US20120113619A1 - Light source and backlight module having the same - Google Patents

Light source and backlight module having the same Download PDF

Info

Publication number
US20120113619A1
US20120113619A1 US13/005,545 US201113005545A US2012113619A1 US 20120113619 A1 US20120113619 A1 US 20120113619A1 US 201113005545 A US201113005545 A US 201113005545A US 2012113619 A1 US2012113619 A1 US 2012113619A1
Authority
US
United States
Prior art keywords
light
hole
backlight module
light source
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/005,545
Inventor
Chen-Hung Ho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Assigned to AU OPTRONICS CORPORATION reassignment AU OPTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HO, CHEN-HUNG
Priority to US13/209,445 priority Critical patent/US9057806B2/en
Publication of US20120113619A1 publication Critical patent/US20120113619A1/en
Priority to US14/799,585 priority patent/US9329323B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package

Definitions

  • the invention relates to a backlight module, and more particularly to a design of a light source in a backlight module.
  • LCDs liquid crystal displays
  • CTR cathode ray tube
  • LED light-emitting diode
  • FIG. 1 is a schematic cross-sectional view illustrating a conventional backlight module.
  • a conventional backlight module 100 includes a light guide plate (LGP) 110 , a plurality of light sources 120 , and a plurality of optical clear adhesives 130 .
  • the LGP 110 has a light-incident surface 110 a and a light-emitting surface 110 b opposite to the light-incident surface 110 a .
  • Each of the light sources 120 is adhered to the light-incident surface 110 a of the LGP 110 via one of the corresponding optical clear adhesives 130 , respectively.
  • each of the light sources 120 includes a carrier 120 a , a plurality of LED devices 120 b , a light-incoupling component 120 c , and a plurality of ring-shaped reflectors 120 d .
  • the LED devices 120 b and the light-incoupling component 120 c are configured on the carrier 120 a .
  • Light emitted from the LED devices 120 b enters the light-incoupling component 120 c from side surfaces S of the light-incoupling component 120 c and leaves the light-incoupling component 120 c from a top surface T of the light-incoupling component 120 c .
  • the ring-shaped reflectors 120 d cover the LED devices 120 b and an edge of the top surface T.
  • the top surface T of the light-incoupling component 120 c is adhered to the light-incident surface 110 a of the LGP 110 via the optical clear adhesive 130 .
  • the light emitted from the light source 120 in FIG. 1 is excessively concentrated on top of the light-incoupling component 120 c .
  • a part of the light emitted from each of the LED devices 120 b passes through the correspondingly optical clear adhesive 130 and is then reflected by the sidewall of each of the ring-shaped reflectors 120 d , which causes light leakage as indicated in the region Y of FIG. 1 .
  • the conventional backlight module 100 has unfavorable optical uniformity, and said problem requires an effective solution.
  • the invention is directed to a light source and a backlight module that have favorable optical characteristics.
  • the invention provides a light source that includes a carrier, a plurality of solid-state light-emitting devices, a plate photo-coupler, a first reflector, and a plurality of second reflectors.
  • the solid-state light-emitting devices and the light-incoupling component are configured on the carrier.
  • the light-incoupling component includes a bottom surface, a top surface, a plurality of side surfaces adjoining the bottom surface and the top surface, and a through hole extending from the bottom surface to the top surface.
  • the solid-state light-emitting devices are located in the through hole.
  • the first reflector covers the through hole.
  • the second reflectors are configured on the side surfaces. Light emitted from the solid-state light-emitting devices enters the light-incoupling component via a sidewall of the through hole and leaves the light-incoupling component via the top surface thereof.
  • the carrier is a circuit board, for instance.
  • the solid-state light-emitting devices are side-view LED packages, for instance.
  • each of the solid-state light-emitting devices has a light-emitting surface, and each of the light-emitting surfaces faces the sidewall of the through hole.
  • a shape of the first reflector and a shape of the through hole are substantially the same.
  • the through hole includes a circular through hole, an elliptical through hole, or a polygonal through hole.
  • the sidewall of the through hole includes a plurality of curved surfaces.
  • the first reflector is a reflective plate, and the first reflector and the top surface of the light-incoupling component are substantially on the same plane.
  • a gap is between the first reflector and the solid-state light-emitting devices.
  • the second reflectors include a plurality of reflective plates or a plurality of reflective coatings.
  • the light source can further include an optical filler that fills the through hole and encapsulates the solid-state light-emitting devices.
  • a refractive index of the optical filler is different from a refractive index of the plate photo-coupler.
  • the light source can further include a third reflective layer configured between the carrier and the bottom surface of the plate photo-coupler.
  • the third reflective layer is a white sheet.
  • the invention further provides a backlight module that includes at least one light source described above, an LGP, and at least one optical clear adhesive.
  • the LGP has a light-incident surface and a light-emitting surface opposite to the light-incident surface.
  • the first reflector of the light source and the top surface of the light-incoupling component are adhered to the light-incident surface of the LGP via the optical clear adhesive.
  • a top/bottom surface of the LGP has a plurality of optical micro-structures, and the optical micro-structures are dots, V-cuts, or other optical micro-structures suitable for scattering light, for instance.
  • the solid-state light-emitting devices are configured in the through hole of the plate photo-coupler, and the first reflector covering the through hole and the second reflectors configured on the side surfaces of the light-incoupling component allow the light to be emitted uniformly from the top surface of the light-incoupling component according to this invention.
  • the light source and the backlight module mentioned above have favorable optical characteristics.
  • FIG. 1 is a schematic cross-sectional view illustrating a conventional backlight module.
  • FIG. 2A is a schematic bottom view illustrating a backlight module according to an embodiment of the invention.
  • FIG. 2B is a schematic cross-sectional view illustrating a backlight module according to an embodiment of the invention.
  • FIG. 2C is a schematic top view illustrating a light source according to an embodiment of the invention.
  • FIG. 3 is a schematic view illustrating a light-incoupling component according to another embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view illustrating a backlight module according to another embodiment of the invention.
  • FIG. 5 shows comparison between optical characteristics according to the related art and according to an embodiment of the invention, respectively.
  • FIG. 2A is a schematic bottom view illustrating a backlight module according to an embodiment of the invention.
  • FIG. 2B is a schematic cross-sectional view illustrating a backlight module according to an embodiment of the invention.
  • FIG. 2C is a schematic top view illustrating a light source according to an embodiment of the invention.
  • the backlight module 200 of this embodiment includes an LGP 210 , one or more light sources 220 , and one or more optical clear adhesives 230 .
  • the LGP 210 has a light-incident surface 210 a and a light-emitting surface 210 b opposite to the light-incident surface 210 a .
  • Each of the light sources 220 is adhered to the light-incident surface 210 a of the LGP 210 via one of the optical clear adhesives 230 , respectively.
  • the number of the light sources 220 in the backlight module 200 can be properly adjusted based on actual product requirements. For instance, when the backlight module 200 is applied to a small-scale LCD panel, the backlight module 200 can have a single light source 220 . By contrast, when the backlight module 200 is applied to a medium-scale or a large-scale LCD panel, the backlight module 200 can have a plurality of light sources 220 arranged in arrays. As indicated in FIG.
  • the light sources 220 are equidistantly arranged below the LGP 210 , and each of the light sources 220 corresponds to one sub-illuminating region L on the LGP 210 .
  • the distance between two adjacent light sources 220 is relevant to the optical design of the light sources 220 . People having ordinary skill in the pertinent art are able to adjust the distance between the adjacent light sources 220 based on the optical design of the light sources 220 , and the distance between the adjacent light sources 220 is not limited in this embodiment.
  • each of the light sources 220 of this embodiment includes a carrier 220 a , a plurality of solid-state light-emitting devices 220 b , a light-incoupling component 220 c , a first reflector 220 d , and a plurality of second reflectors 220 e .
  • the solid-state light-emitting devices 220 b and the light-incoupling component 220 c are configured on the carrier 220 a .
  • the light-incoupling component 220 c has a bottom surface B, a top surface T, a plurality of side surfaces S adjoining the bottom surface B and the top surface T, and a through hole H extending from the bottom surface B to the top surface T.
  • the solid-state light-emitting devices 220 b are located in the through hole H.
  • the first reflector 220 d covers the through hole H.
  • the second reflectors 220 e are configured on the side surfaces S of the light-incoupling component 220 c .
  • Light emitted from the solid-state light-emitting devices 220 b enters the light-incoupling component 220 c via a sidewall SW of the through hole H and leaves the light-incoupling component 220 c via the top surface T.
  • the first reflector 220 d and the top surface T of the light-incoupling component 220 c are adhered to the light-incident surface 210 a of the LGP 210 via the corresponding optical clear adhesive
  • the carrier 220 a of this embodiment is a circuit board, for instance.
  • the circuit board is, for example, the well-known FR-4 printed circuit board, FR-5 printed circuit board, metal core printed circuit board (MCPCB), and so on.
  • the circuit board can also be a flexible printed circuit (FPC).
  • the solid-state light-emitting devices 220 b are side-view LED packages, for instance. Additionally, the solid-state light-emitting devices 220 b are mounted on the carrier 220 a by surface mount technology (SMT), and the solid-state light-emitting devices 220 b are electrically connected to the carrier 220 a , for instance. Moreover, each of the solid-state light-emitting devices 220 b of this embodiment has a light-emitting surface E, and each of the light-emitting surfaces E faces the sidewall SW of the through hole H.
  • SMT surface mount technology
  • the light-incoupling component 220 c is a square light-incoupling component that has a side length ranging from about 10 millimeters to about 20 millimeters, for example.
  • the through hole H of the light-incoupling component 220 c is a circular through hole (shown in FIG. 2C and having a diameter from about 5 millimeters to about 8 millimeters), an elliptical through hole (not shown), or a polygonal through hole (not shown), for example.
  • the sidewall SW of the through hole H can include a plurality of curved surfaces and a plurality of crest lines exist can be observed between the curved surfaces, as shown in FIG. 3 .
  • the design of the through hole H enhances uniformity of light distribution.
  • the shape of the first reflector 220 d can be adjusted in accordance with the shape of the through hole H in this embodiment. That is to say, the shape of the first reflector 220 d and the shape of the through hole H are substantially the same. However, the shape of the first reflector 220 d is not limited in this embodiment.
  • the first reflector 220 d shields and/or reflects the light emitted from the solid-state light-emitting devices 220 b , such that most of the light can enter the light-incoupling component 220 c from the sidewall SW of the through hole H and leave the light-incoupling component 220 c from the top surface T.
  • the first reflector 220 d can prevent parts of the light emitted from the solid-state light-emitting devices 220 b from being directly transmitted in an upward manner and passing through the corresponding optical clear adhesive 230 and the LGP 210 . Therefore, the first reflector 220 d can resolve the issue of excessively concentrated light above the solid-state light-emitting devices 220 b .
  • the first reflector 220 d is a reflective plate, and the first reflector 220 d and the top surface T of the light-incoupling component 220 c are substantially on the same plane.
  • the horizontal position of the first reflector 220 d is not limited in this invention. Namely, the first reflector 220 d can be slightly higher than or lower than the top surface T of the light-incoupling component 220 c.
  • a gap is between the first reflector 220 d and the solid-state light-emitting devices 220 b .
  • the through hole H for accommodating the solid-state light-emitting devices 220 b is not further filled with other materials. Since the medium (e.g., air) in the through hole and the light-incoupling component 220 c have different refractive indexes, refraction occurs when the light emitted from the solid-state light-emitting devices 220 b passes through the sidewall SW of the through hole H, which is conducive to light scattering.
  • medium e.g., air
  • the through hole H can be partially or fully filled with an optical filter to cover the solid-state light-emitting devices 220 b in other embodiments of the invention, so as to further protect the solid-state light-emitting devices 220 b .
  • the optical filler and the light-incoupling component 220 c should have different refraction indexes, such that the light is refracted when passing through the sidewall SW of the through hole H.
  • the second reflectors 220 e configured on the side surfaces S are a plurality of reflective plates or a plurality of reflective coatings, for instance.
  • the second reflectors 220 e reflect parts of the light entering the light-incoupling component 220 c to the top of the first reflector 220 d and the solid-state light-emitting devices 220 b .
  • the light entering the light-incoupling component 220 c from the sidewall SW of the through hole H can be categorized into two types.
  • the first type refers to the light directly passing through the top surface T of the light-incoupling component 220 c , the optical clear adhesive(s) 230 , and the LGP 210 .
  • the second type refers to the light passing through the top surface T of the light-incoupling component 220 c , the optical clear adhesive(s) 230 , and the LGP 210 after the light is reflected by the second reflectors 220 e .
  • the uniform planar light source can be obtained according to this embodiment.
  • people having ordinary skill in the art can selectively make some optical micro-structures on the top surface 210 b and/or the bottom surface 210 a of the LGP 210 , so as to uniformize the light distribution on the top surface 20 b of the LGP 210 .
  • the optical micro-structures are printed dots, V-cuts, or other optical micro-structures suitable for scattering light, for instance.
  • FIG. 4 is a schematic cross-sectional view illustrating a backlight module according to another embodiment of the invention.
  • the backlight module 200 ′ of this embodiment is similar to the backlight module 200 depicted in FIG. 2B , while the main difference therebetween lies in that the light source 220 ′ of the backlight module 200 ′ in this embodiment further includes a third reflective layer 220 f that is configured between the carrier 220 a and the bottom surface B of the light-incoupling component 220 c .
  • the third reflective layer 220 f is a white sheet or any other appropriate reflective plate, for example.
  • FIG. 5 shows comparison between optical characteristics according to the related art and according to an embodiment of the invention, respectively.
  • the light source in this invention is designed to achieve better uniformity of light distribution in comparison with the conventional light source.
  • the light leakage issue of the light source in this invention is rather insignificant in comparison with that issue occurring in the conventional light source.
  • the solid-state light-emitting devices are configured in the through hole of the light-incoupling component, and the first reflector covering the through hole and the second reflectors configured on the side surfaces of the light-incoupling component allow the light to be emitted uniformly from the top surface of the light-incoupling component according to this invention.
  • the light source and the backlight module of this invention have favorable optical characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A light source includes a carrier, a plurality of solid-state light-emitting devices, a plate photo-coupler, a first reflector, and a plurality of second reflectors. The solid-state light-emitting devices and the light-incoupling component are configured on the carrier. The light-incoupling component has a bottom surface, a top surface, a plurality of side surfaces adjoining the bottom surface and the top surface, and a through hole extending from the bottom surface to the top surface. The solid-state light-emitting devices are located in the through hole. The first reflector covers the through hole. The second reflectors are configured on the side surfaces. Light emitted from the solid-state light-emitting devices enters the light-incoupling component via a sidewall of the through hole and leaves the light-incoupling component via the top surface thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the priority benefit of Taiwan application serial no. 99137995, filed on Nov. 4, 2010. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a backlight module, and more particularly to a design of a light source in a backlight module.
  • 2. Description of Related Art
  • In recent years, liquid crystal displays (LCDs) that have been developed to achieve full-color display gradually replace conventional cathode ray tube (CRT) displays and have become mainstream displays in the market due to the advantages of low operation voltages, non-radiation, light weight, small volume occupancy, and so forth. The LCDs are non-self-illuminating displays, and therefore display functions of the LCDs are achieved when the required light is provided by backlight modules. With increasing consciousness of environmental protection, cold cathode fluorescent lamps (CCFLs) serving as light-emitting devices in conventional backlight modules are gradually replaced by light-emitting diode (LED) devices that are more friendly to the environment.
  • FIG. 1 is a schematic cross-sectional view illustrating a conventional backlight module. With reference to FIG. 1, a conventional backlight module 100 includes a light guide plate (LGP) 110, a plurality of light sources 120, and a plurality of optical clear adhesives 130. The LGP 110 has a light-incident surface 110 a and a light-emitting surface 110 b opposite to the light-incident surface 110 a. Each of the light sources 120 is adhered to the light-incident surface 110 a of the LGP 110 via one of the corresponding optical clear adhesives 130, respectively.
  • As shown in FIG. 1, each of the light sources 120 includes a carrier 120 a, a plurality of LED devices 120 b, a light-incoupling component 120 c, and a plurality of ring-shaped reflectors 120 d. The LED devices 120 b and the light-incoupling component 120 c are configured on the carrier 120 a. Light emitted from the LED devices 120 b enters the light-incoupling component 120 c from side surfaces S of the light-incoupling component 120 c and leaves the light-incoupling component 120 c from a top surface T of the light-incoupling component 120 c. The ring-shaped reflectors 120 d cover the LED devices 120 b and an edge of the top surface T. Besides, the top surface T of the light-incoupling component 120 c is adhered to the light-incident surface 110 a of the LGP 110 via the optical clear adhesive 130.
  • As indicated in the region X of FIG. 1, the light emitted from the light source 120 in FIG. 1 is excessively concentrated on top of the light-incoupling component 120 c. In addition, a part of the light emitted from each of the LED devices 120 b passes through the correspondingly optical clear adhesive 130 and is then reflected by the sidewall of each of the ring-shaped reflectors 120 d, which causes light leakage as indicated in the region Y of FIG. 1. Accordingly, the conventional backlight module 100 has unfavorable optical uniformity, and said problem requires an effective solution.
  • SUMMARY OF THE INVENTION
  • The invention is directed to a light source and a backlight module that have favorable optical characteristics.
  • The invention provides a light source that includes a carrier, a plurality of solid-state light-emitting devices, a plate photo-coupler, a first reflector, and a plurality of second reflectors. The solid-state light-emitting devices and the light-incoupling component are configured on the carrier. The light-incoupling component includes a bottom surface, a top surface, a plurality of side surfaces adjoining the bottom surface and the top surface, and a through hole extending from the bottom surface to the top surface. The solid-state light-emitting devices are located in the through hole. The first reflector covers the through hole. The second reflectors are configured on the side surfaces. Light emitted from the solid-state light-emitting devices enters the light-incoupling component via a sidewall of the through hole and leaves the light-incoupling component via the top surface thereof.
  • According to an embodiment of the invention, the carrier is a circuit board, for instance.
  • According to an embodiment of the invention, the solid-state light-emitting devices are side-view LED packages, for instance.
  • According to an embodiment of the invention, each of the solid-state light-emitting devices has a light-emitting surface, and each of the light-emitting surfaces faces the sidewall of the through hole.
  • According to an embodiment of the invention, a shape of the first reflector and a shape of the through hole are substantially the same.
  • According to an embodiment of the invention, the through hole includes a circular through hole, an elliptical through hole, or a polygonal through hole.
  • According to an embodiment of the invention, the sidewall of the through hole includes a plurality of curved surfaces.
  • According to an embodiment of the invention, the first reflector is a reflective plate, and the first reflector and the top surface of the light-incoupling component are substantially on the same plane.
  • According to an embodiment of the invention, a gap is between the first reflector and the solid-state light-emitting devices.
  • According to an embodiment of the invention, the second reflectors include a plurality of reflective plates or a plurality of reflective coatings.
  • According to an embodiment of the invention, the light source can further include an optical filler that fills the through hole and encapsulates the solid-state light-emitting devices. A refractive index of the optical filler is different from a refractive index of the plate photo-coupler.
  • According to an embodiment of the invention, the light source can further include a third reflective layer configured between the carrier and the bottom surface of the plate photo-coupler. For instance, the third reflective layer is a white sheet.
  • The invention further provides a backlight module that includes at least one light source described above, an LGP, and at least one optical clear adhesive. The LGP has a light-incident surface and a light-emitting surface opposite to the light-incident surface. The first reflector of the light source and the top surface of the light-incoupling component are adhered to the light-incident surface of the LGP via the optical clear adhesive.
  • According to an embodiment of the invention, a top/bottom surface of the LGP has a plurality of optical micro-structures, and the optical micro-structures are dots, V-cuts, or other optical micro-structures suitable for scattering light, for instance.
  • The solid-state light-emitting devices are configured in the through hole of the plate photo-coupler, and the first reflector covering the through hole and the second reflectors configured on the side surfaces of the light-incoupling component allow the light to be emitted uniformly from the top surface of the light-incoupling component according to this invention. Hence, the light source and the backlight module mentioned above have favorable optical characteristics.
  • To make the above and other features and advantages of the invention more comprehensible, several embodiments accompanied with figures are detailed as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this disclosure. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the disclosure.
  • FIG. 1 is a schematic cross-sectional view illustrating a conventional backlight module.
  • FIG. 2A is a schematic bottom view illustrating a backlight module according to an embodiment of the invention.
  • FIG. 2B is a schematic cross-sectional view illustrating a backlight module according to an embodiment of the invention.
  • FIG. 2C is a schematic top view illustrating a light source according to an embodiment of the invention.
  • FIG. 3 is a schematic view illustrating a light-incoupling component according to another embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view illustrating a backlight module according to another embodiment of the invention.
  • FIG. 5 shows comparison between optical characteristics according to the related art and according to an embodiment of the invention, respectively.
  • DESCRIPTION OF EMBODIMENTS
  • FIG. 2A is a schematic bottom view illustrating a backlight module according to an embodiment of the invention. FIG. 2B is a schematic cross-sectional view illustrating a backlight module according to an embodiment of the invention. FIG. 2C is a schematic top view illustrating a light source according to an embodiment of the invention. With reference to FIG. 2A to FIG. 2C, the backlight module 200 of this embodiment includes an LGP 210, one or more light sources 220, and one or more optical clear adhesives 230. The LGP 210 has a light-incident surface 210 a and a light-emitting surface 210 b opposite to the light-incident surface 210 a. Each of the light sources 220 is adhered to the light-incident surface 210 a of the LGP 210 via one of the optical clear adhesives 230, respectively. In this embodiment, the number of the light sources 220 in the backlight module 200 can be properly adjusted based on actual product requirements. For instance, when the backlight module 200 is applied to a small-scale LCD panel, the backlight module 200 can have a single light source 220. By contrast, when the backlight module 200 is applied to a medium-scale or a large-scale LCD panel, the backlight module 200 can have a plurality of light sources 220 arranged in arrays. As indicated in FIG. 2A, the light sources 220 are equidistantly arranged below the LGP 210, and each of the light sources 220 corresponds to one sub-illuminating region L on the LGP 210. In this embodiment, the distance between two adjacent light sources 220 is relevant to the optical design of the light sources 220. People having ordinary skill in the pertinent art are able to adjust the distance between the adjacent light sources 220 based on the optical design of the light sources 220, and the distance between the adjacent light sources 220 is not limited in this embodiment.
  • With reference to FIG. 2B and FIG. 2C, each of the light sources 220 of this embodiment includes a carrier 220 a, a plurality of solid-state light-emitting devices 220 b, a light-incoupling component 220 c, a first reflector 220 d, and a plurality of second reflectors 220 e. The solid-state light-emitting devices 220 b and the light-incoupling component 220 c are configured on the carrier 220 a. The light-incoupling component 220 c has a bottom surface B, a top surface T, a plurality of side surfaces S adjoining the bottom surface B and the top surface T, and a through hole H extending from the bottom surface B to the top surface T. The solid-state light-emitting devices 220 b are located in the through hole H. The first reflector 220 d covers the through hole H. The second reflectors 220 e are configured on the side surfaces S of the light-incoupling component 220 c. Light emitted from the solid-state light-emitting devices 220 b enters the light-incoupling component 220 c via a sidewall SW of the through hole H and leaves the light-incoupling component 220 c via the top surface T. Besides, the first reflector 220 d and the top surface T of the light-incoupling component 220 c are adhered to the light-incident surface 210 a of the LGP 210 via the corresponding optical clear adhesive 230.
  • The carrier 220 a of this embodiment is a circuit board, for instance. The circuit board is, for example, the well-known FR-4 printed circuit board, FR-5 printed circuit board, metal core printed circuit board (MCPCB), and so on. Besides, the circuit board can also be a flexible printed circuit (FPC).
  • The solid-state light-emitting devices 220 b are side-view LED packages, for instance. Additionally, the solid-state light-emitting devices 220 b are mounted on the carrier 220 a by surface mount technology (SMT), and the solid-state light-emitting devices 220 b are electrically connected to the carrier 220 a, for instance. Moreover, each of the solid-state light-emitting devices 220 b of this embodiment has a light-emitting surface E, and each of the light-emitting surfaces E faces the sidewall SW of the through hole H.
  • In this embodiment, the light-incoupling component 220 c is a square light-incoupling component that has a side length ranging from about 10 millimeters to about 20 millimeters, for example. The through hole H of the light-incoupling component 220 c is a circular through hole (shown in FIG. 2C and having a diameter from about 5 millimeters to about 8 millimeters), an elliptical through hole (not shown), or a polygonal through hole (not shown), for example. According to other embodiments of the invention, the sidewall SW of the through hole H can include a plurality of curved surfaces and a plurality of crest lines exist can be observed between the curved surfaces, as shown in FIG. 3. In this case, the design of the through hole H enhances uniformity of light distribution. The shape of the first reflector 220 d can be adjusted in accordance with the shape of the through hole H in this embodiment. That is to say, the shape of the first reflector 220 d and the shape of the through hole H are substantially the same. However, the shape of the first reflector 220 d is not limited in this embodiment.
  • Note that the first reflector 220 d shields and/or reflects the light emitted from the solid-state light-emitting devices 220 b, such that most of the light can enter the light-incoupling component 220 c from the sidewall SW of the through hole H and leave the light-incoupling component 220 c from the top surface T. The first reflector 220 d can prevent parts of the light emitted from the solid-state light-emitting devices 220 b from being directly transmitted in an upward manner and passing through the corresponding optical clear adhesive 230 and the LGP 210. Therefore, the first reflector 220 d can resolve the issue of excessively concentrated light above the solid-state light-emitting devices 220 b. In this embodiment, the first reflector 220 d is a reflective plate, and the first reflector 220 d and the top surface T of the light-incoupling component 220 c are substantially on the same plane. However, the horizontal position of the first reflector 220 d is not limited in this invention. Namely, the first reflector 220 d can be slightly higher than or lower than the top surface T of the light-incoupling component 220 c.
  • As clearly shown in FIG. 2B, a gap is between the first reflector 220 d and the solid-state light-emitting devices 220 b. In other words, the through hole H for accommodating the solid-state light-emitting devices 220 b is not further filled with other materials. Since the medium (e.g., air) in the through hole and the light-incoupling component 220 c have different refractive indexes, refraction occurs when the light emitted from the solid-state light-emitting devices 220 b passes through the sidewall SW of the through hole H, which is conducive to light scattering. Note that the through hole H can be partially or fully filled with an optical filter to cover the solid-state light-emitting devices 220 b in other embodiments of the invention, so as to further protect the solid-state light-emitting devices 220 b. The optical filler and the light-incoupling component 220 c should have different refraction indexes, such that the light is refracted when passing through the sidewall SW of the through hole H.
  • In this embodiment, the second reflectors 220 e configured on the side surfaces S are a plurality of reflective plates or a plurality of reflective coatings, for instance. The second reflectors 220 e reflect parts of the light entering the light-incoupling component 220 c to the top of the first reflector 220 d and the solid-state light-emitting devices 220 b. To be more specific, the light entering the light-incoupling component 220 c from the sidewall SW of the through hole H can be categorized into two types. The first type refers to the light directly passing through the top surface T of the light-incoupling component 220 c, the optical clear adhesive(s) 230, and the LGP 210. The second type refers to the light passing through the top surface T of the light-incoupling component 220 c, the optical clear adhesive(s) 230, and the LGP 210 after the light is reflected by the second reflectors 220 e. If the proportion of the two types of light can be arranged appropriately, the uniform planar light source can be obtained according to this embodiment. For instance, people having ordinary skill in the art can selectively make some optical micro-structures on the top surface 210 b and/or the bottom surface 210 a of the LGP 210, so as to uniformize the light distribution on the top surface 20 b of the LGP 210. The optical micro-structures are printed dots, V-cuts, or other optical micro-structures suitable for scattering light, for instance.
  • FIG. 4 is a schematic cross-sectional view illustrating a backlight module according to another embodiment of the invention. With reference to FIG. 4, the backlight module 200′ of this embodiment is similar to the backlight module 200 depicted in FIG. 2B, while the main difference therebetween lies in that the light source 220′ of the backlight module 200′ in this embodiment further includes a third reflective layer 220 f that is configured between the carrier 220 a and the bottom surface B of the light-incoupling component 220 c. The third reflective layer 220 f is a white sheet or any other appropriate reflective plate, for example.
  • Experimental Example
  • FIG. 5 shows comparison between optical characteristics according to the related art and according to an embodiment of the invention, respectively. With reference to the upper-left and the upper-right irradiance distribution views in FIG. 5, the light source in this invention is designed to achieve better uniformity of light distribution in comparison with the conventional light source. In addition, with reference to the lower-left and the lower-right light leakage energy distribution views in FIG. 5, the light leakage issue of the light source in this invention is rather insignificant in comparison with that issue occurring in the conventional light source.
  • The solid-state light-emitting devices are configured in the through hole of the light-incoupling component, and the first reflector covering the through hole and the second reflectors configured on the side surfaces of the light-incoupling component allow the light to be emitted uniformly from the top surface of the light-incoupling component according to this invention. Hence, the light source and the backlight module of this invention have favorable optical characteristics.
  • Although the present invention has been disclosed by the above embodiments, they are not intended to limit the invention. Those skilled in the art may make some modifications and alterations without departing from the spirit and scope of the invention. Therefore, the protection range of the invention falls in the appended claims.

Claims (26)

1. A light source comprising:
a carrier;
a plurality of solid-state light-emitting devices configured on the carrier;
a light-incoupling component configured on the carrier, the light-incoupling component having a bottom surface, a top surface, a plurality of side surfaces adjoining the bottom surface and the top surface, and a through hole extending from the bottom surface to the top surface, the solid-state light-emitting devices being located in the through hole;
a first reflector covering the through hole; and
a plurality of second reflectors configured on the side surfaces of the plate photo-coupler, wherein light emitted from the solid-state light-emitting devices enters the light-incoupling component via a sidewall of the through hole and leaves the light-incoupling component via the top surface of the plate photo-coupler.
2. The light source as claimed in claim 1, wherein the carrier comprises a circuit board.
3. The light source as claimed in claim 1, wherein the solid-state light-emitting devices comprise side-view light-emitting diode (LED) packages.
4. The light source as claimed in claim 1, wherein each of the solid-state light-emitting devices has a light-emitting surface, and each of the light-emitting surfaces faces the sidewall of the through hole.
5. The light source as claimed in claim 1, wherein a shape of the first reflector and a shape of the through hole are substantially the same.
6. The light source as claimed in claim 1, wherein the through hole comprises a circular through hole, an elliptical through hole, or a polygonal through hole.
7. The light source as claimed in claim 1, wherein the sidewall of the through hole comprises a plurality of curved surfaces.
8. The light source as claimed in claim 1, wherein the first reflector is a reflective plate, and the first reflector and the top surface of the light-incoupling component are substantially on the same plane.
9. The light source as claimed in claim 8, wherein a gap is between the first reflector and the solid-state light-emitting devices.
10. The light source as claimed in claim 1, wherein the second reflectors comprise a plurality of reflective plates or a plurality of reflective coatings.
11. The light source as claimed in claim 1, further comprising an optical filler filling the through hole and encapsulating the solid-state light-emitting devices, a refractive index of the optical filler is different from a refractive index of the plate photo-coupler.
12. The light source as claimed in claim 1, further comprising a third reflective layer configured between the carrier and the bottom surface of the plate photo-coupler.
13. A backlight module comprising:
at least one light source as claimed in claim 1;
a light guide plate having a light-incident surface and a light-emitting surface opposite to the light-incident surface;
at least one optical clear adhesive, the first reflector of the at least one light source and the top surface of the light-incoupling component being adhered to the light-incident surface of the light guide plate via the at least one optical clear adhesive.
14. The backlight module as claimed in claim 13, wherein the carrier comprises a circuit board.
15. The backlight module as claimed in claim 13, wherein the solid-state light-emitting devices comprise side-view light-emitting diode (LED) packages.
16. The backlight module as claimed in claim 13, wherein each of the solid-state light-emitting devices has a light-emitting surface, and each of the light-emitting surfaces faces the sidewall of the through hole.
17. The backlight module as claimed in claim 13, wherein a shape of the first reflector and a shape of the through hole are substantially the same.
18. The backlight module as claimed in claim 13, wherein the through hole comprises a circular through hole, an elliptical through hole, or a polygonal through hole.
19. The backlight module as claimed in claim 13, wherein the sidewall of the through hole comprises a plurality of curved surfaces.
20. The backlight module as claimed in claim 13, wherein the first reflector is a reflective plate, and the first reflector and the top surface of the light-incoupling component are substantially on the same plane.
21. The backlight module as claimed in claim 20, wherein a gap is between the first reflector and the solid-state light-emitting devices.
22. The backlight module as claimed in claim 13, wherein the second reflectors comprise a plurality of reflective plates or a plurality of reflective coatings.
23. The backlight module as claimed in claim 13, wherein the at least one light source further comprises an optical filler filling the through hole and encapsulating the solid-state light-emitting devices, a refractive index of the optical filler is different from a refractive index of the plate photo-coupler.
24. The backlight module as claimed in claim 13, wherein the at least one light source further comprises a third reflective layer configured between the carrier and the bottom surface of the plate photo-coupler.
25. The backlight module as claimed in claim 13, wherein a top surface of the light guide plate has a plurality of optical micro-structures.
26. The backlight module as claimed in claim 13, wherein a bottom surface of the light guide plate has a plurality of optical micro-structures.
US13/005,545 2010-11-04 2011-01-13 Light source and backlight module having the same Abandoned US20120113619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/209,445 US9057806B2 (en) 2010-11-04 2011-08-15 Light source and backlight module having the same
US14/799,585 US9329323B2 (en) 2010-11-04 2015-07-15 Light source and backlight module having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW99137995 2010-11-04
TW99137995 2010-11-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/209,445 Continuation-In-Part US9057806B2 (en) 2010-11-04 2011-08-15 Light source and backlight module having the same
US14/799,585 Continuation US9329323B2 (en) 2010-11-04 2015-07-15 Light source and backlight module having the same

Publications (1)

Publication Number Publication Date
US20120113619A1 true US20120113619A1 (en) 2012-05-10

Family

ID=45482807

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/005,545 Abandoned US20120113619A1 (en) 2010-11-04 2011-01-13 Light source and backlight module having the same
US14/799,585 Active US9329323B2 (en) 2010-11-04 2015-07-15 Light source and backlight module having the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/799,585 Active US9329323B2 (en) 2010-11-04 2015-07-15 Light source and backlight module having the same

Country Status (3)

Country Link
US (2) US20120113619A1 (en)
CN (2) CN102330922B (en)
TW (1) TWI434102B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130128610A1 (en) * 2011-11-23 2013-05-23 Industrial Technology Research Institute Plane light source and flexible plane light source
US20150316704A1 (en) * 2010-11-04 2015-11-05 Au Optronics Corporation Light source and backlight module having the same
CN111948852A (en) * 2020-08-14 2020-11-17 武汉华星光电技术有限公司 Backlight module and display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633527B (en) * 2013-11-08 2017-02-01 富泰华精密电子(郑州)有限公司 Backlight module
CN104456300A (en) * 2014-11-14 2015-03-25 深圳市华星光电技术有限公司 Backlight source, manufacturing method of backlight source and liquid crystal display
CN109212656B (en) * 2017-07-03 2020-03-27 京东方科技集团股份有限公司 Light guide assembly, backlight module and display device
EP3781983B1 (en) * 2018-04-18 2023-05-03 Lumileds Holding B.V. Out-coupling structure for a light guide
CN108897171B (en) * 2018-08-09 2021-03-12 京东方科技集团股份有限公司 Backlight module and display device
TWI777350B (en) * 2020-12-31 2022-09-11 友達光電股份有限公司 Backlight module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473554B1 (en) * 1996-12-12 2002-10-29 Teledyne Lighting And Display Products, Inc. Lighting apparatus having low profile
US20070165421A1 (en) * 2006-01-18 2007-07-19 Mitsubishi Electric Corporation Planar light source device
US20080055931A1 (en) * 2004-09-27 2008-03-06 Barco N.V. Method and Systems for Illuminating
US7413334B2 (en) * 2005-05-17 2008-08-19 Nec Lcd Technologies, Ltd. Backlight and liquid crystal display device
US7427145B2 (en) * 2005-05-30 2008-09-23 Lg Electronics Inc. Backlight unit having light emitting diodes and method for manufacturing the same
US7780330B2 (en) * 2007-05-16 2010-08-24 Rohm And Haas Electronics Materials Llc Elongated illuminators configuration for LCD displays
US8104923B2 (en) * 2006-10-12 2012-01-31 Panasonic Corporation Light-emitting apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172196B2 (en) * 2002-04-05 2008-10-29 豊田合成株式会社 Light emitting diode
CN1265236C (en) * 2003-02-17 2006-07-19 友达光电股份有限公司 Backlight module
CN1280660C (en) * 2003-02-28 2006-10-18 统宝光电股份有限公司 Improved type backlight module with straightly-down luminous tube structure
CN1306329C (en) * 2003-04-30 2007-03-21 友达光电股份有限公司 Light source of back light module
US7293908B2 (en) * 2005-10-18 2007-11-13 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
US7703945B2 (en) * 2006-06-27 2010-04-27 Cree, Inc. Efficient emitting LED package and method for efficiently emitting light
CN101149523A (en) * 2006-09-22 2008-03-26 欧立恩科技股份有限公司 Backlight module and lamp possessing direct type light guiding board
CN101206336A (en) * 2006-12-22 2008-06-25 群康科技(深圳)有限公司 Back light module unit and lcd device
CN100529888C (en) * 2006-12-22 2009-08-19 群康科技(深圳)有限公司 Back light module unit and LCD
CN101354121B (en) * 2007-07-25 2010-12-08 群康科技(深圳)有限公司 Backlight module unit
US9057806B2 (en) * 2010-11-04 2015-06-16 Au Optronics Corporation Light source and backlight module having the same
US20120113619A1 (en) * 2010-11-04 2012-05-10 Au Optronics Corporation Light source and backlight module having the same
CN103133918B (en) * 2011-11-23 2015-11-11 财团法人工业技术研究院 Surface light source and flexible surface light source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473554B1 (en) * 1996-12-12 2002-10-29 Teledyne Lighting And Display Products, Inc. Lighting apparatus having low profile
US20080055931A1 (en) * 2004-09-27 2008-03-06 Barco N.V. Method and Systems for Illuminating
US7413334B2 (en) * 2005-05-17 2008-08-19 Nec Lcd Technologies, Ltd. Backlight and liquid crystal display device
US7427145B2 (en) * 2005-05-30 2008-09-23 Lg Electronics Inc. Backlight unit having light emitting diodes and method for manufacturing the same
US20070165421A1 (en) * 2006-01-18 2007-07-19 Mitsubishi Electric Corporation Planar light source device
US8104923B2 (en) * 2006-10-12 2012-01-31 Panasonic Corporation Light-emitting apparatus
US7780330B2 (en) * 2007-05-16 2010-08-24 Rohm And Haas Electronics Materials Llc Elongated illuminators configuration for LCD displays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316704A1 (en) * 2010-11-04 2015-11-05 Au Optronics Corporation Light source and backlight module having the same
US9329323B2 (en) * 2010-11-04 2016-05-03 Au Optronics Corporation Light source and backlight module having the same
US20130128610A1 (en) * 2011-11-23 2013-05-23 Industrial Technology Research Institute Plane light source and flexible plane light source
US8915634B2 (en) * 2011-11-23 2014-12-23 Industrial Technology Research Institute Plane light source and flexible plane light source
CN111948852A (en) * 2020-08-14 2020-11-17 武汉华星光电技术有限公司 Backlight module and display device

Also Published As

Publication number Publication date
CN103335246A (en) 2013-10-02
CN102330922A (en) 2012-01-25
US9329323B2 (en) 2016-05-03
US20150316704A1 (en) 2015-11-05
CN103335246B (en) 2015-07-15
CN102330922B (en) 2013-12-18
TWI434102B (en) 2014-04-11
TW201219910A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US9329323B2 (en) Light source and backlight module having the same
EP3321565B1 (en) Backlight module and display device
US7758229B2 (en) Light source assembly and backlight module having the same
CN104508364B (en) Member for controlling luminous flux, method for manufacturing same, display device, and light-emitting device
US20140002771A1 (en) Light source assembly, backlight module and liquid crystal display device
CN106932961B (en) Liquid crystal display device having a plurality of pixel electrodes
KR102303606B1 (en) Backlight unit and display device comprising the same
CN105572967B (en) Lens, light emitting device including the same, and backlight unit including the light emitting device
US20100165634A1 (en) Ultra-thin light guidance device
US8558966B2 (en) Liquid crystal display device including back light having improved light concentration efficiency
US9057806B2 (en) Light source and backlight module having the same
CN107438905B (en) Light emitting device array and lighting system including the same
CN102943985A (en) Backlight module and display device thereof
EP2549308B1 (en) Lighting system including a backlight unit and display apparatus using the same
KR20120130919A (en) Backlgiht unit and liquid crystal display device the same
KR101832311B1 (en) Display apparatus
US9766497B2 (en) Curved backlight unit and display device including the same
CN210720956U (en) Backlight module
KR102399433B1 (en) Backlight unit and display device having the same
KR101919409B1 (en) Backlight unit and liquid crystal display device module
KR20200130598A (en) Display apparatus having optical distance
KR101948139B1 (en) backlight unit and illumination system using the same
KR101833505B1 (en) Liquid crystal display device
KR101992362B1 (en) light unit and illumination system using the same
KR20130010580A (en) Backlight unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: AU OPTRONICS CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HO, CHEN-HUNG;REEL/FRAME:025637/0895

Effective date: 20101224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION