US20120281740A1 - Transmitting apparatus, receiving apparatus and communication system - Google Patents

Transmitting apparatus, receiving apparatus and communication system Download PDF

Info

Publication number
US20120281740A1
US20120281740A1 US13/552,055 US201213552055A US2012281740A1 US 20120281740 A1 US20120281740 A1 US 20120281740A1 US 201213552055 A US201213552055 A US 201213552055A US 2012281740 A1 US2012281740 A1 US 2012281740A1
Authority
US
United States
Prior art keywords
pulse
circuit
peak power
pulses
transmitting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/552,055
Inventor
Suguru Fujita
Masahiro Mimura
Kazuaki Takahashi
Yoshinori Kunieda
Noriyuki Ueki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to US13/552,055 priority Critical patent/US20120281740A1/en
Publication of US20120281740A1 publication Critical patent/US20120281740A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/717Pulse-related aspects
    • H04B1/7174Pulse generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation

Definitions

  • the present invention relates to transmitting apparatus, receiving apparatus, and communication systems using wideband signals such as pulse waveforms.
  • IEEE802.11b typically represents wireless local-area-network (hereinafter referred to as LAN) devices having been rapidly and widely used.
  • LAN wireless local-area-network
  • AV audio-video
  • personal computers are connected in wireless manner, so that a society where seamless networks are established can be predicted.
  • a distance measuring technique employing wireless techniques including ultrasonic sensors, or millimeter-wave sensors is one of the applications of the communications using this standard, and this technique is used in a variety of fields such as preventing a car collision, monitoring an invader by detecting a human-body. The application fields will be expanded from now on.
  • UWB ultra wide band
  • the UWB employs a short pulse not greater than 1 (one) nano-second, and a wide frequency band over several hundreds of MHz for communication or distance measuring.
  • a repetition frequency of the short pulse is raised, so that one symbol is assigned to each one of short pulses or a plurality of short pulses, thereby embodying a high speed communication over several hundreds of Mbps.
  • an arrival time is measured by using short pulses, so that a distance can be accurately measured.
  • FIG. 9 shows a block diagram illustrating a structure of a conventional receiving apparatus. Since the UWB employs an extraordinary short pulse not greater than ins, a capture of a signal (acquisition) and a synchronization of a signal (tracking) should be done quickly and accurately. In this conventional instance, a signal is captured by a technique called synchronous addition which also suppresses errors in synchronization. A signal received via a wireless propagating route is deteriorated its signal-to-noise (S/N) ratio due to adverse effect of attenuation, noise, and multi-path.
  • S/N signal-to-noise
  • a reception signal is delayed at known pulse intervals by using plural delay circuits 701 A, 701 B, and the delay is added in the form of voltage by using voltage adding circuit 702 for boosting the signal voltage.
  • a sync pulse is extracted from this signal by using sync pulse detecting circuit 703 .
  • the reception signal is demodulated with this extracted sync pulse by demodulating circuit 704 , thereby obtaining a demodulated signal (demodulated data).
  • the present invention aims to provide a transmitting apparatus, receiving apparatus and communication system which allow the receiving apparatus to obtain greater S/N improvement effect, avoid lowering actual throughput, avoid requiring a large number of circuits for synchronizing spectrum signals, avoid making its circuit complicated, avoid making the device bulky, and avoid increasing the power consumption.
  • the transmitting apparatus of the present invention includes a pulse generating circuit, a pulse repetition cycle determining circuit, a peak power determining circuit, and a modulator.
  • the pulse generating circuit generates a pulse string.
  • the pulse repetition cycle determining circuit determines, based on a clock signal, a pulse repetition cycle of the pulse string generated by the pulse generating circuit.
  • the peak power detecting circuit determines a pulse peak power of the pulse string.
  • the modulator modulates the pulse string with transmission data, thereby generating a transmission signal.
  • the foregoing structure allows the receiving apparatus, i.e. the communication counterpart, to obtain greater improvement of S/N ratio, avoid lowering actual throughput, avoid requiring a large number of circuits for synchronizing spectrum signals, avoid making its circuit complicated, avoid making the device bulky, and avoid increasing the power consumption.
  • the transmitting apparatus of the present invention can have a structure in which a pulse repetition cycle and a pulse peak power are determined such that the cooperative operation of the pulse repetition cycle determination circuit with the peak power determination circuit makes an average power of a transmission signal constant.
  • This structure allows transmitting pulses having a great peak power while the average transmission power is kept constant.
  • the transmitting apparatus of the present invention can have a structure in which a transmission signal is formed of at least two kinds of pulses having different peak powers from each other. This structure allows an appropriate transmission of signals the receiving apparatus needs.
  • the transmitting apparatus of the present invention can have a structure, in which the modulator allots at least a part of the sync information to a pulse having a great peak power. This structure allows the receiving apparatus to capture the pulse (acquisition) and hold the sync (tracking) with ease.
  • the transmitting apparatus of the present invention can have a structure, in which the modulator allots a signal, to be used for measuring a distance, to a pulse having a great peak power.
  • This structure allows performing not only data communication but also measuring a distance with ease.
  • the transmitting apparatus of the present invention can have a structure, in which the modulator employs one of pulse position modulation, pulse phase modulation or pulse amplitude modulation. This simple structure allows performing a high-speed communication with short pulses or accurate distance measurement.
  • the transmitting apparatus of the present invention can further include a random number generating circuit for allowing the peak power determining circuit to determine the pulse peak power based on the generated ransom number.
  • This structure can avoid a poor quality of communication such as interference in specific condition, and implement at least a communication or distance measurement with pulses having a great peak power.
  • the transmitting apparatus of the present invention can further include a timer circuit, and the peak power determining circuit determines a pulse peak power based on time intervals designated by the timer circuit.
  • This structure allows the receiving apparatus to receive a pulse, having a great peak power, at given intervals, so that the arrival time of the pulse can be estimated with ease. As a result, the pulses can be easily caught, and the sync can be held with ease.
  • the transmitting apparatus of the present invention can have a structure in which at least one of the pulse repetition cycle determined by the pulse repetition cycle determining circuit or the pulse peak power determined by the peak power determining circuit can be changed based on the information received by the receiving apparatus. This structure allows the transmitting apparatus to establish an appropriate transmitting condition in response to a reception status.
  • the transmitting apparatus of the present invention can have a structure in which the information received by the receiving apparatus is the information indicating a reception status of a counterpart to which a transmission signal is sent. This structure allows the transmitting apparatus to establish an appropriate transmitting condition in response to the reception status of the counterpart.
  • the transmitting apparatus of the present invention can have a structure in which the information received by the receiving apparatus is the information from a device other than the counterpart to which a transmission signal is sent. This structure allows the transmitting apparatus to optimize a transmitting condition which can reduce the interference arising to other devices.
  • the receiving apparatus of the present invention includes a reception pulse signal generating circuit, selecting circuit, synchronizing circuit, and demodulating circuit.
  • the reception pulse signal generating circuit reproduces short pulses based on reception signals, thereby generating reception pulse signals.
  • the selecting circuit selects pulses based on a magnitude of pulse peak power of a reception pulse signal.
  • the synchronizing circuit synchronizes a clock signal with the selected reception pulse signal, thereby generating a sync output signal.
  • the demodulating circuit generates a demodulated signal by using the sync output signal and the reception pulse signal.
  • the receiving apparatus of the present invention can have a structure in which the selecting circuit selects pulses having a great pulse peak power, and the synchronizing circuit synchronizes the clock signal with the pulse having a great pulse peak power, and the demodulating circuit receives and demodulates pulses having a small pulse peak power.
  • This structure allows capturing pulses and holding a sync with ease, so that greater improvement of S/N ratio can be expected, and an actual throughput is not lowered, a number of spread signal sync circuits are not needed.
  • the foregoing structure prevents the circuit from becoming complicated, and the device from becoming bulky, and the power consumption from increasing.
  • the receiving apparatus of the present invention can have a structure in which the selecting circuit selects pulses having a great pulse peak power, and the synchronizing circuit synchronizes spread signals with the selected pulses having a great pulse peak power.
  • This structure allows synchronizing the spread signals with ease, and obtaining a greater improvement of S/N ratio, and an actual throughput is not lowered, a number of spread signal sync circuits are not needed.
  • the foregoing structure prevents the circuit from becoming complicated, the device from becoming bulky, and the power consumption from increasing.
  • the receiving apparatus of the present invention can further include a time difference signal generating circuit, a signal flight distance estimating circuit.
  • the time difference signal generating circuit generates a time difference signal based on the time difference between the clock signal and the reception pulse signal.
  • the signal flight distance estimating circuit estimates the flight distance based on the time difference signal generated by the time difference generating circuit. This structure prevents the circuit from becoming complicated, the device from becoming bulky, and the power consumption from increasing, and the distance can be measured with ease.
  • the receiving apparatus of the present invention can have a structure in which the demodulating circuit obtains reception information of another device, and outputs the information to the transmitting apparatus. This structure allows conveying a reception status of the other device to the transmitting apparatus.
  • the receiving apparatus of the present invention can have a structure in which the obtained reception information of another device is the reception information of a counterpart to which the transmitting apparatus sends a transmission signal. This structure allows conveying the reception status of the communication counterpart to the transmitting apparatus.
  • the receiving apparatus of the present invention can have a structure in which the obtained reception information of another device is reception information of a device other than the counterpart to which the transmitting apparatus sends a transmission signal.
  • This structure allows conveying information, e.g. about interference arising to another device, to the transmitting apparatus.
  • FIG. 1 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with a first embodiment of the present invention.
  • FIG. 2 shows pulse waveforms transmitted by the transmitting apparatus and received by the receiving apparatus in accordance with the first embodiment.
  • FIG. 3 shows a block diagram illustrating another structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the first embodiment of the present invention.
  • FIG. 4 shows a block diagram illustrating a structure of the transmitting apparatus in accordance with the first embodiment.
  • FIG. 5 shows another pulse waveforms transmitted by the transmitting apparatus and received by the receiving apparatus in accordance with the first embodiment.
  • FIG. 6 shows another pulse waveforms transmitted by the transmitting apparatus and received by the receiving apparatus in accordance with the first embodiment.
  • FIG. 7 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with a second embodiment of the present invention.
  • FIG. 8 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with a third embodiment of the present invention.
  • FIG. 9 shows a block diagram illustrating a structure of a conventional receiving apparatus.
  • FIG. 1 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the first embodiment of the present invention.
  • the communication system of the present information includes transmitting apparatus 101 and receiving apparatus 110 .
  • Transmitting apparatus 101 includes transmission clock circuit 102 , pulse repetition cycle determining circuit 103 , peak power determining circuit 104 , pulse generating circuit 105 , modulator 106 , transmission adjusting circuit 107 , and band limiting filter 108 A.
  • Transmission clock circuit 102 generates transmission clock signals.
  • Pulse repetition cycle determining circuit 103 determines a repetition cycle of pulses.
  • Peak power determining circuit 104 determines a peak power of pulses.
  • Pulse generating circuit 105 generates a pulse string to be transmitted.
  • Modulator 106 modulates the transmission pulse string by using transmission data.
  • Transmission adjusting circuit 107 adjusts transmission signals.
  • Band limiting filter 108 A limits a transmission band.
  • Antenna 109 A transmits the transmission signals.
  • pulse generating circuit 105 When pulse generating circuit 105 generates a pulse string to be transmitted, it uses a transmission clock signal generated by transmission clock circuit 102 as a reference signal. The repetition cycle determined by pulse repetition cycle determining circuit 103 and the pulse peak power determined by peak power determining circuit 104 are input to pulse generating circuit 105 . The pulse repetition cycle of the transmission pulse string and the pulse peak power can be changed as required.
  • the pulse peak power can be determined based on the magnitude of transmission data information.
  • Material information includes, e.g. communication requesting information, device recognizing information, sync information and so on.
  • the pulse peak power can be also determined in response to the status of a communication path.
  • the status of a communication path includes, e.g. intensity or density of multi-path wave.
  • a modulation method is not limited; however, a multi-path communication method is generally used.
  • a pulse position modulation, pulse phase modulation or pulse amplitude modulation, or pulse-shape modulation can be used. Pulses having different peak powers are described by taking the pulse string shown in FIG. 2 as an example.
  • FIG. 2 shows the waveform of pulses received by the receiving apparatus, which pulses are sent from the transmitting apparatus of the present invention.
  • pulses 601 A- 601 D having small peak powers and pulses 603 having a great peak power coexist.
  • communication requesting information is attached to pulse 603 having a great peak power
  • communication information to be transmitted is attached to pulses 601 A- 601 D having small peak powers.
  • a pulse having a great peak power and a pulse having a small peak power are used for the description purpose; however, the present invention is not limited to this instance, and as far as at least two kinds of pulses having different peak powers are available, the present invention can work.
  • Position 602 where no pulses exist, has a purpose of outputting pulse 603 having a great peak power while an average transmission power is kept constant. In other words, position 602 is a time-concerned position where no pulses are output for this purpose.
  • No-pulse existing position 602 can be set either by changing a cycle of pulses at the cycle determination by pulse repetition cycle determining circuit 103 , or by setting a peak power as small as nearly 0 (zero) by peak power determining circuit 104 .
  • the pulse repetition cycle determining circuit and the peak power determining circuit cooperate with each other for determining the pulse repetition cycle as well as the pulse peak power so that the average power of transmission signals can be constant.
  • the transmission signal generated by modulator 106 is adjusted its power by transmission adjusting circuit 107 and also adjusted its frequency band by band limiting filter 108 A before the signal is transmitted from antenna 109 A.
  • Transmission adjusting circuit 107 can have such a structure as not only adjusts the power with an amplifier or an attenuator, but also converts the frequency of the transmission signal into a signal at any frequency band by using a frequency conversion circuit such as a local oscillator combined with a mixer and a switch, or an oscillator for direct conversion.
  • Receiving apparatus 110 includes band limiting filter 108 B, reception adjusting circuit 111 , reception pulse signal generating circuit 112 , clock reproducing circuit 113 , synchronizing circuit 114 , and demodulating circuit 115 .
  • Band limiting filter 108 B removes unnecessary signals, existing out of the band, from the signals received by antenna 109 B.
  • Reception adjusting circuit 111 adjusts the power of a signal received.
  • Reception pulse signal generating circuit 112 shapes the pulses of the reception signal.
  • Clock reproducing circuit 113 extracts sync signals from the reception pulse signals.
  • Synchronizing circuit 114 generates a sync output signal having undergone the sync adjustment with the reception clock signal generated by reception clock circuit 117 .
  • Demodulating circuit 115 outputs a demodulated signal, i.e. reception data.
  • reception adjusting circuit 111 Similar to transmission adjusting circuit 107 discussed previously, reception adjusting circuit 111 not only adjusts the power but also removes radio-frequency component with sync detection using a low pass filter (LPF), a local oscillator and a mixer, an envelop detector, or a correlated template, or delayed detection using delay-correlation.
  • LPF low pass filter
  • the reception signal adjusted by reception adjusting circuit 111 is input to reception pulse signal generating circuit 112 .
  • Reception pulse signal generating circuit 112 shapes the pulses of the reception signal for clock reproduction or demodulation. Pulse-shaping can be done by, e.g. extracting signal components by using a comparison circuit or over-sampling, or by adjusting a pulse width. Circuit 112 outputs a reception pulse signal, and is supplied to demodulating circuit 115 and clock reproducing circuit 113 , which then extracts a sync signal. Synchronizing circuit 114 generates a sync output signal having undergone sync adjustment with a reception clock signal supplied from reception clock circuit 117 . The sync output signal undergoes demodulation in demodulating circuit 115 , which then outputs a demodulated signal, i.e. reception data.
  • reception adjusting circuit 111 implements a signal detection by using the comparison circuit, noise components are erroneously recognized as signal components, or the signal components tend to be missed because of small difference between a comparison reference voltage and a noise voltage, so that a reception signal having many errors can be generated.
  • Clock reproducing circuit 113 can obtain accurate reception data including pulses having small peak powers by selecting a pulse having a great peak power and making the pulse as a reference.
  • the transmitting apparatus, receiving apparatus and communication system in accordance with this first embodiment allow an appropriate change in a pulse repetition cycle of a transmission signal and in peak powers of respective pulses at the transmitting apparatus, so that the receiving apparatus can obtain greater improvement in the S/N ratio, avoid lowering actual throughput, avoid requiring a large number of circuits for synchronizing spectrum signals, avoid making its circuit complicated, allow capturing pulses and holding synchronization with ease, and embody a compact device as well as a low power consumption.
  • FIG. 3 shows a block diagram illustrating another structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the first embodiment of the present invention.
  • the communication system of this embodiment includes transmitting apparatus 201 and receiving apparatus 203 .
  • transmitting apparatus 201 includes sync information extracting circuit 202
  • receiving apparatus 203 includes selecting circuit 205 .
  • Reception pulse signal generating circuit 204 generates reception pulse signals by using outputs from reception adjusting circuit 111 , and the reception pulse signals are supplied to selecting circuit 205 .
  • Clock reproducing circuit 206 receives sync pulse signals from selecting circuit 205 , and then reproduces the clock signal.
  • the transmission data input to transmitting apparatus 201 is supplied to sync information extracting circuit 202 for extracting a timing of the sync information, and based on this timing, peak power determining circuit 104 determines a peak power of a pulse.
  • Receiving apparatus 203 includes selecting circuit 205 , which selects only the pulse having a great peak power, and to which pulse the sync information is attached. Selecting circuit 205 generates a sync pulse signal for reproducing the clock signal. This structure allows receiving apparatus 203 to obtain accurate sync timing, so that reception pulse signals can be sampled at accurate sync timing. As a result, reception pulse signals having a small S/N ratio can be demodulated with fewer errors.
  • a clock signal is synchronized by using a pulse having a great peak power; however, the present invention is not limited to this instance, and is applicable to the following case: both of the transmitting apparatus and the receiving apparatus have a function of spread spectrum communication, and a start-time position of a spectrum signal is attached to the pulse having a great peak power, so that a code-synchronization can be done in a short time.
  • FIG. 4 shows a block diagram illustrating another structure of the transmitting apparatus in accordance with the first embodiment.
  • transmitting apparatus 401 includes pulse peak power setting circuit 402 , which sets timing, and based on this timing, peak power determining circuit 104 attaches the pulse having a great peak power.
  • Pulse peak power setting circuit 402 is, e.g. timer circuit 402 A which sets pulses with a great peak power at given intervals, or random-timing generating circuit 402 B which generates random numbers in a random-number generating circuit, an then sets pulses having a great peak power at random.
  • timer circuit 402 A when timer circuit 402 A is employed, the receiving apparatus can receive pulses with a great peak power at given intervals, so that an arrival time of a pulse can be estimated with ease. As a result, pulses can be captured (acquisition) and sync can be held (tracking) with ease.
  • Random timing generating circuit 402 B allows the receiving apparatus to avoid canceling out of cyclic signals by a specific multi-path environment, or to avoid consistent interference between the cyclic signals and other cyclic signals generated by another device. As a result, the receiving apparatus can capture pulses (acquisition) and hold synchronization (tracking) with fewer errors.
  • timer circuit 402 A cyclically sends pulses having a great peak power to the receiving apparatus, and when the receiving apparatus encounters the multi-path environment or the interference with another device discussed above, switcher 402 C switches over timer circuit 402 a to random-timing generating circuit 402 B.
  • both of the transmitting apparatus and the receiving apparatus include a clock circuit individually; however, when the transmitting apparatus is placed closely to the receiving apparatus, a transmission clock circuit can be used as a reception clock circuit as well.
  • cycles and peak powers of pulses can be changed in response to the magnitude of communication information; however, these two factors can be determined in response to the status of the communication path as discussed previously.
  • changes in cycles or peak powers of pulses in response to the communication path status e.g. intensity or density of multi-path wave
  • FIGS. 5 and 6 show another pulse waveform transmitted from the transmitting apparatus and received by the receiving apparatus.
  • Transmission signal 801 A having undergone OOK (on-off keying) modulation, and the presence of pulse 802 indicates “1” and no pulse 802 indicates “0”.
  • Reception signal 801 B is accompanied by multi-path wave 803 .
  • Signal 801 C indicates that reception signal 801 B undergoes envelope detection.
  • Signal 801 C having undergone the detection is evaluated with a given threshold 804 , and a signal greater than threshold 804 is evaluated as “1” and a signal smaller than threshold 804 is evaluated as “0”.
  • Signal 801 D is a binary signal having undergone A/D conversion, and indicates “1” when a signal over threshold 804 is input, and indicates “0” when a signal lower than threshold 804 is input.
  • Signal 801 E is produced in an ideal condition such as undergoing A/D conversion without multi-path. Comparison between signals 801 D and 801 E will find detected timing difference 805 .
  • This detected timing difference 805 is caused by interference between symbols due to multi-path wave 803 , and thus a pulse waveform is distorted. Occurrence of timing difference 805 will increase errors in demodulation because jitters increase in the sync tracking implemented based on signal 801 D having undergone the A/D conversion. When the jitters increase, sync pull-in cannot be done or the pulled-in sync becomes out of sync, so that communication quality becomes substantially lowered.
  • Transmission signal 901 A includes pulses 902 having a great peak power, e.g. once in four times. Similar to the case shown in FIG. 5 , reception signal 901 B accompanied by multi-path wave undergoes the envelope detection. Signal 901 C having undergone the detection is evaluated with threshold 903 , which can be greater than threshold 804 shown in FIG. 5 . Signal 901 D having undergone A/D conversion has a fewer number of pulses than signal 801 D shown in FIG. 5 , however, its timing difference (shown in the solid line arrow mark) from signal 901 E having no multi-path is smaller than that (shown in the broken line arrow mark) shown in FIG. 5 .
  • Pulse 902 having a great peak power receives less in-between-symbols interference from the previous pulse, so that it is less affected by the interference, and the pulse waveform is less distorted.
  • insertion of pulses having a great peak power to the reception signal at given intervals allows preventing communication quality from lowering even in a multi-path environment, and allows implementing sync pull-in within a short time as well as accurate sync tracking.
  • the insertion of the pulses having a great peak power can take place when sync jitters are evaluated by a reception status estimating circuit and the evaluated jitters exceed a given threshold value.
  • Plural threshold values can be prepared for the insertion cycle and the power of pulses to be inserted, and when jitters are found great, pulses having a greater power are inserted at a shorter cycle.
  • FIG. 7 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the second embodiment of the present invention.
  • This second embodiment differs from the first one in the structure having a distance measuring function in addition to the communication function.
  • the communication system in accordance with the second embodiment includes transmitting apparatus 301 and receiving apparatus 308 .
  • transmitting apparatus 301 transmits pulses having a great peak power mixed with pulses having a small peak power by using peak power determining circuit 303 .
  • data for measuring a distance is attached to the pulses having a great power
  • data for communication is attached to the pulses having a small power.
  • the present invention is applicable both to the distance measurement and the communication by attaching not only the data for measuring a distance but also attaching information to be used for communication, e.g. sync data, to the pulses having a great peak power.
  • the data for communication and the data for measuring a distance are input to transmission data generating circuit 302 , and are output as transmission data, which is then supplied to peak power determining circuit 303 , where a peak power is determined so as to be timed to both of the foregoing data.
  • the peak power is input to pulse generating circuit 304 , which then outputs pulses having different peak powers.
  • the two data are input together to modulator 305 , where they are modulated by an appropriate modulating method into transmission signals, then the signals run through transmission adjusting circuit 107 and band limiting filter 108 A before being transmitted by antenna 109 A.
  • a communication signal is received by another device 306 , which performs as a communicating device and processes the signal accordingly.
  • the signal is returned to antenna 109 B of receiving apparatus 308 , and runs through band limiting filter 108 B, reception adjusting circuit 111 , then is supplied as a reception signal to reception pulse generating circuit 309 .
  • the reception pulse signal generated by circuit 309 runs through clock reproducing circuit 310 , synchronizing circuit 114 , and is supplied to as a sync output signal to demodulating circuit 115 , which then outputs a demodulated signal (reception data).
  • a signal reflecting from object 307 is used for measuring the distance to object 307 .
  • a signal for measuring the distance is transmitted from transmitting apparatus 301 , and arrives at object 307 , then reflects from object 307 and is caught as a reflected signal by antenna 109 B of receiving apparatus 308 . Similar to the communication signal, this reflected signal is output as a reception pulse signal from reception pulse signal generating circuit 309 ; however, it is selected by selecting circuit 205 , and is output as a reception distance measuring signal.
  • Delay-time calculating circuit 312 includes a time-difference signal generating circuit which generates a time-difference signal by using a time difference between a clock signal and a reception pulse signal, and a signal flight distance estimating circuit which estimates a signal flight distance by using the time difference signal.
  • a reception measuring signal selected by selecting circuit 205 is input to delay-time calculating circuit 312 , which calculates a time difference from the transmission signal for finding a distance, then circuit 312 outputs the distance as a decoded signal (measured distance).
  • a signal generated by pulse generating circuit 315 is adjusted by delay correcting circuit 311 which corrects the delay time, and then the adjusted signal is used as the transmission signal.
  • the transmitting apparatus, receiving apparatus and communication system in accordance with the second embodiment of the present invention appropriately change a pulse repetition cycle of a transmission signal and the peak powers of respective pulses for measuring a distance to an object by using a signal having a great peak power, and implement a communication with another device by using a signal having a small peak power, so that this embodiment allows a simple circuit structure to implement both of communication and distance measurement.
  • a distance is calculated based on the time difference between the transmission signal and the signal reflecting from the object; however, the distance can be calculated based on the time difference between the transmission signal and a reply from a communication counterpart provided that a time duration from the reception to the reply is a known factor.
  • FIG. 8 shows a block diagram illustrating a structure of a communication system including transmitting apparatus and receiving apparatus in accordance with the third embodiment of the present invention.
  • This third embodiment differs from the first one in the transmitting apparatus which, in response to the request from the receiving apparatus, can adjust at least one of a pulse repetition cycle or a pulse peak power.
  • a combination of transmitting apparatus 501 A and receiving apparatus 502 A indicates the communication system which mainly implements the transmission.
  • a combination of transmitting apparatus 501 B and receiving apparatus 502 B indicates the communication system which mainly implements the reception.
  • Transmission clock circuits 102 a - 102 b are similar to transmission clock circuit 102 of the first embodiment, and pulse repetition cycle determining circuits 103 a - 103 b are similar to pulse repetition cycle determining circuit 103 .
  • Peak power determining circuits 104 a - 104 b are similar to peak power determining circuit 104 .
  • Pulse generating circuits 105 a - 105 b are similar to pulse generating circuit 105 .
  • Modulators 106 a - 106 b are similar to modulator 106
  • transmission adjusting circuits 107 a - 107 b are similar to circuit 107
  • Band limiting filters 108 c - 108 d are similar to filters 108 a - 108 b
  • antenna 109 c - 109 d are similar to antenna 109 a - 109 b
  • Reception adjusting circuits 111 a - 111 b are similar to circuit 111
  • reception pulse signal generating circuit 112 a - 112 b are similar to circuit 112 .
  • Clock reproducing circuits 113 a - 113 b are similar to circuit 113
  • synchronizing circuits 114 a - 114 b are similar to circuit 114
  • Demodulating circuit 115 a - 115 b are similar to demodulating circuit 115 .
  • reception status estimating circuits 503 A and 503 B are provided in this third embodiment.
  • Receiving apparatus 502 B receives a signal sent from transmitting apparatus 501 A, and estimates a reception status of an output from demodulating circuit 115 B with reception status estimating circuit 503 B, or estimates the reception status based on, e.g. an average value of changes in phases of sync output signal generated by synchronizing circuit 114 B.
  • receiving apparatus 502 determines its own pulse repetition cycle and pulse peak power, and then returns these values.
  • an acknowledgement signal (hereinafter referred to simply as “ACK”) is used for continuing the communication, or a signal is used for informing whether or the present repetition cycle synchronizes with a pulse peak power.
  • the information estimated by circuit 503 B about setting the pulse peak power or the pulse repetition cycle is attached to the transmission data via transmission data generating circuit.
  • Reception status estimating circuit 503 A of receiving apparatus 502 A which receives the return, obtains the information about reception status of the communication counterpart, and when the information is, e.g. ACK signal, the communication is continued with the repetition cycle and the peak power being kept.
  • the repetition cycle is lowered for increasing the pulse peak power so that receiving apparatus 502 B can receive pulses having a greater peak power.
  • the peak power is lowered.
  • the pulse repetition cycle from transmitting apparatus 501 A at its initial stage to receiving apparatus 502 B can be sent based on a predetermined initial value, or either one of the transmitting apparatus or the receiving apparatus can change its established value in order to agree with that of the counterpart.
  • the transmitting apparatus, receiving apparatus, and communication system of the present invention appropriately change, in response to a reception status of the communication counterpart, at least one of the pulse repetition cycle of a transmission signal or a peak power of respective pulses for the communication.
  • the present invention thus allows tracking pulses, holding synchronization, downsizing the device, and lowering the power consumption with a simple circuit structure.
  • reception status estimating circuit 503 A detects a signal supplied from transmitting apparatus 501 B, i.e. communication counter part, and obtains the information about reception status.
  • circuit 503 A detects radio-wave supplied from another device which shares the frequency band with the communication system, and the repetition cycle or the peak power can be changed not to interfere with the radio-wave.
  • a communication system including a transmitting apparatus and a receiving apparatus of the present invention comprises the following elements:
  • the transmitting apparatus includes a pulse generating circuit, pulse repetition cycle determining circuit, peak power determining circuit, and modulator.
  • the receiving apparatus includes a reception pulse signal generating circuit, selecting circuit, synchronizing circuit, and demodulating circuit.
  • the pulse generating circuit generates pulse strings, and the pulse repetition cycle determining circuit determines, based on a clock signal, the pulse repetition cycle of the pulse strings generated by the pulse generating circuit.
  • the peak power determining circuit determines the pulse peak power of the pulse strings generated by the pulse generating circuit.
  • the modulator modulates the pulse strings with transmission data, thereby generating a transmission signal.
  • the reception pulse signal generating circuit reproduces short pulses based on a reception signal, thereby generating a reception pulse signal.
  • the selecting circuit selects pulses based on amounts of pulse peak powers of the reception pulse signals.
  • the synchronizing circuit synchronizes a clock signal with the signal selected by the selecting circuit, thereby generating a sync output signal.
  • the demodulating circuit generates a demodulated signal by using the sync output signal and the reception pulse signal supplied from the selecting circuit.
  • This structure allows the receiving apparatus advantageously to obtain greater improvement in S/N ratio, to prevent an actual throughput from lowering, to suppress the quantity of spread spectrum sync circuits, to prevent the circuit from becoming complicated, to prevent the device from becoming bulky, and to prevent the power consumption from increasing.
  • the present invention is useful for a transmitting apparatus, receiving apparatus and communication system using a wideband signal, e.g. a pulse waveform.

Abstract

A transmitting apparatus, receiving apparatus and communication system are disclosed, and great improvement in an S/N ratio, preventing an actual throughput from decreasing, and preventing the number of circuits for synchronizing spread spectrum signals from increasing can be expected at the receiving apparatus side. The transmitting apparatus includes a pulse generating circuit, pulse repetition cycle determining circuit, peak power determining circuit, and modulator. The pulse generating circuit generates pulse strings, pulse repetition cycle determining circuit determines, based on a clock signal, a pulse repetition cycle of the pulse string generated by the pulse generating circuit. The peak power determining circuit determines a pulse peak power of the pulse string. The modulator modulates the pulse string with transmission data, and then generates a transmission signal.

Description

  • This application is a continuation of U.S. patent application Ser. No. 11/908,862, filed Sep. 17, 2007, which is a U.S. National Phase Application of PCT International Application PCT/3P2006/304547, and is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to transmitting apparatus, receiving apparatus, and communication systems using wideband signals such as pulse waveforms.
  • BACKGROUND ART
  • Institute of Electrical and Electronics Engineers having its headquarter in the US has established IEEE802.11b standard which typically represents wireless local-area-network (hereinafter referred to as LAN) devices having been rapidly and widely used. On top of that, audio-video (hereinafter referred to as AV) devices and personal computers are connected in wireless manner, so that a society where seamless networks are established can be predicted. This background urgently needs a technique embodying a compact and high-speed wireless data device at an inexpensive cost. A distance measuring technique employing wireless techniques including ultrasonic sensors, or millimeter-wave sensors is one of the applications of the communications using this standard, and this technique is used in a variety of fields such as preventing a car collision, monitoring an invader by detecting a human-body. The application fields will be expanded from now on.
  • A wireless method called ultra wide band (hereinafter referred to as UWB), which employs pulse-like modulating signals, has drawn attention as one of techniques that can embody a compact device, high-speed data communication, and highly accurate distance measuring. The UWB employs a short pulse not greater than 1 (one) nano-second, and a wide frequency band over several hundreds of MHz for communication or distance measuring. In the communication, a repetition frequency of the short pulse is raised, so that one symbol is assigned to each one of short pulses or a plurality of short pulses, thereby embodying a high speed communication over several hundreds of Mbps. In the distance measuring, an arrival time is measured by using short pulses, so that a distance can be accurately measured.
  • FIG. 9 shows a block diagram illustrating a structure of a conventional receiving apparatus. Since the UWB employs an extraordinary short pulse not greater than ins, a capture of a signal (acquisition) and a synchronization of a signal (tracking) should be done quickly and accurately. In this conventional instance, a signal is captured by a technique called synchronous addition which also suppresses errors in synchronization. A signal received via a wireless propagating route is deteriorated its signal-to-noise (S/N) ratio due to adverse effect of attenuation, noise, and multi-path.
  • To overcome this problem, a reception signal is delayed at known pulse intervals by using plural delay circuits 701A, 701B, and the delay is added in the form of voltage by using voltage adding circuit 702 for boosting the signal voltage. A sync pulse is extracted from this signal by using sync pulse detecting circuit 703. The reception signal is demodulated with this extracted sync pulse by demodulating circuit 704, thereby obtaining a demodulated signal (demodulated data). The foregoing structure is disclosed in, e.g. Unexamined Japanese Patent Publication No. H05-284128.
  • Although a description by using drawings is omitted here, use of a spread spectrum technique allows to a receiving apparatus to improve the S/N ratio of a signal sent from a transmitting apparatus due to spectrum gain for reception (demodulation). This conventional structure is disclosed in, e.g. Unexamined Japanese Patent Publication No. 2003-143109.
  • However, the conventional transmitting apparatus, receiving apparatus and communication system discussed above sometime encounter the following problems: Synchronous addition adds not only a reception signal but also noise power, so that improvement effect of S/N ratio is lowered. Use of the spread spectrum technique takes a time for synchronizing spectrum signals, so that an actual throughput can be lowered. On top of that, a number of circuits for synchronizing the spectrum signals are needed, which makes the circuit complicated. As a result, the device becomes bulky, and the power consumption becomes greater.
  • DISCLOSURE OF INVENTION
  • The present invention aims to provide a transmitting apparatus, receiving apparatus and communication system which allow the receiving apparatus to obtain greater S/N improvement effect, avoid lowering actual throughput, avoid requiring a large number of circuits for synchronizing spectrum signals, avoid making its circuit complicated, avoid making the device bulky, and avoid increasing the power consumption.
  • The transmitting apparatus of the present invention includes a pulse generating circuit, a pulse repetition cycle determining circuit, a peak power determining circuit, and a modulator. The pulse generating circuit generates a pulse string. The pulse repetition cycle determining circuit determines, based on a clock signal, a pulse repetition cycle of the pulse string generated by the pulse generating circuit. The peak power detecting circuit determines a pulse peak power of the pulse string. The modulator modulates the pulse string with transmission data, thereby generating a transmission signal.
  • The foregoing structure allows the receiving apparatus, i.e. the communication counterpart, to obtain greater improvement of S/N ratio, avoid lowering actual throughput, avoid requiring a large number of circuits for synchronizing spectrum signals, avoid making its circuit complicated, avoid making the device bulky, and avoid increasing the power consumption.
  • The transmitting apparatus of the present invention can have a structure in which a pulse repetition cycle and a pulse peak power are determined such that the cooperative operation of the pulse repetition cycle determination circuit with the peak power determination circuit makes an average power of a transmission signal constant. This structure allows transmitting pulses having a great peak power while the average transmission power is kept constant.
  • The transmitting apparatus of the present invention can have a structure in which a transmission signal is formed of at least two kinds of pulses having different peak powers from each other. This structure allows an appropriate transmission of signals the receiving apparatus needs.
  • The transmitting apparatus of the present invention can have a structure, in which the modulator allots at least a part of the sync information to a pulse having a great peak power. This structure allows the receiving apparatus to capture the pulse (acquisition) and hold the sync (tracking) with ease.
  • The transmitting apparatus of the present invention can have a structure, in which the modulator allots a signal, to be used for measuring a distance, to a pulse having a great peak power. This structure allows performing not only data communication but also measuring a distance with ease.
  • The transmitting apparatus of the present invention can have a structure, in which the modulator employs one of pulse position modulation, pulse phase modulation or pulse amplitude modulation. This simple structure allows performing a high-speed communication with short pulses or accurate distance measurement.
  • The transmitting apparatus of the present invention can further include a random number generating circuit for allowing the peak power determining circuit to determine the pulse peak power based on the generated ransom number. This structure can avoid a poor quality of communication such as interference in specific condition, and implement at least a communication or distance measurement with pulses having a great peak power.
  • The transmitting apparatus of the present invention can further include a timer circuit, and the peak power determining circuit determines a pulse peak power based on time intervals designated by the timer circuit. This structure allows the receiving apparatus to receive a pulse, having a great peak power, at given intervals, so that the arrival time of the pulse can be estimated with ease. As a result, the pulses can be easily caught, and the sync can be held with ease.
  • The transmitting apparatus of the present invention can have a structure in which at least one of the pulse repetition cycle determined by the pulse repetition cycle determining circuit or the pulse peak power determined by the peak power determining circuit can be changed based on the information received by the receiving apparatus. This structure allows the transmitting apparatus to establish an appropriate transmitting condition in response to a reception status.
  • The transmitting apparatus of the present invention can have a structure in which the information received by the receiving apparatus is the information indicating a reception status of a counterpart to which a transmission signal is sent. This structure allows the transmitting apparatus to establish an appropriate transmitting condition in response to the reception status of the counterpart.
  • The transmitting apparatus of the present invention can have a structure in which the information received by the receiving apparatus is the information from a device other than the counterpart to which a transmission signal is sent. This structure allows the transmitting apparatus to optimize a transmitting condition which can reduce the interference arising to other devices.
  • The receiving apparatus of the present invention includes a reception pulse signal generating circuit, selecting circuit, synchronizing circuit, and demodulating circuit. The reception pulse signal generating circuit reproduces short pulses based on reception signals, thereby generating reception pulse signals. The selecting circuit selects pulses based on a magnitude of pulse peak power of a reception pulse signal. The synchronizing circuit synchronizes a clock signal with the selected reception pulse signal, thereby generating a sync output signal. The demodulating circuit generates a demodulated signal by using the sync output signal and the reception pulse signal. The foregoing structure allows substantially improving an S/N ratio with pulses having a great pulse peak power, preventing the circuit from becoming complicated, preventing the device from becoming bulky, and preventing the power consumption from increasing.
  • The receiving apparatus of the present invention can have a structure in which the selecting circuit selects pulses having a great pulse peak power, and the synchronizing circuit synchronizes the clock signal with the pulse having a great pulse peak power, and the demodulating circuit receives and demodulates pulses having a small pulse peak power. This structure allows capturing pulses and holding a sync with ease, so that greater improvement of S/N ratio can be expected, and an actual throughput is not lowered, a number of spread signal sync circuits are not needed. As a result, the foregoing structure prevents the circuit from becoming complicated, and the device from becoming bulky, and the power consumption from increasing.
  • The receiving apparatus of the present invention can have a structure in which the selecting circuit selects pulses having a great pulse peak power, and the synchronizing circuit synchronizes spread signals with the selected pulses having a great pulse peak power. This structure allows synchronizing the spread signals with ease, and obtaining a greater improvement of S/N ratio, and an actual throughput is not lowered, a number of spread signal sync circuits are not needed. As a result, the foregoing structure prevents the circuit from becoming complicated, the device from becoming bulky, and the power consumption from increasing.
  • The receiving apparatus of the present invention can further include a time difference signal generating circuit, a signal flight distance estimating circuit. The time difference signal generating circuit generates a time difference signal based on the time difference between the clock signal and the reception pulse signal. The signal flight distance estimating circuit estimates the flight distance based on the time difference signal generated by the time difference generating circuit. This structure prevents the circuit from becoming complicated, the device from becoming bulky, and the power consumption from increasing, and the distance can be measured with ease.
  • The receiving apparatus of the present invention can have a structure in which the demodulating circuit obtains reception information of another device, and outputs the information to the transmitting apparatus. This structure allows conveying a reception status of the other device to the transmitting apparatus.
  • The receiving apparatus of the present invention can have a structure in which the obtained reception information of another device is the reception information of a counterpart to which the transmitting apparatus sends a transmission signal. This structure allows conveying the reception status of the communication counterpart to the transmitting apparatus.
  • The receiving apparatus of the present invention can have a structure in which the obtained reception information of another device is reception information of a device other than the counterpart to which the transmitting apparatus sends a transmission signal. This structure allows conveying information, e.g. about interference arising to another device, to the transmitting apparatus.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with a first embodiment of the present invention.
  • FIG. 2 shows pulse waveforms transmitted by the transmitting apparatus and received by the receiving apparatus in accordance with the first embodiment.
  • FIG. 3 shows a block diagram illustrating another structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the first embodiment of the present invention.
  • FIG. 4 shows a block diagram illustrating a structure of the transmitting apparatus in accordance with the first embodiment.
  • FIG. 5 shows another pulse waveforms transmitted by the transmitting apparatus and received by the receiving apparatus in accordance with the first embodiment.
  • FIG. 6 shows another pulse waveforms transmitted by the transmitting apparatus and received by the receiving apparatus in accordance with the first embodiment.
  • FIG. 7 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with a second embodiment of the present invention.
  • FIG. 8 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with a third embodiment of the present invention.
  • FIG. 9 shows a block diagram illustrating a structure of a conventional receiving apparatus.
  • DESCRIPTION OF REFERENCE MARKS
    • 101, 201, 301, 401, 501A, 501B transmitting apparatus
    • 102, 102A, 102B transmission clock circuit
    • 103, 103A, 103B pulse repetition cycle determining circuit
    • 104, 104A, 104B, 303 peak power determining circuit
    • 105, 105A, 105B, 304, 315 pulse generating circuit
    • 106, 106A, 106B, 305 modulator
    • 107, 107A, 107B transmission adjusting circuit
    • 108A, 108B, 108C, 108D band limiting filter
    • 109A, 109B, 109C, 109D antenna
    • 110, 203, 308, 502A, 502B receiving apparatus
    • 111, 111A, 111B reception adjusting circuit
    • 112, 112A, 112B, 204, 309 reception pulse signal generating circuit
    • 113, 113A, 113B, 206, 310 clock reproducing circuit
    • 114, 114A, 114B synchronizing circuit
    • 115, 115A, 115B demodulating circuit
    • 117 reception clock circuit
    • 202 sync information extracting circuit
    • 205 selecting circuit
    • 302, 505 transmission data generating circuit
    • 306 another device
    • 307 object to be measured its flight distance
    • 311 delay correcting circuit
    • 312 delay-time calculating circuit
    • 402 pulse peak power setting circuit
    • 402A timer circuit
    • 402B random timing generating circuit (random number generating circuit)
    • 402C switcher
    • 503A, 503B reception status estimating circuit
    • 601A, 601B, 601C, 601D pulse having a small peak power
    • 602 no-pulse existing position
    • 603 pulse having a great peak power
    DESCRIPTION OF PREFERRED EMBODIMENTS
  • Exemplary embodiments of the present invention are demonstrated hereinafter with reference to the accompanying drawings.
  • Embodiment 1
  • FIG. 1 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the first embodiment of the present invention. The communication system of the present information includes transmitting apparatus 101 and receiving apparatus 110. Transmitting apparatus 101 includes transmission clock circuit 102, pulse repetition cycle determining circuit 103, peak power determining circuit 104, pulse generating circuit 105, modulator 106, transmission adjusting circuit 107, and band limiting filter 108A.
  • Transmission clock circuit 102 generates transmission clock signals. Pulse repetition cycle determining circuit 103 determines a repetition cycle of pulses. Peak power determining circuit 104 determines a peak power of pulses. Pulse generating circuit 105 generates a pulse string to be transmitted. Modulator 106 modulates the transmission pulse string by using transmission data. Transmission adjusting circuit 107 adjusts transmission signals. Band limiting filter 108A limits a transmission band. Antenna 109A transmits the transmission signals.
  • Operation of the foregoing transmitter is demonstrated hereinafter with reference to FIG. 1. When pulse generating circuit 105 generates a pulse string to be transmitted, it uses a transmission clock signal generated by transmission clock circuit 102 as a reference signal. The repetition cycle determined by pulse repetition cycle determining circuit 103 and the pulse peak power determined by peak power determining circuit 104 are input to pulse generating circuit 105. The pulse repetition cycle of the transmission pulse string and the pulse peak power can be changed as required.
  • The pulse peak power can be determined based on the magnitude of transmission data information. Material information includes, e.g. communication requesting information, device recognizing information, sync information and so on. The pulse peak power can be also determined in response to the status of a communication path. The status of a communication path includes, e.g. intensity or density of multi-path wave.
  • In this embodiment, a modulation method is not limited; however, a multi-path communication method is generally used. For instance, a pulse position modulation, pulse phase modulation or pulse amplitude modulation, or pulse-shape modulation can be used. Pulses having different peak powers are described by taking the pulse string shown in FIG. 2 as an example. FIG. 2 shows the waveform of pulses received by the receiving apparatus, which pulses are sent from the transmitting apparatus of the present invention.
  • In FIG. 2, pulses 601A-601D having small peak powers and pulses 603 having a great peak power coexist. For instance, communication requesting information is attached to pulse 603 having a great peak power, and communication information to be transmitted is attached to pulses 601A-601D having small peak powers. In this embodiment, a pulse having a great peak power and a pulse having a small peak power are used for the description purpose; however, the present invention is not limited to this instance, and as far as at least two kinds of pulses having different peak powers are available, the present invention can work.
  • The structure discussed above allows the device, which receives signals transmitted from transmitting apparatus 101, to demodulate pulses 603 having great peak powers at a higher S/N ratio than that of the demodulation of pulses 601A-601D having small peak powers, so that at least the communication requesting information can be received even if great noises and multi-path signals exist in the communication path. Position 602, where no pulses exist, has a purpose of outputting pulse 603 having a great peak power while an average transmission power is kept constant. In other words, position 602 is a time-concerned position where no pulses are output for this purpose.
  • No-pulse existing position 602 can be set either by changing a cycle of pulses at the cycle determination by pulse repetition cycle determining circuit 103, or by setting a peak power as small as nearly 0 (zero) by peak power determining circuit 104. As discussed above, the pulse repetition cycle determining circuit and the peak power determining circuit cooperate with each other for determining the pulse repetition cycle as well as the pulse peak power so that the average power of transmission signals can be constant.
  • The transmission signal generated by modulator 106 is adjusted its power by transmission adjusting circuit 107 and also adjusted its frequency band by band limiting filter 108A before the signal is transmitted from antenna 109A. Transmission adjusting circuit 107 can have such a structure as not only adjusts the power with an amplifier or an attenuator, but also converts the frequency of the transmission signal into a signal at any frequency band by using a frequency conversion circuit such as a local oscillator combined with a mixer and a switch, or an oscillator for direct conversion.
  • Receiving apparatus 110 includes band limiting filter 108B, reception adjusting circuit 111, reception pulse signal generating circuit 112, clock reproducing circuit 113, synchronizing circuit 114, and demodulating circuit 115. Band limiting filter 108B removes unnecessary signals, existing out of the band, from the signals received by antenna 109B. Reception adjusting circuit 111 adjusts the power of a signal received. Reception pulse signal generating circuit 112 shapes the pulses of the reception signal. Clock reproducing circuit 113 extracts sync signals from the reception pulse signals. Synchronizing circuit 114 generates a sync output signal having undergone the sync adjustment with the reception clock signal generated by reception clock circuit 117. Demodulating circuit 115 outputs a demodulated signal, i.e. reception data.
  • Operation of the foregoing receiving apparatus is demonstrated hereinafter. A signal caught by antenna 109B is removed its unnecessary signals existing out of the band by band limiting filter 108B, then is adjusted its power by reception adjusting circuit 111. Similar to transmission adjusting circuit 107 discussed previously, reception adjusting circuit 111 not only adjusts the power but also removes radio-frequency component with sync detection using a low pass filter (LPF), a local oscillator and a mixer, an envelop detector, or a correlated template, or delayed detection using delay-correlation. The reception signal adjusted by reception adjusting circuit 111 is input to reception pulse signal generating circuit 112.
  • Reception pulse signal generating circuit 112 shapes the pulses of the reception signal for clock reproduction or demodulation. Pulse-shaping can be done by, e.g. extracting signal components by using a comparison circuit or over-sampling, or by adjusting a pulse width. Circuit 112 outputs a reception pulse signal, and is supplied to demodulating circuit 115 and clock reproducing circuit 113, which then extracts a sync signal. Synchronizing circuit 114 generates a sync output signal having undergone sync adjustment with a reception clock signal supplied from reception clock circuit 117. The sync output signal undergoes demodulation in demodulating circuit 115, which then outputs a demodulated signal, i.e. reception data.
  • During the foregoing operation of receiving apparatus 110, as it is described in the operation of transmitting apparatus 101, a reception signal, running through a path where great noises and great multi-path signals exist, has a low S/N ratio. Thus when reception adjusting circuit 111 implements a signal detection by using the comparison circuit, noise components are erroneously recognized as signal components, or the signal components tend to be missed because of small difference between a comparison reference voltage and a noise voltage, so that a reception signal having many errors can be generated.
  • On the other hand, the difference between the comparison reference signal and the noise voltage can be greater in the pulse having a great peak power, so that a reception signal having a fewer errors can be generated. Clock reproducing circuit 113 can obtain accurate reception data including pulses having small peak powers by selecting a pulse having a great peak power and making the pulse as a reference.
  • As discussed above, the transmitting apparatus, receiving apparatus and communication system in accordance with this first embodiment allow an appropriate change in a pulse repetition cycle of a transmission signal and in peak powers of respective pulses at the transmitting apparatus, so that the receiving apparatus can obtain greater improvement in the S/N ratio, avoid lowering actual throughput, avoid requiring a large number of circuits for synchronizing spectrum signals, avoid making its circuit complicated, allow capturing pulses and holding synchronization with ease, and embody a compact device as well as a low power consumption.
  • In the foregoing discussion, information attached to the pulse having a great peak power is not specifically designated. Hereinafter, however, the case where sync information is attached to the pulse is described with reference to FIG. 3 which shows a block diagram illustrating another structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the first embodiment of the present invention. The communication system of this embodiment includes transmitting apparatus 201 and receiving apparatus 203. In FIG. 3, similar elements to those in FIG. 1 have the same reference marks, and the descriptions thereof are omitted here. In this case, transmitting apparatus 201 includes sync information extracting circuit 202, and receiving apparatus 203 includes selecting circuit 205. Reception pulse signal generating circuit 204 generates reception pulse signals by using outputs from reception adjusting circuit 111, and the reception pulse signals are supplied to selecting circuit 205. Clock reproducing circuit 206 receives sync pulse signals from selecting circuit 205, and then reproduces the clock signal.
  • In the transmitting apparatus, receiving apparatus and communication system discussed above, when the sync information is generated, e.g. as parts of transmission data, the transmission data input to transmitting apparatus 201 is supplied to sync information extracting circuit 202 for extracting a timing of the sync information, and based on this timing, peak power determining circuit 104 determines a peak power of a pulse. Receiving apparatus 203 includes selecting circuit 205, which selects only the pulse having a great peak power, and to which pulse the sync information is attached. Selecting circuit 205 generates a sync pulse signal for reproducing the clock signal. This structure allows receiving apparatus 203 to obtain accurate sync timing, so that reception pulse signals can be sampled at accurate sync timing. As a result, reception pulse signals having a small S/N ratio can be demodulated with fewer errors.
  • In the foregoing discussion, a clock signal is synchronized by using a pulse having a great peak power; however, the present invention is not limited to this instance, and is applicable to the following case: both of the transmitting apparatus and the receiving apparatus have a function of spread spectrum communication, and a start-time position of a spectrum signal is attached to the pulse having a great peak power, so that a code-synchronization can be done in a short time.
  • In the foregoing discussion, the information specifically selected such as sync information is attached to the pulse having a great peak power. However, the structure shown in FIG. 4 allows attaching the pulse having a great peak power to the peak power determining circuit regardless of transmission data. FIG. 4 shows a block diagram illustrating another structure of the transmitting apparatus in accordance with the first embodiment. In FIG. 4, similar elements to those in FIG. 1 have the same reference marks and the descriptions thereof are omitted here. In FIG. 4, transmitting apparatus 401 includes pulse peak power setting circuit 402, which sets timing, and based on this timing, peak power determining circuit 104 attaches the pulse having a great peak power.
  • Pulse peak power setting circuit 402 is, e.g. timer circuit 402A which sets pulses with a great peak power at given intervals, or random-timing generating circuit 402B which generates random numbers in a random-number generating circuit, an then sets pulses having a great peak power at random. For instance when timer circuit 402A is employed, the receiving apparatus can receive pulses with a great peak power at given intervals, so that an arrival time of a pulse can be estimated with ease. As a result, pulses can be captured (acquisition) and sync can be held (tracking) with ease. Use of random timing generating circuit 402B allows the receiving apparatus to avoid canceling out of cyclic signals by a specific multi-path environment, or to avoid consistent interference between the cyclic signals and other cyclic signals generated by another device. As a result, the receiving apparatus can capture pulses (acquisition) and hold synchronization (tracking) with fewer errors.
  • Here is another method to achieve the foregoing advantages: first, timer circuit 402A cyclically sends pulses having a great peak power to the receiving apparatus, and when the receiving apparatus encounters the multi-path environment or the interference with another device discussed above, switcher 402C switches over timer circuit 402 a to random-timing generating circuit 402B.
  • In the foregoing discussion, both of the transmitting apparatus and the receiving apparatus include a clock circuit individually; however, when the transmitting apparatus is placed closely to the receiving apparatus, a transmission clock circuit can be used as a reception clock circuit as well.
  • In the foregoing discussion, cycles and peak powers of pulses can be changed in response to the magnitude of communication information; however, these two factors can be determined in response to the status of the communication path as discussed previously. Hereinafter changes in cycles or peak powers of pulses in response to the communication path status, e.g. intensity or density of multi-path wave, are demonstrated with reference to FIGS. 5 and 6, which show another pulse waveform transmitted from the transmitting apparatus and received by the receiving apparatus. Transmission signal 801A having undergone OOK (on-off keying) modulation, and the presence of pulse 802 indicates “1” and no pulse 802 indicates “0”.
  • Reception signal 801B is accompanied by multi-path wave 803. Signal 801C indicates that reception signal 801B undergoes envelope detection. Signal 801C having undergone the detection is evaluated with a given threshold 804, and a signal greater than threshold 804 is evaluated as “1” and a signal smaller than threshold 804 is evaluated as “0”. Signal 801D is a binary signal having undergone A/D conversion, and indicates “1” when a signal over threshold 804 is input, and indicates “0” when a signal lower than threshold 804 is input. Signal 801E is produced in an ideal condition such as undergoing A/D conversion without multi-path. Comparison between signals 801D and 801E will find detected timing difference 805.
  • This detected timing difference 805 is caused by interference between symbols due to multi-path wave 803, and thus a pulse waveform is distorted. Occurrence of timing difference 805 will increase errors in demodulation because jitters increase in the sync tracking implemented based on signal 801D having undergone the A/D conversion. When the jitters increase, sync pull-in cannot be done or the pulled-in sync becomes out of sync, so that communication quality becomes substantially lowered.
  • As shown in FIG. 6, coexistence of pulse 902 having a great peak power with the transmission signal will overcome the problem discussed above. The following embodiment is an instance of this case: Transmission signal 901A includes pulses 902 having a great peak power, e.g. once in four times. Similar to the case shown in FIG. 5, reception signal 901B accompanied by multi-path wave undergoes the envelope detection. Signal 901C having undergone the detection is evaluated with threshold 903, which can be greater than threshold 804 shown in FIG. 5. Signal 901D having undergone A/D conversion has a fewer number of pulses than signal 801D shown in FIG. 5, however, its timing difference (shown in the solid line arrow mark) from signal 901E having no multi-path is smaller than that (shown in the broken line arrow mark) shown in FIG. 5.
  • The foregoing advantage is produced with this reason: Pulse 902 having a great peak power receives less in-between-symbols interference from the previous pulse, so that it is less affected by the interference, and the pulse waveform is less distorted. As discussed above, insertion of pulses having a great peak power to the reception signal at given intervals allows preventing communication quality from lowering even in a multi-path environment, and allows implementing sync pull-in within a short time as well as accurate sync tracking. The insertion of the pulses having a great peak power can take place when sync jitters are evaluated by a reception status estimating circuit and the evaluated jitters exceed a given threshold value. Plural threshold values can be prepared for the insertion cycle and the power of pulses to be inserted, and when jitters are found great, pulses having a greater power are inserted at a shorter cycle.
  • Embodiment 2
  • FIG. 7 shows a block diagram illustrating a structure of a communication system including a transmitting apparatus and a receiving apparatus in accordance with the second embodiment of the present invention. This second embodiment differs from the first one in the structure having a distance measuring function in addition to the communication function. The communication system in accordance with the second embodiment includes transmitting apparatus 301 and receiving apparatus 308.
  • Similar to the first embodiment, transmitting apparatus 301 transmits pulses having a great peak power mixed with pulses having a small peak power by using peak power determining circuit 303. In this case, data for measuring a distance is attached to the pulses having a great power, and data for communication is attached to the pulses having a small power. In the following discussion, an instance, where only the data for measuring a distance is attached to the pulses having a great power, is described. The present invention, however, is applicable both to the distance measurement and the communication by attaching not only the data for measuring a distance but also attaching information to be used for communication, e.g. sync data, to the pulses having a great peak power.
  • The data for communication and the data for measuring a distance are input to transmission data generating circuit 302, and are output as transmission data, which is then supplied to peak power determining circuit 303, where a peak power is determined so as to be timed to both of the foregoing data. The peak power is input to pulse generating circuit 304, which then outputs pulses having different peak powers. The two data are input together to modulator 305, where they are modulated by an appropriate modulating method into transmission signals, then the signals run through transmission adjusting circuit 107 and band limiting filter 108A before being transmitted by antenna 109A.
  • A communication signal is received by another device 306, which performs as a communicating device and processes the signal accordingly. The signal is returned to antenna 109B of receiving apparatus 308, and runs through band limiting filter 108B, reception adjusting circuit 111, then is supplied as a reception signal to reception pulse generating circuit 309. The reception pulse signal generated by circuit 309 runs through clock reproducing circuit 310, synchronizing circuit 114, and is supplied to as a sync output signal to demodulating circuit 115, which then outputs a demodulated signal (reception data).
  • Next, the distance measurement is demonstrated hereinafter. A signal reflecting from object 307 is used for measuring the distance to object 307. A signal for measuring the distance is transmitted from transmitting apparatus 301, and arrives at object 307, then reflects from object 307 and is caught as a reflected signal by antenna 109B of receiving apparatus 308. Similar to the communication signal, this reflected signal is output as a reception pulse signal from reception pulse signal generating circuit 309; however, it is selected by selecting circuit 205, and is output as a reception distance measuring signal.
  • There are several selecting methods available, e.g. a simple method is to use a power difference between the reception pulse signals, or to use a spread code in the data for measuring a distance and another spread code in the data for communication, or to estimate an arrival time of the reflected signal of the distance measurement data based on a transmission time spent by the transmitting apparatus. Delay-time calculating circuit 312 includes a time-difference signal generating circuit which generates a time-difference signal by using a time difference between a clock signal and a reception pulse signal, and a signal flight distance estimating circuit which estimates a signal flight distance by using the time difference signal. A reception measuring signal selected by selecting circuit 205 is input to delay-time calculating circuit 312, which calculates a time difference from the transmission signal for finding a distance, then circuit 312 outputs the distance as a decoded signal (measured distance). In this case, a signal generated by pulse generating circuit 315 is adjusted by delay correcting circuit 311 which corrects the delay time, and then the adjusted signal is used as the transmission signal.
  • As discussed above, the transmitting apparatus, receiving apparatus and communication system in accordance with the second embodiment of the present invention appropriately change a pulse repetition cycle of a transmission signal and the peak powers of respective pulses for measuring a distance to an object by using a signal having a great peak power, and implement a communication with another device by using a signal having a small peak power, so that this embodiment allows a simple circuit structure to implement both of communication and distance measurement.
  • In the foregoing description, a distance is calculated based on the time difference between the transmission signal and the signal reflecting from the object; however, the distance can be calculated based on the time difference between the transmission signal and a reply from a communication counterpart provided that a time duration from the reception to the reply is a known factor.
  • Embodiment 3
  • FIG. 8 shows a block diagram illustrating a structure of a communication system including transmitting apparatus and receiving apparatus in accordance with the third embodiment of the present invention. This third embodiment differs from the first one in the transmitting apparatus which, in response to the request from the receiving apparatus, can adjust at least one of a pulse repetition cycle or a pulse peak power.
  • In FIG. 8, a combination of transmitting apparatus 501A and receiving apparatus 502A indicates the communication system which mainly implements the transmission. A combination of transmitting apparatus 501B and receiving apparatus 502B indicates the communication system which mainly implements the reception. These systems are generally similar to the structure shown in the first embodiment. Transmission clock circuits 102 a-102 b are similar to transmission clock circuit 102 of the first embodiment, and pulse repetition cycle determining circuits 103 a-103 b are similar to pulse repetition cycle determining circuit 103. Peak power determining circuits 104 a-104 b are similar to peak power determining circuit 104. Pulse generating circuits 105 a-105 b are similar to pulse generating circuit 105.
  • Modulators 106 a-106 b are similar to modulator 106, and transmission adjusting circuits 107 a-107 b are similar to circuit 107. Band limiting filters 108 c-108 d are similar to filters 108 a-108 b, and antenna 109 c-109 d are similar to antenna 109 a-109 b. Reception adjusting circuits 111 a-111 b are similar to circuit 111, and reception pulse signal generating circuit 112 a-112 b are similar to circuit 112. Clock reproducing circuits 113 a-113 b are similar to circuit 113, and synchronizing circuits 114 a-114 b are similar to circuit 114. Demodulating circuit 115 a-115 b are similar to demodulating circuit 115.
  • The different point is that reception status estimating circuits 503A and 503B are provided in this third embodiment. Receiving apparatus 502B receives a signal sent from transmitting apparatus 501A, and estimates a reception status of an output from demodulating circuit 115B with reception status estimating circuit 503B, or estimates the reception status based on, e.g. an average value of changes in phases of sync output signal generated by synchronizing circuit 114B. In response to the estimated reception status, receiving apparatus 502 determines its own pulse repetition cycle and pulse peak power, and then returns these values.
  • In the case of returning, an acknowledgement signal (hereinafter referred to simply as “ACK”) is used for continuing the communication, or a signal is used for informing whether or the present repetition cycle synchronizes with a pulse peak power. The information estimated by circuit 503B about setting the pulse peak power or the pulse repetition cycle is attached to the transmission data via transmission data generating circuit. Reception status estimating circuit 503A of receiving apparatus 502A, which receives the return, obtains the information about reception status of the communication counterpart, and when the information is, e.g. ACK signal, the communication is continued with the repetition cycle and the peak power being kept. When the information contains a signal notifying receiving apparatus 502A of a reception with a low power, the repetition cycle is lowered for increasing the pulse peak power so that receiving apparatus 502B can receive pulses having a greater peak power. When the information contains a signal notifying receiving apparatus 502A of a reception with an excessive power, the peak power is lowered.
  • If the data rate to be processed by receiving apparatus 502B is high, the pulse repetition cycle is increased, and if the data late is low, the cycle is decreased. The pulse repetition cycle from transmitting apparatus 501A at its initial stage to receiving apparatus 502B can be sent based on a predetermined initial value, or either one of the transmitting apparatus or the receiving apparatus can change its established value in order to agree with that of the counterpart.
  • As discussed above, the transmitting apparatus, receiving apparatus, and communication system of the present invention appropriately change, in response to a reception status of the communication counterpart, at least one of the pulse repetition cycle of a transmission signal or a peak power of respective pulses for the communication. The present invention thus allows tracking pulses, holding synchronization, downsizing the device, and lowering the power consumption with a simple circuit structure.
  • In the foregoing discussion, reception status estimating circuit 503A detects a signal supplied from transmitting apparatus 501B, i.e. communication counter part, and obtains the information about reception status. However, the present invention is not limited to this instance. For instance, circuit 503A detects radio-wave supplied from another device which shares the frequency band with the communication system, and the repetition cycle or the peak power can be changed not to interfere with the radio-wave.
  • INDUSTRIAL APPLICABILITY
  • A communication system including a transmitting apparatus and a receiving apparatus of the present invention comprises the following elements: The transmitting apparatus includes a pulse generating circuit, pulse repetition cycle determining circuit, peak power determining circuit, and modulator. The receiving apparatus includes a reception pulse signal generating circuit, selecting circuit, synchronizing circuit, and demodulating circuit. The pulse generating circuit generates pulse strings, and the pulse repetition cycle determining circuit determines, based on a clock signal, the pulse repetition cycle of the pulse strings generated by the pulse generating circuit.
  • The peak power determining circuit determines the pulse peak power of the pulse strings generated by the pulse generating circuit. The modulator modulates the pulse strings with transmission data, thereby generating a transmission signal. The reception pulse signal generating circuit reproduces short pulses based on a reception signal, thereby generating a reception pulse signal. The selecting circuit selects pulses based on amounts of pulse peak powers of the reception pulse signals. The synchronizing circuit synchronizes a clock signal with the signal selected by the selecting circuit, thereby generating a sync output signal.
  • The demodulating circuit generates a demodulated signal by using the sync output signal and the reception pulse signal supplied from the selecting circuit. This structure allows the receiving apparatus advantageously to obtain greater improvement in S/N ratio, to prevent an actual throughput from lowering, to suppress the quantity of spread spectrum sync circuits, to prevent the circuit from becoming complicated, to prevent the device from becoming bulky, and to prevent the power consumption from increasing. The present invention is useful for a transmitting apparatus, receiving apparatus and communication system using a wideband signal, e.g. a pulse waveform.

Claims (12)

1. A transmitting apparatus comprising:
a pulse generating circuit that generates a pulse string while differentiating a peak power of a portion of the pulse string from a peak power of an other portion of the pulse string; and
a modulator that modulates the portion of pulse string by a first type of data.
2. The transmitting apparatus according to claim 1 wherein,
the modulator modulates the other portion of the pulse string by a second type of data.
3. The transmitting apparatus according to claim 1 wherein
the pulse generating circuit generates a plurality of pulse strings while keeping an average transmission power of the pulse string including the portion and the other portion, constant.
4. The transmitting apparatus according to claim 1 further comprising:
a timer circuit for designating the portion as a function of a time interval; and
wherein, the pulse generating circuit generates the pulse string while differentiating the peak power for the portion designated by the timer circuit.
5. The transmitting apparatus according to claim 4 further comprising;
a random timing generating circuit for designating the portion while changing the interval; and
wherein the pulse generating circuit generates the pulse string while differentiating the peak power for the portion designated by the random timing generating circuit.
6. The transmitting apparatus according to claim 2 wherein,
the first type data is a data required to initialize a communication to another device, and
the pulse generating circuit allocates a greater peak power to the portion of the pulse string than that of the other portion.
7. The transmitting apparatus according to claim 6 wherein,
the first type of data is a data containing any one of the following information:
(a) a sync information to be used to reproduction of clock in a receiver;
(b) a communication requesting information; and
(c) a device recognizing information.
8. The transmitting apparatus according to claim 1 further comprising,
a receiving unit operable to receive a feedback information sent from an apparatus to which the first type data has been sent; and
the pulse generating circuit adaptively adjusts either of the peak power or the portion of the pulse string according to the feedback information.
9. The transmitting apparatus according to claim 8 wherein,
the feedback information includes a data related to jitter; and
wherein the pulse generating circuit allocates a greater peak power when the data indicates the greater jitter.
10. The transmitting apparatus according to claim 8 wherein,
the feedback information includes a data related to control either one of:
(a) the peak power; and
(b) the interval.
11. A transmitting apparatus comprising:
a pulse generating circuit for generating a pulse string including large pulses and small pulses, the large pulses having greater pulse peak power than the small pulses;
a pulse repetition cycle determining circuit for determining
(i) a pulse repetition cycle of the pulses in the pulse string based on a clock signal, and
(ii) an interval during which the large pulses are transmitted according to an information;
a peak power determining circuit for determining the peak power of the pulses depending to the interval determined; and
a modulator for modulating the pulses in the pulse string with transmission data including a first data for generating a radio frequency (RF) transmission signal so that the interval during which the large pulses are transmitted is controlled based on a type of the transmission data or a status of the wireless communication path between the transmitting apparatus and a receiving apparatus receiving the pulses.
12. A wireless communication apparatus comprising:
a receiving unit, including
a reception status estimating circuit for estimating a communication quality between another wireless communication apparatus based on an information received sent from the another wireless communication apparatus, and
a transmitting unit transmitting a radio frequency (RF) transmission signal including
a pulse string having large pulses and small pulses, the large pulses having greater pulse peak power than the small pulses, the transmitting unit including,
a pulse repetition cycle determining circuit for determining a pulse repetition cycle of the pulse string,
a peak power determining circuit for determining the pulse peak power of the pulses,
wherein the pulse repetition cycle determining circuit and the peak power determining circuit determine the pulse repetition cycle and the pulse peak power.
US13/552,055 2005-03-29 2012-07-18 Transmitting apparatus, receiving apparatus and communication system Abandoned US20120281740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/552,055 US20120281740A1 (en) 2005-03-29 2012-07-18 Transmitting apparatus, receiving apparatus and communication system

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005094252 2005-03-29
JP2005-094252 2005-03-29
JP2006060854A JP4821375B2 (en) 2005-03-29 2006-03-07 Transmitting apparatus and communication system
JP2006-060854 2006-03-07
PCT/JP2006/304547 WO2006103892A1 (en) 2005-03-29 2006-03-09 Transmitting apparatus, receiving apparatus and communication system
US90886207A 2007-09-17 2007-09-17
US13/552,055 US20120281740A1 (en) 2005-03-29 2012-07-18 Transmitting apparatus, receiving apparatus and communication system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/304547 Continuation WO2006103892A1 (en) 2005-03-29 2006-03-09 Transmitting apparatus, receiving apparatus and communication system
US90886207A Continuation 2005-03-29 2007-09-17

Publications (1)

Publication Number Publication Date
US20120281740A1 true US20120281740A1 (en) 2012-11-08

Family

ID=37053158

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/908,862 Expired - Fee Related US8254437B2 (en) 2005-03-29 2006-03-09 Transmitting apparatus, receiving apparatus and communication system
US13/552,055 Abandoned US20120281740A1 (en) 2005-03-29 2012-07-18 Transmitting apparatus, receiving apparatus and communication system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/908,862 Expired - Fee Related US8254437B2 (en) 2005-03-29 2006-03-09 Transmitting apparatus, receiving apparatus and communication system

Country Status (4)

Country Link
US (2) US8254437B2 (en)
JP (1) JP4821375B2 (en)
CN (1) CN101138213B (en)
WO (1) WO2006103892A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711270B1 (en) 2022-04-19 2023-07-25 Ciena Corporation Creating an optimal node interconnect topology given certain constraints
US11799549B2 (en) 2021-08-13 2023-10-24 Ciena Corporation Express mesh intersatellite optical coherent networking

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109668B2 (en) 2007-03-09 2012-12-26 セイコーエプソン株式会社 Receiving apparatus and receiving method
JP5355936B2 (en) * 2007-06-28 2013-11-27 日本信号株式会社 Reader / writer and article sorting system
JP4995034B2 (en) * 2007-10-26 2012-08-08 パナソニック株式会社 UWB wireless communication system and contactless ID system using the same
US8611394B2 (en) * 2008-05-27 2013-12-17 Panasonic Corporation Reception device
WO2014102566A1 (en) * 2012-12-24 2014-07-03 Intel Corporation Systems and methods for data rate optimization in a wcan system with injection-locked clocking
US9172424B2 (en) * 2014-03-04 2015-10-27 Qualcomm Incorporated Network self-synchronization using ultra wide band (UWB) impulse radio (IR) pulse train with unique repetition rates
US9781022B2 (en) * 2014-04-18 2017-10-03 Sital Technology Ltd. Fault detection in communication system
CN104617929B (en) * 2014-12-26 2017-12-19 矽力杰半导体技术(杭州)有限公司 Detection of data signal circuit, method and contactless power supply device
EP3382969A1 (en) * 2017-03-31 2018-10-03 Intel IP Corporation Modulation circuit and apparatus, demodulation circuit and apparatus, transmitter, receiver, system, radio frequency circuit, mobile terminal, methods and computer programs for modulating and demodulating
JP2019175626A (en) * 2018-03-27 2019-10-10 パナソニックIpマネジメント株式会社 Device control system and control method
CN111427052B (en) * 2020-06-09 2020-11-27 深圳市汇顶科技股份有限公司 Ranging method based on flight time and related ranging system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156444A1 (en) * 2003-02-10 2004-08-12 Yves-Paul Nakache Randomly inverting pulse polarity in an UWB signal for power spectrum density shaping

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888011B2 (en) 1992-02-12 1999-05-10 日本電気株式会社 Pulse communication method
EP0845323B1 (en) * 1996-04-26 2002-08-07 Servicio Industrial de Marcaje y Codificacion, S.A. System and process for marking or perforating
US6539213B1 (en) * 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US6661820B1 (en) * 1999-08-09 2003-12-09 Perceptron, Inc. Method and system for maximizing safe laser power of structured laser light projectors used with imaging sensors
DE10005975A1 (en) * 2000-02-09 2001-08-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Operating method for a discharge lamp with at least one dielectric barrier electrode
JP3538358B2 (en) * 2000-02-17 2004-06-14 三菱電機株式会社 Programmable controller
US6959031B2 (en) * 2000-07-06 2005-10-25 Time Domain Corporation Method and system for fast acquisition of pulsed signals
US6560463B1 (en) 2000-09-29 2003-05-06 Pulse-Link, Inc. Communication system
KR100403614B1 (en) * 2000-11-29 2003-11-01 삼성전자주식회사 Adaptive recording Control method for high dencity optical recording
TW572534U (en) 2001-04-16 2004-01-11 Interdigital Tech Corp A time division duplex/code division multiple access (FDD/CDMA) user equipment
JP2003060618A (en) * 2001-08-17 2003-02-28 Sony Corp Transmitter, receiver, radio communication system, radio transmission method, radio reception method, program, and program record medium
US7609608B2 (en) * 2001-09-26 2009-10-27 General Atomics Method and apparatus for data transfer using a time division multiple frequency scheme with additional modulation
JP2003143109A (en) 2001-11-02 2003-05-16 Sony Corp Receiver and reception method
JP2004266585A (en) * 2003-03-03 2004-09-24 Hitachi Ltd Wireless communication system, its transmission electric power and data rate control method
JP2005006291A (en) * 2003-05-21 2005-01-06 Matsushita Electric Ind Co Ltd Pulse modulation type radio communication device
JP4265332B2 (en) * 2003-07-28 2009-05-20 パナソニック株式会社 UWB equipment
TW200534655A (en) * 2004-01-26 2005-10-16 Seiko Epson Corp Information transmission method, electronic apparatus, and wireless communication terminal
TW200603109A (en) * 2004-03-30 2006-01-16 Matsushita Electric Ind Co Ltd Information recording method, information recording apparatus and information recording medium
JP2006087023A (en) * 2004-09-17 2006-03-30 Toshiba Corp Radio communication unit and information processing unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156444A1 (en) * 2003-02-10 2004-08-12 Yves-Paul Nakache Randomly inverting pulse polarity in an UWB signal for power spectrum density shaping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799549B2 (en) 2021-08-13 2023-10-24 Ciena Corporation Express mesh intersatellite optical coherent networking
US11711270B1 (en) 2022-04-19 2023-07-25 Ciena Corporation Creating an optimal node interconnect topology given certain constraints

Also Published As

Publication number Publication date
WO2006103892A9 (en) 2007-04-26
CN101138213A (en) 2008-03-05
CN101138213B (en) 2011-09-21
JP4821375B2 (en) 2011-11-24
JP2006311511A (en) 2006-11-09
WO2006103892A1 (en) 2006-10-05
US20100040168A1 (en) 2010-02-18
US8254437B2 (en) 2012-08-28

Similar Documents

Publication Publication Date Title
US8254437B2 (en) Transmitting apparatus, receiving apparatus and communication system
US7426234B2 (en) Synchronization signal detector and method
US6724834B2 (en) Threshold detector for detecting synchronization signals at correlator output during packet acquisition
EP1884800B1 (en) Range-finding communication complex system
US7822159B2 (en) Master side communication apparatus and slave side communication apparatus
US8175274B2 (en) Range measurement apparatus and method using chaotic UWB wireless communication
US8054915B2 (en) Method and device for adjusting a pulse detection threshold, and pulse detection and corresponding receiver
US6781446B2 (en) Method and apparatus for the detection and classification of signals utilizing known repeated training sequences
US20100020864A1 (en) Pulse transmitting device, pulse receiving device, pulse communication system, and pulse communication method
WO2007055350A1 (en) Interactive wireless communication device
US7342972B1 (en) Timing synchronization using dirty templates in ultra wideband (UWB) communications
KR100818173B1 (en) High speed digital sampler and Short range noncoherent impulse radio communication system using high speed digital sampler
JP4417173B2 (en) Demodulator
GB2404124A (en) Correlating a UWB signal with a stored pilot UWB signal
JPH10190619A (en) Synchronizing device
CN114650067B (en) Self-synchronizing pulse ultra-wideband signal baseband modulation circuit and demodulation circuit
KR100783165B1 (en) Symbol synchronization technique for impulse radio based ultra wide band receiver
RU2185033C2 (en) Communication device
US20230108844A1 (en) Communication device and operating method
US7551670B2 (en) UWB communication device and UWB communication method
JP2008072502A (en) Transmitter, radio communication system, timing adjustment method, and receiver
JP2004208112A (en) Radio communication system, receiver and information receiving method
KR100714918B1 (en) Apparatus and method of adaptive packet acquisition for a spread spectrum packet radio system
JPH10155002A (en) Burst signal detector
KR101087503B1 (en) Differential ultra wide band communication system utilizing averaged reference signals and commumication method therein

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION