matter without departing from the central concept described herein.
- Therefore, it is intended that claimed subject matter not be limited to the particular examples disclosed, but that such claimed subject matter may also include all aspects falling within the scope of appended claims, and/or equivalents thereof.
Claims (24)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/224,268 US20130058158A1 (en) | 2011-09-01 | 2011-09-01 | Method, system, and device for l-shaped memory component |
US15/598,051 US20170324032A1 (en) | 2011-09-01 | 2017-05-17 | Method, system, and device for l-shaped memory component |
US15/858,794 US10497863B2 (en) | 2011-09-01 | 2017-12-29 | Method, system, and device for L-shaped memory component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/224,268 US20130058158A1 (en) | 2011-09-01 | 2011-09-01 | Method, system, and device for l-shaped memory component |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/598,051 Division US20170324032A1 (en) | 2011-09-01 | 2017-05-17 | Method, system, and device for l-shaped memory component |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130058158A1 true US20130058158A1 (en) | 2013-03-07 |
Family
ID=47753096
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/224,268 Abandoned US20130058158A1 (en) | 2011-09-01 | 2011-09-01 | Method, system, and device for l-shaped memory component |
US15/598,051 Abandoned US20170324032A1 (en) | 2011-09-01 | 2017-05-17 | Method, system, and device for l-shaped memory component |
US15/858,794 Active US10497863B2 (en) | 2011-09-01 | 2017-12-29 | Method, system, and device for L-shaped memory component |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/598,051 Abandoned US20170324032A1 (en) | 2011-09-01 | 2017-05-17 | Method, system, and device for l-shaped memory component |
US15/858,794 Active US10497863B2 (en) | 2011-09-01 | 2017-12-29 | Method, system, and device for L-shaped memory component |
Country Status (1)
Country | Link |
---|---|
US (3) | US20130058158A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9520555B2 (en) | 2011-09-01 | 2016-12-13 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact |
US20190157554A1 (en) * | 2017-11-13 | 2019-05-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Novel resistive random access memory device |
US10424619B2 (en) | 2016-01-13 | 2019-09-24 | Samsung Electronics Co., Ltd. | Variable resistance memory devices and methods of manufacturing the same |
US10923654B2 (en) | 2018-08-28 | 2021-02-16 | Samsung Electronics Co., Ltd. | Variable resistance memory device |
US10991880B2 (en) | 2018-08-24 | 2021-04-27 | Samsung Electronics Co., Ltd. | Variable resistance memory device and method of fabricating the same |
CN113437212A (en) * | 2021-06-01 | 2021-09-24 | 长江先进存储产业创新中心有限责任公司 | Three-dimensional phase change memory and preparation method thereof |
US11450711B2 (en) | 2019-06-26 | 2022-09-20 | SK Hynix Inc. | Electronic device and method of manufacturing electronic device |
WO2024037524A1 (en) * | 2022-08-18 | 2024-02-22 | International Business Machines Corporation | Vertical phase change memory device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7569845B2 (en) * | 2006-08-14 | 2009-08-04 | Industrial Technology Research Institute | Phase-change memory and fabrication method thereof |
US7569847B2 (en) * | 2001-03-30 | 2009-08-04 | The Regents Of The University Of California | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
US7655938B2 (en) * | 2005-07-20 | 2010-02-02 | Kuo Charles C | Phase change memory with U-shaped chalcogenide cell |
US20100038617A1 (en) * | 2008-08-13 | 2010-02-18 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US20100176368A1 (en) * | 2009-01-14 | 2010-07-15 | Ko Nikka | Method of manufacturing semiconductor memory device, and semiconductor memory device |
US20100176365A1 (en) * | 2009-01-09 | 2010-07-15 | Samsung Electronics Co., Ltd. | Resistance variable memory devices and methods of fabricating the same |
US20110155989A1 (en) * | 2009-12-29 | 2011-06-30 | Doo-Hwan Park | Variable resistance memory device and methods of forming the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7800933B2 (en) | 2005-09-28 | 2010-09-21 | Sandisk 3D Llc | Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance |
US7400522B2 (en) * | 2003-03-18 | 2008-07-15 | Kabushiki Kaisha Toshiba | Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation |
DE20321085U1 (en) | 2003-10-23 | 2005-12-29 | Commissariat à l'Energie Atomique | Phase change memory has switching region along lateral extent of memory between contacts; current passes through switching region along lateral extent; switching region lies in memory material layer if there is constriction between contacts |
US7265050B2 (en) | 2003-12-12 | 2007-09-04 | Samsung Electronics Co., Ltd. | Methods for fabricating memory devices using sacrificial layers |
JP5175526B2 (en) * | 2007-11-22 | 2013-04-03 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
US7466584B1 (en) | 2008-01-02 | 2008-12-16 | Ovonyx, Inc. | Method and apparatus for driving an electronic load |
US8377741B2 (en) | 2008-12-30 | 2013-02-19 | Stmicroelectronics S.R.L. | Self-heating phase change memory cell architecture |
US8729521B2 (en) * | 2010-05-12 | 2014-05-20 | Macronix International Co., Ltd. | Self aligned fin-type programmable memory cell |
US8569734B2 (en) | 2010-08-04 | 2013-10-29 | Micron Technology, Inc. | Forming resistive random access memories together with fuse arrays |
-
2011
- 2011-09-01 US US13/224,268 patent/US20130058158A1/en not_active Abandoned
-
2017
- 2017-05-17 US US15/598,051 patent/US20170324032A1/en not_active Abandoned
- 2017-12-29 US US15/858,794 patent/US10497863B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7569847B2 (en) * | 2001-03-30 | 2009-08-04 | The Regents Of The University Of California | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
US7655938B2 (en) * | 2005-07-20 | 2010-02-02 | Kuo Charles C | Phase change memory with U-shaped chalcogenide cell |
US7569845B2 (en) * | 2006-08-14 | 2009-08-04 | Industrial Technology Research Institute | Phase-change memory and fabrication method thereof |
US20100038617A1 (en) * | 2008-08-13 | 2010-02-18 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US20100176365A1 (en) * | 2009-01-09 | 2010-07-15 | Samsung Electronics Co., Ltd. | Resistance variable memory devices and methods of fabricating the same |
US20100176368A1 (en) * | 2009-01-14 | 2010-07-15 | Ko Nikka | Method of manufacturing semiconductor memory device, and semiconductor memory device |
US20110155989A1 (en) * | 2009-12-29 | 2011-06-30 | Doo-Hwan Park | Variable resistance memory device and methods of forming the same |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10580980B2 (en) | 2011-09-01 | 2020-03-03 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references |
US9698345B2 (en) | 2011-09-01 | 2017-07-04 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references |
US9876168B2 (en) | 2011-09-01 | 2018-01-23 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references |
US10186659B2 (en) | 2011-09-01 | 2019-01-22 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references |
US9520555B2 (en) | 2011-09-01 | 2016-12-13 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact |
US11031553B2 (en) | 2011-09-01 | 2021-06-08 | Ovonyx Memory Technology, Llc | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references |
US10424619B2 (en) | 2016-01-13 | 2019-09-24 | Samsung Electronics Co., Ltd. | Variable resistance memory devices and methods of manufacturing the same |
US20190157554A1 (en) * | 2017-11-13 | 2019-05-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Novel resistive random access memory device |
US11527714B2 (en) | 2017-11-13 | 2022-12-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Resistive random access memory device |
US10680172B2 (en) * | 2017-11-13 | 2020-06-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Resistive random access memory device |
US11038105B2 (en) | 2017-11-13 | 2021-06-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Resistive random access memory device |
US11968914B2 (en) | 2017-11-13 | 2024-04-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Resistive random access memory device |
US10991880B2 (en) | 2018-08-24 | 2021-04-27 | Samsung Electronics Co., Ltd. | Variable resistance memory device and method of fabricating the same |
US10923654B2 (en) | 2018-08-28 | 2021-02-16 | Samsung Electronics Co., Ltd. | Variable resistance memory device |
US11450711B2 (en) | 2019-06-26 | 2022-09-20 | SK Hynix Inc. | Electronic device and method of manufacturing electronic device |
CN113437212A (en) * | 2021-06-01 | 2021-09-24 | 长江先进存储产业创新中心有限责任公司 | Three-dimensional phase change memory and preparation method thereof |
WO2024037524A1 (en) * | 2022-08-18 | 2024-02-22 | International Business Machines Corporation | Vertical phase change memory device |
Also Published As
Publication number | Publication date |
---|---|
US20170324032A1 (en) | 2017-11-09 |
US10497863B2 (en) | 2019-12-03 |
US20180145250A1 (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10497863B2 (en) | Method, system, and device for L-shaped memory component | |
US11031553B2 (en) | Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references | |
US9444043B2 (en) | Method, system and device for phase change memory with shunt | |
US8283186B2 (en) | Magnetic memory device and method for manufacturing the same | |
US11081173B2 (en) | Via formation for cross-point memory | |
US9755141B2 (en) | Method for fabricating MRAM bits on a tight pitch | |
US9437287B2 (en) | Methods, devices and processes for multi-state phase change devices | |
JP2010219098A (en) | Semiconductor memory device and method of manufacturing the same | |
US20060228853A1 (en) | Memory devices including spacers on sidewalls of memory storage elements and related methods | |
TW202137594A (en) | Low resistance crosspoint architecture | |
CN104518087A (en) | Resistive memory apparatus and manufacturing method thereof | |
US10854673B2 (en) | Elementary cell comprising a resistive random-access memory and a selector, stage and matrix of stages comprising a plurality of said cells and associated manufacturing method | |
US20240215268A1 (en) | Single plug flow for a memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PELLIZZER, FABIO;TORTORELLI, INNOCENZO;REEL/FRAME:026847/0831 Effective date: 20110901 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001 Effective date: 20180629 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001 Effective date: 20190731 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001 Effective date: 20190731 |