US20100095465A1 - Method for controlling washing machine - Google Patents

Method for controlling washing machine Download PDF

Info

Publication number
US20100095465A1
US20100095465A1 US12/425,645 US42564509A US2010095465A1 US 20100095465 A1 US20100095465 A1 US 20100095465A1 US 42564509 A US42564509 A US 42564509A US 2010095465 A1 US2010095465 A1 US 2010095465A1
Authority
US
United States
Prior art keywords
rinsing
washing
course
pattern
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/425,645
Inventor
Pyoung Hwan Kim
Eun jin Park
Dong Woo Kang
Myoung Suk You
Deug Hee Lee
Kyu Won Lee
Hyung Yong Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANG, DONG WOO, KIM, HYUNG YONG, KIM, PYOUNG HWAN, LEE, DEUG HEE, LEE, KYU WON, PARK, EUN JIN, YOU, MYOUNG SUK
Publication of US20100095465A1 publication Critical patent/US20100095465A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/38Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of rinsing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/20Washing liquid condition, e.g. turbidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/20Washing liquid condition, e.g. turbidity
    • D06F2103/22Content of detergent or additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/28Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress

Definitions

  • the present invention relates to a method for controlling a washing machine.
  • the washing machine treats laundry through courses of washing-rinsing-spinning, and, sometimes, drying after the spinning.
  • an amount of the laundry such as clothes introduced to a drum, is measured.
  • an amount of washing water, an amount of detergent, a total washing time period, and so on are set automatically.
  • the washing course is performed, accordingly.
  • washing water is drained from a tub, and new washing water is supplied to the tub, and the rinsing course is performed.
  • the washing water is drained from the tub, and the drum is spun for extracting water from the laundry.
  • the related art washing machine has a problem in that accurate measurement of an amount of remained detergent is difficult after the washing course is performed before starting the rinsing course, resulting in difficulty in providing an optimum rinsing course proper to the amount of remained detergent.
  • the present invention is directed to a method for controlling a washing machine.
  • An object of the present invention is to provide a method for controlling a washing machine, in which functioning of a safe rinsing is shown to a user visibly for improving user's reliability.
  • a method for controlling a washing machine having a detergent amount calculating step for calculating a remained detergent amount at the time of finishing a washing course or a starting of a rinsing course by means of a conductivity sensor, and a determining step for determining whether an additional rinsing is performed or not according to the remained detergent amount calculated thus, the method includes a user informing step for informing a change of the rinsing pattern to the user if the rinsing pattern which is a parameter that gives influence to the rinsing course with reference to the remained detergent amount calculated in the detergent amount calculating step.
  • the rinsing pattern includes at least one of a rinsing water level, a rinsing time period, a number of rinsing times, a rinsing temperature.
  • the user informing step includes the step of informing the change of a number of rinsing times at a fist time of rinsing performed after the change.
  • the user informing step includes the step of displaying a visualized pattern on a display unit such that the user can make easy notice.
  • the visualized pattern is a kai pattern which is partial swing actions of a drum in left/right directions made into a pattern.
  • FIG. 1 illustrates a section of a drum type washing machine in accordance with a preferred embodiment of the present invention.
  • FIG. 2 illustrates a block diagram showing relations among a conductive sensor, control unit and a memory.
  • FIG. 3 illustrates a diagram of a display unit on a control panel in accordance with a preferred embodiment of the present invention, schematically.
  • FIG. 4 illustrates a flow chart showing the steps of a method for controlling a drum type washing machine in accordance with a preferred embodiment of the present invention.
  • FIG. 5 illustrates a flow chart continuous from A in FIG. 4 .
  • FIG. 6 illustrates a flow chart continuous from B in FIG. 4 .
  • FIG. 7 illustrates an order of display of the pattern displayed in a C part in FIG. 3 .
  • the drum type washing machine includes a cabinet 110 which forms an exterior of the drum type washing machine, a tub mounted in the cabinet 110 for holding washing water, a drum 130 rotatably mounted in the tub 120 , a motor 160 for driving the drum 130 , a display unit 117 a (See FIG. 3 ) for displaying an operation state of the washing machine, a control unit 300 for controlling units of the washing machine if functions of the washing machine are selected, and a control panel 117 a (See FIG. 2 ) having a memory for storing various kinds of information.
  • the cabinet 110 forms an exterior of the washing machine. Mounted in the cabinet 110 , there are the tub 120 for holding the washing water, and a drum 130 rotatably coupled to the tub 120 for holding laundry.
  • a water supply hose 140 for supplying the washing water to the tub 120 from an external water source.
  • a water supply valve 141 for controlling a water flow.
  • a detergent supply unit 142 for holding the detergent. The detergent is introduced to the tub 120 together with the washing water supplied through the water supply hose 140 .
  • the motor 160 is mounted in rear of the tub 120 , and coupled to the drum 130 through a rotation shaft 165 for rotating the drum 130 .
  • a heater 125 for controlling a temperature of the washing water
  • a temperature sensor for measuring the temperature of the washing water
  • an electrode 200 for sensing conductivity of the washing water.
  • the electrode sensor 200 is controlled by the control unit 300 which controls the washing machine.
  • Hardness of the washing water is influenced from ions dissolved in the washing water. If the detergent dissolves in the washing water to form ions, the hardness of the washing water becomes higher. Because the higher the hardness of the washing water, the higher the ion content of the washing water, the conductivity of the washing water also becomes the higher.
  • the amount of the detergent can be calculated by means of the electrode sensor 200 which measures the conductivity.
  • the electrode sensor 200 is also known as an eco sensor or a smart sensor. And, the rinsing course with the eco sensor is called as a safe rinsing (Since the electrode sensor is shown as an example of the eco sensor, the eco sensor will be described without giving an additional reference numeral thereto).
  • the washing machine having the eco sensor applied thereto automatically sets the washing parameters or the courses according to the amount of the laundry, or sets the rinsing course again proper to the amount of the laundry or the hardness of the washing water measured even if the user sets the courses of washing, rinsing, and spinning.
  • a rinsing time period, a number of rinsing times, an amount of the washing water to be used in the rinsing, and so on are set again according to the remained detergent for performing the rinsing course.
  • the rinsing course can be progressed different from the rinsing course the user sets. In this case it is required to inform this to the user for preventing the user from changing the setting for progressing the proper rinsing course according to a state of the washing water and the amount of the detergent.
  • the eco sensor In the washing machine having the electrode sensor, called as the eco sensor, applied thereto, a method for giving information on a change of the rinsing course by the eco sensor to the user will be described. At first, a method for calculating the detergent amount by using the eco sensor will be described with reference to FIGS. 4 to 6 .
  • the washing water is supplied to a first water level to the tub 120 , and first hardness of the washing water supplied to the tub 120 is measured (S 110 ).
  • the first hardness is hardness of pure washing water having no detergent contained therein.
  • the hardness of the pure washing water can be measured by making the pure washing water to be supplied to the tub 120 by leading the washing water to a reserve space in the detergent supplying unit 142 for holding reserve detergent which the user does not use generally.
  • the first hardness is obtained by measuring the conductivity of the washing water applied to the electrode sensor 200 , and calculating the first hardness with reference to the conductivity of the washing water measured thus.
  • the first hardness measured thus is stored in the memory 250 .
  • the washing water is supplied to a second water level through the steps of opening the water supply valve 141 , and introduction of the detergent and the washing water to the tub 120 together as the washing water is made to pass through the detergent supply unit 142 .
  • the conductivity of the washing water is sensed with the electrode sensor 200 (S 120 ).
  • the drum 130 rotates for about 7 ⁇ 8 minutes, to agitate the laundry, not only wetting of the laundry is made, but also uniform dissolution of the detergent is made. It is preferable that the measurement of the conductivity of the washing water is made by means of the electrode sensor 200 in a state the detergent is dissolved in the washing water adequately thus.
  • the conductivity of the washing water is higher substantially when the power detergent is dissolved in the washing water compared to a case when the liquid detergent is dissolved in the washing water. Therefore, if the conductivity of the washing water is higher than the preset value, the washing course proceeds to a powder detergent washing course (S 160 ), and if the conductivity of the washing water is lower than the preset value, the washing course proceeds to a liquid detergent washing course (S 170 ).
  • the detergent amount dissolved in the washing water is calculated with reference to the conductivity of the washing water measured at the electrode sensor 200 (S 210 in FIG. 5 , and S 310 in FIG. 6 ).
  • the detergent amount dissolved in the washing water can be calculated from a detergent determination table input in advance, wherein the detergent determination table is a table showing the detergent amount dissolved in the washing water with reference to the conductivity of the washing water.
  • a rinsing pattern is set according to the detergent amount calculated thus, and if the washing course is finished, the rinsing course is performed according to the rinsing pattern set thus.
  • the rinsing pattern is a concept which includes parameters that can influence to the rinsing, such as a rinsing water level, a rinsing time period, a number of rinsing times, and so on.
  • the rinsing course may be set such that the greater the detergent amount calculated thus, the higher the rinsing level, and the greater the rinsing time period and the number of rinsing times.
  • the washing pattern is a concept which includes parameters that can influence to a washing capability in performing washing, such as a washing water level, a washing time period, a heating time period of a heater, and so on in the washing course.
  • the powder detergent washing course is different from the liquid detergent washing course in that a brief rinsing is performed at an end of the washing course (S 215 ).
  • the brief rinsing is rinsing of the detergent absorbed in the laundry at the end of the washing course, in which an amount of the washing water smaller than the rinsing course performed after the washing course is used, and the laundry is rinsed for a time period shorter than the rinsing course performed after the washing course.
  • the conductivity of the washing water is also measured with the electrode sensor 200 , and the remained detergent amount after the initial rinsing course is calculated with reference to the conductivity of the washing water measured thus (S 230 in FIG. 5 , and S 330 in FIG. 6 ).
  • the remained detergent amount after the initial rinsing course is calculated for determining whether an additional rinsing is performed or not with reference to the detergent amount calculated thus.
  • a final rinsing is performed (S 240 and S 340 ), and if the detergent amount calculated thus is higher than the preset value, an additional rinsing is performed between the initial rinsing and the final rinsing (S 250 in FIG. 5 , and S 350 in FIG. 6 ).
  • the additional rinsing is a rinsing performed additionally between the initial rinsing performed initially and the final rinsing performed finally after the washing course is finished, selectively.
  • the rinsing with the powder detergent is poorer than the rinsing with the liquid detergent. Therefore, as the detergent amount dissolved in the washing water is generally higher than the preset value in the initial rinsing if the powder detergent is introduced, in most of cases, the additional rinsing is performed in the rinsing course of the powder detergent washing course. However, in the liquid detergent washing course, the additional rinsing is performed only when the detergent amount dissolved in the washing water is higher than the preset value in the initial rinsing.
  • the additional rinsing is determined with reference to the detergent amount calculated thus, at the time a first time rinsing course is performed after a final water supply and heating is finished after the washing is finished, in which a number of the rinsing times changes, the change of a number of the rinsing times is informed to the user.
  • the informing of the change can be made by displaying a particular pattern on the display unit 117 a.
  • the particular pattern may be a kai pattern or the like that makes rotation of the laundry into a pattern.
  • the kai pattern makes one time of partial rotation of the drum in left/right direction (a swing action) into a pattern.
  • a swing action By displaying the swing action repeatedly for around two times, the change of the rinsing pattern owing to operation of the eco sensor (the electrode sensor described before) is informed to the user.
  • the kai pattern may be displayed on a C part in FIG. 3 .
  • the operation of the eco sensor is informed in advance by displaying a message that a detergent concentration is under checking, the particular pattern like the kai pattern may be displayed at the time an actual rinsing is performed changed from an original rinsing pattern set before.
  • the pattern display is made at a first time of the changed rinsing course, preferably by repeating the swing action for around 20 seconds before the washing water is drained after the rinsing course.
  • control unit 300 controls the display unit 117 a so that the particular pattern, such as the kai pattern, can be shown to the user at the same time with the determination of the additional rinsing in the S 250 and S 350 steps in FIGS. 5 and 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

The present invention relates to a method for controlling a washing machine, in which functioning of a safe rinsing is shown to a user visibly for improving user's reliability. The method, having a detergent amount calculating step for calculating a remained detergent amount at the time of finishing a washing course or a starting of a rinsing course by means of a conductivity sensor, and a determining step for determining whether an additional rinsing is performed or not according to the remained detergent amount calculated thus, the method includes a user informing step for informing a change of the rinsing pattern to the user if the rinsing pattern which is a parameter that gives influence to the rinsing course with reference to the remained detergent amount calculated in the detergent amount calculating step.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of the Patent Korean Application No. 10-2008-0103402, filed on Oct. 22, 2008, which is hereby incorporated by reference as if fully set forth herein.
  • BACKGROUND OF THE DISCLOSURE
  • 1. Field of the Disclosure
  • The present invention relates to a method for controlling a washing machine.
  • 2. Discussion of the Related Art
  • In general, the washing machine treats laundry through courses of washing-rinsing-spinning, and, sometimes, drying after the spinning. Before the course of washing is performed, at first an amount of the laundry, such as clothes introduced to a drum, is measured. According to the amount of laundry measured thus, an amount of washing water, an amount of detergent, a total washing time period, and so on (these items are defined as washing parameters) are set automatically. After the user set the washing parameters, the washing course is performed, accordingly.
  • Upon finishing the washing course, contaminated washing water is drained from a tub, and new washing water is supplied to the tub, and the rinsing course is performed. Upon finishing the rinsing course, the washing water is drained from the tub, and the drum is spun for extracting water from the laundry.
  • In the meantime, the related art washing machine has a problem in that accurate measurement of an amount of remained detergent is difficult after the washing course is performed before starting the rinsing course, resulting in difficulty in providing an optimum rinsing course proper to the amount of remained detergent.
  • In order to solve the problem, a method has been used, in which the courses are set automatically, or the rinsing course is provided by making automatic changing of setting of the washing parameters according to the amount of the remained detergent even if the user sets the washing parameters (hereafter defined as a safe rinsing). However, even if the remained amount of detergent is measured, and an optimum rinsing course is provided proper to the remained amount, there is a problem in that the user can not notice that the safe rinsing is being provided).
  • SUMMARY OF THE DISCLOSURE
  • Accordingly, the present invention is directed to a method for controlling a washing machine.
  • An object of the present invention is to provide a method for controlling a washing machine, in which functioning of a safe rinsing is shown to a user visibly for improving user's reliability.
  • Additional advantages, objects, and features of the disclosure will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for controlling a washing machine, having a detergent amount calculating step for calculating a remained detergent amount at the time of finishing a washing course or a starting of a rinsing course by means of a conductivity sensor, and a determining step for determining whether an additional rinsing is performed or not according to the remained detergent amount calculated thus, the method includes a user informing step for informing a change of the rinsing pattern to the user if the rinsing pattern which is a parameter that gives influence to the rinsing course with reference to the remained detergent amount calculated in the detergent amount calculating step.
  • The rinsing pattern includes at least one of a rinsing water level, a rinsing time period, a number of rinsing times, a rinsing temperature.
  • The user informing step includes the step of informing the change of a number of rinsing times at a fist time of rinsing performed after the change.
  • The user informing step includes the step of displaying a visualized pattern on a display unit such that the user can make easy notice.
  • The visualized pattern is a kai pattern which is partial swing actions of a drum in left/right directions made into a pattern.
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the disclosure and together with the description serve to explain the principle of the disclosure. In the drawings:
  • FIG. 1 illustrates a section of a drum type washing machine in accordance with a preferred embodiment of the present invention.
  • FIG. 2 illustrates a block diagram showing relations among a conductive sensor, control unit and a memory.
  • FIG. 3 illustrates a diagram of a display unit on a control panel in accordance with a preferred embodiment of the present invention, schematically.
  • FIG. 4 illustrates a flow chart showing the steps of a method for controlling a drum type washing machine in accordance with a preferred embodiment of the present invention.
  • FIG. 5 illustrates a flow chart continuous from A in FIG. 4.
  • FIG. 6 illustrates a flow chart continuous from B in FIG. 4.
  • FIG. 7 illustrates an order of display of the pattern displayed in a C part in FIG. 3.
  • DESCRIPTION OF SPECIFIC EMBODIMENTS
  • Reference will now be made in detail to the specific embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • Referring to FIG. 1, the drum type washing machine includes a cabinet 110 which forms an exterior of the drum type washing machine, a tub mounted in the cabinet 110 for holding washing water, a drum 130 rotatably mounted in the tub 120, a motor 160 for driving the drum 130, a display unit 117 a (See FIG. 3) for displaying an operation state of the washing machine, a control unit 300 for controlling units of the washing machine if functions of the washing machine are selected, and a control panel 117 a (See FIG. 2) having a memory for storing various kinds of information.
  • The cabinet 110 forms an exterior of the washing machine. Mounted in the cabinet 110, there are the tub 120 for holding the washing water, and a drum 130 rotatably coupled to the tub 120 for holding laundry.
  • Mounted on an upper side of the tub 140, there is a water supply hose 140 for supplying the washing water to the tub 120 from an external water source. Mounted to the water supply hose 140, there is a water supply valve 141 for controlling a water flow. Mounted on an upper side of the tub 120, there is a detergent supply unit 142 for holding the detergent. The detergent is introduced to the tub 120 together with the washing water supplied through the water supply hose 140.
  • The motor 160 is mounted in rear of the tub 120, and coupled to the drum 130 through a rotation shaft 165 for rotating the drum 130.
  • Provided on one side of under the tub 120, there are a heater 125 for controlling a temperature of the washing water, a temperature sensor (not shown) for measuring the temperature of the washing water, and an electrode 200 for sensing conductivity of the washing water. The electrode sensor 200 is controlled by the control unit 300 which controls the washing machine.
  • Hardness of the washing water is influenced from ions dissolved in the washing water. If the detergent dissolves in the washing water to form ions, the hardness of the washing water becomes higher. Because the higher the hardness of the washing water, the higher the ion content of the washing water, the conductivity of the washing water also becomes the higher.
  • Accordingly, if the conductivity of the washing water is measured, an amount of the detergent dissolved in the washing water can be calculated.
  • However, since it is difficult to apply a sensor that can measure the hardness directly, the amount of the detergent can be calculated by means of the electrode sensor 200 which measures the conductivity.
  • Since an optimum rinsing course can be provided according to a calculated detergent amount, the electrode sensor 200 is also known as an eco sensor or a smart sensor. And, the rinsing course with the eco sensor is called as a safe rinsing (Since the electrode sensor is shown as an example of the eco sensor, the eco sensor will be described without giving an additional reference numeral thereto).
  • In the meantime, even if the eco sensor is in operation, and performs a function thereof normally, the user has no method for identifying above fact personally.
  • Since current home appliances are provided with various high quality functions for improving convenience of the user, the home appliances are supplied at prices higher than conventional home appliances. According to this, there are many cases when the user desires to know whether the home appliances the user is using work properly with respect, not only to basic functions, but also to the various high quality functions compared to the conventional home appliances, in detail.
  • In order to meet such client's needs, it is necessary to let the user know whether the eco sensor works properly or not.
  • The washing machine having the eco sensor applied thereto automatically sets the washing parameters or the courses according to the amount of the laundry, or sets the rinsing course again proper to the amount of the laundry or the hardness of the washing water measured even if the user sets the courses of washing, rinsing, and spinning.
  • That is, after the washing course, a rinsing time period, a number of rinsing times, an amount of the washing water to be used in the rinsing, and so on are set again according to the remained detergent for performing the rinsing course.
  • Therefore, the rinsing course can be progressed different from the rinsing course the user sets. In this case it is required to inform this to the user for preventing the user from changing the setting for progressing the proper rinsing course according to a state of the washing water and the amount of the detergent.
  • In the washing machine having the electrode sensor, called as the eco sensor, applied thereto, a method for giving information on a change of the rinsing course by the eco sensor to the user will be described. At first, a method for calculating the detergent amount by using the eco sensor will be described with reference to FIGS. 4 to 6.
  • Referring to FIG. 4, when the user puts the drum washing machine into operation, the washing water is supplied to a first water level to the tub 120, and first hardness of the washing water supplied to the tub 120 is measured (S110).
  • The first hardness is hardness of pure washing water having no detergent contained therein. The hardness of the pure washing water can be measured by making the pure washing water to be supplied to the tub 120 by leading the washing water to a reserve space in the detergent supplying unit 142 for holding reserve detergent which the user does not use generally.
  • The first hardness is obtained by measuring the conductivity of the washing water applied to the electrode sensor 200, and calculating the first hardness with reference to the conductivity of the washing water measured thus. The first hardness measured thus is stored in the memory 250. Then, the washing water is supplied to a second water level through the steps of opening the water supply valve 141, and introduction of the detergent and the washing water to the tub 120 together as the washing water is made to pass through the detergent supply unit 142.
  • Thus, while the washing water is supplied to the tub 120 such that the water level rises from the first water level to the second water level in a state the detergent is dissolved in the washing water, the conductivity of the washing water is sensed with the electrode sensor 200 (S120).
  • As the water level rises from the first water level to the second water level the higher, the conductivity of the washing water becomes the lower, gradually. Because a concentration of the detergent becomes the lower as the time passes by since the washing water is supplied to the second water level continuously though the detergent amount introduced to the tub 120 is fixed.
  • If the conductivity of the washing water does not vary with the supply of the washing water continuously up to the water level, this implies that the detergent is not be introduced to the tub (S130).
  • Opposite to this, if the conductivity of the washing water varies with the continuous supply of the washing water to the tub 120, sensing the introduction of the detergent to the tub 120, after 7 to 8 minutes of starting of the washing course, the conductivity of the washing water is measured once more (S140).
  • If the drum 130 rotates for about 7˜8 minutes, to agitate the laundry, not only wetting of the laundry is made, but also uniform dissolution of the detergent is made. It is preferable that the measurement of the conductivity of the washing water is made by means of the electrode sensor 200 in a state the detergent is dissolved in the washing water adequately thus.
  • Then, whether the conductivity of the washing water is higher than a preset value or not is determined (S150) to determine whether powder detergent is introduced or liquid detergent is introduced.
  • In general, since the powder detergent has an extent of ionization greater than the liquid detergent, the conductivity of the washing water is higher substantially when the power detergent is dissolved in the washing water compared to a case when the liquid detergent is dissolved in the washing water. Therefore, if the conductivity of the washing water is higher than the preset value, the washing course proceeds to a powder detergent washing course (S160), and if the conductivity of the washing water is lower than the preset value, the washing course proceeds to a liquid detergent washing course (S170).
  • In each of the powder detergent washing course and the liquid detergent washing course, the detergent amount dissolved in the washing water is calculated with reference to the conductivity of the washing water measured at the electrode sensor 200 (S210 in FIG. 5, and S310 in FIG. 6).
  • The detergent amount dissolved in the washing water can be calculated from a detergent determination table input in advance, wherein the detergent determination table is a table showing the detergent amount dissolved in the washing water with reference to the conductivity of the washing water.
  • A rinsing pattern is set according to the detergent amount calculated thus, and if the washing course is finished, the rinsing course is performed according to the rinsing pattern set thus.
  • The rinsing pattern is a concept which includes parameters that can influence to the rinsing, such as a rinsing water level, a rinsing time period, a number of rinsing times, and so on. For an example, the rinsing course may be set such that the greater the detergent amount calculated thus, the higher the rinsing level, and the greater the rinsing time period and the number of rinsing times.
  • Though only the rising pattern may be set according to the detergent amount calculated thus, both the rising pattern and the washing pattern may be set according to the detergent amount calculated thus. The washing pattern is a concept which includes parameters that can influence to a washing capability in performing washing, such as a washing water level, a washing time period, a heating time period of a heater, and so on in the washing course.
  • For an example, it is made that the greater the detergent amount contained in the washing water, the shorter the washing time period and the heating time period of the heater.
  • Referring to FIG. 5, the powder detergent washing course is different from the liquid detergent washing course in that a brief rinsing is performed at an end of the washing course (S215).
  • The brief rinsing is rinsing of the detergent absorbed in the laundry at the end of the washing course, in which an amount of the washing water smaller than the rinsing course performed after the washing course is used, and the laundry is rinsed for a time period shorter than the rinsing course performed after the washing course.
  • After the washing course is finished in the powder detergent washing course or the liquid detergent washing course, an initial rinsing is performed (S220 and S320).
  • At the initial rinsing performed right after the washing is finished, the conductivity of the washing water is also measured with the electrode sensor 200, and the remained detergent amount after the initial rinsing course is calculated with reference to the conductivity of the washing water measured thus (S230 in FIG. 5, and S330 in FIG. 6).
  • The remained detergent amount after the initial rinsing course is calculated for determining whether an additional rinsing is performed or not with reference to the detergent amount calculated thus.
  • If the detergent amount calculated thus is lower than a preset value, a final rinsing is performed (S240 and S340), and if the detergent amount calculated thus is higher than the preset value, an additional rinsing is performed between the initial rinsing and the final rinsing (S250 in FIG. 5, and S350 in FIG. 6). The additional rinsing is a rinsing performed additionally between the initial rinsing performed initially and the final rinsing performed finally after the washing course is finished, selectively.
  • In general, the rinsing with the powder detergent is poorer than the rinsing with the liquid detergent. Therefore, as the detergent amount dissolved in the washing water is generally higher than the preset value in the initial rinsing if the powder detergent is introduced, in most of cases, the additional rinsing is performed in the rinsing course of the powder detergent washing course. However, in the liquid detergent washing course, the additional rinsing is performed only when the detergent amount dissolved in the washing water is higher than the preset value in the initial rinsing.
  • In the meantime, the change of a number of rinsing times is shown to the user visibly in a case the additional rinsing is performed thus.
  • If the additional rinsing is determined with reference to the detergent amount calculated thus, at the time a first time rinsing course is performed after a final water supply and heating is finished after the washing is finished, in which a number of the rinsing times changes, the change of a number of the rinsing times is informed to the user.
  • Referring to FIG. 3, the informing of the change can be made by displaying a particular pattern on the display unit 117 a.
  • For an example, referring to FIG. 7, the particular pattern may be a kai pattern or the like that makes rotation of the laundry into a pattern. The kai pattern makes one time of partial rotation of the drum in left/right direction (a swing action) into a pattern. By displaying the swing action repeatedly for around two times, the change of the rinsing pattern owing to operation of the eco sensor (the electrode sensor described before) is informed to the user.
  • The kai pattern may be displayed on a C part in FIG. 3. In addition to this, the operation of the eco sensor is informed in advance by displaying a message that a detergent concentration is under checking, the particular pattern like the kai pattern may be displayed at the time an actual rinsing is performed changed from an original rinsing pattern set before.
  • The pattern display is made at a first time of the changed rinsing course, preferably by repeating the swing action for around 20 seconds before the washing water is drained after the rinsing course.
  • For this, the control unit 300 controls the display unit 117 a so that the particular pattern, such as the kai pattern, can be shown to the user at the same time with the determination of the additional rinsing in the S250 and S350 steps in FIGS. 5 and 6.
  • Finally, if the additional rinsing course is finished, a final rinsing is performed at an extreme end of the rinsing course (S240 and S340).
  • As has been described, by showing proper operation of the safe rinsing function by using an eco sensor to the user visibly, the reliability of the user can be improved.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (5)

1. A method for controlling a washing machine, having a detergent amount calculating step for calculating a remained detergent amount at the time of finishing a washing course or a starting of a rinsing course by means of a conductivity sensor, and a determining step for determining whether an additional rinsing is performed or not according to the remained detergent amount calculated thus, the method comprising:
a user informing step for informing a change of the rinsing pattern to the user if the rinsing pattern which is a parameter that gives influence to the rinsing course varies with reference to the remained detergent amount calculated in the detergent amount calculating step.
2. The method as claimed in claim 1, wherein the rinsing pattern includes at least one of a rinsing water level, a rinsing time period, a number of rinsing times, a rinsing temperature.
3. The method as claimed in claim 2, wherein the user informing step includes the step of informing the change of a number of rinsing times at a fist time of rinsing performed after the change.
4. The method as claimed in claim 3, wherein the user informing step includes the step of displaying a visualized pattern on a display unit such that the user can make easy notice.
5. The method as claimed in claim 3, wherein the visualized pattern is a kai pattern which is partial swing actions of a drum in left/right directions made into a pattern.
US12/425,645 2008-10-22 2009-04-17 Method for controlling washing machine Abandoned US20100095465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0103402 2008-10-22
KR1020080103402A KR101513036B1 (en) 2008-10-22 2008-10-22 Control methed of washing machine

Publications (1)

Publication Number Publication Date
US20100095465A1 true US20100095465A1 (en) 2010-04-22

Family

ID=42063206

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/425,645 Abandoned US20100095465A1 (en) 2008-10-22 2009-04-17 Method for controlling washing machine

Country Status (5)

Country Link
US (1) US20100095465A1 (en)
KR (1) KR101513036B1 (en)
CN (1) CN101725012A (en)
DE (1) DE102009044264A1 (en)
FR (1) FR2937344A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602380A1 (en) * 2011-12-08 2013-06-12 Samsung Electronics Co., Ltd Washing machine with conductivity sensor and method of controlling rinsing cycle
US20140236328A1 (en) * 2011-09-09 2014-08-21 Panasonic Corporation Laundry system, communication device, communication method, communication program and washing machine
WO2015197108A1 (en) * 2014-06-24 2015-12-30 Electrolux Appliances Aktiebolag Method for operating a washing appliance and washing appliance
US9271627B2 (en) 2012-08-28 2016-03-01 Whirlpool Corporation Household appliance having a physical alteration element
US9416482B2 (en) 2012-08-28 2016-08-16 Whirlpool Corporation Household appliances and methods of control
DE102015204538A1 (en) * 2015-03-13 2016-09-15 BSH Hausgeräte GmbH Washing machine with electrochemical water hardness determination and method for its operation
US9850618B2 (en) 2012-08-28 2017-12-26 Whirlpool Corporation Household appliance having a physical alteration element
US9970148B2 (en) 2012-08-28 2018-05-15 Whirlpool Corporation Household appliance having a physical alteration element
US10161075B2 (en) 2016-06-30 2018-12-25 Midea Group Co., Ltd. Laundry washing machine with automatic detection of detergent deficit
US10161074B2 (en) 2016-06-30 2018-12-25 Midea Group Co., Ltd. Laundry washing machine with automatic detergent dispensing and/or rinse operation type selection
US10273622B2 (en) 2016-06-30 2019-04-30 Midea Group Co., Ltd. Laundry washing machine with automatic selection of load type
US10358760B2 (en) * 2016-06-30 2019-07-23 Midea Group Co., Ltd. Laundry washing machine with automatic rinse operation type selection
US10508374B2 (en) 2014-06-24 2019-12-17 Electrolux Appliances Aktiebolag Method for operating a laundry washing appliance and laundry washing appliance implementing the same
US10508375B2 (en) 2014-06-24 2019-12-17 Electrolux Appliances Aktiebolag Method for operating a washing appliance and washing appliance
US20220162790A1 (en) * 2019-02-27 2022-05-26 Electrolux Appliances Aktiebolag A method for washing laundry in a laundry washing machine and laundry washing machine implementing the method
US11371175B2 (en) 2020-06-04 2022-06-28 Midea Group Co., Ltd. Laundry washing machine with dynamic selection of load type
US11773524B2 (en) 2020-12-18 2023-10-03 Midea Group Co., Ltd. Laundry washing machine color composition analysis during loading
US11866868B2 (en) 2020-12-18 2024-01-09 Midea Group Co., Ltd. Laundry washing machine color composition analysis with article alerts
US11898289B2 (en) 2020-12-18 2024-02-13 Midea Group Co., Ltd. Laundry washing machine calibration

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692719B1 (en) * 2008-04-30 2017-01-04 엘지전자 주식회사 Control methed of washing machine
KR101530849B1 (en) * 2011-01-04 2015-06-23 삼성전자 주식회사 Washing machine and control method thereof
KR101933139B1 (en) * 2012-01-10 2018-12-28 삼성전자주식회사 Drum washing machine
DE102012208618A1 (en) 2012-05-23 2013-11-28 BSH Bosch und Siemens Hausgeräte GmbH Method for controlling washing machine, involves continuous determination of temporary change in conductivity of aqueous liquid in treatment area, and comparing temporary change in conductivity with threshold value for temporary change
CN105177920B (en) * 2015-08-06 2018-08-28 无锡小天鹅股份有限公司 Washing machine and its control method
CN107780153A (en) * 2016-08-29 2018-03-09 青岛海尔滚筒洗衣机有限公司 A kind of method to set up and washing machine of washing machine feeding box
CN108245105B (en) * 2018-01-22 2020-09-22 佛山市顺德区美的洗涤电器制造有限公司 Control method of washing electric appliance system, washing electric appliance system and washing electric appliance
CN110699909A (en) * 2018-07-10 2020-01-17 青岛海尔洗衣机有限公司 Control method of clothes processing system
CN112176640B (en) * 2019-06-14 2023-08-18 青岛海尔洗衣机有限公司 Control method of washing machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293578A (en) 2007-05-24 2008-12-04 Hitachi Ltd Stream data control module

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140236328A1 (en) * 2011-09-09 2014-08-21 Panasonic Corporation Laundry system, communication device, communication method, communication program and washing machine
US9850613B2 (en) * 2011-09-09 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Laundry system, communication device, communication method, communication program and washing machine
EP2602380A1 (en) * 2011-12-08 2013-06-12 Samsung Electronics Co., Ltd Washing machine with conductivity sensor and method of controlling rinsing cycle
US10271708B2 (en) 2012-08-28 2019-04-30 Whirlpool Corporation Method of operating a household appliance
US11668041B2 (en) 2012-08-28 2023-06-06 Whirlpool Corporation Household appliance having a physical alteration element
US9271627B2 (en) 2012-08-28 2016-03-01 Whirlpool Corporation Household appliance having a physical alteration element
US9416482B2 (en) 2012-08-28 2016-08-16 Whirlpool Corporation Household appliances and methods of control
US11111621B2 (en) 2012-08-28 2021-09-07 Whirlpool Corporation Household appliance having a physical alteration element
US9850618B2 (en) 2012-08-28 2017-12-26 Whirlpool Corporation Household appliance having a physical alteration element
US9970148B2 (en) 2012-08-28 2018-05-15 Whirlpool Corporation Household appliance having a physical alteration element
US10704183B2 (en) 2012-08-28 2020-07-07 Whirlpool Corporation Household appliance having a physical alteration element
US10400377B2 (en) 2014-06-24 2019-09-03 Electrolux Appliances Aktiebolag Method for operating a washing appliance and washing appliance
WO2015197108A1 (en) * 2014-06-24 2015-12-30 Electrolux Appliances Aktiebolag Method for operating a washing appliance and washing appliance
US10508375B2 (en) 2014-06-24 2019-12-17 Electrolux Appliances Aktiebolag Method for operating a washing appliance and washing appliance
US10508374B2 (en) 2014-06-24 2019-12-17 Electrolux Appliances Aktiebolag Method for operating a laundry washing appliance and laundry washing appliance implementing the same
DE102015204538A1 (en) * 2015-03-13 2016-09-15 BSH Hausgeräte GmbH Washing machine with electrochemical water hardness determination and method for its operation
US11230803B2 (en) 2016-06-30 2022-01-25 Midea Group Co., Ltd. Laundry washing machine with automatic selection of load type
US10161075B2 (en) 2016-06-30 2018-12-25 Midea Group Co., Ltd. Laundry washing machine with automatic detection of detergent deficit
US10858774B2 (en) 2016-06-30 2020-12-08 Midea Group Co., Ltd. Laundry washing machine with automatic detergent dispensing and/or rinse operation type selection
US11072879B2 (en) 2016-06-30 2021-07-27 Midea Group Co., Ltd. Laundry washing machine with automatic rinse operation type selection
US10358760B2 (en) * 2016-06-30 2019-07-23 Midea Group Co., Ltd. Laundry washing machine with automatic rinse operation type selection
US10161074B2 (en) 2016-06-30 2018-12-25 Midea Group Co., Ltd. Laundry washing machine with automatic detergent dispensing and/or rinse operation type selection
US10273622B2 (en) 2016-06-30 2019-04-30 Midea Group Co., Ltd. Laundry washing machine with automatic selection of load type
US20220162790A1 (en) * 2019-02-27 2022-05-26 Electrolux Appliances Aktiebolag A method for washing laundry in a laundry washing machine and laundry washing machine implementing the method
US11371175B2 (en) 2020-06-04 2022-06-28 Midea Group Co., Ltd. Laundry washing machine with dynamic selection of load type
US11773524B2 (en) 2020-12-18 2023-10-03 Midea Group Co., Ltd. Laundry washing machine color composition analysis during loading
US11866868B2 (en) 2020-12-18 2024-01-09 Midea Group Co., Ltd. Laundry washing machine color composition analysis with article alerts
US11898289B2 (en) 2020-12-18 2024-02-13 Midea Group Co., Ltd. Laundry washing machine calibration

Also Published As

Publication number Publication date
FR2937344A1 (en) 2010-04-23
DE102009044264A1 (en) 2010-05-06
KR101513036B1 (en) 2015-04-17
KR20100044318A (en) 2010-04-30
CN101725012A (en) 2010-06-09

Similar Documents

Publication Publication Date Title
US20100095465A1 (en) Method for controlling washing machine
US9212446B2 (en) Laundry machine and washing method with steam for the same
US7421752B2 (en) Household-type water-recirculating clothes washing machine with automatic measure of the washload type, and operating method thereof
EP2113599B1 (en) Control method of laundry machine
CN110565322B (en) Water filling control method and device for clothes treatment device
KR100740841B1 (en) method for washing laundry with steam
KR102545808B1 (en) Washing machine and method for controlling thereof
CN109072531B (en) Method for controlling washing machine and washing machine
KR20090130669A (en) Method of controlling washing machine
US9080273B2 (en) Method for the treatment of washing and program-controlled washing machine suitable therefor
US10435833B2 (en) Laundry washing machine and method for controlling a laundry washing machine
EP2383383B1 (en) Method for operating a washing machine and washing machine
ES2379390T3 (en) Detergent dosing procedure in a clothes washer
KR20100052054A (en) Washing machine
JP2011067312A (en) Washing machine
KR100600716B1 (en) Washing method of a washer
JPH1133271A (en) Washing machine
KR100672606B1 (en) Laundry device
KR100323691B1 (en) method for sensing volume of loundary of drum washing machine
KR101165016B1 (en) Method for displaying heating time of drum type washing machine
JP2022034361A (en) washing machine
KR100653772B1 (en) Washing method of washer
KR20040046933A (en) Washing Machine and Controlling Method for the Same
KR101083536B1 (en) Method and apparatus for setting water level of washing machine
KR20040046994A (en) Detergent injecting method of washing machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC.,KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, PYOUNG HWAN;PARK, EUN JIN;KANG, DONG WOO;AND OTHERS;REEL/FRAME:023601/0019

Effective date: 20091117

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION