US20110030412A1 - Check valve for a refrigerator - Google Patents

Check valve for a refrigerator Download PDF

Info

Publication number
US20110030412A1
US20110030412A1 US12/937,195 US93719509A US2011030412A1 US 20110030412 A1 US20110030412 A1 US 20110030412A1 US 93719509 A US93719509 A US 93719509A US 2011030412 A1 US2011030412 A1 US 2011030412A1
Authority
US
United States
Prior art keywords
water
nozzle
dispenser
refrigerator
door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/937,195
Inventor
Ju Hyun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, JU HYUN
Publication of US20110030412A1 publication Critical patent/US20110030412A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • F25D23/126Water cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers

Definitions

  • the present invention relates to refrigerators, and more specifically, the present invention relates to a refrigerator which can suppress formation of residual water from a dispenser in a door thereof.
  • the refrigerator has a refrigerating chamber and a freezing chamber for storage and conservation of food.
  • the refrigerating chamber is maintained at about 3 ⁇ 4° for fresh and long time storage of the food
  • the freezing chamber is maintained at a sub-zero temperature for frozen storage of the food.
  • the refrigerator has a variety of functions added thereto. Of the additional functions, it is a trend in which the refrigerator is spot lighted, having a dispenser attached to the door for dispensing water and ice.
  • FIG. 1 illustrates a perspective view of a refrigerator 101 having a general dispenser 120 mounted thereto, wherein the dispenser 120 is provided with a water cleaning filter 121 for filtering water from a water source W, a water tank 123 for temporary storage of the water filtered thus, a water supply valve 125 for selective discharge of the water from the water tank 123 through a nozzle 127 , and an operation lever 128 for operating the water supply valve 125 .
  • the nozzle 127 and the operation lever 128 are exposed to an outside of the door 110 .
  • the water supply valve 125 When the operation lever 128 is pressed, the water supply valve 125 is opened, to supply and dispense the water from the water tank 123 to the nozzle 127 , and when the operation lever 128 is moved to an original position, the water supply valve 125 is closed, to stop the supply of the water.
  • the dispenser 120 is operated such that, if a user presses the operation lever 128 exposed to the outside of the door 110 with a cup (not shown) or the like to open the water supply valve 125 , the water is discharged from the nozzle 127 , and if the operation lever 128 is moved to an original position, the water supply valve 125 is closed, to stop the discharge of the water.
  • the dispenser 120 dispenses or stops dispensing of the water depending on opening/closing of the water supply valve 125 . If the user removes the cup pressing the cup from the operation lever 128 , the water supply valve 125 is closed. However, the water supply valve 125 is mounted to a pipeline between the water tank 123 and the nozzle 127 , wherein a distance between the water supply valve 125 to the nozzle 127 is substantially long, and the water presents in the pipeline therebetween. Therefore, even if the water supply valve 125 is closed, a portion of the water present in the pipeline between the water supply valve 125 and the nozzle 127 (hereafter called as residual water) drops down from the nozzle 127 by inertia or gravity.
  • residual water a portion of the water present in the pipeline between the water supply valve 125 and the nozzle 127
  • a tray T is mounted under the nozzle 127 for receiving the residual water from the dispenser 120 . If a predetermined amount of the residual water is filled in the tray, the tray T is detached from the door 110 , and the residual water is emptied, and then, the tray T is mounted to the door 110 for receiving the residual water again.
  • an object of the present invention is to provide a refrigerator which can prevent residual water from being dropped from a nozzle of a dispenser.
  • Another object of the present invention is to provide a refrigerator which can dispense with the tray which receives residual water.
  • a refrigerator includes a dispenser mounted to a door, a nozzle mounted to the dispenser for discharging water to an outside of the dispenser, and a residual water preventive unit mounted close to the nozzle for preventing residual water from dropping.
  • the residual water preventive unit is a check valve.
  • the check valve includes a plate for opening/closing a pipe passage in the check valve selectively, and a spring for pressing the plate in one direction.
  • the nozzle has a small inside diameter enough to prevent the water in the pipeline from an underside of the plate to the nozzle from dropping owing to the elastic force of the spring and a surface tension of the water.
  • the inside diameter of the nozzle is below 1 ⁇ 4 inches.
  • the dispenser includes a water supply valve for controlling water supply to the nozzle.
  • the residual water preventive unit closes the nozzle if a water pressure drops below a predetermined pressure, and opens the nozzle if the water pressure rises above the predetermined pressure.
  • the dispenser is mounted to the door such that the dispenser can be pushed into the door or pulled out of the door.
  • the dispenser may further include a chute mounted to the dispenser such that the chute is exposed to the outside of the door, or pushed in or pulled out of the door.
  • the dispenser further includes a tray removably mounted under the nozzle.
  • a refrigerator in another aspect of the present invention, include a dispenser mounted to a door, a nozzle mounted to the dispenser for discharging water to an outside of the dispenser, a check valve mounted close to an end of the nozzle for closing the nozzle if a water pressure drops below a predetermined pressure, and opening the nozzle if the water pressure rises above the predetermined pressure for preventing residual water from dropping, and a water supply valve for controlling water supply to the nozzle to make the check valve to be opened/closed, selectively.
  • the present invention has following advantageous effects.
  • the residual water preventive unit mounted close to the nozzle of the dispenser permits to suppress formation of the residual water at the dispenser, since the residual water preventive unit can stop discharge of the water at the same time with a moment the lever returns to an original position.
  • the tray may not be provided for receiving the remained water dropping from the nozzle of the dispenser.
  • the tray is mounted to the dispenser, a better convenience can be provided, as the water discharged from the nozzle can be received in a case the lever is pressed without placing the cup under the level, and the user may empty a small amount of water in the cup to the tray.
  • the mounting of the water tank in an inside of the door without being exposed to an outside of the refrigerator permits to dispense cold water from the nozzle of a temperature of the cold air in the refrigerator without being influenced from heat of external air.
  • FIG. 1 illustrates a perspective view of a refrigerator having a dispenser mounted thereto
  • FIG. 2 illustrates a perspective view of a dispenser in a refrigerator in accordance with a preferred embodiment of the present invention, schematically;
  • FIGS. 3 and 4 illustrate sections each showing operation of the check valve in FIG. 2 , respectively;
  • FIG. 5 illustrates a perspective view of key parts of FIG. 2 ;
  • FIG. 6 illustrates a perspective view of key parts of the refrigerator in accordance with a first preferred embodiment of the present invention
  • FIG. 7 illustrates a perspective view of key parts of the refrigerator in accordance with a second preferred embodiment of the present invention.
  • FIG. 8 illustrates a perspective view of key parts of the refrigerator in accordance with a third preferred embodiment of the present invention.
  • the refrigerator 1 includes a refrigerator body 3 having a storage space therein, doors 5 , 6 and 7 for opening/closing the refrigerator body 3 , a dispenser 10 mounted to the door 5 having a nozzle for discharging water, and a residual water preventive unit 20 mounted to the nozzle 17 for preventing the residual water from dropping.
  • the storage space in the refrigerator body 3 may be divided into refrigerating chambers and a freezing chamber, and the three doors 5 , 6 and 7 may be mounted to the refrigerator body 3 for opening/closing respective spaces.
  • the dispenser 10 may be mounted to one of the three doors 5 , 6 and 7 , and in the refrigerator of the present invention, the dispenser 10 is mounted such that the nozzle 17 which discharges the water is mounted to the left door 5 .
  • the dispenser 10 includes a first water supply valve 11 for controlling water supply from a water supply source W, a cleaning filer 12 for cleaning the water passed through the first water supply valve 11 , a second water supply valve 13 for controlling water supply from the cleaning filter 12 to an ice maker 15 or a water tank 16 , the ice maker 15 for receiving the water passed through the second water supply valve 13 for making ice, the water tank 16 for storing the water passed through the second water supply valve 13 , and a nozzle 17 for discharging the water from the water tank 16 to an outside of the dispenser 10 .
  • One pipeline connects above components from the water supply source W to the nozzle 17 .
  • the second water supply valve 13 If the second water supply valve 13 is opened, the water can be supplied to and discharged from the nozzle 17 , and if the second water supply valve 13 is closed, the water supply is stopped at the same time with the closure of the second water supply valve 13 , preventing the water from discharging through the nozzle 17 .
  • the dispenser 10 in FIG. 2 includes, not only the nozzle 17 , but also the ice maker 15 , the second water supply valve 13 is included for distributing the water both to the ice maker 15 and the nozzle 17 .
  • the water tank 16 in FIG. 2 is mounted to an inside of the door 5 , the water tank 16 in FIG. 2 is not exposed to external air which is at a relatively high temperature.
  • the residual water preventive unit 20 is secured to the nozzle 17 for selective opening/closing of the nozzle 17 , thereby preventing the residual water from dropping. That is, the discharge of the water from the nozzle 17 to the outside of the dispenser 10 is controlled by opening/closing the second water supply valve 13 , wherein, by making the residual water preventive unit 20 to stop the discharge of the water from the nozzle 17 instantly if the second water supply valve 13 is closed, a problem can be solved, in which the water (hereafter residual water) remained in the pipeline close to the nozzle 17 drops down.
  • the residual water preventive unit 20 is a check valve 20 secured close to the nozzle 17 .
  • FIGS. 3 and 4 illustrate sections each showing operation of the check valve in FIG. 2 respectively. An operation principle of the check valve will be described with reference to FIGS. 3 and 4 .
  • the check valve lets fluid to flow only in one direction, for preventing the fluid from flowing in a reverse direction.
  • the check valve includes a plate P movable in a fluid, i.e., the water, flow direction such that the plate P closes/opens a pipe passage L in the check valve selectively, and a spring S which presses the plate P.
  • a fluid i.e., the water
  • the fluid is required to have a level of pressure for the plate P to open the pipe passage L.
  • the level of pressure of the fluid is higher than force the spring S presses the plate P.
  • the fluid of the level of pressure moves the plate P downward as the fluid flows through the pipe passage L, and the plate P compresses the spring S to open the pipe passage L. According to this, while keeping the pipe passage L open, the fluid flows from the upper side to the lower side as shown with the arrows.
  • the fluid remained on the lower side of the pipe passage L turns the flow direction to flow to upward. That is, since the remained water on the lower side of the pipe passage L moves to the center of the pipe passage L, the remained water is not discharged to an outside of the check valve.
  • the check valve 20 is mounted close to the nozzle 17 .
  • the check valve 20 is mounted close to the nozzle 17 even in the B section.
  • the nozzle 17 has a small inside diameter enough to prevent the water in the pipeline from an underside of the plate to the nozzle from dropping owing to an elastic force of the spring and a surface tension of the water.
  • the inside diameter of the nozzle 17 is below 1 ⁇ 4 inches. If the inside diameter of the nozzle 17 is slightly greater than 1 ⁇ 4 inches, though most of drop of the remained water from the nozzle can be prevented owing to the action of the residual water preventive unit, it has been noticed that a small amount of the remained water drops from the nozzle depending on cases when an impact is applied to the dispenser from an outside of the dispenser.
  • the inside diameter of the nozzle 17 is below 1 ⁇ 4 inches, no remained water drops from the nozzle even if a certain extent of impact is applied to the dispenser from an outside of the dispenser. Because the smaller the inside diameter of the pipe passage, the greater the influence of the surface tension of the water to the remained water in the pipe passage, such that the remained water present under the plate P of the check valve 20 does not drop owing to action of the elastic force of the spring and the surface tension of the water. However, a supply rate of the water will be too slow, if the inside diameter of the nozzle 17 is too small, it is required that the inside diameter of the nozzle 17 has a certain extent of size.
  • the second water supply valve 13 is opened for supplying the water to the nozzle 17 , the water moves along the A section until the water is stored in the water tank 16 , then, the water moves to the check valve 20 along the B section.
  • an opening pressure of the check valve 20 can be 2 ⁇ 3 kgf/m 2 . The water passed through the opened check valve 20 thus is discharged through the nozzle 17 , and filled in the cup (not shown) outside of the dispenser.
  • a time when the water supply stops will be a time point when the second water supply valve 13 is closed, making the water to move along the A section no more.
  • a closing pressure of the check valve 20 is below 2 kgf/m 2 , and is preferably 0.2 kgf/m 2 .
  • the spring S closes the check valve 20 , letting no more flow toward the nozzle 17 .
  • a negative pressure takes place in the check valve 20 , causing a flow opposite to the moving direction of the fluid.
  • the water remained in the pipeline between the check valve 20 and the nozzle 17 turns a flow direction toward the check valve 20 , preventing the remained water from discharging to the outside of the dispenser, i.e., downward, despite of the inertia or the gravity.
  • FIG. 6 illustrates a perspective view of key parts of the refrigerator in accordance with a first preferred embodiment of the present invention.
  • the refrigerator 1 has a dispenser 10 a mounted to have a recess S in the door 5 .
  • the dispenser 10 a includes a chute 19 for discharging water or ice to an outside of the refrigerator, with an operation lever 18 on one side of the chute 19 for operating the chute 19 .
  • the nozzle 17 is exposed to an outside of the door 5 through the chute 19 for discharging the water.
  • the check valve 20 described before is mounted close to the nozzle 17 .
  • the dispenser 10 a dispenses the water or ice through the chute 19 .
  • the nozzle 17 discharges the water as the check valve 20 is opened.
  • a tray T may be mounted under the end of the nozzle 17 for receiving the remained water from the dispenser 10 a.
  • the tray T serves to receive residue of the water or ice from the dispenser 10 a. Since when the lever 18 pressed returns to an original position, no remained water drops by the residual water preventive unit, thus the tray T is not necessarily required. However, since the tray T can receive the water from the nozzle 17 in a case the cup is placed at a wrong position in a state the user presses the lever 18 , or a small amount of the water received from the nozzle 17 can be emptied to the tray T, the tray T can provide convenience to the user, still.
  • the tray T is filled with the water to a predetermined amount, the water is disposed by removing the tray T from the door 5 , emptying the remained water, and mounting the tray T to the door 5 again.
  • FIG. 7 illustrates a perspective view of key parts of the refrigerator in accordance with a second preferred embodiment of the present invention.
  • the dispenser 10 b is mounted rotatable in front/rear directions round a pivot shaft (not shown) on an upper side of left/right sides of a front cover plate such that the dispenser 10 b can be pulled out of the door 5 , or pushed into the door 5 . That is, the dispenser 10 b may position the chute 19 which dispenses the water or ice and the nozzle 17 mounted to the chute 19 either to an outside or inside of the door 5 , selectively. At the end of the nozzle 17 , the check valve 20 is secured as the residual water preventive unit.
  • the second embodiment is different from the first embodiment in that the dispenser 10 b is mounted to be pulled out of the door 5 , or pushed into the door 5 , and, according to this, the chute 19 and the nozzle 17 are also mounted movable in the front/rear directions together with the dispenser 10 b.
  • FIG. 7 shows no tray T in the first embodiment.
  • the chute 19 may have a lever (not shown) on one side for operating the chute 19 to discharge the water or ice, or the chute may be operated with a sensor (not shown) which can sense the cup for discharging the water or ice instead of the lever.
  • the cover plate which forms an exterior of the dispenser 10 b may have an operation button mounted thereto for dispensing the water or ice selectively, and a display for displaying a state of use.
  • the check valve 20 in the first embodiment may be used for achieving the effect described before in the second embodiment, too.
  • the tray may not be mounted additionally.
  • An unexplained reference number 3 denotes a refrigerator body.
  • FIG. 8 illustrates a perspective view of key parts of the refrigerator in accordance with a third preferred embodiment of the present invention.
  • the dispenser 10 c in the refrigerator 1 of the third embodiment is mounted rotatable in front/rear directions round a pivot shaft (not shown) on an upper side of left/right sides of a front cover plate such that the dispenser 10 c can be pulled out of the door 5 , or pushed into the door 5 .
  • the dispenser 10 c may position the chute 19 which dispenses the water or ice and the nozzle 17 mounted to the chute 19 either to an outside or inside of the door 5 selectively, rotated in the front/rear directions together with the dispenser 10 b.
  • the check valve 20 is secured close to the nozzle 17 as a residual water preventive unit.
  • a tray T is mounted for disposing the residual water.
  • the tray T of the third embodiment may be mounted to be pulled out of a space 8 in the door 5 , or pushed into the space 8 in the door 5 in front/rear directions.
  • the check valve 20 may be used as the residual water preventive unit for preventing the residual water remained in the nozzle 17 from dropping to an inside or outside of the door 5 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Check Valves (AREA)

Abstract

The present invention relates to a refrigerator (1) including a dispenser (10) mounted to door, a nozzle (17) mounted to the dispenser for discharging water to an outside of the dispenser, and a residual water preventive unit (20) mounted close to the nozzle for preventing residual water from dropping, thereby preventing residual water from being dropped from a nozzle of a dispenser in the door of the refrigerator.

Description

    TECHNICAL FIELD
  • The present invention relates to refrigerators, and more specifically, the present invention relates to a refrigerator which can suppress formation of residual water from a dispenser in a door thereof.
  • BACKGROUND ART
  • In general, the refrigerator has a refrigerating chamber and a freezing chamber for storage and conservation of food. The refrigerating chamber is maintained at about 3˜4° for fresh and long time storage of the food, and the freezing chamber is maintained at a sub-zero temperature for frozen storage of the food.
  • Recently, besides the main function for storing and freezing the food thus, the refrigerator has a variety of functions added thereto. Of the additional functions, it is a trend in which the refrigerator is spot lighted, having a dispenser attached to the door for dispensing water and ice.
  • FIG. 1 illustrates a perspective view of a refrigerator 101 having a general dispenser 120 mounted thereto, wherein the dispenser 120 is provided with a water cleaning filter 121 for filtering water from a water source W, a water tank 123 for temporary storage of the water filtered thus, a water supply valve 125 for selective discharge of the water from the water tank 123 through a nozzle 127, and an operation lever 128 for operating the water supply valve 125. In general, the nozzle 127 and the operation lever 128 are exposed to an outside of the door 110. When the operation lever 128 is pressed, the water supply valve 125 is opened, to supply and dispense the water from the water tank 123 to the nozzle 127, and when the operation lever 128 is moved to an original position, the water supply valve 125 is closed, to stop the supply of the water.
  • By means of above configuration, the dispenser 120 is operated such that, if a user presses the operation lever 128 exposed to the outside of the door 110 with a cup (not shown) or the like to open the water supply valve 125, the water is discharged from the nozzle 127, and if the operation lever 128 is moved to an original position, the water supply valve 125 is closed, to stop the discharge of the water.
  • Thus, the dispenser 120 dispenses or stops dispensing of the water depending on opening/closing of the water supply valve 125. If the user removes the cup pressing the cup from the operation lever 128, the water supply valve 125 is closed. However, the water supply valve 125 is mounted to a pipeline between the water tank 123 and the nozzle 127, wherein a distance between the water supply valve 125 to the nozzle 127 is substantially long, and the water presents in the pipeline therebetween. Therefore, even if the water supply valve 125 is closed, a portion of the water present in the pipeline between the water supply valve 125 and the nozzle 127 (hereafter called as residual water) drops down from the nozzle 127 by inertia or gravity.
  • In order to solve this problem, a tray T is mounted under the nozzle 127 for receiving the residual water from the dispenser 120. If a predetermined amount of the residual water is filled in the tray, the tray T is detached from the door 110, and the residual water is emptied, and then, the tray T is mounted to the door 110 for receiving the residual water again.
  • However, there have been, not only inconvenience of the user to empty the tray T repeatedly for removing the residual water from the dispenser 120, but also difficulty of disposing the residual water from a refrigerator having the dispenser 120 buried in the door 110 such that the dispenser 120 can be pushed in or pulled out and placed in the door 110, in which the residual water drops to an inside of the door 110.
  • DISCLOSURE OF INVENTION Technical Problem
  • To solve the problems, an object of the present invention is to provide a refrigerator which can prevent residual water from being dropped from a nozzle of a dispenser.
  • Another object of the present invention is to provide a refrigerator which can dispense with the tray which receives residual water.
  • Technical Solution
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a refrigerator includes a dispenser mounted to a door, a nozzle mounted to the dispenser for discharging water to an outside of the dispenser, and a residual water preventive unit mounted close to the nozzle for preventing residual water from dropping.
  • Preferably, the residual water preventive unit is a check valve.
  • Preferably, the check valve includes a plate for opening/closing a pipe passage in the check valve selectively, and a spring for pressing the plate in one direction.
  • Preferably, the nozzle has a small inside diameter enough to prevent the water in the pipeline from an underside of the plate to the nozzle from dropping owing to the elastic force of the spring and a surface tension of the water.
  • Preferably, the inside diameter of the nozzle is below ¼ inches.
  • Preferably, the dispenser includes a water supply valve for controlling water supply to the nozzle.
  • Preferably, the residual water preventive unit closes the nozzle if a water pressure drops below a predetermined pressure, and opens the nozzle if the water pressure rises above the predetermined pressure.
  • Preferably, the dispenser is mounted to the door such that the dispenser can be pushed into the door or pulled out of the door.
  • The dispenser may further include a chute mounted to the dispenser such that the chute is exposed to the outside of the door, or pushed in or pulled out of the door.
  • The dispenser further includes a tray removably mounted under the nozzle.
  • In another aspect of the present invention, a refrigerator include a dispenser mounted to a door, a nozzle mounted to the dispenser for discharging water to an outside of the dispenser, a check valve mounted close to an end of the nozzle for closing the nozzle if a water pressure drops below a predetermined pressure, and opening the nozzle if the water pressure rises above the predetermined pressure for preventing residual water from dropping, and a water supply valve for controlling water supply to the nozzle to make the check valve to be opened/closed, selectively.
  • ADVANTAGEOUS EFFECTS
  • The present invention has following advantageous effects.
  • First, the residual water preventive unit mounted close to the nozzle of the dispenser permits to suppress formation of the residual water at the dispenser, since the residual water preventive unit can stop discharge of the water at the same time with a moment the lever returns to an original position.
  • Second, since the water remained in the nozzle at the time discharge of the water stops can be made to move to an upper side of the nozzle, suppressing formation of the residual water, the tray may not be provided for receiving the remained water dropping from the nozzle of the dispenser. However, if the tray is mounted to the dispenser, a better convenience can be provided, as the water discharged from the nozzle can be received in a case the lever is pressed without placing the cup under the level, and the user may empty a small amount of water in the cup to the tray.
  • Third, by designing the inside diameter of the nozzle of the dispenser and the elastic force of the spring appropriately, possible drop of the residual water from the nozzle can be prevented even in a case an external impact is applied to the dispenser.
  • Fourth, the mounting of the water tank in an inside of the door without being exposed to an outside of the refrigerator permits to dispense cold water from the nozzle of a temperature of the cold air in the refrigerator without being influenced from heat of external air.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The accompanying drawings, which are included to provide further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate embodiments of the disclosure and together with the description serve to explain the principle of the disclosure.
  • In the drawings:
  • FIG. 1 illustrates a perspective view of a refrigerator having a dispenser mounted thereto;
  • FIG. 2 illustrates a perspective view of a dispenser in a refrigerator in accordance with a preferred embodiment of the present invention, schematically;
  • FIGS. 3 and 4 illustrate sections each showing operation of the check valve in FIG. 2, respectively;
  • FIG. 5 illustrates a perspective view of key parts of FIG. 2;
  • FIG. 6 illustrates a perspective view of key parts of the refrigerator in accordance with a first preferred embodiment of the present invention;
  • FIG. 7 illustrates a perspective view of key parts of the refrigerator in accordance with a second preferred embodiment of the present invention; and
  • FIG. 8 illustrates a perspective view of key parts of the refrigerator in accordance with a third preferred embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Reference will now be made in detail to the specific embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • Referring to FIG. 2, the refrigerator 1 includes a refrigerator body 3 having a storage space therein, doors 5, 6 and 7 for opening/closing the refrigerator body 3, a dispenser 10 mounted to the door 5 having a nozzle for discharging water, and a residual water preventive unit 20 mounted to the nozzle 17 for preventing the residual water from dropping.
  • The storage space in the refrigerator body 3 may be divided into refrigerating chambers and a freezing chamber, and the three doors 5, 6 and 7 may be mounted to the refrigerator body 3 for opening/closing respective spaces.
  • The dispenser 10 may be mounted to one of the three doors 5, 6 and 7, and in the refrigerator of the present invention, the dispenser 10 is mounted such that the nozzle 17 which discharges the water is mounted to the left door 5.
  • In more detail, the dispenser 10 includes a first water supply valve 11 for controlling water supply from a water supply source W, a cleaning filer 12 for cleaning the water passed through the first water supply valve 11, a second water supply valve 13 for controlling water supply from the cleaning filter 12 to an ice maker 15 or a water tank 16, the ice maker 15 for receiving the water passed through the second water supply valve 13 for making ice, the water tank 16 for storing the water passed through the second water supply valve 13, and a nozzle 17 for discharging the water from the water tank 16 to an outside of the dispenser 10. One pipeline connects above components from the water supply source W to the nozzle 17.
  • If the second water supply valve 13 is opened, the water can be supplied to and discharged from the nozzle 17, and if the second water supply valve 13 is closed, the water supply is stopped at the same time with the closure of the second water supply valve 13, preventing the water from discharging through the nozzle 17.
  • Different from the dispenser 120 in FIG. 1 which is only provided with the nozzle 127 for supplying the water, since the dispenser 10 in FIG. 2 includes, not only the nozzle 17, but also the ice maker 15, the second water supply valve 13 is included for distributing the water both to the ice maker 15 and the nozzle 17. Moreover, different from the water tank 123 in FIG. 1, since the water tank 16 in FIG. 2 is mounted to an inside of the door 5, the water tank 16 in FIG. 2 is not exposed to external air which is at a relatively high temperature.
  • In the meantime, the residual water preventive unit 20 is secured to the nozzle 17 for selective opening/closing of the nozzle 17, thereby preventing the residual water from dropping. That is, the discharge of the water from the nozzle 17 to the outside of the dispenser 10 is controlled by opening/closing the second water supply valve 13, wherein, by making the residual water preventive unit 20 to stop the discharge of the water from the nozzle 17 instantly if the second water supply valve 13 is closed, a problem can be solved, in which the water (hereafter residual water) remained in the pipeline close to the nozzle 17 drops down.
  • It is preferable that the residual water preventive unit 20 is a check valve 20 secured close to the nozzle 17. FIGS. 3 and 4 illustrate sections each showing operation of the check valve in FIG. 2 respectively. An operation principle of the check valve will be described with reference to FIGS. 3 and 4.
  • The check valve lets fluid to flow only in one direction, for preventing the fluid from flowing in a reverse direction.
  • For an example, referring to FIG. 3, the check valve includes a plate P movable in a fluid, i.e., the water, flow direction such that the plate P closes/opens a pipe passage L in the check valve selectively, and a spring S which presses the plate P. In order to make the fluid to flow from an upper side of the pipe passage L to a lower side of the pipe passage L as shown with an arrow, the fluid is required to have a level of pressure for the plate P to open the pipe passage L.
  • It is required that the level of pressure of the fluid is higher than force the spring S presses the plate P. Thus, the fluid of the level of pressure moves the plate P downward as the fluid flows through the pipe passage L, and the plate P compresses the spring S to open the pipe passage L. According to this, while keeping the pipe passage L open, the fluid flows from the upper side to the lower side as shown with the arrows.
  • Referring to FIG. 4, if the pressure of the fluid passing through the pipe passage L drops, the spring S compressed thus returns to an original position, to return the plate P which keeps the pipe passage L open to an initial position, at which the pipe passage L is closed.
  • At the time the spring S and the plate P return to the initial position, a restoring force of the spring S and the plate P opposite to the flow direction of the fluid acts on a center of the pipe passage L. According to this, till the pipe passage L is closed to stop the water flow, a flow of the fluid in a direction opposite to the initial flow direction of the fluid takes place in the pipe passage L for a short time period.
  • In this instance, the fluid remained on the lower side of the pipe passage L turns the flow direction to flow to upward. That is, since the remained water on the lower side of the pipe passage L moves to the center of the pipe passage L, the remained water is not discharged to an outside of the check valve.
  • In the meantime, referring to FIG. 5, the check valve 20 is mounted close to the nozzle 17. In more detail, of an A section between the second water supply valve 13 and the water tank 16 and B section between the water tank 16 and the nozzle 17, the check valve 20 is mounted close to the nozzle 17 even in the B section.
  • Since an amount of the water filled in the nozzle 17 which is a downstream side of the check valve becomes great if the nozzle 17 has an extensive length, the shorter the length of the nozzle, the better the performance of the system. This is because, as the amount of the water contained in the pipe from an underside of the check valve 20 to an end of the nozzle 17 becomes the smaller, if the length of the nozzle 17 becomes the shorter, the opposite direction flow of the fluid in the check valve 20 can control the remained water in the nozzle 17 under the check valve 20, more easily. Nevertheless, a short length of nozzle 17 itself is required, because the water being discharged from the check valve 20 directly may not be directed to a desired direction or sprayed widely at a large angle.
  • In this instance, it is preferable that the nozzle 17 has a small inside diameter enough to prevent the water in the pipeline from an underside of the plate to the nozzle from dropping owing to an elastic force of the spring and a surface tension of the water. In detail, it is preferable that the inside diameter of the nozzle 17 is below ¼ inches. If the inside diameter of the nozzle 17 is slightly greater than ¼ inches, though most of drop of the remained water from the nozzle can be prevented owing to the action of the residual water preventive unit, it has been noticed that a small amount of the remained water drops from the nozzle depending on cases when an impact is applied to the dispenser from an outside of the dispenser. However, if the inside diameter of the nozzle 17 is below ¼ inches, no remained water drops from the nozzle even if a certain extent of impact is applied to the dispenser from an outside of the dispenser. Because the smaller the inside diameter of the pipe passage, the greater the influence of the surface tension of the water to the remained water in the pipe passage, such that the remained water present under the plate P of the check valve 20 does not drop owing to action of the elastic force of the spring and the surface tension of the water. However, a supply rate of the water will be too slow, if the inside diameter of the nozzle 17 is too small, it is required that the inside diameter of the nozzle 17 has a certain extent of size.
  • In the meantime, if the second water supply valve 13 is opened for supplying the water to the nozzle 17, the water moves along the A section until the water is stored in the water tank 16, then, the water moves to the check valve 20 along the B section. As described before, if the water of a predetermined pressure flows into the check valve 20, the check valve 20 is opened. For an example, an opening pressure of the check valve 20 can be 2˜3 kgf/m2. The water passed through the opened check valve 20 thus is discharged through the nozzle 17, and filled in the cup (not shown) outside of the dispenser.
  • A time when the water supply stops will be a time point when the second water supply valve 13 is closed, making the water to move along the A section no more. A closing pressure of the check valve 20 is below 2 kgf/m2, and is preferably 0.2 kgf/m2.
  • If the pressure of the fluid passing through the check valve 20 drops thus, the spring S closes the check valve 20, letting no more flow toward the nozzle 17. As described before, at the time the check valve 20 is closed, a negative pressure takes place in the check valve 20, causing a flow opposite to the moving direction of the fluid. According to this, the water remained in the pipeline between the check valve 20 and the nozzle 17 turns a flow direction toward the check valve 20, preventing the remained water from discharging to the outside of the dispenser, i.e., downward, despite of the inertia or the gravity.
  • Embodiments of the present invention will be described in more detail.
  • FIG. 6 illustrates a perspective view of key parts of the refrigerator in accordance with a first preferred embodiment of the present invention.
  • Referring to FIG. 6, the refrigerator 1 has a dispenser 10 a mounted to have a recess S in the door 5. The dispenser 10 a includes a chute 19 for discharging water or ice to an outside of the refrigerator, with an operation lever 18 on one side of the chute 19 for operating the chute 19. As shown with dashed lines, the nozzle 17 is exposed to an outside of the door 5 through the chute 19 for discharging the water. In this instance, as the residual water preventive unit 20, the check valve 20 described before is mounted close to the nozzle 17.
  • If the lever 18 is pressed by the cup (not shown) or the like, the dispenser 10 a dispenses the water or ice through the chute 19. In this instance, the nozzle 17 discharges the water as the check valve 20 is opened.
  • Opposite to this, if the cup or the like is moved away from the lever 18 pressed thus, the check valve 20 is closed, making the water remained in the pipeline from the underside of the check valve 20 to the end of the nozzle to turn a flow direction toward the check valve 20, thereby preventing the remained water in the nozzle 17 from discharging to an outside of the dispenser.
  • In the meantime, a tray T may be mounted under the end of the nozzle 17 for receiving the remained water from the dispenser 10 a. The tray T serves to receive residue of the water or ice from the dispenser 10 a. Since when the lever 18 pressed returns to an original position, no remained water drops by the residual water preventive unit, thus the tray T is not necessarily required. However, since the tray T can receive the water from the nozzle 17 in a case the cup is placed at a wrong position in a state the user presses the lever 18, or a small amount of the water received from the nozzle 17 can be emptied to the tray T, the tray T can provide convenience to the user, still.
  • If the tray T is filled with the water to a predetermined amount, the water is disposed by removing the tray T from the door 5, emptying the remained water, and mounting the tray T to the door 5 again.
  • As described before, even if a small amount of water drops to the tray T, a number to times of emptying the tray T will be reduced less than the related art.
  • FIG. 7 illustrates a perspective view of key parts of the refrigerator in accordance with a second preferred embodiment of the present invention.
  • Referring to FIG. 7, the dispenser 10 b is mounted rotatable in front/rear directions round a pivot shaft (not shown) on an upper side of left/right sides of a front cover plate such that the dispenser 10 b can be pulled out of the door 5, or pushed into the door 5. That is, the dispenser 10 b may position the chute 19 which dispenses the water or ice and the nozzle 17 mounted to the chute 19 either to an outside or inside of the door 5, selectively. At the end of the nozzle 17, the check valve 20 is secured as the residual water preventive unit.
  • The second embodiment is different from the first embodiment in that the dispenser 10 b is mounted to be pulled out of the door 5, or pushed into the door 5, and, according to this, the chute 19 and the nozzle 17 are also mounted movable in the front/rear directions together with the dispenser 10 b. FIG. 7 shows no tray T in the first embodiment.
  • Of course, the chute 19 may have a lever (not shown) on one side for operating the chute 19 to discharge the water or ice, or the chute may be operated with a sensor (not shown) which can sense the cup for discharging the water or ice instead of the lever.
  • The cover plate which forms an exterior of the dispenser 10 b may have an operation button mounted thereto for dispensing the water or ice selectively, and a display for displaying a state of use.
  • In the meantime, in a refrigerator according to the prior art having the dispenser 10 b mounted to be pulled out of the door 5, or pushed into the door 5, it is foreseen that the residual water drops from the nozzle 17 to an outside or inside of the door 5, causing difficulty in disposing the residual water.
  • However, as the residual water preventive unit, the check valve 20 in the first embodiment may be used for achieving the effect described before in the second embodiment, too. Or, different from the first embodiment, the tray may not be mounted additionally. An unexplained reference number 3 denotes a refrigerator body.
  • FIG. 8 illustrates a perspective view of key parts of the refrigerator in accordance with a third preferred embodiment of the present invention.
  • Alike the second embodiment, the dispenser 10 c in the refrigerator 1 of the third embodiment is mounted rotatable in front/rear directions round a pivot shaft (not shown) on an upper side of left/right sides of a front cover plate such that the dispenser 10 c can be pulled out of the door 5, or pushed into the door 5. According to this, the dispenser 10 c may position the chute 19 which dispenses the water or ice and the nozzle 17 mounted to the chute 19 either to an outside or inside of the door 5 selectively, rotated in the front/rear directions together with the dispenser 10 b.
  • Alikely, the check valve 20 is secured close to the nozzle 17 as a residual water preventive unit.
  • Alike the second embodiment, since the residual water can drop from the nozzle 17 of the dispenser 10 c of the third embodiment though assumed small, a tray T is mounted for disposing the residual water. Different from the first embodiment, the tray T of the third embodiment may be mounted to be pulled out of a space 8 in the door 5, or pushed into the space 8 in the door 5 in front/rear directions.
  • Alike foregoing embodiments, in the third embodiment too, the check valve 20 may be used as the residual water preventive unit for preventing the residual water remained in the nozzle 17 from dropping to an inside or outside of the door 5.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (13)

1. A refrigerator comprising:
a dispenser mounted to a door;
a nozzle mounted to the dispenser for discharging water to an outside of the dispenser; and
a residual water preventive unit mounted close to the nozzle for preventing residual water from dropping.
2. The refrigerator as claimed in claim 1, wherein the residual water preventive unit is a check valve.
3. The refrigerator as claimed in claim 2, wherein the check valve includes;
a plate for opening/closing a pipe passage in the check valve selectively, and a spring for pressing the plate in one direction.
4. The refrigerator as claimed in claim 3, wherein the nozzle has a small inside diameter enough to prevent the water in the pipeline from an underside of the plate to the nozzle from dropping owing to the elastic force of the spring and a surface tension of the water.
5. The refrigerator as claimed in claim 4, wherein the inside diameter of the nozzle is below ¼ inches.
6. The refrigerator as claimed in claim 1, wherein the dispenser includes a water supply valve for controlling water supply to the nozzle.
7. The refrigerator as claimed in claim 1, wherein the residual water preventive unit closes the nozzle if a water pressure drops below a predetermined pressure, and opens the nozzle if the water pressure rises above the predetermined pressure.
8. The refrigerator as claimed in claim 1, wherein the dispenser is mounted to the door such that the dispenser can be pushed into the door or pulled out of the door.
9. The refrigerator as claimed in claim 2, wherein the dispenser further includes a chute mounted to the dispenser such that the chute is exposed to the outside of the door.
10. The refrigerator as claimed in claim 9, wherein the dispenser further includes a tray removably mounted under the nozzle.
11. The refrigerator as claimed in claim 1, wherein the dispenser further includes a chute mounted to the dispenser such that the chute is pushed in/pulled out of the door.
12. The refrigerator as claimed in claim 11, wherein the dispenser further includes a tray removably mounted under the nozzle.
13. A refrigerator comprising:
a dispenser mounted to a door;
a nozzle mounted to the dispenser for discharging water to an outside of the dispenser;
a check valve mounted close to an end of the nozzle for closing the nozzle if a water pressure drops below a predetermined pressure, and opening the nozzle if the water pressure rises above the predetermined pressure for preventing residual water from dropping; and
a water supply valve for controlling water supply to the nozzle to make the check valve to be opened/closed, selectively.
US12/937,195 2008-06-24 2009-03-30 Check valve for a refrigerator Abandoned US20110030412A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020080059661A KR100984302B1 (en) 2008-06-24 2008-06-24 Refrigerator
KR10-2008-0059661 2008-06-24
PCT/KR2009/001592 WO2009157644A2 (en) 2008-06-24 2009-03-30 Refrigerator

Publications (1)

Publication Number Publication Date
US20110030412A1 true US20110030412A1 (en) 2011-02-10

Family

ID=41445063

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/937,195 Abandoned US20110030412A1 (en) 2008-06-24 2009-03-30 Check valve for a refrigerator

Country Status (3)

Country Link
US (1) US20110030412A1 (en)
KR (1) KR100984302B1 (en)
WO (1) WO2009157644A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130047656A1 (en) * 2011-08-23 2013-02-28 Samsung Electronics Co., Ltd. Refrigerator
US20130309361A1 (en) * 2012-05-17 2013-11-21 Samsung Electronics Co., Ltd. Refrigerator haiving apparatus to produce carbonated water
US20140000303A1 (en) * 2012-06-27 2014-01-02 Samsung Electronics Co., Ltd. Refrigerator
US9103583B2 (en) 2010-03-19 2015-08-11 BSH Hausgeräte GmbH Apparatus and system for cleaning a water line
EP3273192A1 (en) * 2016-07-19 2018-01-24 Samsung Electronics Co., Ltd. Valve assembly and refrigerator having the same
CN110916504A (en) * 2019-12-09 2020-03-27 温州咖邑贸易有限公司 A water dispenser for office space antidrip
US20210071944A1 (en) * 2018-12-10 2021-03-11 Midea Group Co., Ltd. Refrigerator with variable fluid dispenser
CN113171582A (en) * 2021-04-26 2021-07-27 福建闽山消防有限公司 Water-saving type tail end fire fighting system and fire fighting method thereof
US11274869B2 (en) * 2015-08-31 2022-03-15 Lg Electronics Inc. Refrigerator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009664B1 (en) * 2013-02-28 2019-08-12 삼성전자주식회사 Cooling apparatus and controlling method thereof
KR102218018B1 (en) * 2014-04-21 2021-02-19 엘지전자 주식회사 Refrigerator
KR102217018B1 (en) * 2014-10-01 2021-02-19 삼성전자주식회사 Refrigerating apparatus and control method thereof
CN105115234A (en) * 2015-07-31 2015-12-02 惠而浦(中国)股份有限公司 Humidification device for refrigerator and refrigerator with humidification device
EP3619486A1 (en) 2017-05-03 2020-03-11 Arçelik Anonim Sirketi Water dispensing unit for refrigerator having a self-locking nozzle valve
WO2021256783A1 (en) * 2020-06-17 2021-12-23 Samsung Electronics Co., Ltd. Refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205585A1 (en) * 2002-05-03 2003-11-06 Mitchell Alan Joseph Anti run-on device for refrigerator water dispenser
US7210601B2 (en) * 2004-06-04 2007-05-01 Whirlpool Corporation Variable flow water dispenser for refrigerator freezers
US20070157638A1 (en) * 2006-01-09 2007-07-12 Maytag Corp. Control for a refrigerator door dispenser light
US7316121B2 (en) * 2003-09-17 2008-01-08 Lg Electronics Inc. Dispenser of icemaker in refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455085B2 (en) * 2004-06-04 2008-11-25 Whirlpool Corporation Water dispenser for refrigerator freezers
JP2006071191A (en) 2004-09-02 2006-03-16 Hoshizaki Electric Co Ltd Water chiller
DE102005057163A1 (en) * 2005-11-30 2007-05-31 BSH Bosch und Siemens Hausgeräte GmbH Method for preventing the accumulation of water drops at the outlet nozzle of a refrigerator chilled water dispenser has a self sealing valve
DE102006002445A1 (en) * 2006-01-18 2007-07-19 Re-Flex S.R.L., Tradate Refrigerator liquid tank
KR100797481B1 (en) * 2007-01-18 2008-01-24 엘지전자 주식회사 Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205585A1 (en) * 2002-05-03 2003-11-06 Mitchell Alan Joseph Anti run-on device for refrigerator water dispenser
US7316121B2 (en) * 2003-09-17 2008-01-08 Lg Electronics Inc. Dispenser of icemaker in refrigerator
US7210601B2 (en) * 2004-06-04 2007-05-01 Whirlpool Corporation Variable flow water dispenser for refrigerator freezers
US20070157638A1 (en) * 2006-01-09 2007-07-12 Maytag Corp. Control for a refrigerator door dispenser light

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103583B2 (en) 2010-03-19 2015-08-11 BSH Hausgeräte GmbH Apparatus and system for cleaning a water line
US20130047656A1 (en) * 2011-08-23 2013-02-28 Samsung Electronics Co., Ltd. Refrigerator
US9328954B2 (en) * 2011-08-23 2016-05-03 Samsung Electronics Co., Ltd. Refrigerator with a covering member on an outer case for guiding a water supply pipe
US9789449B2 (en) * 2012-05-17 2017-10-17 Samsung Electronics Co., Ltd. Refrigerator having apparatus to produce carbonated water
US20130309361A1 (en) * 2012-05-17 2013-11-21 Samsung Electronics Co., Ltd. Refrigerator haiving apparatus to produce carbonated water
US20140000303A1 (en) * 2012-06-27 2014-01-02 Samsung Electronics Co., Ltd. Refrigerator
US9791198B2 (en) * 2012-06-27 2017-10-17 Samsung Electronics Co., Ltd. Refrigerator
US11274869B2 (en) * 2015-08-31 2022-03-15 Lg Electronics Inc. Refrigerator
EP3273192A1 (en) * 2016-07-19 2018-01-24 Samsung Electronics Co., Ltd. Valve assembly and refrigerator having the same
US10551112B2 (en) 2016-07-19 2020-02-04 Samsung Electronics Co., Ltd. Valve assembly and refrigerator having the same
US11131499B2 (en) 2016-07-19 2021-09-28 Samsung Electronics Co., Ltd. Valve assembly and refrigerator having the same
US20210071944A1 (en) * 2018-12-10 2021-03-11 Midea Group Co., Ltd. Refrigerator with variable fluid dispenser
US11971212B2 (en) * 2018-12-10 2024-04-30 Midea Group Co., Ltd. Refrigerator with variable fluid dispenser
CN110916504A (en) * 2019-12-09 2020-03-27 温州咖邑贸易有限公司 A water dispenser for office space antidrip
CN113171582A (en) * 2021-04-26 2021-07-27 福建闽山消防有限公司 Water-saving type tail end fire fighting system and fire fighting method thereof

Also Published As

Publication number Publication date
WO2009157644A2 (en) 2009-12-30
KR100984302B1 (en) 2010-09-30
WO2009157644A3 (en) 2010-09-30
KR20100000237A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
US20110030412A1 (en) Check valve for a refrigerator
US7210601B2 (en) Variable flow water dispenser for refrigerator freezers
US4227383A (en) Refrigerator including through-the-door ice service
CA1063564A (en) Refrigerator ice door mechanism
US8011537B2 (en) Dispensing system and method for dispensing fluid in an appliance
US20070251261A1 (en) Hot water supplying refrigerator and control method thereof
US20080196422A1 (en) Refrigerator and method of controlling the same
EP2743622A2 (en) Refrigerator
US8061157B2 (en) Refrigerator
US20090301126A1 (en) Refrigerator
KR20110032167A (en) Water tank for dispenser and refrigerator having the same
US8141747B2 (en) Dispenser related technology
EP2024697B1 (en) Refrigerator
KR101474013B1 (en) Water supply unit of Refrigerator
EP2496899B1 (en) Refrigerator and water tank for refrigerator
EP2065660A2 (en) Method and device for producing ice droplets on demand
KR100246430B1 (en) Pipe laying structure for dispenser relation skill of composition refrigerator
KR20000050416A (en) Apparatus for previnting pipe freezing in refrigerator
KR20080000127A (en) A refrigerator
KR20180129093A (en) Water supply unit, ice maker and refrigerator including the same
KR102127173B1 (en) Water supply device for ice maker of refrigerator
JPH10153366A (en) Water supply device for refrigerator
CN112050511A (en) Ice discharging device and refrigerator with same
JP2003287366A (en) Refrigerator
KR20070042021A (en) Refrigerator and controlling method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, JU HYUN;REEL/FRAME:025127/0442

Effective date: 20101008

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION