US20120037347A1 - Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger - Google Patents

Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger Download PDF

Info

Publication number
US20120037347A1
US20120037347A1 US12/854,285 US85428510A US2012037347A1 US 20120037347 A1 US20120037347 A1 US 20120037347A1 US 85428510 A US85428510 A US 85428510A US 2012037347 A1 US2012037347 A1 US 2012037347A1
Authority
US
United States
Prior art keywords
tubes
pass
heat exchanger
tube
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/854,285
Inventor
Joe Borghese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US12/854,285 priority Critical patent/US20120037347A1/en
Assigned to HONEYWELL INTERNATIONAL INC. reassignment HONEYWELL INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BORGHESE, JOE
Publication of US20120037347A1 publication Critical patent/US20120037347A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications

Definitions

  • the present invention relates to apparatus and methods for controlling temperatures in heat exchanger fluids and, more particularly, to apparatus and methods for controlling tube temperatures in cross counterflow shell and tube heat exchangers to prevent freezing of fluids therein.
  • a heat exchanger is a device that may be used for efficient heat transfer between multiple mediums.
  • a heat exchanger may take in a first medium at a low temperature and a second medium at a high temperature.
  • the first and second mediums may come into contact, either directly or indirectly via a solid wall.
  • the high temperature of the second medium may cause the first medium to raise its temperature
  • the low temperature of the first medium may also cause the second medium to lower its temperature.
  • heat is exchanged between the two mediums, causing the first medium to increase in temperature and the second medium to decrease in temperature.
  • a cross counterflow tubular heat exchanger is used to heat a cold gas (for example, ⁇ 100° F.) using a liquid with a freezing point at roughly 12° F.
  • a cold gas for example, ⁇ 100° F.
  • the cold inlet gas at ⁇ 100° F. (inside the tubes) transfers heat to the warm liquid which has already been cooled somewhat in the previous passes.
  • the wall temperature must be kept above the freezing point of the liquid to prevent the liquid from freezing on the tubes. Freezing of the liquid must be prevented so flow on the liquid side is not reduced due to the frozen blockage and no frozen liquid can be allowed to spill off and migrate downstream. Performance of the overall system will be impaired if any freezing occurs.
  • a heat exchanger comprises a first pass of tubes carrying a cold fluid through the heat exchanger; a second pass of tubes carrying the cold fluid from the first pass of tubes, a warm fluid passing first over the second pass of tubes and then the first pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes.
  • a cross counterflow shell and tube heat exchanger comprises a cold fluid inlet delivering a cold gas to a first pass of tubes; a second pass of tubes receiving the cold gas from the first pass of tubes; a warm liquid passing across the second pass of tubes and then the first pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
  • a method of heat exchange between a warm liquid and a cold gas without freezing the warm liquid comprises passing the cold gas through a first pass of tubes through the heat exchanger; and passing the cold gas from the first pass of tubes through a second pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
  • FIG. 1 is cross-sectional view of a heat exchanger according to an embodiment of the present invention
  • FIG. 2 is a cross-section view taken along line 2 - 2 of FIG. 1 ;
  • FIG. 3 is a flow chart describing a method for preventing freezing in a heat exchanger according to an embodiment of the present invention.
  • embodiments of the present invention provide methods and apparatus for controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchangers.
  • Cold gas may flow inside the tubes of the heat changer and warm liquid may flow outside the tubes.
  • the tube diameter and tube spacing may be varied through the tube passes through the heat exchanger in order to provide a hot side conductance to cold side conductance ratio which results in the tube temperature being safely above the liquid freezing point.
  • the heat exchanger may be used in, for example, the aerospace industry as a fuel oil cooler or as a preconditioner for reactants in spacecraft propulsion systems.
  • the modifier “cold”, as used to refer to a cold gas or a cold fluid, is a not meant to refer to any particular temperature, but as a temperature relative to a “warm fluid” or a “warm liquid”. Consequently, as used herein, the modifier “warm”, as used to refer to a warm fluid or a warm liquid, is a not meant to refer to any particular temperature, but as a temperature relative to a “cold fluid” or a “cold gas”.
  • a cross counterflow shell and tube heat exchanger 10 may receive a cold fluid, such as a cold gas, through a cold fluid inlet 12 .
  • the cold gas may be between about ⁇ 80° F. to about ⁇ 120° F., typically about ⁇ 100° F.
  • the cold gas may flow from the cold fluid inlet 12 to tubes 14 of a first cold fluid pass 16 .
  • the cold gas may flow from the first cold fluid pass 16 to a second cold fluid pass 18 .
  • the cold gas may flow from the second cold fluid pass 18 , through a third cold fluid pass 20 and a fourth cold fluid pass 22 before exiting out a cold fluid outlet 24 .
  • FIGS. 1 and 2 show four cold fluid passes 16 , 18 , 20 , 22
  • the heat exchanger 10 may include at least two cold fluid passes and may include more than four cold fluid passes.
  • the heat exchanger 10 may receive a warm fluid, such as a warm liquid, through a warm fluid inlet 26 .
  • the warm liquid may have a freezing point above the temperature of the cold gas flowing through the tubes 14 .
  • the warm liquid may have a freezing point from about 0° F. to about 20° F. In one embodiment, the warm liquid may have a freezing point of about 12° F.
  • the warm fluid may pass in a cross counterflow arrangement through the heat exchanger 10 .
  • Baffles 28 may be present inside the heat exchanger 10 to provide structural support of the tubes. While the heat exchanger 10 is shown as a cross counterflow heat exchanger, the tube design according to an exemplary embodiment of the present invention, as described in greater detail below, may be applied to other heat exchanger designs, such as cross parallel flow heat exchangers.
  • the number of tubes 14 and tube diameter is such that the inside gas side 32 heat transfer is low relative to the liquid side 34 .
  • the tube spacing in the first cold fluid pass 16 may be tighter (as compared to subsequent passes) so that the outside liquid side 34 heat transfer is high relative to the inside cold gas side 32 .
  • the tube spacing refers to the non-dimensionalized tube spacing and may be defined as the center to center spacing (between adjacent tubes) divided by the diameter of the tubes.
  • the tube diameter can be decreased to improve the heat transfer on the inside gas side 32 .
  • the tube spacing in the second cold fluid pass 18 may be increased relative to the first cold fluid pass 16 .
  • the tube spacing can be increased in order to reduce the liquid side pressure drop.
  • the wall temperature of the tubes 14 may be controlled to prevent freezing of the liquid on the tubes 14 .
  • the tube diameter and spacing design in a cross counterflow arrangement, can be used to reduce the overall size of the heat exchanger, relative to conventional cross parallel flow arrangements.
  • a method 40 for preventing liquid from freezing in a heat exchanger may include a first step 42 of passing the cold gas through a first pass of tubes through the heat exchanger.
  • the first tube diameter and the first tube spacing may be designed such that the gas flow area is large (relative to subsequent tube passes through the heat exchanger). Such a design may provide a low heat transfer coefficient between a cold gas in the tubes and a warm liquid outside of the tubes.
  • a second step 44 may include passing the cold gas from the first pass of tubes through a second pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
  • Optional third and fourth passes of tubes, as shown in steps 46 and 48 may have at least one of a decreased diameter and an increased tube spacing, relative to the immediately preceding tube pass. The increased tube spacing may help limit the pressure drop on the liquid side of the heat exchanger.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Methods and apparatus for controlling tube temperatures may prevent freezing of fluids in cross counterflow shell and tube heat exchangers. Cold gas may flow inside the tubes of the heat changer and warm liquid may flow outside the tubes. The tube diameter and tube spacing may be varied through the tube passes through the heat exchanger in order to provide a hot side conductance to cold side conductance ratio which results in the tube temperature being safely above the liquid freezing point. The heat exchanger may be used in, for example, the aerospace industry as a fuel oil cooler or as a preconditioner for reactants in a spacecraft propulsion system.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to apparatus and methods for controlling temperatures in heat exchanger fluids and, more particularly, to apparatus and methods for controlling tube temperatures in cross counterflow shell and tube heat exchangers to prevent freezing of fluids therein.
  • Generally, a heat exchanger is a device that may be used for efficient heat transfer between multiple mediums. For example, a heat exchanger may take in a first medium at a low temperature and a second medium at a high temperature. Within the body of the heat exchanger, the first and second mediums may come into contact, either directly or indirectly via a solid wall. When the two mediums come into contact, the high temperature of the second medium may cause the first medium to raise its temperature, while the low temperature of the first medium may also cause the second medium to lower its temperature. In other words, heat is exchanged between the two mediums, causing the first medium to increase in temperature and the second medium to decrease in temperature.
  • A cross counterflow tubular heat exchanger is used to heat a cold gas (for example, −100° F.) using a liquid with a freezing point at roughly 12° F. In the last pass of the heat exchanger, the cold inlet gas at −100° F. (inside the tubes) transfers heat to the warm liquid which has already been cooled somewhat in the previous passes. The wall temperature must be kept above the freezing point of the liquid to prevent the liquid from freezing on the tubes. Freezing of the liquid must be prevented so flow on the liquid side is not reduced due to the frozen blockage and no frozen liquid can be allowed to spill off and migrate downstream. Performance of the overall system will be impaired if any freezing occurs.
  • As can be seen, there is a need for a heat exchanger apparatus and heat exchange methods that may prevent freezing of the heat exchange media.
  • SUMMARY OF THE INVENTION
  • In one aspect of the present invention, a heat exchanger comprises a first pass of tubes carrying a cold fluid through the heat exchanger; a second pass of tubes carrying the cold fluid from the first pass of tubes, a warm fluid passing first over the second pass of tubes and then the first pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes.
  • In another aspect of the present invention, a cross counterflow shell and tube heat exchanger comprises a cold fluid inlet delivering a cold gas to a first pass of tubes; a second pass of tubes receiving the cold gas from the first pass of tubes; a warm liquid passing across the second pass of tubes and then the first pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
  • In a further aspect of the present invention, a method of heat exchange between a warm liquid and a cold gas without freezing the warm liquid comprises passing the cold gas through a first pass of tubes through the heat exchanger; and passing the cold gas from the first pass of tubes through a second pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
  • These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is cross-sectional view of a heat exchanger according to an embodiment of the present invention;
  • FIG. 2 is a cross-section view taken along line 2-2 of FIG. 1; and
  • FIG. 3 is a flow chart describing a method for preventing freezing in a heat exchanger according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments of the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
  • Various inventive features are described below that can each be used independently of one another or in combination with other features.
  • Broadly, embodiments of the present invention provide methods and apparatus for controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchangers. Cold gas may flow inside the tubes of the heat changer and warm liquid may flow outside the tubes. The tube diameter and tube spacing may be varied through the tube passes through the heat exchanger in order to provide a hot side conductance to cold side conductance ratio which results in the tube temperature being safely above the liquid freezing point. The heat exchanger may be used in, for example, the aerospace industry as a fuel oil cooler or as a preconditioner for reactants in spacecraft propulsion systems.
  • As used herein, the modifier “cold”, as used to refer to a cold gas or a cold fluid, is a not meant to refer to any particular temperature, but as a temperature relative to a “warm fluid” or a “warm liquid”. Consequently, as used herein, the modifier “warm”, as used to refer to a warm fluid or a warm liquid, is a not meant to refer to any particular temperature, but as a temperature relative to a “cold fluid” or a “cold gas”.
  • Referring to FIG. 1, a cross counterflow shell and tube heat exchanger 10 may receive a cold fluid, such as a cold gas, through a cold fluid inlet 12. The cold gas may be between about −80° F. to about −120° F., typically about −100° F. The cold gas may flow from the cold fluid inlet 12 to tubes 14 of a first cold fluid pass 16. The cold gas may flow from the first cold fluid pass 16 to a second cold fluid pass 18. The cold gas may flow from the second cold fluid pass 18, through a third cold fluid pass 20 and a fourth cold fluid pass 22 before exiting out a cold fluid outlet 24. While FIGS. 1 and 2 show four cold fluid passes 16, 18, 20, 22, the heat exchanger 10 may include at least two cold fluid passes and may include more than four cold fluid passes.
  • The heat exchanger 10 may receive a warm fluid, such as a warm liquid, through a warm fluid inlet 26. The warm liquid may have a freezing point above the temperature of the cold gas flowing through the tubes 14. For example, the warm liquid may have a freezing point from about 0° F. to about 20° F. In one embodiment, the warm liquid may have a freezing point of about 12° F. The warm fluid may pass in a cross counterflow arrangement through the heat exchanger 10. Baffles 28 may be present inside the heat exchanger 10 to provide structural support of the tubes. While the heat exchanger 10 is shown as a cross counterflow heat exchanger, the tube design according to an exemplary embodiment of the present invention, as described in greater detail below, may be applied to other heat exchanger designs, such as cross parallel flow heat exchangers.
  • Referring now to FIG. 2, as the cold gas enters the first cold fluid pass 16, the number of tubes 14 and tube diameter is such that the inside gas side 32 heat transfer is low relative to the liquid side 34. The tube spacing in the first cold fluid pass 16 may be tighter (as compared to subsequent passes) so that the outside liquid side 34 heat transfer is high relative to the inside cold gas side 32. As used herein the tube spacing refers to the non-dimensionalized tube spacing and may be defined as the center to center spacing (between adjacent tubes) divided by the diameter of the tubes.
  • In the second cold fluid pass 18, after the cold gas within the tubes 14 has warmed some, the tube diameter can be decreased to improve the heat transfer on the inside gas side 32. The tube spacing in the second cold fluid pass 18 may be increased relative to the first cold fluid pass 16. In optional subsequent passes on the liquid side (such as third cold fluid pass 20 and fourth cold fluid pass 22), the tube spacing can be increased in order to reduce the liquid side pressure drop. Using this tube diameter and spacing design, the wall temperature of the tubes 14 may be controlled to prevent freezing of the liquid on the tubes 14. In addition, the tube diameter and spacing design, in a cross counterflow arrangement, can be used to reduce the overall size of the heat exchanger, relative to conventional cross parallel flow arrangements.
  • Referring to FIG. 3, a method 40 for preventing liquid from freezing in a heat exchanger (e.g., heat exchanger 10) may include a first step 42 of passing the cold gas through a first pass of tubes through the heat exchanger. The first tube diameter and the first tube spacing may be designed such that the gas flow area is large (relative to subsequent tube passes through the heat exchanger). Such a design may provide a low heat transfer coefficient between a cold gas in the tubes and a warm liquid outside of the tubes. A second step 44 may include passing the cold gas from the first pass of tubes through a second pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger. Optional third and fourth passes of tubes, as shown in steps 46 and 48, may have at least one of a decreased diameter and an increased tube spacing, relative to the immediately preceding tube pass. The increased tube spacing may help limit the pressure drop on the liquid side of the heat exchanger.
  • It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.

Claims (19)

We claim:
1. A heat exchanger comprising:
a first pass of tubes carrying a first fluid at a first temperature through the heat exchanger;
a second pass of tubes carrying the first temperature fluid from the first pass of tubes, through the heat exchanger;
a second fluid at a second temperature passing over the second pass of tubes and then the first pass of tubes, wherein
tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes.
2. The heat exchanger of claim 1, wherein the first temperature is colder than the second temperature.
3. The heat exchanger of claim 1, wherein tubes of the second pass of tubes have both a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes.
4. The heat exchanger of claim 1, further comprising a third pass of tubes, wherein tubes of the third pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the second pass of tubes.
5. The heat exchanger of claim 4, further comprising a fourth pass of tubes, wherein tubes of the fourth pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the third pass of tubes.
6. The heat exchanger of claim 1, wherein the heat exchanger is a cross counterflow shell and tube heat exchanger.
7. The heat exchanger of claim 6, further comprising baffles to provide structural support of the tubes.
8. The heat exchanger of claim 1, wherein a gas flow area of the first pass of tubes is greater than a gas flow area of the second pass of tubes.
9. The heat exchanger of claim 2, wherein the first fluid is a cold gas and the second fluid is a warm liquid.
10. The heat exchanger of claim 9, wherein the cold gas has a temperature of about −100° F. and the warm liquid is a warm liquid having a freezing point of about 12° F.
11. A cross counterflow shell and tube heat exchanger comprising:
a cold fluid inlet delivering a cold gas to a first pass of tubes;
a second pass of tubes receiving the cold gas from the first pass of tubes; and
a warm liquid passing across the second pass of tubes and then the first pass of tubes, wherein
tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
12. The heat exchanger of claim 11, wherein tubes of the second pass of tubes have both a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes.
13. The heat exchanger of claim 11, further comprising a third pass of tubes, wherein tubes of the third pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the second pass of tubes.
14. The heat exchanger of claim 11, further comprising a fourth pass of tubes, wherein tubes of the fourth pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the third pass of tubes.
15. A method of heat exchange between a warm liquid and a cold gas without freezing the warm liquid, the method comprising:
passing the cold gas through a first pass of tubes through the heat exchanger; and
passing the cold gas from the first pass of tubes through a second pass of tubes, wherein tubes of the second pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the first pass of tubes, and wherein the warm liquid remains in a liquid state as it passes through the heat exchanger.
16. The method of claim 15, wherein the warm liquid passes over the tubes in a cross counterflow arrangement.
17. The method of claim 15, further comprising passing the cold gas from the second pass of tubes through a third pass of tubes, wherein tubes of the third pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the second pass of tubes.
18. The method of claim 17, further comprising passing the cold gas from the third pass of tubes through a fourth pass of tubes, wherein tubes of the fourth pass of tubes have at least one of a decreased diameter and an increased tube spacing, relative to tubes of the third pass of tubes.
19. The method of claim 15, wherein the pressure drop across the second set of tubes is less than the pressure drop across the first set of tubes.
US12/854,285 2010-08-11 2010-08-11 Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger Abandoned US20120037347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/854,285 US20120037347A1 (en) 2010-08-11 2010-08-11 Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/854,285 US20120037347A1 (en) 2010-08-11 2010-08-11 Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger

Publications (1)

Publication Number Publication Date
US20120037347A1 true US20120037347A1 (en) 2012-02-16

Family

ID=45563952

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/854,285 Abandoned US20120037347A1 (en) 2010-08-11 2010-08-11 Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger

Country Status (1)

Country Link
US (1) US20120037347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859918B2 (en) 2020-04-28 2024-01-02 Hamilton Sundstrand Corporation Crossflow/counterflow subfreezing plate fin heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1960770A (en) * 1932-05-21 1934-05-29 Griscom Russell Co Heat exchanger
US3805881A (en) * 1971-08-17 1974-04-23 Du Pont Fluid heat exchange system
US5937656A (en) * 1997-05-07 1999-08-17 Praxair Technology, Inc. Nonfreezing heat exchanger
US20050133211A1 (en) * 2003-12-19 2005-06-23 Osborn Mark D. Heat exchanger performance monitoring and analysis method and system
US6966200B2 (en) * 2000-04-26 2005-11-22 Mitsubishi Heavy Industries, Ltd. Evaporator and refrigerator
US7073572B2 (en) * 2003-06-18 2006-07-11 Zahid Hussain Ayub Flooded evaporator with various kinds of tubes
US20070017661A1 (en) * 2003-10-20 2007-01-25 Behr Gmbh & Co, Kg Heat exchanger
US20070095512A1 (en) * 2005-10-31 2007-05-03 Wei Chen Shell and tube evaporator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1960770A (en) * 1932-05-21 1934-05-29 Griscom Russell Co Heat exchanger
US3805881A (en) * 1971-08-17 1974-04-23 Du Pont Fluid heat exchange system
US5937656A (en) * 1997-05-07 1999-08-17 Praxair Technology, Inc. Nonfreezing heat exchanger
US6966200B2 (en) * 2000-04-26 2005-11-22 Mitsubishi Heavy Industries, Ltd. Evaporator and refrigerator
US7073572B2 (en) * 2003-06-18 2006-07-11 Zahid Hussain Ayub Flooded evaporator with various kinds of tubes
US20070017661A1 (en) * 2003-10-20 2007-01-25 Behr Gmbh & Co, Kg Heat exchanger
US20050133211A1 (en) * 2003-12-19 2005-06-23 Osborn Mark D. Heat exchanger performance monitoring and analysis method and system
US20070095512A1 (en) * 2005-10-31 2007-05-03 Wei Chen Shell and tube evaporator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859918B2 (en) 2020-04-28 2024-01-02 Hamilton Sundstrand Corporation Crossflow/counterflow subfreezing plate fin heat exchanger

Similar Documents

Publication Publication Date Title
US8511074B2 (en) Heat transfer unit for an internal combustion engine
BR102016017645A2 (en) counterflow heat exchanger that defines a centerline
US11703286B2 (en) Fluid coolers, heat exchangers, seal assemblies and systems including fluid coolers or heat exchangers and related methods
US7546867B2 (en) Spirally wound, layered tube heat exchanger
TW201042230A (en) Heat exchanger
US9115934B2 (en) Heat exchanger flow limiting baffle
JP2015158225A (en) liquefied hydrogen vaporization system
CN104913663A (en) Tube shell pass volume-adjustable longitudinal turbulence oil cooler
US20060108107A1 (en) Wound layered tube heat exchanger
US10495383B2 (en) Wound layered tube heat exchanger
CN203489539U (en) Heat exchanger
JP7138595B2 (en) Vehicle battery cooling system
CN107966048A (en) A kind of cooler
US20120037347A1 (en) Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger
US20140166236A1 (en) Thermal Stress Reduction for Heat Exchanger
EP2220452B1 (en) Heat pipe, exhaust heat recoverer provided therewith
CN110765645B (en) Design method of built-in coil type compressed air heat exchange system
CN207991335U (en) A kind of new type heat exchanger with bypass pipe structure
JPH11183062A (en) Double piped heat exchanger
JP4904130B2 (en) Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas
US20120006524A1 (en) Optimized tube bundle configuration for controlling a heat exchanger wall temperature
JP2668484B2 (en) Liquefied natural gas vaporizer
JP2005147567A (en) Double pipe type heat exchanger
CN104110979A (en) U-shaped-pipe-bundle warm-water-circulating large-flow natural gas recuperator
CN209246754U (en) A kind of safe and efficient parallel heat exchange device

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BORGHESE, JOE;REEL/FRAME:024820/0862

Effective date: 20100807

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION