US20110219668A1 - Method of using contaminated water from an oilwell effluent stream - Google Patents

Method of using contaminated water from an oilwell effluent stream Download PDF

Info

Publication number
US20110219668A1
US20110219668A1 US12/664,932 US66493208A US2011219668A1 US 20110219668 A1 US20110219668 A1 US 20110219668A1 US 66493208 A US66493208 A US 66493208A US 2011219668 A1 US2011219668 A1 US 2011219668A1
Authority
US
United States
Prior art keywords
crop
soil
water
cellulosic
crude oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/664,932
Inventor
Johan Frederick Cramwinckel
Ammar Anwar Kamel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAMEL, AMMAR ANWAR, CRAMWINCKEL, JOHAN FREDERICK
Publication of US20110219668A1 publication Critical patent/US20110219668A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a method of using contaminated water from a well effluent stream produced by oil wells traversing a crude oil and contaminated water containing earth layer.
  • the produced well effluent streams comprise more water than crude oil.
  • the produced water is often brine, which is contaminated, inter alia, with metals, dissolved salts, organic chemical constituents and hydrocarbons, and which cannot be currently purified economically into fresh water.
  • US patent application US20050171374 discloses a method of preparing levulinic acid esters from alpha-angelica lactone (a levulinic acid derivative) and olefins and the use of the produced ester compositions as fuel additives.
  • a problem with the method described in the above SPE paper of using contaminated water derived from crude oil production for irrigating a reed bed is that the reed crop grown may have a changing composition and may contain contaminants which have thus far inhibited the use of the produced crop for consumption by humans (food) or animals (fodder).
  • U.S. Pat. No. 4,679,582 discloses a biological living filter system using leachate tolerant plants, such as reed canary grass, for treatment of a sanitary landfill leachate.
  • a method of using contaminated water from a well effluent stream produced from a crude oil and contaminated water containing earth layer comprising:
  • the conversion step e) comprises:
  • the levulinic acid may be converted into a biofuel compound of a biofuel containing fuel composition.
  • the acid hydrolysis is carried out at a temperature above 180 degrees Celsius and at a pressure above 20 bar.
  • the saline tolerant cellulosic crop is used to purify irrigation water passing through the soil of the bed by biodegrading crude oil and by adsorbing metals contained in the irrigation water.
  • the irrigation system of the first of the cascade of soil beds may comprise an irrigation water discharge system, in which unused irrigation water that has been passed through the soil of the first soil bed and of which the crude oil content has been reduced during said passage, is collected and is used as irrigation water for irrigating a second reed bed in which a second saline tolerant cellulosic crop is planted, which is less tolerant to irrigation water that is contaminated with crude oil.
  • the saline tolerant cellulosic crop is selected from the group of reed, eucalyptus trees, tamaris and/or Phragmites australis, Hordeum vulgare, Leucaena, Atriplex hastate, Hordeum marinum, Sporobolus kentrophyllus, Acacia species, Eucalyptus, Prosopis, Spartina anglica, Aristida species, Phoenix, Tamarix, Zostera species, Aeluropus species, Panicum antidotale, Mangrove.
  • the irrigation water stream discharged by the most downstream soil bed of the cascade of soil beds is fed to a water evaporation pond from which salt is collected wherein algae are grown in the water evaporation pond, which algae are collected and subsequently converted into a compound of a biofuel and/or other biochemical composition by a chemical conversion process.
  • FIG. 1 The general principle of reed bed water purification technology is depicted in FIG. 1 .
  • FIG. 1 shows how a flux of wastewater 1 comprising a capped amount of salt, boron and crude oil is fed via a permeable irrigation conduit 2 into the soil 3 of a reed bed 4 on which reed plants 5 are growing and consume irrigation water flowing through the soil 3 , as illustrated by arrows 6 , towards a pair of permeable drainage pipes 7 that are embedded in the soil 3 above an impermeable liner 8 .
  • the roots 5 A of the reed plants 5 suck up wastewater 1 and bacteria living in the soil 3 around the roots 5 A of the reed plants 5 break down the crude oil and thereby reduce the crude oil content of the wastewater through biodegradation, thereby creating a flux of unused irrigation water with a reduced crude oil content flowing into the drainage pipes 7 , such that the unused irrigation water contains such a small amount of crude oil that it can be fed to an irrigation system for irrigating for example eucalyptus trees, which are less tolerant to irrigation water contaminated with crude oil than reed plants 5 .
  • Reed plants 5 are halophytes, meaning plants that grow well in saline environments.
  • the wastewater 1 is introduced at the top of the reed bed via a set of perforated irrigation conduits 2 .
  • Moisture probes 8 are used to ensure no leakages occur from the reed bed 4 into to surrounding soil layers 9 .
  • the location of the reed bed 4 is chosen such that the soil depth is sufficiently large and the soil is sufficiently porous. Also, due to the oil present in the reed bed 4 , it has to be made sure that no leakages to the surroundings can occur.
  • the reed bed 4 will treat the water for hydrocarbons and metals.
  • oil in water concentrations will be below 5 ppm.
  • the outflow volume and salt concentration of the effluent can be calculated.
  • the salinity of the effluent will limit, but not totally restrict the use of this water as irrigation water for another crop, which is less tolerant for irrigation water contaminated with crude oil, such as eucalyptus trees.
  • Reed is an example of a non-food source of biomass. Reed is a lignocellulosic material, and can be converted in materials that are suitable for blending with gasoline or diesel.
  • Lignocellulosic materials contain cellulose, hemicellulose and lignin.
  • Cellulose can be converted into levulinic acid. Through esterification, this levulinic acid can be converted into a levulinate ester, for example Ethyl Levulinate, which can be blended with both diesel as gasoline.
  • the method according to the invention uses production water associated with crude oil production to produce bio fuels and/or biochemicals.
  • a suitable process of producing biofuel from production water can be divided in the following steps:
  • the water re-use might be maximised, resulting in a higher area of reed production, thus in higher yield.
  • other areas in Oman and other countries might implement the re-use of water by growing biomass.
  • the levulinic acid production process makes it possible that also inputs from other sources may be used (such as municipal waste, agricultural waste, etc). This implies that on the long term a far larger quantity of Levulinate Acid may be produced.

Abstract

A method of using contaminated water from a well effluent stream produced by oil wells to produce biofuel and/or other biochemical compositions comprises: a) separating the well effluent stream in an oil-water separator assembly into a crude oil stream and a contaminated water stream with capped fractions of contaminants, such as crude oil, salt and metals; b) feeding at least a fraction of the contaminated water stream (1) to an irrigation system (2) of a cascaded series of soil beds (4) in which at least one saline tolerant cellulosic crop (5), such as reed, eucalyptus trees and/or tamaris, is planted, which cascade of soil beds acts as a cascaded biological filter for stepwise further reduction of the crude oil and metals content of the contaminated water stream; c) growing the cellulosic crop or crops (5) on the soil beds, wherein the contaminated water stream (1) is used to irrigate and mature the cellulosic crop or crops (5); d) harvesting a mature cellulosic crop (5) from at least one of the soil beds (4); and e) converting cellulosic material in the harvested mature crop (5) into a compound of a biofuel and/or other biochemical composition by a chemical conversion process.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a method of using contaminated water from a well effluent stream produced by oil wells traversing a crude oil and contaminated water containing earth layer.
  • In many oilfields the produced well effluent streams comprise more water than crude oil. The produced water is often brine, which is contaminated, inter alia, with metals, dissolved salts, organic chemical constituents and hydrocarbons, and which cannot be currently purified economically into fresh water.
  • It is known to separate contaminated water from a well effluent stream produced by a cluster of oil production wells in a bulk oil-water separator and to subsequently re-inject the contaminated water into the earth.
  • It is also known to use contaminated water derived from crude oil production for irrigation purposes from SPE paper 88667 “Opportunities for re-use of produced water around desert oil fields” presented by A. C. Sluijterman et al at the 11th Abu Dhabi International Petroleum Exhibition and Conference on 10-13 Oct. 2004.
  • Various processes are known to convert biomass into biofuels. It is known to convert cellulose-containing biomass into levulinic acid and formic acid by acid hydrolysis. Examples of such processes are disclosed in U.S. Pat. Nos. 4,897,497; 5,608,105; 5,892,107 and 6,054,611. Levulinic acid can be converted into compounds that are suitable as fuel components, e.g. levulinate esters, pentanoate esters or methyltetrahydrofuran (MTHF). U.S. Pat. No. 7,153,996 discloses a process for preparing levulinic acid esters and formic acid esters from biomass and olefins and to use the levulinic acid as a fuel additive.
  • US patent application US20050171374 discloses a method of preparing levulinic acid esters from alpha-angelica lactone (a levulinic acid derivative) and olefins and the use of the produced ester compositions as fuel additives.
  • The paper “Das Konzept der Bioraffinerie—Produktion von Plattformchemikalien and Finalprodukten” published by B. Kamm et al. in the magazine “Chemie Ingenieur Technik”, vol. 79, No. 5, May 2007 (2007-5), pages 592-603 (XP002477368) discloses that reed can be converted to biofuels and biochemicals, such as levulinic acid, via a rout involving cellulose and glucose.
  • A problem with the method described in the above SPE paper of using contaminated water derived from crude oil production for irrigating a reed bed is that the reed crop grown may have a changing composition and may contain contaminants which have thus far inhibited the use of the produced crop for consumption by humans (food) or animals (fodder).
  • U.S. Pat. No. 4,679,582 discloses a biological living filter system using leachate tolerant plants, such as reed canary grass, for treatment of a sanitary landfill leachate.
  • International patent application WO2006/030164 discloses a method for treating wastewater in a cascade of soil beds in which plants depollute the wastewater.
  • It is an object of the present invention to provide a method of using contaminated water from well effluent stream produced by a crude oil production well in such a way that it can be used for irrigating a reed and/or another saline tolerant cellulosic crop, which crop contains a limited amount of contaminants and has a accurately predictable composition such that it can be converted into a biofuel and/or another biochemical product.
  • SUMMARY OF THE INVENTION
  • In accordance with the invention there is provided a method of using contaminated water from a well effluent stream produced from a crude oil and contaminated water containing earth layer, the method comprising:
  • a) separating the well effluent stream in an oil-water separator assembly into a crude oil stream and a contaminated water stream with capped fractions of contaminants, such as crude oil, salt and metals;
    b) feeding at least a fraction of the contaminated water stream to an irrigation system of a cascaded series of soil beds in which at least one saline tolerant cellulosic crop is planted, which cascade of soil beds acts as a cascade of biological filters for stepwise further reduction of the crude oil and metal content of the contaminated water stream;
    c) growing the at least one cellulosic crop on the soil beds, wherein the contaminated water stream is used to irrigate and mature the cellulosic crop;
    d) harvesting at least one mature cellulosic crop from at least one of the soil beds; and
    e) converting cellulosic material in the harvested mature crop into a compound of a biofuel and/or other biochemical composition by a chemical conversion process.
  • Optionally, the conversion step e) comprises:
      • milling the harvested matured crop;
      • mixing the milled harvested matured crop with water, thereby forming an aqueous slurry comprising dispersed cellulosic material stemming from the milled harvested matured crop;
      • converting cellulosic material dispersed in the slurry by acid hydrolysis into levulinic acid and formic acid at an elevated pressure and temperature.
  • The levulinic acid may be converted into a biofuel compound of a biofuel containing fuel composition.
  • It is preferred that the acid hydrolysis is carried out at a temperature above 180 degrees Celsius and at a pressure above 20 bar.
  • In accordance with the invention the saline tolerant cellulosic crop is used to purify irrigation water passing through the soil of the bed by biodegrading crude oil and by adsorbing metals contained in the irrigation water.
  • The irrigation system of the first of the cascade of soil beds may comprise an irrigation water discharge system, in which unused irrigation water that has been passed through the soil of the first soil bed and of which the crude oil content has been reduced during said passage, is collected and is used as irrigation water for irrigating a second reed bed in which a second saline tolerant cellulosic crop is planted, which is less tolerant to irrigation water that is contaminated with crude oil.
  • Preferably the saline tolerant cellulosic crop is selected from the group of reed, eucalyptus trees, tamaris and/or Phragmites australis, Hordeum vulgare, Leucaena, Atriplex hastate, Hordeum marinum, Sporobolus kentrophyllus, Acacia species, Eucalyptus, Prosopis, Spartina anglica, Aristida species, Phoenix, Tamarix, Zostera species, Aeluropus species, Panicum antidotale, Mangrove.
  • Optionally the irrigation water stream discharged by the most downstream soil bed of the cascade of soil beds is fed to a water evaporation pond from which salt is collected wherein algae are grown in the water evaporation pond, which algae are collected and subsequently converted into a compound of a biofuel and/or other biochemical composition by a chemical conversion process.
  • These and other features advantages and embodiments of the method according to the invention are described in the accompanying claims, abstract and the following detailed description of a depicted embodiment in which reference is made to the accompanying drawing.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The general principle of reed bed water purification technology is depicted in FIG. 1.
  • DETAILED DESCRIPTION OF THE DEPICTED EMBODIMENT
  • FIG. 1 shows how a flux of wastewater 1 comprising a capped amount of salt, boron and crude oil is fed via a permeable irrigation conduit 2 into the soil 3 of a reed bed 4 on which reed plants 5 are growing and consume irrigation water flowing through the soil 3, as illustrated by arrows 6, towards a pair of permeable drainage pipes 7 that are embedded in the soil 3 above an impermeable liner 8. The roots 5A of the reed plants 5 suck up wastewater 1 and bacteria living in the soil 3 around the roots 5A of the reed plants 5 break down the crude oil and thereby reduce the crude oil content of the wastewater through biodegradation, thereby creating a flux of unused irrigation water with a reduced crude oil content flowing into the drainage pipes 7, such that the unused irrigation water contains such a small amount of crude oil that it can be fed to an irrigation system for irrigating for example eucalyptus trees, which are less tolerant to irrigation water contaminated with crude oil than reed plants 5.
  • Reed plants 5 are halophytes, meaning plants that grow well in saline environments. The wastewater 1 is introduced at the top of the reed bed via a set of perforated irrigation conduits 2. Moisture probes 8 are used to ensure no leakages occur from the reed bed 4 into to surrounding soil layers 9.
  • The location of the reed bed 4 is chosen such that the soil depth is sufficiently large and the soil is sufficiently porous. Also, due to the oil present in the reed bed 4, it has to be made sure that no leakages to the surroundings can occur. The reed bed 4 will treat the water for hydrocarbons and metals.
  • Produced waste water at the inflow of the reed bed 4 produced at the NIMR oil field in Oman, where the pilot Reed bed experiment described in the above SPE paper took place, have an average oil in water concentration of 250 ppm. Salinity of the wastewater is around 6,000 ppm. With an inflow of 45,000 m3 waste water per day, this will lead to 270 ton salt per day and 11,250 litres of oil per day (equivalent to 71 barrels a day). Salt volumes remaining in the soil and taken up by the reed plants 5 will be negligible, due to constant leaching and limited storage volume in the biomass.
  • After treatment, at the outflow in the drainage pipes 7, oil in water concentrations will be below 5 ppm. Using a reference evapo-transpiration varying between 4 and 11 mm per day, the outflow volume and salt concentration of the effluent can be calculated. The salinity of the effluent will limit, but not totally restrict the use of this water as irrigation water for another crop, which is less tolerant for irrigation water contaminated with crude oil, such as eucalyptus trees.
  • It is known that biochemical and/or biofuel products that may be generated from non-food or non-fodder crops, and/or from cellulose based is described as the so-called second generation biofuels. Reed is an example of a non-food source of biomass. Reed is a lignocellulosic material, and can be converted in materials that are suitable for blending with gasoline or diesel.
  • Lignocellulosic materials contain cellulose, hemicellulose and lignin. Cellulose can be converted into levulinic acid. Through esterification, this levulinic acid can be converted into a levulinate ester, for example Ethyl Levulinate, which can be blended with both diesel as gasoline.
  • After pre-treatment of the reed 4 (milling, slurring, etc), the following processes take place: Hydrolysis of cellulose results in glucose. After this, during a high pressure (at about 30 bar) and steam heating (at about 230° C.) process, the C6 sugars are converted into Levulinic Acid and Formic Acid. In reaction with ethanol, the Levulinic Acid will be converted into Ethyl Levulinate.
  • As one example of such technology is a process described in U.S. Pat. No. 5,608,105, where Lignin stays as it is and contains solids. The lignin provides energy for boiling and heating.
  • It is also known that through esterification, levulinic acid can be converted into Ethyl Levulinate and that Ethyl Levulinate can be mixed with both gasoline as diesel as well. Wastewater produced by the oil industry is a globally rising issue.
  • Given the high environmental and financial costs relating to disposal of this produced wastewater, re-use options for this water must be defined. Because re-use options of water produced at oil drilling activities are limited to non food purposes, the method according to the invention uses production water associated with crude oil production to produce bio fuels and/or biochemicals.
  • A suitable process of producing biofuel from production water can be divided in the following steps:
  • I) Contaminated wastewater production.
    II) Contaminated wastewater treatment. Biological treatment by reed beds has proven to be a cost efficient and environmentally-friendly alternative to the current method of disposing produced contaminated water, which is deep well disposal.
    III) Biomass production. Reeds have been identified as a good option for growing biomass.
    IV) Levulinic acid production. Levulinic acid production has been identified as a good option for converting reeds into useful compounds.
  • A cost benefit analysis, performed on the costs and benefits of the steps described above and related nature preservation costs, carbon credits and avoided deep well disposal costs, has led to the conclusion that using 45,000 m3 or more of production water associated with crude oil production from the NIMR oil field in Oman per day to produce Levulinate Acid is economically, environmentally and socially feasible. On the short term, 9,400-14,000 tonnes biomass dry feedstock produced by using a gross affluent contaminated water of 45,000 m3 per year will be delivered from reed beds fed by wastewater produced at the NIMR oilfield in Oman to the levulinic acid production plant. However, on the long term, if the testing period has been completed successfully, the water re-use might be maximised, resulting in a higher area of reed production, thus in higher yield. Also, other areas in Oman and other countries might implement the re-use of water by growing biomass. Furthermore, the levulinic acid production process makes it possible that also inputs from other sources may be used (such as municipal waste, agricultural waste, etc). This implies that on the long term a far larger quantity of Levulinate Acid may be produced.

Claims (15)

1. A method of using contaminated water from a well effluent stream produced from a crude oil and contaminated water containing earth layer, the method comprising:
a) feeding the contaminated water to an irrigation system of a cascaded series of soil beds in which at least one saline tolerant cellulosic crop is planted, which cascade of soil beds acts as a cascade of biological purification filters for stepwise further reduction of the crude oil and metal content of the contaminated water stream;
b) growing the at least one cellulosic crop on the soil beds, wherein the contaminated water stream is used to irrigate and mature the cellulosic crop; and
c) harvesting at least one mature cellulosic crop from at least one of the soil beds;
d) separating the well effluent stream in an oil-water separator assembly into a crude oil stream and a contaminated water stream with capped fractions of contaminants, such as crude oil, salt and metals; and
e) converting cellulosic material in the harvested mature crop into a compound of a biofuel and/or other biochemical composition by a chemical conversion process.
2. The method of claim 1, wherein step e) comprises:
milling the harvested mature crop;
mixing the milled harvested mature crop with water, thereby forming an aqueous slurry comprising dispersed cellulosic material stemming from the milled harvested mature crop;
converting cellulosic material dispersed in the slurry by acid hydrolysis into levulinic acid and formic acid at an elevated pressure and temperature.
3. The method of claim 2, wherein the levulinic acid is converted into a biofuel compound of a biofuel containing fuel composition.
4. The method of claim 2, wherein the acid hydrolysis is carried out at a temperature above 180 degrees Celsius and at a pressure above 20 bar.
5. The method of claim 1, wherein step d) further comprises mixing the contaminated water stream with fresh water such that the commingled contaminated and fresh water streams comprise capped fractions of, inter alia, crude oil, salt and metals.
6. The method of claim 1, wherein the saline tolerant cellulosic crop is used to purify irrigation water passing through the soil of the cascade of soil beds by biodegrading crude oil and by adsorbing metals contained in the irrigation water.
7. The method of claim 6, wherein the irrigation system of the first of the cascade of soil beds comprises an irrigation water discharge system, in which unused irrigation water that has been passed through the soil of the first soil bed and that is purified during said passage such that its crude oil content is reduced, is collected and is used as irrigation water for growing a second crop on the second of the cascade of soil beds, which second crop is less tolerant to irrigation water that is contaminated with crude oil.
8. The method of claim 7, wherein unused irrigation water discharged into the soil of the second of the cascade of soil beds in which the second crop is planted is collected, which unused irrigation water has a crude oil content that has been further reduced through biodegradation in the soil around the roots of the second crop, is used as irrigation water for growing on a third of the cascade of soil beds a third crop, which is less tolerant to irrigation water that is contaminated with crude oil than the cellulosic first and second crops.
9. The method of claim 1, wherein the saline tolerant cellulosic crop is selected from the group of reed, eucalyptus trees and tamaris.
10. The method of claim 1, wherein the saline tolerant cellulosic crop is selected from the group of Phragmites australis, Hordeum vulgare, Leucaena, Atriplex hastate, Hordeum marinum, Sporobolus kentrophyllus, Acacia, Eucalyptus, Prosopis, Spartina anglica, Aristida, Phoenix, Tamarix Zostera , Aeluropus, Panicum antidotale, Mangrove.
11. The method of claim 7, wherein the first cellulosic crop is reed and the second cellulosic crop comprises eucalyptus trees.
12. The method of claim 1, wherein an impermeable liner is arranged below at least one of the soil beds in which the cellulosic crop is planted to inhibit drainage of contaminated water into adjacent soil layers.
13. The method of claim 12, wherein the impermeable liner is arranged at an average depth of less than 1 meter below the upper surface at least one of the soil beds.
14. The method of claim 1, wherein the irrigation water stream discharged by the most downstream soil bed of the cascade of soil beds is fed to a water evaporation pond from which salt is collected.
15. The method of claim 14, wherein algae are grown in the water evaporation pond, which algae are collected and subsequently converted into a compound of a biofuel and/or other biochemical composition by a chemical conversion process.
US12/664,932 2007-06-27 2008-06-25 Method of using contaminated water from an oilwell effluent stream Abandoned US20110219668A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07111203.1 2007-06-27
EP07111203 2007-06-27
PCT/EP2008/058060 WO2009000845A2 (en) 2007-06-27 2008-06-25 Method of using contaminated water from an oilwell effluent stream

Publications (1)

Publication Number Publication Date
US20110219668A1 true US20110219668A1 (en) 2011-09-15

Family

ID=39278377

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/664,932 Abandoned US20110219668A1 (en) 2007-06-27 2008-06-25 Method of using contaminated water from an oilwell effluent stream

Country Status (2)

Country Link
US (1) US20110219668A1 (en)
WO (1) WO2009000845A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120144735A1 (en) * 2009-08-19 2012-06-14 Micha Harari Cultivation of tamarix tree for biomass fuel
WO2014022354A2 (en) * 2012-07-30 2014-02-06 R N Industries, Inc. Methods, apparatuses, systems and facilities for treating wastewater from exploration for and production of oil and gas
US9187342B2 (en) 2010-06-14 2015-11-17 Alcoa Inc. Method for removing drugs from waste water using neutralized bauxite residue
US9315406B2 (en) 2013-01-11 2016-04-19 Alcoa Inc. Wastewater treatment systems and methods
US20180215989A1 (en) * 2015-08-05 2018-08-02 Schlumberger Technology Corporation Compositions and methods for well completions
US20180230358A1 (en) * 2015-08-05 2018-08-16 Schlumberger Technology Corporation Compositions and methods for well completions
FR3109094A1 (en) * 2020-04-14 2021-10-15 Maxime Duhamel Process of treatment and degradation of organic micropollutants by fermentation of plants

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009201397A1 (en) * 2008-04-10 2009-10-29 Gainfoot Pty Limited Formation water disposal system
EP2213629B1 (en) * 2009-01-30 2011-06-15 BAUER Umwelt GmbH Device and method for treating and disposing of waste water containing salt and oil
CN102017856B (en) * 2010-09-26 2012-12-12 东北师范大学 Method for reconstructing and recovering wetland vegetation by transplanting reed roots
CN102557263B (en) * 2012-01-12 2013-08-14 兰州大学 Method for treating nitrobenzene and phenylamine waste water by using plant system
CN103936166B (en) * 2014-04-30 2016-01-20 江苏紫峰农业科技股份有限公司 A kind of method utilizing fast-growing tree process blue-green algae
CN105902040A (en) * 2016-05-12 2016-08-31 楼其昌 Manufacturing technology of bed mattress
CN108751570A (en) * 2018-05-08 2018-11-06 扬州市海诚生物技术有限公司 A kind of chemical remediation combines biological prosthetic river regulation method
CN109794498B (en) * 2019-01-25 2021-06-08 南开大学 Method for repairing petroleum-polluted soil by rhamnolipid modified charcoal reinforced cord grass
CN110651743B (en) * 2019-10-10 2022-01-14 广西红树林研究中心 Living sea water biological purification device for forest crab and shellfish
EP3925933B1 (en) 2020-06-15 2023-12-06 Bauer Resources GmbH Plant and method for treatment of waste water
EP3981744A1 (en) 2020-10-09 2022-04-13 Bauer Resources GmbH Facility and method for treatment of saline wastewater
DE102022105352A1 (en) 2022-03-08 2023-09-14 SusTeco ME, Sustainable Technology LLC SYSTEM AND METHOD FOR TREATMENT AND DISPOSAL OF WASTE WATER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770623A (en) * 1971-06-15 1973-11-06 Max Planck Gesellschaft System for purification of polluted water
US20020164731A1 (en) * 1990-01-15 2002-11-07 Olli-Pekka Eroma Process for the simultaneous production of xylitol and ethanol
WO2006030164A1 (en) * 2004-09-16 2006-03-23 Phytorestore Treating pollutants by photoleaching
US7135308B1 (en) * 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678582A (en) * 1986-01-24 1987-07-07 Lavigne Ronald L Treatment system for landfill leachate
IL102357A0 (en) * 1991-07-01 1993-01-14 Water Res Commission Production of useful products from saline media
KR20040105819A (en) * 2002-04-01 2004-12-16 이 아이 듀폰 디 네모아 앤드 캄파니 Preparation of levulinic acid esters and formic acid esters from biomass and olefins
CN101200647B (en) * 2007-11-28 2011-03-23 厦门大学 Method for preparing fuel oil gas by using dunaliella powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770623A (en) * 1971-06-15 1973-11-06 Max Planck Gesellschaft System for purification of polluted water
US20020164731A1 (en) * 1990-01-15 2002-11-07 Olli-Pekka Eroma Process for the simultaneous production of xylitol and ethanol
WO2006030164A1 (en) * 2004-09-16 2006-03-23 Phytorestore Treating pollutants by photoleaching
US7718063B2 (en) * 2004-09-16 2010-05-18 Phytorestore Treating pollutants by phytoleaching
US7135308B1 (en) * 2006-02-28 2006-11-14 Propulsion Logic, Llc Process for the production of ethanol from algae

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
""Potential" for up scaling Nimr reed bed facilities Oman" A. Schrevel, PJGJ Hellegers, RWO Soppe (May 2004) *
"Opportunities for re-use of produced water around desert oil fields" (2004) by A.C. Sluijerman, Al-Lawaii, Al-Asmi, PHJ Verbeek, MAS Schaapveld, et al. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839554B2 (en) * 2009-08-19 2014-09-23 Micha Harai Cultivation of tamarix tree for biomass fuel
US20120144735A1 (en) * 2009-08-19 2012-06-14 Micha Harari Cultivation of tamarix tree for biomass fuel
US9187342B2 (en) 2010-06-14 2015-11-17 Alcoa Inc. Method for removing drugs from waste water using neutralized bauxite residue
WO2014022354A3 (en) * 2012-07-30 2014-04-17 R N Industries, Inc. Anaerobic treatment of wastewater from oil and gas exploration and production
US8851299B2 (en) 2012-07-30 2014-10-07 R N Industries, Inc. Methods for treating wastewater from exploration for and production of oil and gas
US8871094B2 (en) 2012-07-30 2014-10-28 R N Industries, Inc. Wastewater treatment facility and bioreactor for treating wastewater from oil and gas exploration and production
WO2014022354A2 (en) * 2012-07-30 2014-02-06 R N Industries, Inc. Methods, apparatuses, systems and facilities for treating wastewater from exploration for and production of oil and gas
US9315406B2 (en) 2013-01-11 2016-04-19 Alcoa Inc. Wastewater treatment systems and methods
US20180215989A1 (en) * 2015-08-05 2018-08-02 Schlumberger Technology Corporation Compositions and methods for well completions
US20180230358A1 (en) * 2015-08-05 2018-08-16 Schlumberger Technology Corporation Compositions and methods for well completions
RU2718040C2 (en) * 2015-08-05 2020-03-30 Шлюмбергер Текнолоджи Б.В. Compositions and methods of well completion
US11187057B2 (en) * 2015-08-05 2021-11-30 Schlumberger Technology Corporation Compositions and methods for well completions
US11299958B2 (en) * 2015-08-05 2022-04-12 Schlumberger Technology Corporation Compositions and methods for well completions
FR3109094A1 (en) * 2020-04-14 2021-10-15 Maxime Duhamel Process of treatment and degradation of organic micropollutants by fermentation of plants
WO2021209692A1 (en) * 2020-04-14 2021-10-21 Communaute De Communes Des Portes De Meuse Method for treating and degrading organic micropollutants by means of plant formation

Also Published As

Publication number Publication date
WO2009000845A3 (en) 2009-02-26
WO2009000845A2 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
US20110219668A1 (en) Method of using contaminated water from an oilwell effluent stream
Lee et al. Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review
Hoarau et al. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review
Rezania et al. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview
Nsanganwimana et al. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review
CN102712513B (en) Kind for the treatment of contaminated water, soil or air is implanted with the organic filter device of Europe and/or the torrid zone/desert stalk stem plant
Srivastava Advancement in biogas production from the solid waste by optimizing the anaerobic digestion
US9315403B1 (en) System for algae-based treatment of water
Kundu et al. Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability
US20110177550A1 (en) Process for the treatment of water and production of biomass and associated systems
US9115317B2 (en) Oil recovery method
US20120083026A1 (en) Method for removing CO2 from a smoke or exhaust gas of a combustion process
KR20110081518A (en) Method for preparing volatile fatty acids from biomass
EP2034008A1 (en) Method for obtaining energy-generating compounds by means of electromagnetic energy
Wu et al. Source, treatment, and disposal of aquaculture solid waste: a review
JP2013063395A (en) Treatment method of harmful substance
GB2484530A (en) Waste treatment and electricity generation
Takáčová et al. Influence of selected biowaste materials pre-treatment on their anaerobic digestion
BEKchANOV Potentials of waste and wastewater resources recovery and re-use (RRR) options for improving water, energy and nutrition security
Eltawil et al. Evaluation and scrubbing of biogas generation from agricultural wastes and water hyacinth
DE102011115869A1 (en) Carbonizing biomass, comprises converting the biomass to a carbon-rich solid substrate and discharge water under increased pressure and temperature by a hydrothermal process, and supplying discharge water to aquatic plant culture device
JP7204263B2 (en) Plant treatment method and plant treatment system
Yang Biochar Amended Biological Systems for Enhanced Landfill Leachate and Lignocellulosic Banana Waste Treatment
Pratt et al. The potential for generating algae derived biofuels using coal seam gas water as the growth media
RU2731987C2 (en) Method of producing bioethanol from algae

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRAMWINCKEL, JOHAN FREDERICK;KAMEL, AMMAR ANWAR;SIGNING DATES FROM 20091208 TO 20091213;REEL/FRAME:024174/0134

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION