US20110011013A1 - Floor-panel and floor-panel assemblies - Google Patents

Floor-panel and floor-panel assemblies Download PDF

Info

Publication number
US20110011013A1
US20110011013A1 US12/711,764 US71176410A US2011011013A1 US 20110011013 A1 US20110011013 A1 US 20110011013A1 US 71176410 A US71176410 A US 71176410A US 2011011013 A1 US2011011013 A1 US 2011011013A1
Authority
US
United States
Prior art keywords
face
floor
sliding
floor panel
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/711,764
Inventor
Mitsuo KANAZAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Manufacturing Co Ltd
Original Assignee
Kanazawa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Manufacturing Co Ltd filed Critical Kanazawa Manufacturing Co Ltd
Assigned to KANAZAWA SEISAKUSHO CO., LTD. reassignment KANAZAWA SEISAKUSHO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANAZAWA, MITSUO
Publication of US20110011013A1 publication Critical patent/US20110011013A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/22Resiliently-mounted floors, e.g. sprung floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/22Resiliently-mounted floors, e.g. sprung floors
    • E04F15/225Shock absorber members therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/04Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire
    • E04F2290/044Specially adapted covering, lining or flooring elements not otherwise provided for for insulation or surface protection, e.g. against noise, impact or fire against impact

Definitions

  • the present invention relates to a floor panel and a floor panel assembly using the floor panel.
  • Some known conventional seismic isolation systems involve interposing a member capable of sliding or rolling, under a supported building, or under articles on a floor.
  • Japanese Patent Application Laid-open No. 2007-24123 discloses a base isolation plate wherein a spherical holding fitting, in which a base isolation spherical body is rotatably mounted, with the lower end thereof exposed, is fixed to the center of the lower face of an upper side base for forming a base isolation plane; a base isolation control basic structure, for affording a base isolation effect, is formed in such a manner that the lower end of the base isolation spherical body comes rollably into contact with the center of a lower side base for forming a foundation plane disposed opposite the lower face side of the upper side base, the base isolation control basic structure being covered with a restoring cylindrical exterior formed of a shock-absorbing non-resilient rubber material; and wherein the upper end of the base isolation control basic structure is connected to the edge of the upper side base for forming a base isolation plane, and the lower end of the base isolation control basic structure is connected to the edge of the lower side base for forming a foundation plane, in such a manner so as to
  • Japanese Patent No. 3058364 discloses a leg structure of an electronic device, comprising a leg member protrudingly provided in an electronic device, and a pedestal on which the leg member is slidably supported, wherein the lower end of the leg member has formed thereon a spherical convex surface having a radius of curvature; and a bearing surface of the pedestal that is slidable on the convex portion comprises a central portion having a radius of curvature greater than the above radius of curvature; and an inclined mortar-shaped surface at the center of the central portion, the bottom face portion of the pedestal being formed to a smooth surface.
  • Japanese Utility Model Registration No. 3117029 discloses a seismic control system comprising an upper member fixed to an upper structure and having a concave spherical surface portion formed thereon, a lower member supported on a base member and having a concave spherical surface portion formed thereon, and a rigid rolling member interposed between the upper member and the lower member and having a vertically symmetrical convex spherical surface portion, wherein the rolling member comprises a metal ball and a holding member that rotatably holds the metal ball, the holding member being a hard rubber-like elastic member.
  • Japanese Patent Application Laid-open No. 2006-283959 discloses a seismic control system comprising an upper member fixed to an upper structure and having a concave curved surface portion formed on the inner face, a lower member supported on a base member and having a concave curved surface portion formed on the inner face, and a rolling member interposed between the upper member and the lower member and having a vertically symmetrical convex curved surface portion, wherein the rolling member is formed overall to a substantially disc shape and has a central portion formed as a curved surface and a peripheral portion having formed thereon a flat-plate face smoothly connected to the curved surface.
  • the amplitude of a quake's oscillation is sometimes amplified in a building such as a house, which results in a greater amplitude of the rocking imparted to the building itself.
  • the range over which the spherical body of the base isolation plate disclosed in Japanese Patent Application Laid-open No. 2007-24123 can roll, however, is narrow, and hence the base isolation plate is ineffectual against such large-amplitude rocking.
  • the connection portion between the leg member and the electronic device is structurally subjected to significant stress, and therefore breakage is likely to occur, in the vicinity of the connection portion, in case of large-amplitude rocking. This propensity to breakage during large-magnitude quakes was problematic.
  • the seismic control system disclosed in Japanese Utility Model Registration No. 3117029 and the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-283959 can cope with substantial rocking to a certain extent, but cannot prevent the upper member from becoming completely displaced from its position relative to the lower member.
  • the present invention provides the aspects (1) to (14) below.
  • a floor panel comprising
  • a sliding unit that comprises a floor unit member having a lower portion that can come into contact with a base member, and an upper portion supported on the lower portion; and a panel member having a structure fixing face that can be fixed to an upper structure, and an abutting face that abuts an upper face of the upper portion of the floor unit member, such that the abutting face is provided so as to be slidable on the upper face; and
  • an elastic insert member provided between a wall and a side face of the panel member of the sliding unit (floor panel of the first embodiment of the present invention).
  • a floor panel comprising
  • a floor unit member having a lower portion that can come into contact with a base member, and an upper portion supported on the lower portion and having a structure fixing face that can be fixed to an upper structure;
  • a floor panel assembly comprising
  • a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • a floor panel assembly comprising: a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • seismic isolation unit is configured such that
  • the upper member and the lower member each have projections that protrude inward from the peripheral edges thereof
  • a recess is formed in part or the entirety of the peripheral direction of the lateral portion of the sliding member
  • the projection at the peripheral edge of the upper member and the projection at the peripheral edge of the lower member can engage with the recess in the lateral portion of the sliding member.
  • the floor panel and floor panel assembly using the floor panel of the present invention afford a seismic isolation effect also against large-magnitude quakes.
  • FIG. 1 is a schematic perspective-view diagram illustrating an example of a floor panel of a first embodiment of the present invention
  • FIG. 2 is a schematic partial end-view diagram illustrating an example of the floor panel of the first embodiment of the present invention
  • FIG. 3 is a schematic partial end-view diagram illustrating another example of the floor panel of the first embodiment of the present invention.
  • FIG. 4 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the first embodiment of the present invention.
  • FIG. 5 is a schematic partial end-view diagram illustrating an example of a floor panel of a second embodiment of the present invention.
  • FIG. 6 is a schematic partial end-view diagram illustrating another example of the floor panel of the second embodiment of the present invention.
  • FIG. 7 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the second embodiment of the present invention.
  • FIG. 8 is a schematic partial end-view diagram illustrating various examples of the floor unit member used in the floor panel of the second embodiment of the present invention.
  • FIG. 9 is a schematic partial cross-sectional diagram illustrating an example of a seismic isolation unit used in a floor panel assembly of the first embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating an example of a combination of the seismic isolation unit in the floor panel assembly of the second embodiment of the present invention and the floor panel of the second embodiment of the present invention;
  • FIG. 11 is a schematic partial cross-sectional diagram of an example of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention in the case of very large amplitude;
  • FIG. 12 is a schematic partial plan-view diagram of an example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 13 is a schematic side-view diagram of an example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention
  • FIG. 14 is a schematic cross-sectional diagram of an example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 15 is a schematic plan-view diagram of another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 16 is a schematic side-view diagram of another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional diagram of another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 18 is a schematic partial cross-sectional diagram of an example of the seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention during rocking;
  • FIG. 19 is a schematic plan-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 20 is a schematic side-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 22 is a schematic plan-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 23 is a schematic side-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • FIG. 24 is a schematic cross-sectional diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • a floor panel of a first embodiment of the present invention will be explained first.
  • FIG. 1 is a schematic perspective-view diagram illustrating an example of a floor panel of the first embodiment of the present invention.
  • FIG. 2 is a schematic partial end-view diagram illustrating an example of the floor panel of the first embodiment of the present invention.
  • a floor panel 100 of the first embodiment of the present invention comprises
  • a sliding unit 4 which has a floor unit member 2 having a lower portion 21 that can come into contact with a base member 1 , and an upper portion 22 supported on the lower portion 21 ; and a panel member 3 having a structure fixing face 31 that can be fixed to an upper structure (not shown), and an abutting face 32 that abuts the upper face 23 of the upper portion 22 of the floor unit member 2 , such that the abutting face 32 is provided slidably on the upper face 23 ; and
  • the sliding unit 4 has the floor unit member 2 and the panel member 3 .
  • the floor unit member 2 has the lower portion 21 that can come into contact with the base member 1 , and the upper portion 22 supported on the lower portion 21 .
  • Examples of the base member 1 include, for instance, a floor or a foundation of a building.
  • the floor is not particularly limited, and may be, for instance, a concrete-finished floor, a wood-finished floor, as well as floors resulting from overlaying the foregoing with sheets such as seismic isolation sheets, sound proofing sheets or the like.
  • the form of the lower portion 21 comprises four legs shaped as substantially quadrangular prisms, such that the legs support four corners of the underside of the upper portion 22 , which is shaped substantially as a rectangular parallelepiped.
  • the shape, number, positions at which the upper portion is supported, and other features of the lower portion 21 are not particularly limited, so long as the lower portion can come into contact with the base member.
  • the shape of the lower portion may be, for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape.
  • the number of lower portions may be one, two or more for each upper portion.
  • the position of the lower portion at which the upper portion is supported may be at the ends or the interior of the lower portion, or at a combination of the foregoing.
  • the lower portion may have the same shape as the upper portion, and the lower portion and the upper portion may be integrated together forming a prism shape (for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape).
  • a prism shape for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape.
  • the lower portion 21 and the base member 1 may be fixed to each other.
  • the fixing method is not particularly limited, and may be, for instance, a known conventional method.
  • the upper portion 22 is supported on the lower portion 21 .
  • the upper portion 22 has the upper face 23 that abuts the abutting face 32 of the below-described panel member 3 .
  • the shape of the upper portion is not particularly limited, so long as it is supported on the lower portion 21 and has the upper face 23 .
  • the upper portion may be shaped as a plate.
  • the upper portion 22 may have a substantially square or rectangular shape.
  • a plurality of floor panels of the first embodiment of the present invention is disposed on the base member 1 , without gaps, since doing so is easier.
  • the material that makes up the floor unit member 2 is not particularly limited, so long as it allows sliding between the floor unit member 2 and the panel member 3 .
  • the material of the floor unit member 2 may be, for instance, a synthetic resin such as a PVC resin (for instance a hard PVC resin), a urethane resin, a polypropylene resin (for instance, recycled polypropylene resin) or the like; a wooden material such as cork; an inorganic material such as tiles, bricks, artificial stone or synthetic stone; or natural stone such as marble or granite.
  • the panel member 3 has the structure fixing face 31 that can be fixed to an upper structure (not shown), and the abutting face 32 that abuts the upper face 23 of the upper portion 22 of the floor unit member 2 .
  • the upper structure is not particularly limited, and may be, for instance, precision equipment (such as a computer server or a multifunction copier machine), a case for housing art objects, a book rack, a locker, an automatic vending machine or the like.
  • precision equipment such as a computer server or a multifunction copier machine
  • a case for housing art objects such as a book rack, a locker, an automatic vending machine or the like.
  • the structure fixing face 31 can be fixed to the upper structure.
  • the fixing method is not particularly limited, and may be, for instance, a known conventional method.
  • the abutting face 32 abuts the upper face 23 of the upper portion 22 of the above-described floor unit member 2 .
  • the abutting face 32 is provided so as to be slidable on the upper face 23 thanks to the embossing of the latter.
  • the shape of the panel member 3 is a parallelepiped (which can be regarded as a plate shape, on account of its low height).
  • the material that makes up the floor unit member 3 is not particularly limited, so long as it allows sliding between the floor unit member 2 and the panel member 3 .
  • the way in which the abutting face of the panel member is provided slidably on the upper face of the upper portion of the floor unit member is not particularly limited.
  • the abutting face may be rendered slidable on the upper face by embossing the upper face or the abutting face.
  • the abutting face may also be rendered slidable on the upper face by constructing the upper face and/or the abutting face using a sliding material.
  • the abutting face may also be made slidable on the upper face by providing holes in the upper face and/or the abutting face, to reduce thereby the contact surface area between both faces and lower the coefficient of friction of the faces.
  • the embossing method is not particularly limited, and may be, for instance, a known conventional method.
  • a specific method may involve, for instance, using an embossed mold during molding of a panel member and/or a floor unit member, or gluing an embossed sheet (which may be, for instance, a commercially available sheet) onto the panel member and/or the floor unit member.
  • FIG. 3 is a schematic partial end-view diagram illustrating another example of the floor panel of the first embodiment of the present invention.
  • the floor panel 200 illustrated in FIG. 3 is basically the same as the floor panel 100 .
  • An abutting face 32 a is provided slidably on an upper face 23 a by embossing the abutting face 32 a , the upper face 23 a being not embossed herein.
  • the method for constructing the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member may be, for instance, a method that involves constructing the entire upper portion of the floor unit member and/or the panel member using a sliding material, or a method that involves constructing the member that makes up the upper face of the upper portion of the floor unit member and/or the member that makes up the abutting face of the panel member using a sliding material that is different from the sliding material that makes up the member of the main body of the floor unit member and/or the panel member.
  • sliding material examples include, for instance, synthetic resin materials, wooden materials, inorganic materials and natural stone.
  • thermoplastic resins examples include, for instance, polyolefin resins such as polyethylene resins (for instance, high-density polyethylene resins, low-density polyethylene resins), polypropylene resins (for instance, recycled polypropylene resins), as well as olefinic copolymer resins; polystyrene resins and styrenic copolymer resins; PVC resins (for instance, hard PVC resins) and vinyl chloride copolymer resins; polyvinylidene chloride resins; polyurethane resins: polyester resins such as polyethylene terephthalate resins; polyamide resins; polycarbonate resins: (meth)acrylic resins; as well as thermoplastic elastomers.
  • polyolefin resins such as polyethylene resins (for instance, high-density polyethylene resins, low-density polyethylene resins), polypropylene resins (for instance, recycled polypropylene resins), as well as ole
  • Examples of wooden materials include, for instance, cork.
  • inorganic materials include, for instance, tiles, bricks, artificial stone and synthetic stone.
  • Examples of natural stone include, for instance, marble and granite.
  • thermoplastic resins and thermoplastic resins containing a compatibilizer and coal ash generated in pulverized coal fired boilers.
  • thermoplastic resin is not particularly limited.
  • a suitable example thereof is, for instance, a polypropylene resin.
  • the coal ash generated in pulverized coal fired boilers includes “fly ash”, collected at a dust collector, and derived from the combustion gas of pulverized coal fired boilers used in, for instance, coal fired power plants and/or the collected “clinker” that drops to the bottom of pulverized coal fired boilers.
  • coal ash is a fine powder containing components such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO or SO 3 .
  • the coal ash has preferably an average particle size of 10 to 30 ⁇ m.
  • the compatibilizer is an additive for causing the above coal ash to be uniformly dispersed in the thermoplastic resin.
  • the compatibilizer is not particularly limited, and may be, for instance, ADTEX ER320P, ER333F-2, ER353LA or ER313E-1, by Japan Polychem; Tuftec P2000 or H1043, by Asahi Kasei; or Modic P533A, P502, P565, P908A or H511L112A, by Mitsubishi Chemical.
  • thermoplastic resin 30 to 87 wt % coal ash generated in pulverized coal fired boilers 10 to 80 wt %, and compatibilizer 3 to 10 wt %.
  • the sliding material affords preferably a coefficient of friction between the upper face of the upper portion of the floor unit member and the abutting face of the panel member no greater than 0.5, more preferably no greater than 0.4, yet more preferably no greater than 0.3, even more preferably no greater than 0.2, still more preferably no greater than 0.1, and even yet more preferably no greater than 0.05.
  • a sliding material having on its own a coefficient of friction within the above ranges but also a sliding material having a coefficient of friction lying within the above ranges by being coated or through the use of a solid lubricant.
  • FIG. 4 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the first embodiment of the present invention.
  • the floor panel 300 illustrated in FIG. 4 is basically the same as the floor panel 100 .
  • the upper face 23 b has no embossing.
  • the upper face 23 b and an abutting face 32 b comprise a sliding material, as a result of which the abutting face 32 b is provided slidably on the upper face 23 b.
  • the floor unit member 2 is provided spaced apart from the wall 9 .
  • the floor unit member and the wall may be provided so as to be in contact with each other.
  • the elastic insert member 5 is provided between the wall 9 and the side face 33 of the panel member 3 of the sliding unit 4 .
  • the elastic insert member has the function of restoring the position of the panel member relative to the floor unit member back to the original position, upon displacement caused by a seismic tremor.
  • the elastic insert member used may be a known conventional member. Specific examples thereof include, for instance, foamed materials, rubber, springs (for instance, coil springs, wire springs and flat springs), suspensions, air cylinders, hydraulic cylinders or air suspensions.
  • the elastic insert member 5 is provided occupying all the space between the wall 9 and the side face 33 of the panel member 3 of the sliding unit 4 .
  • the floor panel of the first embodiment of the present invention is not limited thereto, and for instance, only part of the elastic insert member 5 need be provided between the wall 9 and the side face 33 .
  • the floor panel 100 further comprises a second elastic insert member 6 provided between the wall 9 and the side face 24 of the floor unit member 2 of the sliding unit 4 .
  • the second elastic insert member has the function of restoring the position of the panel member relative to the floor unit member back to the original position, upon displacement caused by a quake, when the floor unit member is not fixed to the base member.
  • a known conventional member can be used as the second elastic insert member. Specific examples thereof include, for instance, foamed materials, rubber, springs (for instance, coil springs, wire springs and flat springs), suspensions, air cylinders, hydraulic cylinders or air suspensions.
  • the compression modulus of the second elastic insert member 6 is different from the compression modulus of the elastic insert member 5 . This way, friction between the second elastic insert member 6 and the elastic insert member 5 allows absorbing some of the energy of a quake.
  • the method for causing the compression modulus of the second elastic insert member 6 to be different from the compression modulus of the elastic insert member 5 is not particularly limited.
  • the elastic insert members may use foamed materials of dissimilar expansion rate.
  • the second elastic insert member 6 is provided occupying all the space between the wall 9 and the side face 24 of the floor unit member 2 of the sliding unit 4 .
  • the floor panel of the first embodiment of the present invention is not limited thereto, and for instance, the second elastic insert member 6 may be provided just in some of the space between the wall 9 and the side face 24 .
  • the floor panel 100 illustrated in FIGS. 1 and 2 comprises one sliding unit 4 and one elastic insert member 5 .
  • the floor panel of the first embodiment of the present invention is not limited thereto.
  • the floor panel 100 may comprise a combination of one, two or more sliding units and one, two or more elastic insert members.
  • the base member is paved with a plurality of sliding units, and the floor panels have the elastic insert member provided only between the wall and the side faces of the panel members of the sliding units at the edges.
  • the position of the panel member 3 relative to the floor unit member 2 is offset when the floor panel 100 of the first embodiment of the present invention is acted upon by rocking from a quake or the like (in FIG. 2 , for instance, the panel member 3 is displaced to the right). Displacement of the panel member 3 causes the elastic insert member 5 to be compressed, whereby the energy of the quake is absorbed. As a result, the upper structure is effectively prevented from toppling or the like.
  • the compressed elastic insert member 5 exerts then a restoring force that pushes the panel member 3 back (for instance, pushes the panel member 3 back to the left in FIG. 2 ). As a result, the position of the panel member 3 relative to the floor unit member 2 is restored, preferably to the original position.
  • the floor panel 100 of the first embodiment of the present invention can absorb thus quake energy, and allows restoring the position of the upper structure, preferably to its original position.
  • the floor panel 100 affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • a floor panel of the second embodiment of the present invention is explained next.
  • FIG. 5 is a schematic partial end-view diagram illustrating an example of the floor panel of the second embodiment of the present invention.
  • the floor panel 400 illustrated in FIG. 5 comprises
  • a floor unit member 7 having a lower portion 71 that can come into contact with a base member 1 , and an upper portion 72 , supported on the lower portion 71 , having a structure fixing face 75 that can be fixed to an upper structure (not shown);
  • the floor unit member 7 has the lower portion 71 that can come into contact with the base member 1 , and the upper portion 72 , supported on the lower portion 71 , and having a structure fixing face 75 that can be fixed to an upper structure.
  • the base member 1 is fundamentally the same as that of the floor panel of the first embodiment of the present invention, but herein, an upper face 11 can be slidable on the lower face 74 of the floor panel 400 , as described below.
  • the material that makes up the upper face 11 may be a synthetic resin, for instance a PVC resin (for instance, a hard PVC resin), a urethane resin, a polypropylene resin (for instance, recycled polypropylene resin) or the like; a wooden material such as cork; an inorganic material such as tiles, bricks, artificial stone or synthetic stone; or natural stone such as marble or granite.
  • a synthetic resin for instance a PVC resin (for instance, a hard PVC resin), a urethane resin, a polypropylene resin (for instance, recycled polypropylene resin) or the like
  • a wooden material such as cork
  • an inorganic material such as tiles, bricks, artificial stone or synthetic stone
  • natural stone such as marble or granite.
  • the lower portion 71 is shaped as a leg that supports the lower face of the upper portion 72 .
  • the shape, number, positions at which the upper portion is supported, and other features of the lower portion are not particularly limited, so long as the lower portion can come into contact with the base member.
  • the shape of the lower portion may be, for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism. a cylinder; or a prism of indefinite shape.
  • a polygonal prism such as a square prism (parallelepiped) or a triangular prism. a cylinder; or a prism of indefinite shape.
  • the number of lower portions may be one, two or more for each upper portion.
  • the position of the lower portion at which the upper portion is supported may be at the ends or the interior of the lower portion, or at a combination of the foregoing.
  • the lower portion may have the same shape as the upper portion, and the lower portion and the upper portion may be integrated together forming a prism shape (for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape).
  • a prism shape for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape.
  • the lower face 74 of the lower portion 71 comes into contact with the upper face 11 of the base member 1 .
  • the lower face 74 is embossed, and is thereby provided so as to be slidable on the upper face 11 of the base member 1 .
  • the upper portion 72 is supported on the lower portion 71 and has a structure fixing face 75 that can be fixed to an upper structure.
  • the upper structure may be the same as that of the floor panel of the first embodiment of the present invention.
  • the structure fixing face 75 can be fixed to the upper structure.
  • the fixing method is not particularly limited, and may be, for instance, a known conventional method.
  • the shape of the upper portion is not particularly limited, so long as it is supported on the lower portion 71 and has the structure fixing face 75 that can be fixed to the upper structure.
  • the upper portion may be shaped as a plate.
  • the upper portion 22 may be a substantially square or rectangular shape.
  • a plurality of floor panels of the second embodiment of the present invention is disposed on the base member 1 , without gaps, since doing so is easier.
  • the material that makes up the floor unit member 7 is not particularly limited, so long as the lower face 74 of the lower portion 71 that comes into contact with the base member 1 can slide on the upper face 11 of the base member 1 that comes into contact with the lower face 74 .
  • the lower face 74 of the lower portion 71 that comes into contact with the base member 1 can slide on the upper face 11 of the base member 1 that comes into contact with the lower face 74 .
  • the method for causing the lower face of the floor unit member to be slidable over the upper face of the base member is not particularly limited in the second embodiment of the present invention.
  • the lower face of the floor unit member may be embossed, to be slidable thereby on the upper face of the base member.
  • the lower face may be formed from a sliding material, to become thereby slidable on the upper face of the base member.
  • the embossing method is not particularly limited, and may be, for instance, a known conventional method. Specifically, the embossing method may be the same as that of the floor panel of the above-described first embodiment of the present invention.
  • the method for constructing the lower face of the lower portion of the floor unit member using a sliding material may be, for instance, a method wherein the entire lower portion of the floor unit member is formed from a sliding material, or a method wherein the member that constitutes the lower face of the lower portion of the floor unit member is formed from a sliding material that renders the member different from the member that makes up the main body of the floor unit member.
  • FIG. 6 is a schematic partial end-view diagram illustrating another example of the floor panel of the second embodiment of the present invention.
  • the floor panel 500 illustrated in FIG. 6 is basically the same as the floor panel 400 .
  • a lower face 74 a has no embossing.
  • the entire floor unit member 7 including the lower face 74 a , is formed from a sliding material, as a result of which the lower face 74 a is provided slidably on the upper face 11 of the base member 1 .
  • the sliding material is not particularly limited, and may be, for instance, the sliding material used in the floor unit member of the floor panel of the first embodiment of the present invention.
  • the sliding material affords a coefficient of friction between the lower face 74 of the lower portion 71 and the upper face 11 of the base member 1 preferably no greater than 0.5, more preferably no greater than 0.4, yet more preferably no greater than 0.3, even more preferably no greater than 0.2, still more preferably no greater than 0.1, and even yet more preferably no greater than 0.05.
  • a sliding material having on its own a coefficient of friction within the above ranges but also a sliding material having a coefficient of friction lying within the above ranges by being coated or through the use of a solid lubricant.
  • FIG. 7 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the second embodiment of the present invention.
  • the floor panel 600 illustrated in FIG. 7 is basically the same as the floor panel 400 .
  • a lower face 74 b has no embossing.
  • a member that constitutes the lower face 74 b comprises sliding members 76 , 77 separate from the member that makes up the main body of the floor unit member 7 .
  • the lower face 74 b is provided thereby slidably on the upper face 11 of the base member 1 .
  • the floor panel 600 has sliding members 76 , 77 provided at the lower end of the lower portion 71 a of the floor unit member 7 (at two sites in the figure).
  • the undersides of the sliding members 76 , 77 constitute the lower face 74 b that comes into contact with the upper face 11 of the base member 1 .
  • the sliding member 76 is provided embedded in the lower end of the lower portion 71 . In this case, just a little sliding material need be used in the sliding member 76 . The adherence between the lower portion 71 and the sliding member 76 is also excellent, which is a further advantage.
  • the sliding member 77 is provided covering the lower end of the lower portion 71 . This is advantageous in that sliding between the floor unit member 7 and the base member 1 becomes highly stable thereby, while adhesion between the lower portion 71 and the lower base 77 is likewise excellent.
  • the method for providing the sliding member is not particularly limited, and may be, for instance, a known conventional method.
  • FIG. 8 is a schematic partial end-view diagram illustrating various examples of the floor unit member used in the floor panel of the second embodiment of the present invention.
  • an entire floor unit member 7 c including a lower face 74 c is formed from a sliding material, as a result of which the lower face 74 c is provided slidably on the upper face 11 of the base member 1 .
  • a member that constitutes a lower face 74 d comprises a sliding member 77 separate from the member that makes up the main body of the floor unit member 7 d .
  • the lower face 74 d is provided thereby slidably on the upper face 11 of the base member 1 .
  • the sliding member 77 is the same as the sliding member 77 used in the floor panel 600 .
  • the elastic insert member 8 is provided between the wall 9 and the side face 73 of the floor unit member 7 .
  • the material that makes up the elastic insert member 8 is the same as the material used in the floor panel of the first embodiment of the present invention.
  • the elastic insert member may be provided occupying the entire gap between the wall and the floor unit member, or occupying only part of the gap.
  • the floor panel 400 illustrated in FIG. 5 comprises one floor unit member 7 and one elastic insert member 8 described above.
  • the floor panel of the second embodiment of the present invention is not limited thereto, and may comprise a combination of one, two or more floor unit members and one, two or more elastic insert members.
  • the base member is paved with a plurality of floor unit members, and the floor panels have the elastic insert member provided only between the wall and the side faces of the floor unit members at the edges.
  • the position of the panel member 7 relative to the floor unit member 1 is offset when the floor panel 400 of the second embodiment of the present invention is acted upon by rocking from a quake or the like (in FIG. 5 , for instance, the panel member 7 is displaced to the right). Displacement of the floor unit member 7 causes the elastic insert member 8 to be compressed, whereby the energy of the quake is absorbed. As a result, the upper structure is effectively prevented from toppling or the like.
  • the compressed elastic insert member 8 exerts then a restoring force that pushes the floor unit member 7 back (for instance, pushes the panel member 7 back to the left in FIG. 5 ). As a result, the position of the floor unit member 7 relative to the base member 1 is restored, preferably to the original position.
  • the floor panel 400 of the second embodiment of the present invention can absorb thus quake energy, and allows restoring the position of the upper structure, preferably to its original position.
  • the floor panel 400 affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • the present invention there can be used a combination of the floor panel of the first embodiment of the present invention and the floor panel of the second embodiment of the present invention.
  • a floor panel assembly of the first embodiment of the present invention is explained next.
  • a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • FIG. 9 is a schematic partial cross-sectional diagram illustrating an example of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • a seismic isolation unit 700 comprises
  • an upper member 82 that can be fixed to an upper structure 1 ;
  • a sliding member 85 slidably sandwiched between the upper member 82 and the lower member 84 .
  • the upper structure 1 is the same as that of the floor panel of the first embodiment of the present invention.
  • the base member 3 is the same as that of the floor panel of the first embodiment of the present invention.
  • An abutting face 822 of the upper member 82 against the sliding member 85 , and an abutting face 842 of the lower member 84 against the sliding member 85 , are both concave surfaces.
  • the concave shape is not particularly limited, so long as the surface sinks overall from the peripheral edge towards a depression in the center.
  • the entire surface may be curved, or may be made up of, partly or entirely, one or more flat surfaces.
  • the shape of the concave abutting face 822 has a greater radius of curvature than the shape of a top face 851 of the sliding member 85 .
  • the sliding member 85 can slide more smoothly thereby.
  • the shape of the concave abutting face 842 has preferably a greater radius of curvature than the shape of a bottom face 853 of the sliding member 85 .
  • the plan-view shape of the upper member 82 and the lower member 84 is not particularly limited, although preferably, the shape is a circular (or substantially circular) shape or a polygonal shape (having preferably eight or more vertices).
  • the above plan-view shapes allow the performance of the upper and lower member against rocking to be brought out uniformly, in all directions.
  • the upper member 82 and the lower member 84 of the seismic isolation unit 700 have each projections 821 , 841 , respectively, that protrude inward from the peripheral edge of each member.
  • FIG. 11 is a schematic partial cross-sectional diagram of an example of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention in the case of very large quake magnitude.
  • the projections 821 , 841 become engaged with the recess 852 in the case of very large quake magnitude.
  • the seismic isolation unit 700 affords thus a significant seismic isolation effect.
  • the upper member and the lower member may have the projections formed along the entire peripheral edge, or formed only along part thereof. However, the projections should be able to engage with the recess of the lateral portion of the sliding member also when the projections are formed only in part of the peripheral edges.
  • the seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention is not limited to having projections on the upper member and the lower member, as described above.
  • the material of the upper member 82 and the lower member 84 is not particularly limited, and may be, for instance, metal, ceramics or plastic.
  • a metal is preferred in terms of durability, more preferably iron or an iron alloy, or an aluminum alloy, yet more preferably iron or an iron alloy.
  • Plastic is preferred on account of its light weight. Among plastics, plastic waste is preferred, as it is inexpensive.
  • the sliding member 85 is subjected beforehand to a coating treatment, or has a lubricant applied thereon, in order to smoothen thereby sliding of the sliding member 85 on the abutting face 822 of the upper member 82 , where the latter abuts the sliding member 85 , and on the abutting face 842 of the lower member 84 , where the latter abuts the sliding member 85 .
  • the sliding member 85 of the seismic isolation unit 700 is formed by the convex top face 851 that abuts the upper member 82 , the convex bottom face 853 that abuts the lower member 84 , and the peripheral lateral portion 855 between the top face 851 and the bottom face 853 .
  • FIGS. 12 to 14 are schematic diagrams illustrating the sliding member 85 .
  • FIG. 12 is a schematic plan-view diagram of an example of the sliding member.
  • FIG. 13 is a schematic side-view diagram of an example of the sliding member.
  • FIG. 14 is a schematic cross-sectional diagram of an example of the sliding member along line XIV-XIV in FIG. 12 .
  • both the convex top face 851 and bottom face 853 of the sliding member 85 have each formed thereon a curved-surface apex 850 . Twelve flat surfaces are formed around each apex 850 .
  • the top face 851 and the bottom face 853 of the sliding member 85 have each formed thereon an apex 850 shaped as a bowl-like curved surface, the peripheral edge of the apex 850 being circular.
  • the apexes 850 there are formed twelve flat surfaces of identical shape. These flat surfaces extend from the edge of each apex 850 up to a peripheral portion 854 of the top face 851 and the bottom face 853 .
  • FIGS. 15 to 17 are cross-sectional diagrams illustrating a sliding member 86 shaped differently from the sliding member 85 .
  • FIG. 15 is a schematic plan-view diagram of another example of the sliding member.
  • FIG. 16 is a schematic side-view diagram of another example of the sliding member.
  • FIG. 17 is a schematic cross-sectional diagram of another example of the sliding member along line XVII-XVII in FIG. 15 .
  • the sliding member 86 has a convex top face 861 abutting the upper member 82 ; a convex bottom face 863 abutting the lower member 84 ; and a peripheral lateral portion 865 between the top face 861 and the bottom face 863 .
  • the convex top face 861 and bottom face 863 of the sliding member 86 have each an apex 860 formed of twelve flat surfaces.
  • Around the apex 860 is formed of a plurality of flat surfaces more inclined relative to the horizontal direction than the flat surfaces of the apex 860 .
  • each apex 860 of the top face 861 and of the bottom face 863 of the sliding member 86 is formed by twelve flat surfaces of identical shape, so that the peripheral edge of the apex 860 forms a regular dodecagon.
  • the apex 860 there are formed twelve flat surfaces of identical shape. These flat surfaces extend from the edge of each apex 860 up to a peripheral portion 864 of the top face 861 and the bottom face 863 .
  • the sliding member 86 is formed by the top face 861 and the bottom face 863 , having the above-described shapes, and the peripheral lateral portion 865 , between the top face 861 and the bottom face 863 , with a recess 862 around the entire circumference of the lateral portion 865 .
  • FIGS. 19 to 21 are cross-sectional diagrams illustrating yet another sliding member 87 shaped differently from the sliding member 85 and the sliding member 86 .
  • FIG. 19 is a schematic plan-view diagram of yet another example of the sliding member.
  • FIG. 20 is a schematic side-view diagram of yet another example of the sliding member.
  • FIG. 21 is a schematic cross-sectional diagram of yet another example of the sliding member along line XXI-XXI in FIG. 19 .
  • both the convex top face 871 and bottom face 873 of the sliding member 87 have each formed thereon a curved-surface apex 870 .
  • the part extending from an apex 870 up to a circular peripheral portion 874 of each of the top face 871 and the bottom face 873 is formed by a bowl-shaped curved surface, and peripheral portion 874 forms a circle.
  • the degree of inclination of the curved surface relative to the horizontal direction increases from the apex 870 towards the peripheral portion 874 .
  • the shape of the curved surface is the same in the peripheral direction.
  • the sliding member 87 is formed by the top face 871 and the bottom face 873 having the above-described shapes, and a peripheral lateral portion 875 , between the top face 871 and the bottom face 873 , with a recess 872 around the entire circumference of the lateral portion 875 .
  • FIGS. 22 to 24 are cross-sectional diagrams illustrating yet another sliding member 88 shaped differently from the sliding member 85 , the sliding member 86 and the sliding member 87 .
  • FIG. 22 is a schematic plan-view diagram of yet another example of the sliding member.
  • FIG. 23 is a schematic side-view diagram of yet another example of the sliding member.
  • FIG. 24 is a schematic cross-sectional diagram of yet another example of the sliding member along line XXIV-XXIV in FIG. 22 .
  • both the convex top face 881 and bottom face 883 of the sliding member 88 have formed thereon four flat surfaces extending from an apex 880 to a peripheral portion 884 of the top face 881 and the bottom face 883 .
  • each apex 880 of the top face 881 and of the bottom face 883 of the sliding member 88 is formed by four flat surfaces of identical shape, so that each peripheral portion 884 forms a square. None of the flat surfaces are perfect flat surfaces. Rather, the surfaces are chamfered in such a manner that the inclination angle relative to the horizontal direction increases from the apex 880 towards the peripheral portion 884 .
  • the term “flat surface” denotes not just perfectly flat surfaces, but also flat surfaces deformed through chamfering or the like.
  • the sliding member 88 is formed by the top face 881 and the bottom face 883 having the above-described shapes, and a peripheral lateral portion 885 , between the top face 881 and the bottom face 883 , with a recess 882 around the entire circumference of the lateral portion 885 .
  • the shape of the top face and the bottom face of the sliding member is not limited to the above.
  • the shape of the top face and the bottom face of the sliding member are explained in detail below.
  • the shapes of the top face and the bottom face of the sliding member are not particularly limited, so long as both are convex.
  • the shapes of the top face and the bottom face may be identical or different. Examples of the top face are explained below, but the examples may apply equally to the bottom face.
  • the top face is formed only by a curved surface (hereafter “embodiment A”); the apex is formed by a curved surface, and the periphery of the apex is formed by a plurality of flat surfaces (hereafter “embodiment B”); the apex is formed by a plurality of flat surfaces, and the periphery of the apex is formed by a plurality of flat surfaces having a greater inclination angle relative to the horizontal direction than the flat surfaces of the apex (hereafter, “embodiment C”); or the apex is formed by a plurality of flat surfaces, and the flat surfaces extend from the center of the apex up to the peripheral edge (hereafter, “embodiment D”).
  • Embodiments A, B and C are preferred among the foregoing.
  • Embodiment A is advantageous in that it results in smooth transition back and forth between a rolling resistance state and a frictional resistance state, and in that changes in resistance in the peripheral direction take place smoothly.
  • Embodiment B is advantageous in that, in the frictional resistance state, the sliding member comes into contact with the upper member and the lower member at four points, as a result of which there is generated a high frictional resistance.
  • Embodiment C is advantageous in that, in the frictional resistance state, the sliding member comes into contact with the upper member and the lower member at three points when rocking is slight, and comes into contact with the upper member and the lower member at four points when rocking is substantial.
  • frictional resistance varies in accordance with the magnitude of rocking.
  • the seismic isolation effect is thus particularly good in elongated structures such as piers, tall thin buildings and the like.
  • the shape of the curved surface in embodiment A is not particularly limited, but the inclination angle of the curved surface relative to the horizontal direction preferably increases from the apex towards the peripheral edge (for instance, sliding member 87 illustrated in FIGS. 19 to 21 ).
  • the shape of the curved surface in the peripheral direction may be identical or different.
  • the shape of the curved surface in embodiment B is not particularly limited, but the inclination angle of the curved surface relative to the horizontal direction preferably increases from the apex towards the peripheral edge.
  • the shape of the curved surface in the peripheral direction may be identical or different.
  • the number of peripheral directions of the flat surfaces around the apex is greater than one (two or more), preferably four or more. This allows the sliding member to function uniformly with respect to all rocking directions. Preferably, the number of peripheral directions is no greater than twelve, to facilitate manufacture of the sliding member.
  • the seismic isolation effect is particularly good in elongated structures, such as piers, tall thin buildings and the like, when the number of peripheral directions of the flat surfaces around the apex is four.
  • the shapes of the plurality of flat surfaces may be identical or different, but are preferably identical.
  • the flat surfaces may extend from the edge of the apex up to the peripheral edge of the top face, or up to any position between the edge of the apex and the peripheral edge of the top face.
  • the portion between that position and the peripheral edge may be formed by a curved surface.
  • the positions up to which the flat surfaces extend may be identical or different.
  • the number of flat surfaces that are disposed in the radial direction, from the periphery of the apex to the peripheral edge of the top face may be one (for instance, the sliding member 85 illustrated in FIGS. 12 to 14 ) or two or more.
  • the inclination angle relative to the horizontal direction preferably increases from the periphery of the apex towards the peripheral edge of the top face.
  • the inclination angle of the flat surfaces relative to the horizontal direction is preferably greater than the inclination angle of the curved surface relative to the horizontal direction.
  • the number of flat surfaces of the apex in the peripheral direction is greater than one (two or more), preferably four or more. This allows the sliding member to function uniformly with respect to all rocking directions. Preferably, the number of peripheral directions is no greater than twelve, to facilitate manufacture of the sliding member.
  • the seismic isolation effect is particularly good in elongated structures, such as piers, tall thin buildings and the like, when the number of peripheral directions of the flat surfaces around the apex is four.
  • the shapes of the plurality of flat surfaces of the apex may be identical or different, but are preferably identical.
  • the flat surfaces around the apex may extend from the edge of the apex up to the peripheral edge of the top face, or up to any position between the edge of the apex and the peripheral edge of the top face.
  • the portion between that position and the peripheral edge of the top face may be formed by a curved surface.
  • the positions up to which the flat surfaces extend may be identical or different.
  • the number of flat surfaces that are disposed in the radial direction, from the edge of the apex to the peripheral edge of the top face may be one (for instance, the sliding member 86 illustrated in FIGS. 15 to 17 ) or two or more.
  • the inclination angle of the flat surfaces relative to the horizontal direction preferably increases from the periphery of the apex towards the peripheral edge of the top face.
  • the inclination angle of the flat surfaces relative to the horizontal direction is preferably greater than the inclination angle of the curved surface relative to the horizontal direction.
  • the number of flat surfaces of the apex, in the peripheral direction may be identical to or different from the number of flat surfaces around the apex, in the peripheral direction.
  • the numbers of flat surfaces are identical.
  • the ends of the flat surfaces of the apex and the ends of the flat surfaces around the apex are located at the same positions.
  • the number of flat surfaces of the apex in the peripheral direction is greater than one (two or more), preferably four or more. This allows the sliding member to function uniformly with respect to all rocking directions. Preferably, the number of peripheral directions is no greater than twelve, to facilitate manufacture of the sliding member.
  • the seismic isolation effect is particularly good in elongated structures, such as piers, tall thin buildings and the like, when the number of peripheral directions of the flat surfaces around the apex is four.
  • the shapes of the plurality of flat surfaces of the apex may be identical or different, but are preferably identical.
  • the flat surfaces need not be perfectly flat.
  • the surfaces are slightly chamfered in such a manner that the inclination angle of the surface relative to the horizontal direction increases from the apex towards the peripheral edge (for instance, the sliding member 88 illustrated in FIGS. 22 to 24 ).
  • the sliding member 85 is formed by the top face 851 and the bottom face 853 , having the above-described shapes, and by the peripheral lateral portion 855 provided therebetween.
  • the recess 852 is provided around the entire circumference of the lateral portion 855 of the sliding member 85 .
  • the present invention is not limited thereto, and the recess may be provided in just part of the lateral portion in the circumferential direction.
  • the recess may also be omitted.
  • the projections of the upper member and the lower member engage easily with the recess, regardless of the orientation of the sliding member.
  • the strength of the sliding member in the vertical direction is greater when the recess is provided only in part of the lateral portion of the sliding member, in the circumferential direction, on account of the recess-free portion.
  • the sliding member 85 may be integrally formed as a single body, or through assembly of a plurality of members.
  • the material of the sliding member 85 is not particularly limited, and may be, for instance, a metal or ceramics.
  • a metal is preferred in terms of durability, more preferably iron or an iron alloy, or an aluminum alloy, and yet more preferably iron or an iron alloy.
  • the sliding member 85 is coated or has a lubricant applied thereto beforehand, in order to achieve smooth sliding of the sliding member 85 on the top face 851 and the bottom face 853 .
  • the sliding member 85 is sandwiched between the upper member 82 and the lower member 84 in such a way so as to be able to slide therebetween. This way, the projections 821 at the peripheral edge of the upper member 82 and the projections 841 at the peripheral edge of the lower member 84 can engage with the recess 852 of the lateral portion 855 of the sliding member 85 .
  • the sliding member 85 of the seismic isolation unit 700 is ordinarily disposed so as to abut the respective central portions of the abutting faces 822 , 842 of the upper member 82 fixed to the upper structure 1 and the lower member 84 fixed to the base member 3 . (This position of the sliding member 85 is called an “initial position”).
  • FIG. 18 is a schematic partial cross-sectional diagram of an example of the seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention during rocking.
  • the tilted sliding member 85 slides then sandwiched between the upper member 82 and the lower member 84 , as it returns or after having returned from the tilted attitude on account of its own weight. Sliding of the sliding member 85 against the upper member 82 and the lower member 84 gives rise to frictional forces. Rocking energy can thus be absorbed also through sliding of the sliding member 85 .
  • Sliding of the sliding member 85 is also caused by a restoring force that is generated when the sliding member 85 shifts from the initial position owing to the rocking.
  • the restoring force derives from the fact that both the abutting face 822 of the upper member 82 against the sliding member 85 and the abutting face 842 of the lower member 84 against the sliding member 85 are concave, while the top face 851 that comes into contact with the upper member 82 and the bottom face 853 that comes into contact with the lower member 84 are both convex. The efficiency with which the seismic isolation unit 700 absorbs rocking energy becomes therefore very high.
  • the above action of the sliding member 85 can take place in all horizontal directions.
  • the lower member 84 fixed to the base member 83 is substantially displaced towards the right in the figure relative to the upper member 82 fixed to the upper structure 1 , for instance as illustrated in FIG. 11 .
  • the portion of the recess 852 of the lateral portion 855 of the sliding member 85 on the left of the figure becomes engaged with the projection 841 of the peripheral edge (left of the figure) of the lower member 84 .
  • the portion of the recess 852 of the lateral portion 855 of the sliding member 85 on the right of the figure becomes engaged with the projection 841 of the peripheral edge (right of the figure) of the upper member 82 .
  • the lower member 84 becomes locked thereby on the upper member 82 by way of the sliding member 85 .
  • the lower member cannot be further displaced beyond this state (towards the right in the figure).
  • the upper member 82 cannot move completely away from its position relative to the lower member 84 .
  • the seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention is not particularly limited.
  • known conventional seismic isolation units can be used in the present invention.
  • Specific examples thereof include, for instance, the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-84014, the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-242371, the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-283959, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2007-71380, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2007-225101, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2009-24473, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2009-41351, the seismic control system disclosed in Japanese Utility Model Registration No. 3117029 and the seismic control system disclosed in Japanese Utility Model Registration No. 3118144.
  • the floor panel assembly of the first embodiment of the present invention comprises the above-described seismic isolation unit and the above-described floor panel of the first embodiment of the present invention, wherein the upper member of the seismic isolation unit and the panel member of the floor panel are adjacent and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the floor unit of the floor panel.
  • the combination method is not particularly limited, and may involve, for instance, causing the seismic isolation unit 700 and the floor panel 100 to be adjacent to each other, in such a manner that the upper member 82 of the seismic isolation unit 700 comes into contact with the panel member 3 of the floor panel 100 but does not come into contact with the floor unit member 2 of the floor panel 100 .
  • the upper member of the seismic isolation unit and the panel member of the floor panel slide, as a single body, on the lower member of the seismic isolation unit and the floor unit of the floor panel.
  • the energy of the quake is absorbed thereupon through tilting and sliding of the sliding member of the seismic isolation unit and through compression of the elastic insert member of the floor panel.
  • the restoring force that urges the sliding member of the seismic isolation unit to the initial position and the restoring force exerted by the elastic insert member of the floor panel and which pushes back the displaced panel member, cause the upper member of the seismic isolation unit and the panel member of the floor panel to slide, as a single body, on the lower member of the seismic isolation unit and on the floor unit of the floor panel, and to return thereby to an original position.
  • the floor panel assembly of the first embodiment of the present invention thus, can absorb quake energy, and allows restoring the position of an upper structure to an original position.
  • the floor panel assembly affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • the seismic isolation unit used in the floor panel assembly of the second embodiment of the present invention is the same seismic isolation unit as used in the floor panel assembly of the first embodiment of the present invention.
  • the method for combining the above-described seismic isolation unit and the above-described floor panel of the second embodiment of the present invention is not particularly limited.
  • the method may involve causing the seismic isolation unit 700 and the floor panel 400 to be adjacent to each other, in such a manner that the upper member 82 of the seismic isolation unit 700 comes into contact with the floor unit member 7 of the floor panel 400 , and in such a manner that the lower member 84 of the seismic isolation unit 700 does not come into contact with the floor unit member 7 of the operation unit 400 (for instance, by using a seismic isolation unit 700 in which the lower member 84 is smaller than the upper member 82 ).
  • FIG. 10 is a schematic diagram illustrating an example of a combination of the seismic isolation unit in the floor panel assembly of the second embodiment of the present invention and the floor panel of the second embodiment of the present invention.
  • FIG. 10A is a plan-view diagram
  • FIG. 10B is a horizontal end-view diagram of FIG. 10A along the line XB-XB.
  • a floor panel assembly 1000 of the second embodiment of the present invention illustrated in FIG. 10 comprises a rectangular base member 1 that is paved with four seismic isolation units 800 and 56 floor unit members 7 e of floor panels 650 of the second embodiment of the present invention having all a square plan-view shape and identical size, the seismic isolation units 800 and the floor unit members 7 e being adjacent to each other, in such a manner that the sides of the respective square shapes coincide, and being separated from a wall 9 , wherein rubbers 8 a , coil springs 8 b and flat springs 8 c , as elastic insert members, are provided between side faces of the floor unit members 7 e and the wall 9 .
  • the upper members 82 a of the seismic isolation units 800 and the floor unit members 7 e of the floor panels 650 are combined in such a manner that they can slide together on the lower members 84 a of the seismic isolation units 800 and the base member 1 .
  • the upper members of the seismic isolation units and the floor unit members of the floor panels make up a single body wherein the upper members of the seismic isolation units slide on the lower members of the seismic isolation units while the floor unit members slide on the base member.
  • the energy of the quake is absorbed thereupon through tilting and sliding of the sliding member of the seismic isolation units and through compression of the elastic insert member of the floor panels.
  • the restoring force that urges the sliding member of the seismic isolation units to the initial position and the restoring force exerted by the elastic insert member of the floor panels and which pushes back the displaced panel member, cause the upper members of the seismic isolation units and the floor unit members of the floor panels to slide, as a single body, on the lower members of the seismic isolation units and on the floor units of the floor panels, and to return thereby to an original position.
  • the floor panel assembly of the second embodiment of the present invention thus, can absorb quake energy, and allows restoring the position of an upper structure to an original position.
  • the floor panel assembly affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • various members may be formed integrally, or as a combination of a plurality of members.
  • the members may also be chamfered.
  • the construction of the various elements can be modified into any other construction that allows the element to perform the same function as before being modified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The present invention provides a floor panel that affords a seismic isolation effect against large-magnitude quakes. A floor panel comprises a sliding unit that comprises a floor unit member having a lower portion that can come into contact with a base member and an upper portion supported on the lower portion; and a panel member having a structure fixing face that can be fixed to an upper structure, and an abutting face that abuts an upper face of the upper portion of the floor unit member, such that the abutting face is provided so as to be slidable on the upper face. The floor panel also comprises an elastic insert member provided between a wall and a side face of the panel member of the sliding unit.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a floor panel and a floor panel assembly using the floor panel.
  • 2. Description of the Related Art
  • Some known conventional seismic isolation systems involve interposing a member capable of sliding or rolling, under a supported building, or under articles on a floor.
  • For instance, Japanese Patent Application Laid-open No. 2007-24123 discloses a base isolation plate wherein a spherical holding fitting, in which a base isolation spherical body is rotatably mounted, with the lower end thereof exposed, is fixed to the center of the lower face of an upper side base for forming a base isolation plane; a base isolation control basic structure, for affording a base isolation effect, is formed in such a manner that the lower end of the base isolation spherical body comes rollably into contact with the center of a lower side base for forming a foundation plane disposed opposite the lower face side of the upper side base, the base isolation control basic structure being covered with a restoring cylindrical exterior formed of a shock-absorbing non-resilient rubber material; and wherein the upper end of the base isolation control basic structure is connected to the edge of the upper side base for forming a base isolation plane, and the lower end of the base isolation control basic structure is connected to the edge of the lower side base for forming a foundation plane, in such a manner so as to cover thereby the side peripheral face portion of the base isolation control basic structure.
  • Japanese Patent No. 3058364 discloses a leg structure of an electronic device, comprising a leg member protrudingly provided in an electronic device, and a pedestal on which the leg member is slidably supported, wherein the lower end of the leg member has formed thereon a spherical convex surface having a radius of curvature; and a bearing surface of the pedestal that is slidable on the convex portion comprises a central portion having a radius of curvature greater than the above radius of curvature; and an inclined mortar-shaped surface at the center of the central portion, the bottom face portion of the pedestal being formed to a smooth surface.
  • Also, Japanese Utility Model Registration No. 3117029 discloses a seismic control system comprising an upper member fixed to an upper structure and having a concave spherical surface portion formed thereon, a lower member supported on a base member and having a concave spherical surface portion formed thereon, and a rigid rolling member interposed between the upper member and the lower member and having a vertically symmetrical convex spherical surface portion, wherein the rolling member comprises a metal ball and a holding member that rotatably holds the metal ball, the holding member being a hard rubber-like elastic member.
  • Further, Japanese Patent Application Laid-open No. 2006-283959 discloses a seismic control system comprising an upper member fixed to an upper structure and having a concave curved surface portion formed on the inner face, a lower member supported on a base member and having a concave curved surface portion formed on the inner face, and a rolling member interposed between the upper member and the lower member and having a vertically symmetrical convex curved surface portion, wherein the rolling member is formed overall to a substantially disc shape and has a central portion formed as a curved surface and a peripheral portion having formed thereon a flat-plate face smoothly connected to the curved surface.
  • However, the base isolation plate disclosed in Japanese Patent Application Laid-open No. 2007-24123 and the leg structure of an electronic device disclosed in Japanese Patent No. 3058364 were ineffectual against large-magnitude quakes.
  • Specifically, the amplitude of a quake's oscillation is sometimes amplified in a building such as a house, which results in a greater amplitude of the rocking imparted to the building itself. The range over which the spherical body of the base isolation plate disclosed in Japanese Patent Application Laid-open No. 2007-24123 can roll, however, is narrow, and hence the base isolation plate is ineffectual against such large-amplitude rocking. In the leg structure of an electronic device disclosed in Japanese Patent No. 3058364, the connection portion between the leg member and the electronic device is structurally subjected to significant stress, and therefore breakage is likely to occur, in the vicinity of the connection portion, in case of large-amplitude rocking. This propensity to breakage during large-magnitude quakes was problematic.
  • Meanwhile, the seismic control system disclosed in Japanese Utility Model Registration No. 3117029 and the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-283959 can cope with substantial rocking to a certain extent, but cannot prevent the upper member from becoming completely displaced from its position relative to the lower member.
  • SUMMARY OF THE INVENTION
  • It is thus an object of the present invention to provide a floor panel that affords a seismic isolation effect against large-magnitude quakes, and a floor panel assembly using the floor panel.
  • The present invention provides the aspects (1) to (14) below.
  • (1) A floor panel, comprising
  • a sliding unit that comprises a floor unit member having a lower portion that can come into contact with a base member, and an upper portion supported on the lower portion; and a panel member having a structure fixing face that can be fixed to an upper structure, and an abutting face that abuts an upper face of the upper portion of the floor unit member, such that the abutting face is provided so as to be slidable on the upper face; and
  • an elastic insert member provided between a wall and a side face of the panel member of the sliding unit (floor panel of the first embodiment of the present invention).
  • (2) The floor panel according to (1), wherein the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member is embossed, whereby the abutting face is slidable on the upper face.
  • (3) The floor panel according to (1), wherein the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member is formed from a sliding material, whereby the abutting face is slidable on the upper face.
  • (4) The floor panel according to any one of (1) to (3), further comprising a second elastic insert member provided between the wall and a side face of the floor unit member of the sliding unit.
  • (5) The floor panel according to (4), wherein the compression modulus of the second elastic insert member is different from the compression modulus of the elastic insert member.
  • (6) A floor panel, comprising
  • a floor unit member having a lower portion that can come into contact with a base member, and an upper portion supported on the lower portion and having a structure fixing face that can be fixed to an upper structure; and
  • an elastic insert member provided between a wall and a side face of the floor unit member,
  • wherein a lower face of the lower portion in contact with the base member is slidable on an upper face of the base member that comes into contact with the lower face (floor panel of the second embodiment of the present invention).
  • (7) The floor panel according to (6), wherein the lower face of the lower portion of the floor unit member is embossed, whereby the lower face is slidable on the upper face.
  • (8) The floor panel according to (6), wherein the lower face of the lower portion of the floor unit member is formed from a sliding material, whereby the lower face is slidable on the upper face.
  • (9) A floor panel assembly, comprising
  • a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • the floor panel according to any one of (1) to (5),
  • wherein the upper member of the seismic isolation unit and the panel member of the floor panel are adjacent and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the floor unit member of the floor panel (floor panel assembly of the first embodiment of the present invention).
  • (10) A floor panel assembly, comprising: a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • the floor panel according to any one of (6) to (8),
  • wherein the upper member of the seismic isolation unit and the floor unit member are adjacent, and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the base member (floor panel assembly of the second embodiment of the present invention).
  • (11) The floor panel assembly according to (9) or (10),
  • wherein the seismic isolation unit is configured such that
  • the upper member and the lower member each have projections that protrude inward from the peripheral edges thereof,
  • a recess is formed in part or the entirety of the peripheral direction of the lateral portion of the sliding member, and
  • when the sliding member slides between the upper member and the lower member, the projection at the peripheral edge of the upper member and the projection at the peripheral edge of the lower member can engage with the recess in the lateral portion of the sliding member.
  • (12) The floor panel assembly according to any one of (9) to (11), wherein the seismic isolation unit is configured such that one or both of the top face and the bottom face of the sliding member is formed by a curved surface.
  • (13) The floor panel assembly according to any one of (9) to (11), wherein the seismic isolation unit is configured such that one or both of the top face and the bottom face of the sliding member has an apex formed by a curved surface, and the periphery of the apex is formed by a plurality of flat surfaces.
  • (14) The floor panel assembly according to any one of (9) to (11), wherein the seismic isolation unit is configured such that one or both of the top face and the bottom face of the sliding member has an apex formed by a plurality of flat surfaces, and the periphery of the apex is formed by a plurality of flat surfaces having a greater inclination angle, relative to a horizontal direction, than that of the flat surfaces of the apex.
  • Thus, the floor panel and floor panel assembly using the floor panel of the present invention afford a seismic isolation effect also against large-magnitude quakes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic perspective-view diagram illustrating an example of a floor panel of a first embodiment of the present invention;
  • FIG. 2 is a schematic partial end-view diagram illustrating an example of the floor panel of the first embodiment of the present invention;
  • FIG. 3 is a schematic partial end-view diagram illustrating another example of the floor panel of the first embodiment of the present invention;
  • FIG. 4 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the first embodiment of the present invention;
  • FIG. 5 is a schematic partial end-view diagram illustrating an example of a floor panel of a second embodiment of the present invention;
  • FIG. 6 is a schematic partial end-view diagram illustrating another example of the floor panel of the second embodiment of the present invention;
  • FIG. 7 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the second embodiment of the present invention;
  • FIG. 8 is a schematic partial end-view diagram illustrating various examples of the floor unit member used in the floor panel of the second embodiment of the present invention;
  • FIG. 9 is a schematic partial cross-sectional diagram illustrating an example of a seismic isolation unit used in a floor panel assembly of the first embodiment of the present invention;
  • FIG. 10 is a schematic diagram illustrating an example of a combination of the seismic isolation unit in the floor panel assembly of the second embodiment of the present invention and the floor panel of the second embodiment of the present invention;
  • FIG. 11 is a schematic partial cross-sectional diagram of an example of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention in the case of very large amplitude;
  • FIG. 12 is a schematic partial plan-view diagram of an example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 13 is a schematic side-view diagram of an example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 14 is a schematic cross-sectional diagram of an example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 15 is a schematic plan-view diagram of another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 16 is a schematic side-view diagram of another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 17 is a schematic cross-sectional diagram of another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 18 is a schematic partial cross-sectional diagram of an example of the seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention during rocking;
  • FIG. 19 is a schematic plan-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 20 is a schematic side-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 21 is a schematic cross-sectional diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 22 is a schematic plan-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • FIG. 23 is a schematic side-view diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention; and
  • FIG. 24 is a schematic cross-sectional diagram of yet another example of a sliding member of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention;
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preferred embodiments of the floor panel and the floor panel assembly of the present invention are explained in detail below based on preferred embodiments illustrated in accompanying drawings.
  • A floor panel of a first embodiment of the present invention will be explained first.
  • FIG. 1 is a schematic perspective-view diagram illustrating an example of a floor panel of the first embodiment of the present invention. FIG. 2 is a schematic partial end-view diagram illustrating an example of the floor panel of the first embodiment of the present invention.
  • As illustrated in FIGS. 1 and 2, a floor panel 100 of the first embodiment of the present invention comprises
  • a sliding unit 4 which has a floor unit member 2 having a lower portion 21 that can come into contact with a base member 1, and an upper portion 22 supported on the lower portion 21; and a panel member 3 having a structure fixing face 31 that can be fixed to an upper structure (not shown), and an abutting face 32 that abuts the upper face 23 of the upper portion 22 of the floor unit member 2, such that the abutting face 32 is provided slidably on the upper face 23; and
  • an elastic insert member 5 provided between a wall 9 and a side face 33 of the panel member 3 of the sliding unit 4.
  • The sliding unit 4 has the floor unit member 2 and the panel member 3.
  • The floor unit member 2 has the lower portion 21 that can come into contact with the base member 1, and the upper portion 22 supported on the lower portion 21.
  • Examples of the base member 1 include, for instance, a floor or a foundation of a building. The floor is not particularly limited, and may be, for instance, a concrete-finished floor, a wood-finished floor, as well as floors resulting from overlaying the foregoing with sheets such as seismic isolation sheets, sound proofing sheets or the like.
  • In FIGS. 1 and 2, the form of the lower portion 21 comprises four legs shaped as substantially quadrangular prisms, such that the legs support four corners of the underside of the upper portion 22, which is shaped substantially as a rectangular parallelepiped. In the present invention, however, the shape, number, positions at which the upper portion is supported, and other features of the lower portion 21 are not particularly limited, so long as the lower portion can come into contact with the base member.
  • The shape of the lower portion may be, for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape.
  • The number of lower portions may be one, two or more for each upper portion.
  • The position of the lower portion at which the upper portion is supported may be at the ends or the interior of the lower portion, or at a combination of the foregoing.
  • For instance, the lower portion may have the same shape as the upper portion, and the lower portion and the upper portion may be integrated together forming a prism shape (for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape).
  • The lower portion 21 and the base member 1 may be fixed to each other. The fixing method is not particularly limited, and may be, for instance, a known conventional method.
  • The upper portion 22 is supported on the lower portion 21. The upper portion 22 has the upper face 23 that abuts the abutting face 32 of the below-described panel member 3.
  • The shape of the upper portion is not particularly limited, so long as it is supported on the lower portion 21 and has the upper face 23. For instance, the upper portion may be shaped as a plate. Among these shapes, the upper portion 22 may have a substantially square or rectangular shape. Preferably, however, a plurality of floor panels of the first embodiment of the present invention is disposed on the base member 1, without gaps, since doing so is easier.
  • The material that makes up the floor unit member 2 is not particularly limited, so long as it allows sliding between the floor unit member 2 and the panel member 3. The material of the floor unit member 2 may be, for instance, a synthetic resin such as a PVC resin (for instance a hard PVC resin), a urethane resin, a polypropylene resin (for instance, recycled polypropylene resin) or the like; a wooden material such as cork; an inorganic material such as tiles, bricks, artificial stone or synthetic stone; or natural stone such as marble or granite.
  • The panel member 3 has the structure fixing face 31 that can be fixed to an upper structure (not shown), and the abutting face 32 that abuts the upper face 23 of the upper portion 22 of the floor unit member 2.
  • The upper structure is not particularly limited, and may be, for instance, precision equipment (such as a computer server or a multifunction copier machine), a case for housing art objects, a book rack, a locker, an automatic vending machine or the like.
  • The structure fixing face 31 can be fixed to the upper structure. The fixing method is not particularly limited, and may be, for instance, a known conventional method.
  • The abutting face 32 abuts the upper face 23 of the upper portion 22 of the above-described floor unit member 2. The abutting face 32 is provided so as to be slidable on the upper face 23 thanks to the embossing of the latter.
  • The shape of the panel member 3 is a parallelepiped (which can be regarded as a plate shape, on account of its low height).
  • The material that makes up the floor unit member 3 is not particularly limited, so long as it allows sliding between the floor unit member 2 and the panel member 3.
  • In the floor panel of the first embodiment of the present invention, the way in which the abutting face of the panel member is provided slidably on the upper face of the upper portion of the floor unit member is not particularly limited. For instance, the abutting face may be rendered slidable on the upper face by embossing the upper face or the abutting face. The abutting face may also be rendered slidable on the upper face by constructing the upper face and/or the abutting face using a sliding material. Alternatively, the abutting face may also be made slidable on the upper face by providing holes in the upper face and/or the abutting face, to reduce thereby the contact surface area between both faces and lower the coefficient of friction of the faces.
  • The embossing method is not particularly limited, and may be, for instance, a known conventional method. A specific method may involve, for instance, using an embossed mold during molding of a panel member and/or a floor unit member, or gluing an embossed sheet (which may be, for instance, a commercially available sheet) onto the panel member and/or the floor unit member.
  • FIG. 3 is a schematic partial end-view diagram illustrating another example of the floor panel of the first embodiment of the present invention. The floor panel 200 illustrated in FIG. 3 is basically the same as the floor panel 100. An abutting face 32 a is provided slidably on an upper face 23 a by embossing the abutting face 32 a, the upper face 23 a being not embossed herein.
  • The method for constructing the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member may be, for instance, a method that involves constructing the entire upper portion of the floor unit member and/or the panel member using a sliding material, or a method that involves constructing the member that makes up the upper face of the upper portion of the floor unit member and/or the member that makes up the abutting face of the panel member using a sliding material that is different from the sliding material that makes up the member of the main body of the floor unit member and/or the panel member.
  • Examples of the sliding material include, for instance, synthetic resin materials, wooden materials, inorganic materials and natural stone.
  • Examples of synthetic resin materials include thermoplastic resins and thermosetting resins. Examples of thermoplastic resins include, for instance, polyolefin resins such as polyethylene resins (for instance, high-density polyethylene resins, low-density polyethylene resins), polypropylene resins (for instance, recycled polypropylene resins), as well as olefinic copolymer resins; polystyrene resins and styrenic copolymer resins; PVC resins (for instance, hard PVC resins) and vinyl chloride copolymer resins; polyvinylidene chloride resins; polyurethane resins: polyester resins such as polyethylene terephthalate resins; polyamide resins; polycarbonate resins: (meth)acrylic resins; as well as thermoplastic elastomers.
  • Examples of wooden materials include, for instance, cork.
  • Examples of inorganic materials include, for instance, tiles, bricks, artificial stone and synthetic stone.
  • Examples of natural stone include, for instance, marble and granite.
  • Preferred among the foregoing are thermoplastic resins, and thermoplastic resins containing a compatibilizer and coal ash generated in pulverized coal fired boilers.
  • The thermoplastic resin is not particularly limited. A suitable example thereof is, for instance, a polypropylene resin.
  • The coal ash generated in pulverized coal fired boilers includes “fly ash”, collected at a dust collector, and derived from the combustion gas of pulverized coal fired boilers used in, for instance, coal fired power plants and/or the collected “clinker” that drops to the bottom of pulverized coal fired boilers. In all its varieties, coal ash is a fine powder containing components such as SiO2, Al2O3, Fe2O3, CaO, MgO or SO3. The coal ash has preferably an average particle size of 10 to 30 μm.
  • The compatibilizer is an additive for causing the above coal ash to be uniformly dispersed in the thermoplastic resin. The compatibilizer is not particularly limited, and may be, for instance, ADTEX ER320P, ER333F-2, ER353LA or ER313E-1, by Japan Polychem; Tuftec P2000 or H1043, by Asahi Kasei; or Modic P533A, P502, P565, P908A or H511L112A, by Mitsubishi Chemical.
  • The above components are preferably used in amounts of thermoplastic resin 30 to 87 wt %, coal ash generated in pulverized coal fired boilers 10 to 80 wt %, and compatibilizer 3 to 10 wt %.
  • The sliding material affords preferably a coefficient of friction between the upper face of the upper portion of the floor unit member and the abutting face of the panel member no greater than 0.5, more preferably no greater than 0.4, yet more preferably no greater than 0.3, even more preferably no greater than 0.2, still more preferably no greater than 0.1, and even yet more preferably no greater than 0.05.
  • In the present invention there can be used a sliding material having on its own a coefficient of friction within the above ranges, but also a sliding material having a coefficient of friction lying within the above ranges by being coated or through the use of a solid lubricant.
  • FIG. 4 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the first embodiment of the present invention. The floor panel 300 illustrated in FIG. 4 is basically the same as the floor panel 100. Herein, however, the upper face 23 b has no embossing. Instead, the upper face 23 b and an abutting face 32 b comprise a sliding material, as a result of which the abutting face 32 b is provided slidably on the upper face 23 b.
  • In the floor panel 100 illustrated in FIGS. 1 and 2, the floor unit member 2 is provided spaced apart from the wall 9. In the floor panel of the first embodiment of the present invention, however, the floor unit member and the wall may be provided so as to be in contact with each other.
  • In the floor panel 100, the elastic insert member 5 is provided between the wall 9 and the side face 33 of the panel member 3 of the sliding unit 4.
  • The elastic insert member has the function of restoring the position of the panel member relative to the floor unit member back to the original position, upon displacement caused by a seismic tremor. The elastic insert member used may be a known conventional member. Specific examples thereof include, for instance, foamed materials, rubber, springs (for instance, coil springs, wire springs and flat springs), suspensions, air cylinders, hydraulic cylinders or air suspensions.
  • In the floor panel 100, the elastic insert member 5 is provided occupying all the space between the wall 9 and the side face 33 of the panel member 3 of the sliding unit 4. However, the floor panel of the first embodiment of the present invention is not limited thereto, and for instance, only part of the elastic insert member 5 need be provided between the wall 9 and the side face 33.
  • The floor panel 100 further comprises a second elastic insert member 6 provided between the wall 9 and the side face 24 of the floor unit member 2 of the sliding unit 4.
  • The second elastic insert member has the function of restoring the position of the panel member relative to the floor unit member back to the original position, upon displacement caused by a quake, when the floor unit member is not fixed to the base member. A known conventional member can be used as the second elastic insert member. Specific examples thereof include, for instance, foamed materials, rubber, springs (for instance, coil springs, wire springs and flat springs), suspensions, air cylinders, hydraulic cylinders or air suspensions.
  • Preferably, the compression modulus of the second elastic insert member 6 is different from the compression modulus of the elastic insert member 5. This way, friction between the second elastic insert member 6 and the elastic insert member 5 allows absorbing some of the energy of a quake.
  • The method for causing the compression modulus of the second elastic insert member 6 to be different from the compression modulus of the elastic insert member 5 is not particularly limited. For instance, the elastic insert members may use foamed materials of dissimilar expansion rate.
  • In the floor panel 100, the second elastic insert member 6 is provided occupying all the space between the wall 9 and the side face 24 of the floor unit member 2 of the sliding unit 4. However, the floor panel of the first embodiment of the present invention is not limited thereto, and for instance, the second elastic insert member 6 may be provided just in some of the space between the wall 9 and the side face 24.
  • The floor panel 100 illustrated in FIGS. 1 and 2 comprises one sliding unit 4 and one elastic insert member 5. However, the floor panel of the first embodiment of the present invention is not limited thereto. The floor panel 100 may comprise a combination of one, two or more sliding units and one, two or more elastic insert members.
  • In a preferred embodiment of the present invention, the base member is paved with a plurality of sliding units, and the floor panels have the elastic insert member provided only between the wall and the side faces of the panel members of the sliding units at the edges.
  • The operation of the floor panel 100 of the first embodiment of the present invention is explained next.
  • The position of the panel member 3 relative to the floor unit member 2 is offset when the floor panel 100 of the first embodiment of the present invention is acted upon by rocking from a quake or the like (in FIG. 2, for instance, the panel member 3 is displaced to the right). Displacement of the panel member 3 causes the elastic insert member 5 to be compressed, whereby the energy of the quake is absorbed. As a result, the upper structure is effectively prevented from toppling or the like.
  • The compressed elastic insert member 5 exerts then a restoring force that pushes the panel member 3 back (for instance, pushes the panel member 3 back to the left in FIG. 2). As a result, the position of the panel member 3 relative to the floor unit member 2 is restored, preferably to the original position.
  • The floor panel 100 of the first embodiment of the present invention can absorb thus quake energy, and allows restoring the position of the upper structure, preferably to its original position. The floor panel 100 affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • A floor panel of the second embodiment of the present invention is explained next.
  • FIG. 5 is a schematic partial end-view diagram illustrating an example of the floor panel of the second embodiment of the present invention.
  • The floor panel 400 illustrated in FIG. 5 comprises
  • a floor unit member 7 having a lower portion 71 that can come into contact with a base member 1, and an upper portion 72, supported on the lower portion 71, having a structure fixing face 75 that can be fixed to an upper structure (not shown);
  • and an elastic insert member 8 provided between a wall 9 and a side face 73 of the floor unit member 7.
  • The floor unit member 7 has the lower portion 71 that can come into contact with the base member 1, and the upper portion 72, supported on the lower portion 71, and having a structure fixing face 75 that can be fixed to an upper structure.
  • The base member 1 is fundamentally the same as that of the floor panel of the first embodiment of the present invention, but herein, an upper face 11 can be slidable on the lower face 74 of the floor panel 400, as described below.
  • The material that makes up the upper face 11 may be a synthetic resin, for instance a PVC resin (for instance, a hard PVC resin), a urethane resin, a polypropylene resin (for instance, recycled polypropylene resin) or the like; a wooden material such as cork; an inorganic material such as tiles, bricks, artificial stone or synthetic stone; or natural stone such as marble or granite.
  • In FIG. 5, the lower portion 71 is shaped as a leg that supports the lower face of the upper portion 72. In the present invention, however, the shape, number, positions at which the upper portion is supported, and other features of the lower portion are not particularly limited, so long as the lower portion can come into contact with the base member.
  • The shape of the lower portion may be, for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism. a cylinder; or a prism of indefinite shape.
  • The number of lower portions may be one, two or more for each upper portion.
  • The position of the lower portion at which the upper portion is supported may be at the ends or the interior of the lower portion, or at a combination of the foregoing.
  • For instance, the lower portion may have the same shape as the upper portion, and the lower portion and the upper portion may be integrated together forming a prism shape (for instance, a polygonal prism such as a square prism (parallelepiped) or a triangular prism, a cylinder, or an irregular prism shape).
  • The lower face 74 of the lower portion 71 comes into contact with the upper face 11 of the base member 1. The lower face 74 is embossed, and is thereby provided so as to be slidable on the upper face 11 of the base member 1.
  • The upper portion 72 is supported on the lower portion 71 and has a structure fixing face 75 that can be fixed to an upper structure.
  • The upper structure may be the same as that of the floor panel of the first embodiment of the present invention.
  • The structure fixing face 75 can be fixed to the upper structure. The fixing method is not particularly limited, and may be, for instance, a known conventional method.
  • The shape of the upper portion is not particularly limited, so long as it is supported on the lower portion 71 and has the structure fixing face 75 that can be fixed to the upper structure. For instance, the upper portion may be shaped as a plate. Among these shapes, the upper portion 22 may be a substantially square or rectangular shape. Preferably, however, a plurality of floor panels of the second embodiment of the present invention is disposed on the base member 1, without gaps, since doing so is easier.
  • The material that makes up the floor unit member 7 is not particularly limited, so long as the lower face 74 of the lower portion 71 that comes into contact with the base member 1 can slide on the upper face 11 of the base member 1 that comes into contact with the lower face 74.
  • In the floor unit member 7, the lower face 74 of the lower portion 71 that comes into contact with the base member 1 can slide on the upper face 11 of the base member 1 that comes into contact with the lower face 74.
  • The method for causing the lower face of the floor unit member to be slidable over the upper face of the base member is not particularly limited in the second embodiment of the present invention. For instance, the lower face of the floor unit member may be embossed, to be slidable thereby on the upper face of the base member. Alternatively, the lower face may be formed from a sliding material, to become thereby slidable on the upper face of the base member.
  • The embossing method is not particularly limited, and may be, for instance, a known conventional method. Specifically, the embossing method may be the same as that of the floor panel of the above-described first embodiment of the present invention.
  • The method for constructing the lower face of the lower portion of the floor unit member using a sliding material may be, for instance, a method wherein the entire lower portion of the floor unit member is formed from a sliding material, or a method wherein the member that constitutes the lower face of the lower portion of the floor unit member is formed from a sliding material that renders the member different from the member that makes up the main body of the floor unit member.
  • FIG. 6 is a schematic partial end-view diagram illustrating another example of the floor panel of the second embodiment of the present invention. The floor panel 500 illustrated in FIG. 6 is basically the same as the floor panel 400. Herein, however, a lower face 74 a has no embossing. Instead, the entire floor unit member 7, including the lower face 74 a, is formed from a sliding material, as a result of which the lower face 74 a is provided slidably on the upper face 11 of the base member 1.
  • The sliding material is not particularly limited, and may be, for instance, the sliding material used in the floor unit member of the floor panel of the first embodiment of the present invention.
  • The sliding material affords a coefficient of friction between the lower face 74 of the lower portion 71 and the upper face 11 of the base member 1 preferably no greater than 0.5, more preferably no greater than 0.4, yet more preferably no greater than 0.3, even more preferably no greater than 0.2, still more preferably no greater than 0.1, and even yet more preferably no greater than 0.05.
  • In the present invention there can be used a sliding material having on its own a coefficient of friction within the above ranges, but also a sliding material having a coefficient of friction lying within the above ranges by being coated or through the use of a solid lubricant.
  • FIG. 7 is a schematic partial end-view diagram illustrating yet another example of the floor panel of the second embodiment of the present invention. The floor panel 600 illustrated in FIG. 7 is basically the same as the floor panel 400. Herein, however, a lower face 74 b has no embossing. Instead, a member that constitutes the lower face 74 b comprises sliding members 76, 77 separate from the member that makes up the main body of the floor unit member 7. The lower face 74 b is provided thereby slidably on the upper face 11 of the base member 1.
  • The floor panel 600 has sliding members 76, 77 provided at the lower end of the lower portion 71 a of the floor unit member 7 (at two sites in the figure). The undersides of the sliding members 76, 77 constitute the lower face 74 b that comes into contact with the upper face 11 of the base member 1.
  • The sliding member 76 is provided embedded in the lower end of the lower portion 71. In this case, just a little sliding material need be used in the sliding member 76. The adherence between the lower portion 71 and the sliding member 76 is also excellent, which is a further advantage.
  • The sliding member 77 is provided covering the lower end of the lower portion 71. This is advantageous in that sliding between the floor unit member 7 and the base member 1 becomes highly stable thereby, while adhesion between the lower portion 71 and the lower base 77 is likewise excellent.
  • The method for providing the sliding member is not particularly limited, and may be, for instance, a known conventional method.
  • FIG. 8 is a schematic partial end-view diagram illustrating various examples of the floor unit member used in the floor panel of the second embodiment of the present invention.
  • In a floor unit member 7 c illustrated in FIG. 8A, an entire floor unit member 7 c including a lower face 74 c is formed from a sliding material, as a result of which the lower face 74 c is provided slidably on the upper face 11 of the base member 1.
  • In a floor unit member 7 d illustrated in FIG. 8B, a member that constitutes a lower face 74 d comprises a sliding member 77 separate from the member that makes up the main body of the floor unit member 7 d. The lower face 74 d is provided thereby slidably on the upper face 11 of the base member 1. The sliding member 77 is the same as the sliding member 77 used in the floor panel 600.
  • In the floor panel 400 illustrated in FIG. 5, the elastic insert member 8 is provided between the wall 9 and the side face 73 of the floor unit member 7.
  • The material that makes up the elastic insert member 8 is the same as the material used in the floor panel of the first embodiment of the present invention.
  • The elastic insert member may be provided occupying the entire gap between the wall and the floor unit member, or occupying only part of the gap.
  • The floor panel 400 illustrated in FIG. 5 comprises one floor unit member 7 and one elastic insert member 8 described above. The floor panel of the second embodiment of the present invention is not limited thereto, and may comprise a combination of one, two or more floor unit members and one, two or more elastic insert members.
  • In a preferred embodiment of the present invention, for instance, the base member is paved with a plurality of floor unit members, and the floor panels have the elastic insert member provided only between the wall and the side faces of the floor unit members at the edges.
  • The operation of the floor panel 400 of the second embodiment of the present invention is explained next.
  • The position of the panel member 7 relative to the floor unit member 1 is offset when the floor panel 400 of the second embodiment of the present invention is acted upon by rocking from a quake or the like (in FIG. 5, for instance, the panel member 7 is displaced to the right). Displacement of the floor unit member 7 causes the elastic insert member 8 to be compressed, whereby the energy of the quake is absorbed. As a result, the upper structure is effectively prevented from toppling or the like.
  • The compressed elastic insert member 8 exerts then a restoring force that pushes the floor unit member 7 back (for instance, pushes the panel member 7 back to the left in FIG. 5). As a result, the position of the floor unit member 7 relative to the base member 1 is restored, preferably to the original position.
  • The floor panel 400 of the second embodiment of the present invention can absorb thus quake energy, and allows restoring the position of the upper structure, preferably to its original position. The floor panel 400 affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • In the present invention there can be used a combination of the floor panel of the first embodiment of the present invention and the floor panel of the second embodiment of the present invention.
  • A floor panel assembly of the first embodiment of the present invention is explained next.
  • The floor panel assembly of the first embodiment of the present invention comprises
  • a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • the above-described floor panel of the first embodiment of the present invention,
  • wherein the upper member of the seismic isolation unit and the panel member of the floor panel are adjacent and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the floor unit of the floor panel.
  • FIG. 9 is a schematic partial cross-sectional diagram illustrating an example of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention.
  • As illustrated in FIG. 9, a seismic isolation unit 700 comprises
  • an upper member 82 that can be fixed to an upper structure 1;
  • a lower member 84 that can be fixed to a base member 3; and
  • a sliding member 85 slidably sandwiched between the upper member 82 and the lower member 84.
  • The upper structure 1 is the same as that of the floor panel of the first embodiment of the present invention.
  • The base member 3 is the same as that of the floor panel of the first embodiment of the present invention.
  • An abutting face 822 of the upper member 82 against the sliding member 85, and an abutting face 842 of the lower member 84 against the sliding member 85, are both concave surfaces.
  • The concave shape is not particularly limited, so long as the surface sinks overall from the peripheral edge towards a depression in the center. The entire surface may be curved, or may be made up of, partly or entirely, one or more flat surfaces. By making thus concave both the abutting face 822 and the abutting face 842, the positional relationship between the upper member 82 and the lower member 84 can be readily restored to an original relationship, by way of the sliding member 85, even when that positional relationship is upset through rocking.
  • Preferably, the shape of the concave abutting face 822 has a greater radius of curvature than the shape of a top face 851 of the sliding member 85. The sliding member 85 can slide more smoothly thereby. Likewise, the shape of the concave abutting face 842 has preferably a greater radius of curvature than the shape of a bottom face 853 of the sliding member 85.
  • The plan-view shape of the upper member 82 and the lower member 84 is not particularly limited, although preferably, the shape is a circular (or substantially circular) shape or a polygonal shape (having preferably eight or more vertices). The above plan-view shapes allow the performance of the upper and lower member against rocking to be brought out uniformly, in all directions.
  • The upper member 82 and the lower member 84 of the seismic isolation unit 700 have each projections 821, 841, respectively, that protrude inward from the peripheral edge of each member.
  • FIG. 11 is a schematic partial cross-sectional diagram of an example of a seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention in the case of very large quake magnitude. As illustrated in FIG. 11, in the embodiment where a recess 852 is present in a lateral portion 855 of the sliding member 85, the projections 821, 841 become engaged with the recess 852 in the case of very large quake magnitude. The seismic isolation unit 700 affords thus a significant seismic isolation effect.
  • The upper member and the lower member may have the projections formed along the entire peripheral edge, or formed only along part thereof. However, the projections should be able to engage with the recess of the lateral portion of the sliding member also when the projections are formed only in part of the peripheral edges.
  • The seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention is not limited to having projections on the upper member and the lower member, as described above.
  • The material of the upper member 82 and the lower member 84 is not particularly limited, and may be, for instance, metal, ceramics or plastic. A metal is preferred in terms of durability, more preferably iron or an iron alloy, or an aluminum alloy, yet more preferably iron or an iron alloy. Plastic is preferred on account of its light weight. Among plastics, plastic waste is preferred, as it is inexpensive.
  • In a preferred embodiment, the sliding member 85 is subjected beforehand to a coating treatment, or has a lubricant applied thereon, in order to smoothen thereby sliding of the sliding member 85 on the abutting face 822 of the upper member 82, where the latter abuts the sliding member 85, and on the abutting face 842 of the lower member 84, where the latter abuts the sliding member 85.
  • The sliding member 85 of the seismic isolation unit 700 is formed by the convex top face 851 that abuts the upper member 82, the convex bottom face 853 that abuts the lower member 84, and the peripheral lateral portion 855 between the top face 851 and the bottom face 853.
  • FIGS. 12 to 14 are schematic diagrams illustrating the sliding member 85. FIG. 12 is a schematic plan-view diagram of an example of the sliding member. FIG. 13 is a schematic side-view diagram of an example of the sliding member. FIG. 14 is a schematic cross-sectional diagram of an example of the sliding member along line XIV-XIV in FIG. 12.
  • As illustrated in FIGS. 12 to 14, both the convex top face 851 and bottom face 853 of the sliding member 85 have each formed thereon a curved-surface apex 850. Twelve flat surfaces are formed around each apex 850.
  • More specifically, the top face 851 and the bottom face 853 of the sliding member 85 have each formed thereon an apex 850 shaped as a bowl-like curved surface, the peripheral edge of the apex 850 being circular. Around the apexes 850 there are formed twelve flat surfaces of identical shape. These flat surfaces extend from the edge of each apex 850 up to a peripheral portion 854 of the top face 851 and the bottom face 853.
  • FIGS. 15 to 17 are cross-sectional diagrams illustrating a sliding member 86 shaped differently from the sliding member 85. FIG. 15 is a schematic plan-view diagram of another example of the sliding member. FIG. 16 is a schematic side-view diagram of another example of the sliding member. FIG. 17 is a schematic cross-sectional diagram of another example of the sliding member along line XVII-XVII in FIG. 15.
  • As illustrated in FIGS. 15 to 17, the sliding member 86 has a convex top face 861 abutting the upper member 82; a convex bottom face 863 abutting the lower member 84; and a peripheral lateral portion 865 between the top face 861 and the bottom face 863.
  • The convex top face 861 and bottom face 863 of the sliding member 86 have each an apex 860 formed of twelve flat surfaces. Around the apex 860 is formed of a plurality of flat surfaces more inclined relative to the horizontal direction than the flat surfaces of the apex 860.
  • More specifically, each apex 860 of the top face 861 and of the bottom face 863 of the sliding member 86 is formed by twelve flat surfaces of identical shape, so that the peripheral edge of the apex 860 forms a regular dodecagon. Around the apex 860 there are formed twelve flat surfaces of identical shape. These flat surfaces extend from the edge of each apex 860 up to a peripheral portion 864 of the top face 861 and the bottom face 863.
  • The sliding member 86 is formed by the top face 861 and the bottom face 863, having the above-described shapes, and the peripheral lateral portion 865, between the top face 861 and the bottom face 863, with a recess 862 around the entire circumference of the lateral portion 865.
  • FIGS. 19 to 21 are cross-sectional diagrams illustrating yet another sliding member 87 shaped differently from the sliding member 85 and the sliding member 86. FIG. 19 is a schematic plan-view diagram of yet another example of the sliding member. FIG. 20 is a schematic side-view diagram of yet another example of the sliding member. FIG. 21 is a schematic cross-sectional diagram of yet another example of the sliding member along line XXI-XXI in FIG. 19.
  • As illustrated in FIGS. 19 to 21, both the convex top face 871 and bottom face 873 of the sliding member 87 have each formed thereon a curved-surface apex 870.
  • More specifically, in the top face 871 and the bottom face 873 of the sliding member 87, the part extending from an apex 870 up to a circular peripheral portion 874 of each of the top face 871 and the bottom face 873 is formed by a bowl-shaped curved surface, and peripheral portion 874 forms a circle. The degree of inclination of the curved surface relative to the horizontal direction increases from the apex 870 towards the peripheral portion 874. The shape of the curved surface is the same in the peripheral direction.
  • The sliding member 87 is formed by the top face 871 and the bottom face 873 having the above-described shapes, and a peripheral lateral portion 875, between the top face 871 and the bottom face 873, with a recess 872 around the entire circumference of the lateral portion 875.
  • FIGS. 22 to 24 are cross-sectional diagrams illustrating yet another sliding member 88 shaped differently from the sliding member 85, the sliding member 86 and the sliding member 87. FIG. 22 is a schematic plan-view diagram of yet another example of the sliding member. FIG. 23 is a schematic side-view diagram of yet another example of the sliding member. FIG. 24 is a schematic cross-sectional diagram of yet another example of the sliding member along line XXIV-XXIV in FIG. 22.
  • As illustrated in FIGS. 22 to 24, both the convex top face 881 and bottom face 883 of the sliding member 88 have formed thereon four flat surfaces extending from an apex 880 to a peripheral portion 884 of the top face 881 and the bottom face 883.
  • More specifically, each apex 880 of the top face 881 and of the bottom face 883 of the sliding member 88 is formed by four flat surfaces of identical shape, so that each peripheral portion 884 forms a square. None of the flat surfaces are perfect flat surfaces. Rather, the surfaces are chamfered in such a manner that the inclination angle relative to the horizontal direction increases from the apex 880 towards the peripheral portion 884. As used in the present invention, the term “flat surface” denotes not just perfectly flat surfaces, but also flat surfaces deformed through chamfering or the like.
  • The sliding member 88 is formed by the top face 881 and the bottom face 883 having the above-described shapes, and a peripheral lateral portion 885, between the top face 881 and the bottom face 883, with a recess 882 around the entire circumference of the lateral portion 885.
  • The shape of the top face and the bottom face of the sliding member is not limited to the above. The shape of the top face and the bottom face of the sliding member are explained in detail below.
  • The shapes of the top face and the bottom face of the sliding member are not particularly limited, so long as both are convex. The shapes of the top face and the bottom face may be identical or different. Examples of the top face are explained below, but the examples may apply equally to the bottom face.
  • In preferred embodiments, the top face is formed only by a curved surface (hereafter “embodiment A”); the apex is formed by a curved surface, and the periphery of the apex is formed by a plurality of flat surfaces (hereafter “embodiment B”); the apex is formed by a plurality of flat surfaces, and the periphery of the apex is formed by a plurality of flat surfaces having a greater inclination angle relative to the horizontal direction than the flat surfaces of the apex (hereafter, “embodiment C”); or the apex is formed by a plurality of flat surfaces, and the flat surfaces extend from the center of the apex up to the peripheral edge (hereafter, “embodiment D”). Embodiments A, B and C are preferred among the foregoing.
  • Embodiment A is advantageous in that it results in smooth transition back and forth between a rolling resistance state and a frictional resistance state, and in that changes in resistance in the peripheral direction take place smoothly.
  • Embodiment B is advantageous in that, in the frictional resistance state, the sliding member comes into contact with the upper member and the lower member at four points, as a result of which there is generated a high frictional resistance.
  • Embodiment C is advantageous in that, in the frictional resistance state, the sliding member comes into contact with the upper member and the lower member at three points when rocking is slight, and comes into contact with the upper member and the lower member at four points when rocking is substantial. Hence, frictional resistance varies in accordance with the magnitude of rocking. The seismic isolation effect is thus particularly good in elongated structures such as piers, tall thin buildings and the like.
  • The shape of the curved surface in embodiment A is not particularly limited, but the inclination angle of the curved surface relative to the horizontal direction preferably increases from the apex towards the peripheral edge (for instance, sliding member 87 illustrated in FIGS. 19 to 21). The shape of the curved surface in the peripheral direction may be identical or different.
  • The shape of the curved surface in embodiment B is not particularly limited, but the inclination angle of the curved surface relative to the horizontal direction preferably increases from the apex towards the peripheral edge. The shape of the curved surface in the peripheral direction may be identical or different.
  • The number of peripheral directions of the flat surfaces around the apex is greater than one (two or more), preferably four or more. This allows the sliding member to function uniformly with respect to all rocking directions. Preferably, the number of peripheral directions is no greater than twelve, to facilitate manufacture of the sliding member. The seismic isolation effect is particularly good in elongated structures, such as piers, tall thin buildings and the like, when the number of peripheral directions of the flat surfaces around the apex is four.
  • The shapes of the plurality of flat surfaces may be identical or different, but are preferably identical.
  • The flat surfaces may extend from the edge of the apex up to the peripheral edge of the top face, or up to any position between the edge of the apex and the peripheral edge of the top face. When the flat surfaces extend up to any position between the edge of the apex and the peripheral edge of the top face, the portion between that position and the peripheral edge may be formed by a curved surface. The positions up to which the flat surfaces extend may be identical or different.
  • The number of flat surfaces that are disposed in the radial direction, from the periphery of the apex to the peripheral edge of the top face, may be one (for instance, the sliding member 85 illustrated in FIGS. 12 to 14) or two or more. When the number of flat surfaces that are disposed in the radial direction, from the periphery of the apex to the peripheral edge of the top face, is two or more, the inclination angle relative to the horizontal direction preferably increases from the periphery of the apex towards the peripheral edge of the top face.
  • In the vicinity of the edge of the apex, the inclination angle of the flat surfaces relative to the horizontal direction is preferably greater than the inclination angle of the curved surface relative to the horizontal direction.
  • In embodiment C, the number of flat surfaces of the apex in the peripheral direction is greater than one (two or more), preferably four or more. This allows the sliding member to function uniformly with respect to all rocking directions. Preferably, the number of peripheral directions is no greater than twelve, to facilitate manufacture of the sliding member. The seismic isolation effect is particularly good in elongated structures, such as piers, tall thin buildings and the like, when the number of peripheral directions of the flat surfaces around the apex is four.
  • The shapes of the plurality of flat surfaces of the apex may be identical or different, but are preferably identical.
  • The flat surfaces around the apex may extend from the edge of the apex up to the peripheral edge of the top face, or up to any position between the edge of the apex and the peripheral edge of the top face. When the flat surfaces extend up to any position between the edge of the apex and the peripheral edge of the top face, the portion between that position and the peripheral edge of the top face may be formed by a curved surface. The positions up to which the flat surfaces extend may be identical or different.
  • The number of flat surfaces that are disposed in the radial direction, from the edge of the apex to the peripheral edge of the top face, may be one (for instance, the sliding member 86 illustrated in FIGS. 15 to 17) or two or more. When the number of flat surfaces that are disposed in the radial direction, from the periphery of the apex to the peripheral edge of the top face, is two or more, the inclination angle of the flat surfaces relative to the horizontal direction preferably increases from the periphery of the apex towards the peripheral edge of the top face.
  • In the vicinity of the edge of the apex, the inclination angle of the flat surfaces relative to the horizontal direction is preferably greater than the inclination angle of the curved surface relative to the horizontal direction.
  • In the vicinity of the edge of the apex, the number of flat surfaces of the apex, in the peripheral direction, may be identical to or different from the number of flat surfaces around the apex, in the peripheral direction. Preferably, the numbers of flat surfaces are identical. More preferably, the ends of the flat surfaces of the apex and the ends of the flat surfaces around the apex are located at the same positions.
  • In embodiment D, the number of flat surfaces of the apex in the peripheral direction is greater than one (two or more), preferably four or more. This allows the sliding member to function uniformly with respect to all rocking directions. Preferably, the number of peripheral directions is no greater than twelve, to facilitate manufacture of the sliding member. The seismic isolation effect is particularly good in elongated structures, such as piers, tall thin buildings and the like, when the number of peripheral directions of the flat surfaces around the apex is four.
  • The shapes of the plurality of flat surfaces of the apex may be identical or different, but are preferably identical.
  • The flat surfaces need not be perfectly flat. Preferably, however, the surfaces are slightly chamfered in such a manner that the inclination angle of the surface relative to the horizontal direction increases from the apex towards the peripheral edge (for instance, the sliding member 88 illustrated in FIGS. 22 to 24).
  • The sliding member 85 is formed by the top face 851 and the bottom face 853, having the above-described shapes, and by the peripheral lateral portion 855 provided therebetween.
  • The recess 852 is provided around the entire circumference of the lateral portion 855 of the sliding member 85. However, the present invention is not limited thereto, and the recess may be provided in just part of the lateral portion in the circumferential direction. The recess may also be omitted.
  • When the recess is provided around the entire circumference of the lateral portion of the sliding member, the projections of the upper member and the lower member engage easily with the recess, regardless of the orientation of the sliding member.
  • The strength of the sliding member in the vertical direction is greater when the recess is provided only in part of the lateral portion of the sliding member, in the circumferential direction, on account of the recess-free portion.
  • The sliding member 85 may be integrally formed as a single body, or through assembly of a plurality of members.
  • The material of the sliding member 85 is not particularly limited, and may be, for instance, a metal or ceramics. A metal is preferred in terms of durability, more preferably iron or an iron alloy, or an aluminum alloy, and yet more preferably iron or an iron alloy.
  • In a preferred embodiment, the sliding member 85 is coated or has a lubricant applied thereto beforehand, in order to achieve smooth sliding of the sliding member 85 on the top face 851 and the bottom face 853.
  • The sliding member 85 is sandwiched between the upper member 82 and the lower member 84 in such a way so as to be able to slide therebetween. This way, the projections 821 at the peripheral edge of the upper member 82 and the projections 841 at the peripheral edge of the lower member 84 can engage with the recess 852 of the lateral portion 855 of the sliding member 85.
  • As illustrated in FIG. 9, the sliding member 85 of the seismic isolation unit 700 is ordinarily disposed so as to abut the respective central portions of the abutting faces 822, 842 of the upper member 82 fixed to the upper structure 1 and the lower member 84 fixed to the base member 3. (This position of the sliding member 85 is called an “initial position”).
  • FIG. 18 is a schematic partial cross-sectional diagram of an example of the seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention during rocking.
  • When the lower member 84 shifts to the right in the figure, as illustrated in FIG. 18, upon rocking due to a quake or the like, a force is transmitted to the sliding member 85 that abuts the lower member 84, whereupon the sliding member 85 tilts counterclockwise in the figure. Rocking energy can thus be absorbed through tilting of the sliding member 85.
  • The tilted sliding member 85 slides then sandwiched between the upper member 82 and the lower member 84, as it returns or after having returned from the tilted attitude on account of its own weight. Sliding of the sliding member 85 against the upper member 82 and the lower member 84 gives rise to frictional forces. Rocking energy can thus be absorbed also through sliding of the sliding member 85.
  • Sliding of the sliding member 85 is also caused by a restoring force that is generated when the sliding member 85 shifts from the initial position owing to the rocking. Herein, the restoring force derives from the fact that both the abutting face 822 of the upper member 82 against the sliding member 85 and the abutting face 842 of the lower member 84 against the sliding member 85 are concave, while the top face 851 that comes into contact with the upper member 82 and the bottom face 853 that comes into contact with the lower member 84 are both convex. The efficiency with which the seismic isolation unit 700 absorbs rocking energy becomes therefore very high.
  • The above action of the sliding member 85 can take place in all horizontal directions.
  • When the magnitude of the quake is very large, the lower member 84 fixed to the base member 83 is substantially displaced towards the right in the figure relative to the upper member 82 fixed to the upper structure 1, for instance as illustrated in FIG. 11. Thereupon, the portion of the recess 852 of the lateral portion 855 of the sliding member 85 on the left of the figure becomes engaged with the projection 841 of the peripheral edge (left of the figure) of the lower member 84. Meanwhile, the portion of the recess 852 of the lateral portion 855 of the sliding member 85 on the right of the figure becomes engaged with the projection 841 of the peripheral edge (right of the figure) of the upper member 82.
  • The lower member 84 becomes locked thereby on the upper member 82 by way of the sliding member 85. The lower member cannot be further displaced beyond this state (towards the right in the figure). As a result, the upper member 82 cannot move completely away from its position relative to the lower member 84.
  • Moreover, as illustrated in FIG. 11, when a force acts on the lower member 84 so as to urge the lower member 84 to move towards the right in FIG. 11 relative to the upper member 82, the lower member 84 exerts a force on the sliding member 85 from the left, so as to urge the sliding member 85 towards the right, while the upper member 82 exerts a force on the sliding member 85 from the right, so as to urge the sliding member 85 towards the left. As a result, the sliding member 85 as a whole becomes slightly tilted in the lower left to upper right direction. The own weight of the sliding member 85 exerts then a force that urges the upper member 82 to move rightwards and the lower member 84 to move leftwards. The direction of the force is the inverse of the direction of the displacement caused by the quake, that is, the force acts in such a way so as to restore the relative positions of the upper member 82 and the lower member 84.
  • The seismic isolation unit used in the floor panel assembly of the first embodiment of the present invention is not particularly limited. For instance, known conventional seismic isolation units can be used in the present invention. Specific examples thereof include, for instance, the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-84014, the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-242371, the seismic isolation system disclosed in Japanese Patent Application Laid-open No. 2006-283959, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2007-71380, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2007-225101, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2009-24473, the seismic control system disclosed in Japanese Patent Application Laid-open No. 2009-41351, the seismic control system disclosed in Japanese Utility Model Registration No. 3117029 and the seismic control system disclosed in Japanese Utility Model Registration No. 3118144.
  • The floor panel assembly of the first embodiment of the present invention comprises the above-described seismic isolation unit and the above-described floor panel of the first embodiment of the present invention, wherein the upper member of the seismic isolation unit and the panel member of the floor panel are adjacent and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the floor unit of the floor panel.
  • The combination method is not particularly limited, and may involve, for instance, causing the seismic isolation unit 700 and the floor panel 100 to be adjacent to each other, in such a manner that the upper member 82 of the seismic isolation unit 700 comes into contact with the panel member 3 of the floor panel 100 but does not come into contact with the floor unit member 2 of the floor panel 100.
  • The operation of the floor panel assembly of the first embodiment of the present invention is explained next.
  • Upon rocking due to a quake or the like, the upper member of the seismic isolation unit and the panel member of the floor panel slide, as a single body, on the lower member of the seismic isolation unit and the floor unit of the floor panel. The energy of the quake is absorbed thereupon through tilting and sliding of the sliding member of the seismic isolation unit and through compression of the elastic insert member of the floor panel.
  • Thereafter, the restoring force that urges the sliding member of the seismic isolation unit to the initial position, and the restoring force exerted by the elastic insert member of the floor panel and which pushes back the displaced panel member, cause the upper member of the seismic isolation unit and the panel member of the floor panel to slide, as a single body, on the lower member of the seismic isolation unit and on the floor unit of the floor panel, and to return thereby to an original position.
  • The floor panel assembly of the first embodiment of the present invention, thus, can absorb quake energy, and allows restoring the position of an upper structure to an original position. The floor panel assembly affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • A floor panel assembly of a second embodiment of the present invention is explained next.
  • The floor panel assembly of the second embodiment of the present invention comprises
  • a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
  • the above-described floor panel of the second embodiment of the present invention,
  • wherein the upper member of the seismic isolation unit and the floor unit member are adjacent, and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the base member.
  • The seismic isolation unit used in the floor panel assembly of the second embodiment of the present invention is the same seismic isolation unit as used in the floor panel assembly of the first embodiment of the present invention.
  • The method for combining the above-described seismic isolation unit and the above-described floor panel of the second embodiment of the present invention is not particularly limited. For instance, the method may involve causing the seismic isolation unit 700 and the floor panel 400 to be adjacent to each other, in such a manner that the upper member 82 of the seismic isolation unit 700 comes into contact with the floor unit member 7 of the floor panel 400, and in such a manner that the lower member 84 of the seismic isolation unit 700 does not come into contact with the floor unit member 7 of the operation unit 400 (for instance, by using a seismic isolation unit 700 in which the lower member 84 is smaller than the upper member 82).
  • FIG. 10 is a schematic diagram illustrating an example of a combination of the seismic isolation unit in the floor panel assembly of the second embodiment of the present invention and the floor panel of the second embodiment of the present invention. FIG. 10A is a plan-view diagram, and FIG. 10B is a horizontal end-view diagram of FIG. 10A along the line XB-XB.
  • A floor panel assembly 1000 of the second embodiment of the present invention illustrated in FIG. 10 comprises a rectangular base member 1 that is paved with four seismic isolation units 800 and 56 floor unit members 7 e of floor panels 650 of the second embodiment of the present invention having all a square plan-view shape and identical size, the seismic isolation units 800 and the floor unit members 7 e being adjacent to each other, in such a manner that the sides of the respective square shapes coincide, and being separated from a wall 9, wherein rubbers 8 a, coil springs 8 b and flat springs 8 c, as elastic insert members, are provided between side faces of the floor unit members 7 e and the wall 9.
  • Upper members 82 a of the seismic isolation units 800 come into contact with the floor unit members 7 e of the floor panels 650, while lower members 84 a of the seismic isolation units 800 are smaller than the upper members 82 a and hence do not come into contact with the floor unit members 7 e of the floor panels 650.
  • In the above arrangement, the upper members 82 a of the seismic isolation units 800 and the floor unit members 7 e of the floor panels 650 are combined in such a manner that they can slide together on the lower members 84 a of the seismic isolation units 800 and the base member 1.
  • The operation of the floor panel assembly of the second embodiment of the present invention is explained next.
  • Upon rocking due to an earthquake or the like, the upper members of the seismic isolation units and the floor unit members of the floor panels make up a single body wherein the upper members of the seismic isolation units slide on the lower members of the seismic isolation units while the floor unit members slide on the base member. The energy of the quake is absorbed thereupon through tilting and sliding of the sliding member of the seismic isolation units and through compression of the elastic insert member of the floor panels.
  • Thereafter, the restoring force that urges the sliding member of the seismic isolation units to the initial position, and the restoring force exerted by the elastic insert member of the floor panels and which pushes back the displaced panel member, cause the upper members of the seismic isolation units and the floor unit members of the floor panels to slide, as a single body, on the lower members of the seismic isolation units and on the floor units of the floor panels, and to return thereby to an original position.
  • The floor panel assembly of the second embodiment of the present invention, thus, can absorb quake energy, and allows restoring the position of an upper structure to an original position. The floor panel assembly affords thus a seismic isolation effect, even in case of quakes of substantial magnitude.
  • Examples of preferred embodiments of the floor panel of the first embodiment and second embodiment of the present invention and the floor panel assembly of first embodiment and second embodiment of the present invention have been explained above. The present invention, however, is not particularly limited thereto and may accommodate various modifications and improvements.
  • For instance, various members may be formed integrally, or as a combination of a plurality of members. The members may also be chamfered. The construction of the various elements can be modified into any other construction that allows the element to perform the same function as before being modified.

Claims (18)

1. A floor panel, comprising:
a sliding unit that comprises a floor unit member having a lower portion that can come into contact with a base member and an upper portion supported on the lower portion; and a panel member having a structure fixing face that can be fixed to an upper structure, and an abutting face that abuts an upper face of the upper portion of the floor unit member, such that the abutting face is provided so as to be slidable on the upper face; and
an elastic insert member provided between a wall and a side face of the panel member of the sliding unit.
2. The floor panel according to claim 1, wherein the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member is embossed, whereby the abutting face is slidable on the upper face.
3. The floor panel according to claim 1, wherein the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member is formed from a sliding material, whereby the abutting face is slidable on the upper face.
4. The floor panel according to claim 1, further comprising a second elastic insert member provided between the wall and a side face of the floor unit member of the sliding unit.
5. The floor panel according to claim 4, wherein the compression modulus of the second elastic insert member is different from the compression modulus of the elastic insert member.
6. A floor panel, comprising:
a floor unit member having a lower portion that can come into contact with a base member, and an upper portion supported on the lower portion and having a structure fixing face that can be fixed to an upper structure; and
an elastic insert member provided between a wall and a side face of the floor unit member,
wherein a lower face of the lower portion in contact with the base member is slidable on an upper face of the base member that comes into contact with the lower face.
7. The floor panel according to claim 6, wherein the lower face of the lower portion of the floor unit member is embossed, whereby the lower face is slidable on the upper face.
8. The floor panel according to claim 6, wherein the lower face of the lower portion of the floor unit member is formed from a sliding material, whereby the lower face is slidable on the upper face.
9. A floor panel assembly, comprising:
a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
a floor panel, the floor panel comprising:
a sliding unit that comprises a floor unit member having a lower portion that can come into contact with a base member and an upper portion supported on the lower portion; and a panel member having a structure fixing face that can be fixed to an upper structure, and an abutting face that abuts an upper face of the upper portion of the floor unit member, such that the abutting face is provided so as to be slidable on the upper face; and
an elastic insert member provided between a wall and a side face of the panel member of the sliding unit,
wherein the upper member of the seismic isolation unit and the panel member of the floor panel are adjacent and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the floor unit member of the floor panel.
10. A floor panel assembly, comprising:
a seismic isolation unit that comprises an upper member that can be fixed to an upper structure; a lower member that can be fixed to a base member; and a sliding member slidably sandwiched between the upper member and the lower member, such that an abutting face of the upper member against the sliding member, and an abutting face of the lower member against the sliding member, are both concave surfaces, and the sliding member is formed by a convex top face that abuts the upper member, a convex bottom face that abuts the lower member, and a peripheral lateral portion between the top face and the bottom face; and
a floor panel, the floor panel comprising:
a floor unit member having a lower portion that can come into contact with a base member, and an upper portion supported on the lower portion and having a structure fixing face that can be fixed to an upper structure; and
an elastic insert member provided between a wall and a side face of the floor unit member,
wherein a lower face of the lower portion in contact with the base member is slidable on an upper face of the base member that comes into contact with the lower face,
wherein the upper member of the seismic isolation unit and the floor unit member are adjacent, and are combined so as to be slidable, as a single body, on the lower member of the seismic isolation unit and on the base member.
11. The floor panel assembly according to claim 9,
wherein the seismic isolation unit is configured such that
the upper member and the lower member each have projections that protrude inward from the peripheral edges thereof,
a recess is formed in part or the entirety of the peripheral direction of the lateral portion of the sliding member, and
when the sliding member slides between the upper member and the lower member, the projection at the peripheral edge of the upper member and the projection at the peripheral edge of the lower member can engage with the recess in the lateral portion of the sliding member.
12. The floor panel assembly according to claim 9,
wherein the seismic isolation unit is configured such that one or both of the top face and the bottom face of the sliding member is formed by a curved surface.
13. The floor panel assembly according to claim 9,
wherein the seismic isolation unit is configured such that one or both of the top face and the bottom face of the sliding member has an apex formed by a curved surface, and the periphery of the apex is formed by a plurality of flat surfaces.
14. The floor panel assembly according to claim 9,
wherein the seismic isolation unit is configured such that one or both of the top face and the bottom face of the sliding member has an apex formed by a plurality of flat surfaces, and the periphery of the apex is formed by a plurality of flat surfaces having a greater inclination angle, relative to a horizontal direction, than that of the flat surfaces of the apex.
15. The floor panel according to claim 2, further comprising a second elastic insert member provided between the wall and a side face of the floor unit member of the sliding unit.
16. The floor panel according to claim 3, further comprising a second elastic insert member provided between the wall and a side face of the floor unit member of the sliding unit.
17. The floor panel assembly according to claim 9,
wherein the upper face of the upper portion of the floor unit member and/or the abutting face of the panel member is embossed, whereby the abutting face is slidable on the upper face.
18. The floor panel assembly according to claim 10,
wherein the lower face of the lower portion of the floor unit member is embossed, whereby the lower face is slidable on the upper face.
US12/711,764 2009-07-15 2010-02-24 Floor-panel and floor-panel assemblies Abandoned US20110011013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-182839 2009-07-15
JP2009182839A JP2011021451A (en) 2009-07-15 2009-07-15 Floor panel and floor panel assembly

Publications (1)

Publication Number Publication Date
US20110011013A1 true US20110011013A1 (en) 2011-01-20

Family

ID=43464277

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/711,764 Abandoned US20110011013A1 (en) 2009-07-15 2010-02-24 Floor-panel and floor-panel assemblies

Country Status (4)

Country Link
US (1) US20110011013A1 (en)
JP (1) JP2011021451A (en)
KR (1) KR101088861B1 (en)
CN (1) CN101956447B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100095608A1 (en) * 2007-02-06 2010-04-22 Alga S.P.A. Sliding pendulum seismic isolator
US20150107166A1 (en) * 2013-03-15 2015-04-23 EQX Global LLC Systems and methods for providing base isolation against seismic activity
US20160118707A1 (en) * 2014-10-24 2016-04-28 Tessco Communications Incorporated Antenna floor tile for a raised floor system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855916B2 (en) * 2011-11-17 2016-02-09 特許機器株式会社 Seismic reduction device
JP2015068161A (en) * 2013-09-30 2015-04-13 株式会社金澤製作所 Base isolation rocking floor

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US846249A (en) * 1906-06-16 1907-03-05 Paul Seiler Foundation for buildings.
US1789576A (en) * 1929-12-13 1931-01-20 Oliver S Bowman Resilient hard-surfaced floor
US2002934A (en) * 1933-04-10 1935-05-28 George R Collins Building construction
US2035143A (en) * 1935-07-29 1936-03-24 Grace F Marquis Earthquake protected building construction
US2115238A (en) * 1935-12-12 1938-04-26 Walter E Rutledge Soundproof building construction
US2116654A (en) * 1935-02-21 1938-05-10 William D Barge Soundproof building construction
USRE26239E (en) * 1967-07-18 Floor pad
US3510999A (en) * 1967-08-08 1970-05-12 Carl Hubacher Shock absorption system
US4006505A (en) * 1974-07-09 1977-02-08 Kober Ag Sliding swing support for bridges or similar supporting structures
US4436274A (en) * 1981-02-23 1984-03-13 The B. F. Goodrich Company Vibration dampening support
US4945697A (en) * 1988-04-28 1990-08-07 Saar-Gummiwerk Gmbh Floor tile and floor
US5310156A (en) * 1991-10-03 1994-05-10 Fujitsu Limited Earthquake-proof leg support structure of electronic apparatus
US5365710A (en) * 1993-02-12 1994-11-22 Connor/Aga Sports Flooring Corporation Resilient subfloor pad
US5461835A (en) * 1993-06-11 1995-10-31 Tarics; Alexander G. Composite seismic isolator and method
US5564237A (en) * 1993-08-04 1996-10-15 Yoneda; Ryozo Earthquake resisting support construction for structures
US5818549A (en) * 1996-04-26 1998-10-06 Sharp Kabushiki Kaisha Active matrix substrate and manufacturing method of the same
US5964066A (en) * 1995-03-17 1999-10-12 Mori; Kuninori Earthquake-proof foundation
US6052955A (en) * 1995-02-24 2000-04-25 Haider; Eduard Vibrating floor
US6085474A (en) * 1998-03-16 2000-07-11 Mizuno; Tsutomu Device for minimizing earthquake shocks to a small building
US6122873A (en) * 1998-06-12 2000-09-26 Connor/Aga Sports Flooring Corporation Subfloor assembly for athletic playing surface having improved deflection characteristics
US6138967A (en) * 1997-03-07 2000-10-31 Fujitsu Limited Foot structure for apparatus
US6189279B1 (en) * 1999-02-12 2001-02-20 L&P Property Management Company Floating floor underlay
US6230460B1 (en) * 2000-03-21 2001-05-15 Wesley Howard Huyett Resilient flooring system
US20020108341A1 (en) * 1996-08-15 2002-08-15 Hamar Douglas J. Floor system
US6474030B1 (en) * 1999-02-03 2002-11-05 Nippon Pillar Packing Co., Ltd. Pile foundation structure
US20020166296A1 (en) * 2001-05-04 2002-11-14 Kim Jae Kwan Directional rolling pendulum seismic isolation systems and roller assembly therefor
US20050193670A1 (en) * 2003-05-29 2005-09-08 Robbins, Inc. Panel-type subfloor assembly for anchored/resilient floor
US20050250308A1 (en) * 2004-05-07 2005-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20060174555A1 (en) * 2006-05-12 2006-08-10 Earthquake Protection Systems, Inc. Sliding Pendulum Seismic Isolation System
US7096630B1 (en) * 2003-10-01 2006-08-29 Keene James R Composite tangled filament mat with overlying liquid moisture barrier for cushioning and venting of vapor, and for protection of underlying subfloor
US20070062139A1 (en) * 2005-08-31 2007-03-22 Sealed Air Corporation (Us) Floor underlayment
US20090013619A1 (en) * 2007-07-13 2009-01-15 Carlos Marroquin Earthquake resistant house
US20090094906A1 (en) * 2007-10-12 2009-04-16 Takanori Sato Seismic isolation apparatus and structure having seismic isolation apparatus
US20090158676A1 (en) * 2007-12-19 2009-06-25 Shoichi Sakamoto Air-floating-type base isolation device which uses a sliding expanding pipe shielding material
US7814712B2 (en) * 2006-11-28 2010-10-19 Chong-Shien Tsai Shock suppressor
US7863607B2 (en) * 2007-06-14 2011-01-04 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
US7861477B2 (en) * 2005-06-10 2011-01-04 Pirelli & C. S.P.A. Method for making a sound-insulating load-bearing floor
US7908810B2 (en) * 2005-06-30 2011-03-22 United States Gypsum Company Corrugated steel deck system including acoustic features

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189455A (en) * 1983-03-23 1983-11-05 株式会社大林組 Vibration dampening apparatus of floor
IT1204842B (en) * 1985-03-20 1989-03-10 Tokoco Ltd EQUIPMENT FOR ISOLATION OF VIBRATIONS IN PARTICULAR VIBRATIONS FROM EARTHQUAKE
JPH0420105Y2 (en) * 1985-10-11 1992-05-08
JPH0618966Y2 (en) * 1988-04-16 1994-05-18 功生 林 Floor material
JPH0643745B2 (en) * 1988-06-22 1994-06-08 功生 林 Floor material
JPH0253437U (en) * 1988-10-12 1990-04-18
JPH076276B2 (en) * 1989-03-20 1995-01-30 功生 林 Seismic isolation device
JPH0932261A (en) * 1995-07-17 1997-02-04 Ohbayashi Corp Base isolation floor structure
KR100722746B1 (en) 2004-12-07 2007-05-31 주식회사 엘지화학 The Noise Reduction Supporting System for Raised Access Floors
JP4613333B2 (en) * 2005-04-01 2011-01-19 株式会社金澤製作所 Seismic isolation device
CN2784667Y (en) * 2005-04-05 2006-05-31 蔡崇兴 Shock isolator
JP2007225101A (en) * 2006-02-23 2007-09-06 Kanazawa Seisakusho:Kk Vibration control device
JP2008116039A (en) * 2006-10-12 2008-05-22 Takanori Sato Base isolation device

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE26239E (en) * 1967-07-18 Floor pad
US846249A (en) * 1906-06-16 1907-03-05 Paul Seiler Foundation for buildings.
US1789576A (en) * 1929-12-13 1931-01-20 Oliver S Bowman Resilient hard-surfaced floor
US2002934A (en) * 1933-04-10 1935-05-28 George R Collins Building construction
US2116654A (en) * 1935-02-21 1938-05-10 William D Barge Soundproof building construction
US2035143A (en) * 1935-07-29 1936-03-24 Grace F Marquis Earthquake protected building construction
US2115238A (en) * 1935-12-12 1938-04-26 Walter E Rutledge Soundproof building construction
US3510999A (en) * 1967-08-08 1970-05-12 Carl Hubacher Shock absorption system
US4006505A (en) * 1974-07-09 1977-02-08 Kober Ag Sliding swing support for bridges or similar supporting structures
US4436274A (en) * 1981-02-23 1984-03-13 The B. F. Goodrich Company Vibration dampening support
US4945697A (en) * 1988-04-28 1990-08-07 Saar-Gummiwerk Gmbh Floor tile and floor
US5310156A (en) * 1991-10-03 1994-05-10 Fujitsu Limited Earthquake-proof leg support structure of electronic apparatus
US5365710A (en) * 1993-02-12 1994-11-22 Connor/Aga Sports Flooring Corporation Resilient subfloor pad
US5461835A (en) * 1993-06-11 1995-10-31 Tarics; Alexander G. Composite seismic isolator and method
US5564237A (en) * 1993-08-04 1996-10-15 Yoneda; Ryozo Earthquake resisting support construction for structures
US6052955A (en) * 1995-02-24 2000-04-25 Haider; Eduard Vibrating floor
US5964066A (en) * 1995-03-17 1999-10-12 Mori; Kuninori Earthquake-proof foundation
US5818549A (en) * 1996-04-26 1998-10-06 Sharp Kabushiki Kaisha Active matrix substrate and manufacturing method of the same
US20020108341A1 (en) * 1996-08-15 2002-08-15 Hamar Douglas J. Floor system
US6138967A (en) * 1997-03-07 2000-10-31 Fujitsu Limited Foot structure for apparatus
US6085474A (en) * 1998-03-16 2000-07-11 Mizuno; Tsutomu Device for minimizing earthquake shocks to a small building
US6122873A (en) * 1998-06-12 2000-09-26 Connor/Aga Sports Flooring Corporation Subfloor assembly for athletic playing surface having improved deflection characteristics
US6474030B1 (en) * 1999-02-03 2002-11-05 Nippon Pillar Packing Co., Ltd. Pile foundation structure
US6189279B1 (en) * 1999-02-12 2001-02-20 L&P Property Management Company Floating floor underlay
US6230460B1 (en) * 2000-03-21 2001-05-15 Wesley Howard Huyett Resilient flooring system
US20020166296A1 (en) * 2001-05-04 2002-11-14 Kim Jae Kwan Directional rolling pendulum seismic isolation systems and roller assembly therefor
US20050193670A1 (en) * 2003-05-29 2005-09-08 Robbins, Inc. Panel-type subfloor assembly for anchored/resilient floor
US7096630B1 (en) * 2003-10-01 2006-08-29 Keene James R Composite tangled filament mat with overlying liquid moisture barrier for cushioning and venting of vapor, and for protection of underlying subfloor
US20050250308A1 (en) * 2004-05-07 2005-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7861477B2 (en) * 2005-06-10 2011-01-04 Pirelli & C. S.P.A. Method for making a sound-insulating load-bearing floor
US7908810B2 (en) * 2005-06-30 2011-03-22 United States Gypsum Company Corrugated steel deck system including acoustic features
US20070062139A1 (en) * 2005-08-31 2007-03-22 Sealed Air Corporation (Us) Floor underlayment
US20060174555A1 (en) * 2006-05-12 2006-08-10 Earthquake Protection Systems, Inc. Sliding Pendulum Seismic Isolation System
US7814712B2 (en) * 2006-11-28 2010-10-19 Chong-Shien Tsai Shock suppressor
US7863607B2 (en) * 2007-06-14 2011-01-04 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
US20090013619A1 (en) * 2007-07-13 2009-01-15 Carlos Marroquin Earthquake resistant house
US20090094906A1 (en) * 2007-10-12 2009-04-16 Takanori Sato Seismic isolation apparatus and structure having seismic isolation apparatus
US20090158676A1 (en) * 2007-12-19 2009-06-25 Shoichi Sakamoto Air-floating-type base isolation device which uses a sliding expanding pipe shielding material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100095608A1 (en) * 2007-02-06 2010-04-22 Alga S.P.A. Sliding pendulum seismic isolator
US8011142B2 (en) * 2007-02-06 2011-09-06 Alga S.P.A. Sliding pendulum seismic isolator
US20150107166A1 (en) * 2013-03-15 2015-04-23 EQX Global LLC Systems and methods for providing base isolation against seismic activity
US9097027B2 (en) * 2013-03-15 2015-08-04 EQX Global LLC Systems and methods for providing base isolation against seismic activity
US9334648B2 (en) * 2013-03-15 2016-05-10 Paul J. Segas Systems and methods for providing base isolation against seismic activity
US20160118707A1 (en) * 2014-10-24 2016-04-28 Tessco Communications Incorporated Antenna floor tile for a raised floor system
US9812758B2 (en) * 2014-10-24 2017-11-07 Tessco Communications Incorporated Antenna floor tile for a raised floor system

Also Published As

Publication number Publication date
CN101956447B (en) 2014-06-11
CN101956447A (en) 2011-01-26
KR20110007017A (en) 2011-01-21
JP2011021451A (en) 2011-02-03
KR101088861B1 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
US20110011013A1 (en) Floor-panel and floor-panel assemblies
JP5774266B2 (en) Sliding alignment support and its usage
EA038693B1 (en) Multi-purpose tile system
WO2015030255A1 (en) Free access floor
US6085474A (en) Device for minimizing earthquake shocks to a small building
CN104929245A (en) Negative-rigidity seismic isolation support
JP2008169857A (en) Base isolation supporting device and base isolation constructing method
JP2008169548A (en) Sliding bearing
JP6118194B2 (en) Soundproof floor structure
KR101462830B1 (en) Flooring member for floor noise prevention and floor construction method using the same
US11965292B2 (en) Modular pavement system with a wear-protective system
JP2011021739A (en) Base isolation unit
JP3198133U (en) OA floor panel and OA floor panel assembly
JP6152406B2 (en) Rubber plate shock absorber and air levitation type seismic isolation device
KR102134909B1 (en) Cushion mat using magnet module
JP2011021471A (en) Base isolation device
JP2012021382A (en) Base-isolating device
JPH07508322A (en) Earthquake mounts for buildings and structures
KR102528564B1 (en) Interlayer noise abatement system
JP3138307B2 (en) Seismic isolation floor members
EP3402941A1 (en) Support element for raised surfaces
TWI258523B (en) Spherical damper capable of damping and absorbing vibration energy
JPH1037519A (en) Base isolating rolling bearing for structure
JP2005207140A (en) Double floor support structure
JP2002139100A (en) Sliding bearing type base isolation device

Legal Events

Date Code Title Description
AS Assignment

Owner name: KANAZAWA SEISAKUSHO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANAZAWA, MITSUO;REEL/FRAME:024108/0285

Effective date: 20090917

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION