US20110002753A1 - Threaded concrete anchor - Google Patents

Threaded concrete anchor Download PDF

Info

Publication number
US20110002753A1
US20110002753A1 US12/498,191 US49819109A US2011002753A1 US 20110002753 A1 US20110002753 A1 US 20110002753A1 US 49819109 A US49819109 A US 49819109A US 2011002753 A1 US2011002753 A1 US 2011002753A1
Authority
US
United States
Prior art keywords
inches
height
fastener
helical thread
shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/498,191
Other versions
US8322960B2 (en
Inventor
Yongping Gong
Cheryl L. Panasik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Priority to US12/498,191 priority Critical patent/US8322960B2/en
Assigned to ILLINOIS TOOL WORKS INC. reassignment ILLINOIS TOOL WORKS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GONG, YONGPING, PAMASIK, CHERYL L.
Assigned to ILLINOIS TOOL WORKS INC. reassignment ILLINOIS TOOL WORKS INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT OF ASSIGNOR'S INTEREST PREVIOUSLY RECORDED ON REEL 022918 FRAME 0568. ASSIGNOR(S) HEREBY CONFIRMS THE "ASSIGNOR: PAMASIK, CHERYL L." SHOULD BE SPELLED "PANASIK, CHERYL L.". Assignors: GONG, YONGPING, PANASIK, CHERYL L.
Priority to PCT/US2010/036635 priority patent/WO2011005379A1/en
Priority to EP10797493.3A priority patent/EP2452085B1/en
Priority to DK10797493.3T priority patent/DK2452085T3/en
Publication of US20110002753A1 publication Critical patent/US20110002753A1/en
Application granted granted Critical
Publication of US8322960B2 publication Critical patent/US8322960B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0026Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being a hard non-organic material, e.g. stone, concrete or drywall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0047Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw the ridge being characterised by its cross-section in the plane of the shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0052Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw the ridge having indentations, notches or the like in order to improve the cutting behaviour

Definitions

  • the present invention relates generally to concrete anchors. More particularly, the present invention relates to an improved one piece threaded anchor for use in concrete.
  • Concrete anchors are well known in the art.
  • One type of anchor is a screw anchor.
  • Such an anchor has a shank with an external thread.
  • the anchor is threaded into an opening or bore drilled into the concrete.
  • the threads engage the wall of the opening and hold the anchor in the concrete.
  • the holding strength also referred to as resistance to pull out, depends upon the engagement of the threads with the concrete.
  • Another type of anchor is a multi-piece anchor that includes a bolt or like element (having a shank) with a diverging (shaped) end and a sleeve or wedge elements with a shape complementary to the anchor end.
  • the sleeve or wedges expand outward to engage the inside of the opening as they are urged outward by the complementary shaped elements.
  • Screw anchors serve their function well, however, when the concrete around the screw anchor is cracked, problems arise with respect to meeting pullout requirements. As for the multi-piece anchor systems, these function well, however, they are significantly more complex and costly compared to screw type anchors and installation is more labor intensive.
  • such a fastener is a one-piece fastener and functions well and meet requirements even installed in concrete with a crack in-line with the fastener body.
  • a fastener for use in concrete includes a shank and a head.
  • the shank has a tip distal most from the head.
  • the shank includes a first helical thread formation having a thread form thereon formed from two portions disposed upon opposite lateral sides of the thread form.
  • the thread form has a root and the two portions include an alternating series of lobe members and base portions.
  • the lobe members and base portions each have a height as measured from the root.
  • the height of the lobe members is greater than the height of the base portions and the height of the base portions is greater than zero.
  • the shank includes a second helical thread formation disposed adjacent to and spaced from the first helical thread formation.
  • the second helical thread formation has a height that is less than the height of the lobe members.
  • the height of the lobe members measured from the root is about 0.040 inches to about 0.180 inches and the first helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches.
  • the second helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches.
  • the first and second helical thread forms have equal pitch distances.
  • a present fastener has a length that is greater than or equal to about 1.5 inches and the first helical thread form has an outside diameter that is greater than or equal to about 0.187 inches.
  • FIG. 1 is a plan view of a threaded concrete anchor embodying the principles of the present invention
  • FIG. 2 is a perspective view of a thread form showing the relative heights and widths of various portions of the thread;
  • FIG. 3 is a top plan view of the thread form as shown in FIG. 2 ;
  • FIG. 4 is a graphical representation of the load vs. displacement results shown in Table 1.
  • FIG. 1 there is shown a threaded concrete anchor 10 embodying the principles of the present invention.
  • the anchor includes generally a shank 12 and a head 14 .
  • the illustrated anchor head 14 includes a hexagonal driver engagement portion 16 contiguous with an intermediate washer portion 18 . It will, however, be appreciated that many different types of driver engagement portions can be used, which driver portions will be recognized by those skilled in the art.
  • the shank 12 is formed with a tip 20 having a bevel 22 and a flat 24 at the end thereof
  • a first helical thread formation 26 is provided on the shank 12 from about the tip 20 to a transition region 28 spaced from the integral washer 18 .
  • a second lower height helical thread 30 is formed (preferably about equidistant) between the first threads 26 , as it winds about the shank 12 .
  • the present anchor 10 has been configured to reduce driving or installation torque which in turn permits the anchor 10 to be driven deeper.
  • the present anchor 10 has also been configured to better hold (i.e., exhibit increased resistance to pull out), compared to know threaded anchors, when threaded into concrete. Accordingly, the heights and widths of various portions of the thread form 32 and the rate of change of the heights and widths of these portions are varied. More particularly, in the present embodiment, the thread form 32 is formed from two symmetrical portions 34 a,b which are disposed upon opposite lateral sides of the thread form 32 , as viewed along the longitudinal extent (e.g., along the line indicated at 36 ) of the thread form, as best seen in FIG. 3 . Alternatively, although not shown, the thread form can be non-symmetrical.
  • the thread form 32 comprises an alternating series of boss or lobe members 38 , and base portions 40 .
  • the boss or lobe members 38 effectively extend laterally outwardly and upwardly with respect to the base portions 40 .
  • the base portions 40 serve as longitudinally extending rib members for strengthening the thread form (as defined by the series of boss or lobe members 38 ), and do not substantially interact with the concrete as the fastener 10 is threaded into the concrete.
  • each boss or lobe member 38 has a corresponding base portion 40 , and that each boss or lobe member 38 and each base portion 40 , defines a crest portion 42 .
  • the paired combination of each boss or lobe member 38 and its corresponding base portion 40 together define a thread unit 44 which has, for example, a first end portion 46 and a second end portion 48 .
  • the first end portion 46 a of the thread unit 44 a which includes a particular boss or lobe member 38 a and its corresponding base portion 40 a, shares or defines an interface with the second end portion 48 b of an adjacent thread unit 44 b.
  • each one of the thread units 44 has an arrowhead-like configuration. Other profiles or configurations are anticipated.
  • the 10 anchor can be manufactured so that the lead form 32 extends helically around the shank 14 portion with the first end portions 46 oriented toward the tip 20 of the anchor 10 , which exhibits desirable insertion characteristics with respect to certain substrate materials, such as, concrete.
  • substrate materials such as, concrete.
  • An example of such a thread configuration is illustrated in LeVey et al, U.S. Pat. No. 6,899,500 and Panasik et al., U.S. Pat. No. 7,156,600, both of are commonly assigned with the present application and both of which are incorporated herein by reference.
  • the thread height h 32 which is measured to the crest 42 at a lobe 38 , is about 0.040 inches to about 0.180 inches, the pitch distance p 32 is about 0.175 inches to about 0.390 inches, the thread length l 32 is greater than or equal to about 0.75 inches, the anchor length l 10 is greater than or equal to about 1.5 inches and the thread outside diameter OD 32 is greater than or equal to about 0.187 inches.
  • the thread height h 32 is about 0.050 inches
  • the pitch distance p 32 is about 0.296 inches
  • the thread length 132 is about 2.0 inches
  • the anchor length l 10 is about 2.5 inches
  • the thread outside diameter OD 32 is about 0.003 inches.
  • Tests were conducted to determine the loads at failure (pullout) of the present anchor 10 installed in cracked concrete.
  • the anchor 10 tested was a 5/16 inch anchor installed in an hole (bore) formed using a 1 ⁇ 4 inch drill bit, to a depth of 21 ⁇ 4 (two and one-quarter) inches.
  • the anchor 10 was installed in the opening having a crack width (avg.) of 0.012 inches.
  • Loads tested were varied, as noted below in Table 1.
  • the concrete strength was determined to be 2932 pounds per square inch (psi).
  • failure mode was the formation of a surface cone which is characterized by a cone shaped spall that forms from the base of the anchor to the surface of the concrete.
  • the ultimate load on the anchor and the displacement of the anchor at failure is shown in Table 1 above, with the ultimate load adjusted to a normalized load of 2500 psi.
  • the present anchor 10 provides high resistance to pull out, even in cracked concrete. This is a characteristic that has not been observed with known one-piece concrete anchors. At the same time, the present anchor 10 has been found to be less costly than known wedge-type anchors (which also exhibit good pull out resistance in cracked concrete). The present anchor 10 also has reduced installation torque which permits the anchor to be installed deeper than other screw type anchors which further enhances resistance to pull out in cracked concrete conditions. Moreover, the present anchor 10 is easier and faster to install which results in reduced labors costs as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Dowels (AREA)

Abstract

A fastener for use in concrete includes a shank and a head. The shank has a tip distal most from the head. The shank includes a first helical thread formation having a thread form thereon formed from two portions disposed upon opposite lateral sides of the thread form. The thread form has a root and the two portions include an alternating series of lobe members and base portions. The lobe members have a height as measured from the root and the base portions have a height as measured from the root. The height of the lobe members is greater than the height of the base portions and the height of the base portions is greater than zero. The fastener includes a second helical thread formation that is disposed adjacent to and spaced from the first helical thread formation.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates generally to concrete anchors. More particularly, the present invention relates to an improved one piece threaded anchor for use in concrete.
  • Concrete anchors are well known in the art. One type of anchor is a screw anchor. Such an anchor has a shank with an external thread. The anchor is threaded into an opening or bore drilled into the concrete. The threads engage the wall of the opening and hold the anchor in the concrete. The holding strength (also referred to as resistance to pull out), depends upon the engagement of the threads with the concrete.
  • Another type of anchor is a multi-piece anchor that includes a bolt or like element (having a shank) with a diverging (shaped) end and a sleeve or wedge elements with a shape complementary to the anchor end. The sleeve or wedges expand outward to engage the inside of the opening as they are urged outward by the complementary shaped elements.
  • Screw anchors serve their function well, however, when the concrete around the screw anchor is cracked, problems arise with respect to meeting pullout requirements. As for the multi-piece anchor systems, these function well, however, they are significantly more complex and costly compared to screw type anchors and installation is more labor intensive.
  • Accordingly, there is a need for a concrete anchor that is readily installed and can meet today's pullout requirements. Desirably, such a fastener is a one-piece fastener and functions well and meet requirements even installed in concrete with a crack in-line with the fastener body.
  • BRIEF SUMMARY OF THE INVENTION
  • A fastener for use in concrete includes a shank and a head. The shank has a tip distal most from the head. The shank includes a first helical thread formation having a thread form thereon formed from two portions disposed upon opposite lateral sides of the thread form.
  • The thread form has a root and the two portions include an alternating series of lobe members and base portions. The lobe members and base portions each have a height as measured from the root. The height of the lobe members is greater than the height of the base portions and the height of the base portions is greater than zero. The shank includes a second helical thread formation disposed adjacent to and spaced from the first helical thread formation. The second helical thread formation has a height that is less than the height of the lobe members.
  • In a present fastener the height of the lobe members measured from the root is about 0.040 inches to about 0.180 inches and the first helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches. The second helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches. Preferably the first and second helical thread forms have equal pitch distances.
  • A present fastener has a length that is greater than or equal to about 1.5 inches and the first helical thread form has an outside diameter that is greater than or equal to about 0.187 inches.
  • These and other features and advantages of the present invention will be apparent from the following detailed description, in conjunction with the appended claims.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The benefits and advantages of the present invention will become more readily apparent to those of ordinary skill in the relevant art after reviewing the following detailed description and accompanying drawings, wherein:
  • FIG. 1 is a plan view of a threaded concrete anchor embodying the principles of the present invention;
  • FIG. 2 is a perspective view of a thread form showing the relative heights and widths of various portions of the thread;
  • FIG. 3 is a top plan view of the thread form as shown in FIG. 2; and
  • FIG. 4 is a graphical representation of the load vs. displacement results shown in Table 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiment illustrated.
  • It should be further understood that the title of this section of this specification, namely, “Detailed Description Of The Invention”, relates to a requirement of the United States Patent Office, and does not imply, nor should be inferred to limit the subject matter disclosed herein.
  • Referring to the figures and in particular to FIG. 1 there is shown a threaded concrete anchor 10 embodying the principles of the present invention. The anchor includes generally a shank 12 and a head 14. The illustrated anchor head 14 includes a hexagonal driver engagement portion 16 contiguous with an intermediate washer portion 18. It will, however, be appreciated that many different types of driver engagement portions can be used, which driver portions will be recognized by those skilled in the art.
  • The shank 12 is formed with a tip 20 having a bevel 22 and a flat 24 at the end thereof A first helical thread formation 26 is provided on the shank 12 from about the tip 20 to a transition region 28 spaced from the integral washer 18. A second lower height helical thread 30 is formed (preferably about equidistant) between the first threads 26, as it winds about the shank 12.
  • The present anchor 10 has been configured to reduce driving or installation torque which in turn permits the anchor 10 to be driven deeper. The present anchor 10 has also been configured to better hold (i.e., exhibit increased resistance to pull out), compared to know threaded anchors, when threaded into concrete. Accordingly, the heights and widths of various portions of the thread form 32 and the rate of change of the heights and widths of these portions are varied. More particularly, in the present embodiment, the thread form 32 is formed from two symmetrical portions 34 a,b which are disposed upon opposite lateral sides of the thread form 32, as viewed along the longitudinal extent (e.g., along the line indicated at 36) of the thread form, as best seen in FIG. 3. Alternatively, although not shown, the thread form can be non-symmetrical.
  • The thread form 32 comprises an alternating series of boss or lobe members 38, and base portions 40. The boss or lobe members 38 effectively extend laterally outwardly and upwardly with respect to the base portions 40. The base portions 40 serve as longitudinally extending rib members for strengthening the thread form (as defined by the series of boss or lobe members 38), and do not substantially interact with the concrete as the fastener 10 is threaded into the concrete.
  • Referring to FIGS. 2 and 3, it is seen that each boss or lobe member 38 has a corresponding base portion 40, and that each boss or lobe member 38 and each base portion 40, defines a crest portion 42. As best seen in FIGS. 2 and 3, the paired combination of each boss or lobe member 38 and its corresponding base portion 40 together define a thread unit 44 which has, for example, a first end portion 46 and a second end portion 48. In a unit 44 a, the first end portion 46 a of the thread unit 44 a, which includes a particular boss or lobe member 38 a and its corresponding base portion 40 a, shares or defines an interface with the second end portion 48 b of an adjacent thread unit 44 b. As can best be seen from FIG. 3, each one of the thread units 44 has an arrowhead-like configuration. Other profiles or configurations are anticipated.
  • The 10 anchor can be manufactured so that the lead form 32 extends helically around the shank 14 portion with the first end portions 46 oriented toward the tip 20 of the anchor 10, which exhibits desirable insertion characteristics with respect to certain substrate materials, such as, concrete. An example of such a thread configuration is illustrated in LeVey et al, U.S. Pat. No. 6,899,500 and Panasik et al., U.S. Pat. No. 7,156,600, both of are commonly assigned with the present application and both of which are incorporated herein by reference.
  • In a present anchor 10, the thread height h32, which is measured to the crest 42 at a lobe 38, is about 0.040 inches to about 0.180 inches, the pitch distance p32 is about 0.175 inches to about 0.390 inches, the thread length l32 is greater than or equal to about 0.75 inches, the anchor length l10 is greater than or equal to about 1.5 inches and the thread outside diameter OD32 is greater than or equal to about 0.187 inches.
  • In a preferred anchor, the thread height h32 is about 0.050 inches, the pitch distance p32 is about 0.296 inches, the thread length 132 is about 2.0 inches, the anchor length l10 is about 2.5 inches and the thread outside diameter OD32 is about 0.003 inches.
  • Tests were conducted to determine the loads at failure (pullout) of the present anchor 10 installed in cracked concrete. The anchor 10 tested was a 5/16 inch anchor installed in an hole (bore) formed using a ¼ inch drill bit, to a depth of 2¼ (two and one-quarter) inches. The anchor 10 was installed in the opening having a crack width (avg.) of 0.012 inches. Loads tested were varied, as noted below in Table 1. The concrete strength was determined to be 2932 pounds per square inch (psi).
  • TABLE 1
    ANCHOR FAILURE TEST AT LOAD
    IN CRACKED CONCRETE
    Avg. Avg. Ulti- Displ Ult. load
    crack crack Init Test mate @ult. adjusted
    Spec. width, width load time load load Failure to
    No. initial final (lbs) (sec) (lbs) (In) mode 2500 psi
    1 0.012 0.012 171 66 2585 0.028 Surf 2387
    cone
    2 0.012 0.013 123 51 1915 0.028 Surf 1768
    cone
    3 0.012 0.012 83 53 1828 0.038 Surf 1688
    cone
    4 0.012 0.012 100 61 2238 0.032 Surf 2067
    cone
    5 0.012 0.012 99 79 2500 0.032 Surf 2308
    cone
    6 0.012 0.012 81 57 2368 0.040 Surf 2187
    cone
    Avg. 2239 0.033 2067
  • In each of the above-noted test samples, failure mode was the formation of a surface cone which is characterized by a cone shaped spall that forms from the base of the anchor to the surface of the concrete. The ultimate load on the anchor and the displacement of the anchor at failure is shown in Table 1 above, with the ultimate load adjusted to a normalized load of 2500 psi.
  • It can be seen from the graphical representation of the results in FIG. 4 that there is an instantaneous, but short anchor displacement (which corresponds to the initial load exertion on the anchor) after which displacement drops off significantly, illustrating successful resistance to pullout (e.g., the lack of failure) of the anchor. It is believed that the increased resistance to pullout is due to a combination of factors, including but not limited to the thread form and shape, thread height, thread pitch, thread length, both absolute and relative to the anchor length and the outside diameter of the thread.
  • It has been found that the present anchor 10 provides high resistance to pull out, even in cracked concrete. This is a characteristic that has not been observed with known one-piece concrete anchors. At the same time, the present anchor 10 has been found to be less costly than known wedge-type anchors (which also exhibit good pull out resistance in cracked concrete). The present anchor 10 also has reduced installation torque which permits the anchor to be installed deeper than other screw type anchors which further enhances resistance to pull out in cracked concrete conditions. Moreover, the present anchor 10 is easier and faster to install which results in reduced labors costs as well.
  • All patents referred to herein, are hereby incorporated herein by reference, whether or not specifically done so within the text of this disclosure.
  • In the present disclosure, the words “a” or “an” are to be taken to include both the singular and the plural. Conversely, any reference to plural items shall, where appropriate, include the singular.
  • From the foregoing it will be observed that numerous modifications and variations can be effectuated without departing from the true spirit and scope of the novel concepts of the present invention. It is to be understood that no limitation with respect to the specific embodiments illustrated is intended or should be inferred. The disclosure is intended to cover by the appended claims all such modifications as fall within the scope of the claims.

Claims (12)

1. A fastener for use in concrete comprising:
a shank; and
a head,
wherein the shank has a tip distal most from the head, the shank including a first helical thread formation having a thread form thereon formed from two portions disposed upon opposite lateral sides of the thread form, the thread form having a root, the two portions including an alternating series of lobe members and base portions, the lobe members having a height as measured from the root and the base portions having a height as measured from the root, the height of the lobe members being greater than the height of the base portions, the height of the base portions being greater than zero, the shank including a second helical thread formation disposed adjacent to and spaced from the first helical thread formation.
2. The fastener in accordance with claim 1 wherein height of the lobe members measured from the root is about 0.040 inches to about 0.180 inches.
3. The fastener in accordance with claim 1 wherein the first helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches.
4. The fastener in accordance with claim 1 wherein the second helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches.
5. The fastener in accordance with claim 3 wherein the second helical thread form has a pitch distance of about 0.175 inches to about 0.390 inches.
6. The fastener in accordance with claim 5 wherein the first and second helical thread forms have equal pitch distances and wherein the pitch distances are about 0.175 inches to about 0.390 inches.
7. The fastener in accordance with claim 1 wherein the fastener has a length that is greater than or equal to about 1.5 inches.
8. The fastener in accordance with claim 1 wherein the first helical thread form has an outside diameter that is greater than or equal to about 0.187 inches.
9. A fastener comprising:
a shank; and
a head,
wherein the shank has a tip distal most from the head, the shank including a first helical thread formation having a thread form thereon formed from two portions disposed upon opposite lateral sides of the thread form, the thread form having a root, the two portions including an alternating series of lobe members and base portions, the lobe members having a height as measured from the root and the base portions having a height as measured from the root, the height of the lobe members being greater than the height of the base portions, the height of the base portions being greater than zero, the shank including a second helical thread formation disposed adjacent to and spaced from the first helical thread formation, and wherein a height of the lobe members measured from the root is about 0.040 inches to about 0.180 inches, and the first and second helical thread forms each have a pitch distance of about 0.175 inches to about 0.390 inches.
10. The fastener in accordance with claim 9 wherein the first and second helical thread forms have equal pitch distances.
11. The fastener in accordance with claim 9 wherein the fastener has a length that is greater than or equal to about 1.5 inches.
12. The fastener in accordance with claim 9 wherein the first helical thread form has an outside diameter that is greater than or equal to about 0.187 inches.
US12/498,191 2009-07-06 2009-07-06 Threaded concrete anchor Active 2029-12-09 US8322960B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/498,191 US8322960B2 (en) 2009-07-06 2009-07-06 Threaded concrete anchor
PCT/US2010/036635 WO2011005379A1 (en) 2009-07-06 2010-05-28 Threaded concrete anchor
EP10797493.3A EP2452085B1 (en) 2009-07-06 2010-05-28 Threaded concrete anchor
DK10797493.3T DK2452085T3 (en) 2009-07-06 2010-05-28 Concrete anchor with thread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/498,191 US8322960B2 (en) 2009-07-06 2009-07-06 Threaded concrete anchor

Publications (2)

Publication Number Publication Date
US20110002753A1 true US20110002753A1 (en) 2011-01-06
US8322960B2 US8322960B2 (en) 2012-12-04

Family

ID=43412759

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/498,191 Active 2029-12-09 US8322960B2 (en) 2009-07-06 2009-07-06 Threaded concrete anchor

Country Status (4)

Country Link
US (1) US8322960B2 (en)
EP (1) EP2452085B1 (en)
DK (1) DK2452085T3 (en)
WO (1) WO2011005379A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028656A1 (en) * 2011-08-25 2013-02-28 Infastech Intellectual Properties Pte. Ltd. Negative drive angle
US20160146242A1 (en) * 2013-07-01 2016-05-26 Nord-Lock Ab Fastening element and fastening assembly
USD854404S1 (en) * 2017-06-16 2019-07-23 Masterpiece Hardware Industrial Co., Ltd. Screw
US20200182280A1 (en) * 2016-11-16 2020-06-11 Illinois Tool Works Inc. Threaded fastener

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE041783T2 (en) * 2013-10-03 2019-05-28 Aoyama Seisakusho Bolt
US11035399B2 (en) 2017-09-13 2021-06-15 Illinois Tool Works Inc. Threaded fastener
EP3701893B1 (en) 2017-12-06 2022-12-21 Stryker European Operations Holdings LLC Orthopedic locking screw
US11692578B2 (en) 2018-09-26 2023-07-04 Illinois Tool Works Inc. Post-to-beam fastener
US11293473B2 (en) * 2019-01-25 2022-04-05 Steven Priess Self-driving masonry anchor
USD951080S1 (en) 2019-09-27 2022-05-10 Illinois Tool Works Inc. Fastener
EP3816461A1 (en) * 2019-10-31 2021-05-05 Hilti Aktiengesellschaft Screw with axially compressible thread

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937119A (en) * 1974-12-23 1976-02-10 Illinois Tool Works, Inc. Masonry anchor device
US4637767A (en) * 1980-12-26 1987-01-20 Topura Co., Ltd. Threaded fastener
US4906206A (en) * 1989-02-28 1990-03-06 Hubbell Incorporated Self-tapped assembly
US5141376A (en) * 1992-02-03 1992-08-25 Emhart Inc. Self drilling screw
US5226890A (en) * 1991-11-13 1993-07-13 United States Surgical Corporation Tissue gripping device
US5891145A (en) * 1997-07-14 1999-04-06 Sdgi Holdings, Inc. Multi-axial screw
US6250866B1 (en) * 2000-02-11 2001-06-26 Olympic Manufacturing Group, Inc. Self-drilling, self-tapping screw for concrete blocks
US6899500B2 (en) * 2001-06-19 2005-05-31 Illinois Tool Works Inc. Fastner having multiple-bossed lead
US6957557B2 (en) * 2002-12-18 2005-10-25 Illinois Tool Works Inc. Threaded fastener with dual reinforcing leads for facilitating manufacture of the fastener, thread rolling die for forming the threaded fastener, and method of manufacturing the threaded fastener
US6974289B2 (en) * 2002-08-12 2005-12-13 Illinois Tool Works Inc Pressure flank screw and fastening system therewith
US7101134B2 (en) * 2001-06-19 2006-09-05 Illinois Tool Works Inc. Fastener having multiple lobed thread
US7156600B2 (en) * 2001-06-19 2007-01-02 Illinois Tool Works Inc. Die for, method of making, and fastener with lobed primary thread lead and interposed dual auxiliary thread lead with improved substrate entry end portion
US20070036634A1 (en) * 2005-08-09 2007-02-15 Lung Lee S Anti-loose screw
US20070297873A1 (en) * 2006-06-02 2007-12-27 Juergen Wieser Thread-tapping screw
US20090169334A1 (en) * 2007-12-28 2009-07-02 Guo-Cai Su Bimate screw

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937119A (en) * 1974-12-23 1976-02-10 Illinois Tool Works, Inc. Masonry anchor device
US4637767A (en) * 1980-12-26 1987-01-20 Topura Co., Ltd. Threaded fastener
US4906206A (en) * 1989-02-28 1990-03-06 Hubbell Incorporated Self-tapped assembly
US5226890A (en) * 1991-11-13 1993-07-13 United States Surgical Corporation Tissue gripping device
US5141376A (en) * 1992-02-03 1992-08-25 Emhart Inc. Self drilling screw
US5891145A (en) * 1997-07-14 1999-04-06 Sdgi Holdings, Inc. Multi-axial screw
US6250866B1 (en) * 2000-02-11 2001-06-26 Olympic Manufacturing Group, Inc. Self-drilling, self-tapping screw for concrete blocks
US6956181B2 (en) * 2001-06-19 2005-10-18 Illinois Tool Works, Inc. Method for making a fastener
US6899500B2 (en) * 2001-06-19 2005-05-31 Illinois Tool Works Inc. Fastner having multiple-bossed lead
US7101134B2 (en) * 2001-06-19 2006-09-05 Illinois Tool Works Inc. Fastener having multiple lobed thread
US7156600B2 (en) * 2001-06-19 2007-01-02 Illinois Tool Works Inc. Die for, method of making, and fastener with lobed primary thread lead and interposed dual auxiliary thread lead with improved substrate entry end portion
US6974289B2 (en) * 2002-08-12 2005-12-13 Illinois Tool Works Inc Pressure flank screw and fastening system therewith
US6957557B2 (en) * 2002-12-18 2005-10-25 Illinois Tool Works Inc. Threaded fastener with dual reinforcing leads for facilitating manufacture of the fastener, thread rolling die for forming the threaded fastener, and method of manufacturing the threaded fastener
US7076989B2 (en) * 2002-12-18 2006-07-18 Illinois Tool Works Inc. Threaded fastener with dual reinforcing leads for facilitating manufacture of the fastener, thread rolling die for forming the threaded fastener, and method of manufacturing the threaded fastener
US7458759B2 (en) * 2002-12-18 2008-12-02 Illinois Tool Works Inc. Threaded fastener with dual reinforcing leads for facilitating manufacture of the fastener, thread rolling die for forming the threaded fastener, and method of manufacturing the threaded fastener
US20070036634A1 (en) * 2005-08-09 2007-02-15 Lung Lee S Anti-loose screw
US20070297873A1 (en) * 2006-06-02 2007-12-27 Juergen Wieser Thread-tapping screw
US20090169334A1 (en) * 2007-12-28 2009-07-02 Guo-Cai Su Bimate screw

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013028656A1 (en) * 2011-08-25 2013-02-28 Infastech Intellectual Properties Pte. Ltd. Negative drive angle
JP2014529044A (en) * 2011-08-25 2014-10-30 インファステック インテレクチュアル プロパティーズ ピーティーイー.リミテッド Negative drive angle
KR20170135995A (en) * 2011-08-25 2017-12-08 인파스텍 인텔렉츄얼 프로퍼티즈 피티이. 엘티디. Negative drive angle
KR102035408B1 (en) 2011-08-25 2019-10-22 인파스텍 인텔렉츄얼 프로퍼티즈 피티이. 엘티디. Negative drive angle
US20160146242A1 (en) * 2013-07-01 2016-05-26 Nord-Lock Ab Fastening element and fastening assembly
US9845821B2 (en) * 2013-07-01 2017-12-19 Nord-Lock Ab Fastening element and fastening assembly
US20200182280A1 (en) * 2016-11-16 2020-06-11 Illinois Tool Works Inc. Threaded fastener
US11578747B2 (en) * 2016-11-16 2023-02-14 Illinois Tool Works Inc. Threaded fastener
USD854404S1 (en) * 2017-06-16 2019-07-23 Masterpiece Hardware Industrial Co., Ltd. Screw

Also Published As

Publication number Publication date
EP2452085B1 (en) 2022-07-06
EP2452085A1 (en) 2012-05-16
EP2452085A4 (en) 2018-01-03
DK2452085T3 (en) 2022-09-19
WO2011005379A1 (en) 2011-01-13
US8322960B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
US8322960B2 (en) Threaded concrete anchor
US8057147B2 (en) Self-drilling anchor
CN102128198B (en) Concrete and masonry screw anchor, and method for forming screw anchor
US8192123B2 (en) Drywall fastener
US7883307B2 (en) Self-drilling fastener
US9234539B2 (en) Fastener
US20120183371A1 (en) Engineered Lumber Panel Fastener
US20060018730A1 (en) Drywall fastener
DE19615191C5 (en) Screw and method for torque limited mounting of metal and / or plastic profiles or plates on a substructure
US11326638B2 (en) Threaded fastener with a hybrid self-drilling tip
US20090142161A1 (en) Screw Anchor
CN102333966A (en) Self drilling screw
GB2454464A (en) Screw having an oval shank
JP5002428B2 (en) Fastener
EP2844884B1 (en) Screw for lightweight construction materials
JP3177609U (en) Anchor screw
RU225698U1 (en) SCREW WITH COUNTERSET FOR WOODEN STRUCTURES
CN215861205U (en) Anti-loosening screw
CA2662154C (en) Drywall fastener
KR20100062387A (en) Anchor for an asphalt road
DE10116833A1 (en) dowel
MXPA99003740A (en) Screw for fastening metal or plastic sections or plates onto a base

Legal Events

Date Code Title Description
AS Assignment

Owner name: ILLINOIS TOOL WORKS INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GONG, YONGPING;PAMASIK, CHERYL L.;SIGNING DATES FROM 20090701 TO 20090706;REEL/FRAME:022918/0568

AS Assignment

Owner name: ILLINOIS TOOL WORKS INC., ILLINOIS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT OF ASSIGNOR'S INTEREST PREVIOUSLY RECORDED ON REEL 022918 FRAME 0568. ASSIGNOR(S) HEREBY CONFIRMS THE "ASSIGNOR: PAMASIK, CHERYL L." SHOULD BE SPELLED "PANASIK, CHERYL L.";ASSIGNORS:GONG, YONGPING;PANASIK, CHERYL L.;SIGNING DATES FROM 20090701 TO 20090706;REEL/FRAME:022930/0239

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8