US20100075421A1 - Efficient method for nuclear reprogramming - Google Patents

Efficient method for nuclear reprogramming Download PDF

Info

Publication number
US20100075421A1
US20100075421A1 US12/292,717 US29271708A US2010075421A1 US 20100075421 A1 US20100075421 A1 US 20100075421A1 US 29271708 A US29271708 A US 29271708A US 2010075421 A1 US2010075421 A1 US 2010075421A1
Authority
US
United States
Prior art keywords
mirna
mir
cells
nuclear reprogramming
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/292,717
Inventor
Shinya Yamanaka
Michiyo Koyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to US12/292,717 priority Critical patent/US20100075421A1/en
Priority to US12/379,564 priority patent/US9683232B2/en
Assigned to KYOTO UNIVERSITY reassignment KYOTO UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOYANAGI, MICHIYO, YAMANAKA, SHINYA
Publication of US20100075421A1 publication Critical patent/US20100075421A1/en
Priority to US13/313,670 priority patent/US8791248B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/10Production naturally occurring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/65MicroRNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to efficient methods for preparing induced pluripotent stem cells through reprogramming of somatic cells, to induced pluripotent stem cells, to uses of induced pluripotent stem cells and to somatic cells derived by inducing differentiation of said pluripotent cells.
  • the present invention also relates to nuclear reprogramming factors and to miRNAs involved in generating induced pluripotent stem cells.
  • the present invention also relates to screening methods, treatments, and therapies involving the use of induced pluripotent stem cells.
  • Embryonic stem cells are stem cells established from human or mouse early embryos which have a characteristic feature that they can be cultured over a long period of time while maintaining pluripotent ability to differentiate into all kinds of cells existing in living bodies.
  • Human embryonic stem cells are expected for use as resources for cell transplantation therapies for various diseases such as Parkinson's disease, juvenile diabetes, and leukemia, taking advantage of the aforementioned properties.
  • transplantation of ES cells has a problem of causing rejection in the same manner as organ transplantation.
  • iPS cells induced pluripotent stem cells
  • embryonic stem cell-like cells ES-like cells
  • iPS cells induced pluripotent stem cells
  • These methods include a reprogramming step through introduction of a plurality of specific factors (for example, four factors of Oct3/4, Sox2, Klf4, and c-Myc can be used in Takahashi et al., Cell 126:663-76, 2006), and the introduction of these factors is mediated by viral vectors such as retroviral or lentiviral vectors.
  • a plurality of specific factors for example, four factors of Oct3/4, Sox2, Klf4, and c-Myc can be used in Takahashi et al., Cell 126:663-76, 2006
  • viral vectors such as retroviral or lentiviral vectors.
  • all previously reported nuclear reprogramming methods mediated by the introduction of genes involve a problem of low efficiency in which only a small number of induced pluripotent stem cells can be obtained.
  • small RNAs are expressed in cells.
  • Examples of small RNA include RNA molecules of about 18-25 nucleotides in length which can be cleaved out with a dicer, an RNase specific to double-stranded RNA.
  • Small RNA is mainly classified into siRNA (small interfering RNA) and miRNA (microRNA, hereinafter abbreviated as “miRNA”).
  • miRNA miRNA
  • Small RNA is known to function as a guide molecule for finding target sequences in processes such as translational suppression, mRNA degradation, or alteration of chromatin structure.
  • Small RNAs function via RNA interference (RNAi) or miRNA molecular mechanisms.
  • RNA is also known to play an important role in the regulation of developmental processes (for example, as general remarks, refer to Jikken Igaku (Experimental Medicine), 24, pp. 814-819, 2006; and microRNA Jikken Purotokoru (microRNA Experimental Protocol), pp. 20-35, 2008, YODOSHA CO., LTD., herein incorporated by reference in their entireties).
  • ES cell-specific microRNAs have been identified (Houbaviy et al., Developmental Cell 5:351-58, 2003).
  • ES cell-specific expression of a microRNA cluster which includes several types of miRNAs in mouse ES cells, has been reported (Houbaviy et al., Developmental Cell 5:351-58, 2003, herein incorporated by reference in its entirety).
  • miRNA-295 suppressed the expression of Rb12, a member of the Rb tumor suppressor gene family, and increased the expression of methylase to be thereby associated with DNA methylation (Sinkkonen et al., Nature Structural & Molecular Biology 15:259-267, 2008; Benetti et al., Nature Structural & Molecular Biology 15:268-279, 2008, herein incorporated by reference in their entireties).
  • these documents do not disclose any role of small RNA in the nuclear reprogramming of somatic cells.
  • the present invention relates to methods for efficiently preparing induced pluripotent stem cells.
  • the present invention provides methods for achieving efficient preparation of induced pluripotent stem cells in the presence of miRNA.
  • the present invention also provides methods for efficient preparation of induced pluripotent stem cells with a nuclear reprogramming factor.
  • the present invention also provides methods for efficient preparation of induced pluripotent stem cells with a nuclear reprogramming factor in the presence of increased miRNA as compared to the level present in the somatic cell prior to nuclear reprogramming.
  • the present invention also provides such methods wherein the nuclear reprogramming factor does not include c-Myc and/or Sox2.
  • the invention provides a method of preparing induced pluripotent stem cells, comprising nuclear reprogramming at least one somatic cell with nuclear reprogramming factor and at least one miRNA, wherein the at least one miRNA increases efficiency of the nuclear reprogramming of the at least one somatic cell compared to nuclear reprogramming of the at least one somatic cell with the nuclear reprogramming factor in the absence of the at least one miRNA.
  • the invention also provides such a method, wherein the at least one miRNA is expressed in embryonic stem cells at a higher level than in somatic cells.
  • the invention also provides such a method, wherein a gene encoding the nuclear reprogramming factor and/or the at least one miRNA is introduced into the at least one somatic cell.
  • the invention also provides such a method, wherein a vector comprising the gene and/or a vector encoding the at least one miRNA is introduced into the at least one somatic cell.
  • the invention also provides such a method, wherein the vector comprising the gene or encoding the at least one miRNA is a retroviral vector.
  • the invention also provides such a method, wherein the gene is selected from an Oct family gene, a Klf family gene, and a Sox family gene.
  • the invention also provides such a method, wherein the gene is selected from Oct3/4, Klf4, and Sox2.
  • the invention also provides such a method, wherein the nuclear reprogramming factor comprises Oct3/4, Klf4, and Sox2.
  • the invention also provides such a method, wherein the at least one miRNA is introduced into the at least one somatic cell as primary miRNA.
  • the invention also provides such a method, wherein the at least one miRNA is introduced into the at least one somatic cell as pre-miRNA.
  • the invention also provides such a method, wherein the at least one miRNA comprises at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • the invention also provides such a method, wherein the at least one miRNA comprises at least one miRNA contained in miRNA cluster hsa-miR-302-367 cluster.
  • the invention also provides such a method, wherein the at least one miRNA regulates DNA methylation.
  • the invention also provides such a method, wherein the at least one miRNA regulates de novo DNA methylation.
  • the invention also provides such a method, wherein the at least one miRNA down-regulates DNA methylation.
  • the invention also provides such a method, wherein the at least one miRNA comprises at least 10 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • the invention also provides such a method, wherein the at least one miRNA comprises at least 30 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • the invention also provides such a method, wherein the at least one miRNA comprises at least 60 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • the invention also provides such a method, wherein the nuclear reprogramming factor does not include c-Myc and/or Sox2.
  • the invention also provides such a method, wherein the at least one miRNA comprises hsa-miR-302-367 cluster miRNA.
  • the invention also provides such a method, wherein the nuclear reprogramming factor comprises an Oct family gene member, a Sox family gene member, and a Klf family gene member.
  • the invention also provides such a method, wherein the at least one miRNA comprises mmu-miR-295/295* and mmu-miR-294/294*.
  • the invention also provides such a method, wherein the at least one miRNA comprises hsa-miR-302-367 cluster, hsa-miR-371-373 cluster and hsa-miR-520c miRNA.
  • the invention also provides such a method, wherein the nuclear reprogramming factor comprises a Klf family gene, and an Oct family gene.
  • the invention also provides such a method, wherein the nuclear reprogramming factor further comprises a Myc family gene.
  • the invention also provides such a method, wherein the nuclear reprogramming factor further comprises a Sox family gene.
  • the invention also provides such a method, wherein the nuclear reprogramming factor further comprises a Sox family gene.
  • the invention also provides such a method, wherein the nuclear reprogramming factor comprises KLF4 and OCT3/4.
  • the invention also provides such a method, wherein the nuclear reprogramming factor excludes a Sox family gene.
  • the invention also provides such a method, wherein the nuclear reprogramming factor excludes a Myc family gene.
  • the invention also provides such a method, where the at least one somatic cell comprises a plurality of somatic cells.
  • the invention also provides a method of increasing the efficiency of nuclear reprogramming comprising: adding a nuclear reprogramming factor and at least one miRNA to at least one somatic cell so that the number of induced pluripotent stem cells produced is greater than in the absence of the added miRNA.
  • the invention also provides an induced pluripotent stem cell induced by reprogramming a somatic cell, wherein the reprogramming is performed by adding at least one miRNA and in the absence of eggs, embryos, or embryonic stem (ES) cells.
  • ES embryonic stem
  • the invention also provides such an induced pluripotent stem cell, wherein the induced pluripotent stem cell is a human cell.
  • the invention also provides an induced pluripotent stem cell obtained by a method of preparing induced pluripotent stem cells, comprising nuclear reprogramming at least one somatic cell with nuclear reprogramming factor and at least one miRNA, wherein the at least one miRNA increases efficiency of the nuclear reprogramming of the at least one somatic cell compared to nuclear reprogramming of the at least one somatic cell with the nuclear reprogramming factor in the absence of the at least one miRNA.
  • the invention also provides an pluripotent stem cell obtained by a method of increasing the efficiency of nuclear reprogramming comprising: adding a nuclear reprogramming factor and at least one miRNA to at least one somatic cell so that the number of induced pluripotent stem cells produced is greater than in the absence of the added miRNA.
  • the invention also provides somatic cell derived by inducing differentiation of any of the above pluripotent stem cells.
  • FIG. 1 shows the results of confirmation on the production efficiency of induced pluripotent stem cells through induction of nuclear reprogramming in mouse embryonic fibroblasts with a combination of three genes comprising Oct3/4, Klf4, and Sox2 (this combination—represented as “3f”, “c-Myc( ⁇ )”, or OSK”—means that c-Myc was omitted from a combination of four genes comprising Oct3/4, Klf4, Sox2 and c-Myc, which is highly efficient for nuclear reprogramming), in the presence of various miRNAs.
  • 3f+DsRed represents a combination where DsRed ( Discosoma sp. red fluorescent protein) as a control was added to the combination of the aforementioned three genes.
  • the results of three independent experiments are shown.
  • the graph shows the number of ES-like colonies in the cells transduced with OSK with or without DsRed, or with various miRNAs.
  • FIG. 2 shows the production efficiency of induced pluripotent stem cells.
  • the top row of images shows the results of nuclear reprogramming in mouse tail tip fibroblasts (TTFs) when DsRed was added, as a control, to the combination of three genes comprising Oct3/4, Klf4, and Sox2 (a combination of three genes in which c-Myc was omitted from the combination of four genes).
  • the bottom row of images shows the results of induction of nuclear reprogramming in mouse TTFs with the combination of three genes comprising Oct3/4, Klf4, and Sox2 in the presence of mmu-miR-295.
  • the number in the figure indicates the number of Nanog GFP positive colonies/the number of total colonies on days 7, 21, and 28 after drug selection was started.
  • FIG. 3 shows the results of confirmation on the production efficiency of induced pluripotent stem cells through induction of nuclear reprogramming in adult human dermal fibroblasts expressing the mouse ecotropic virus receptor Slc7a1 gene using lentivirus (aHDF-Slc-7a1) with the combination of three genes comprising Oct3/4, Klf4, and Sox2 (Myc( ⁇ )3f: a combination of three genes in which c-Myc was omitted from the combination of four genes comprising Oct3/4, Klf4, Sox2, and c-Myc), or the combination of four genes comprising Oct3/4, Klf4, Sox2, and c-Myc (Y4f), in the presence of various miRNAs.
  • aHDF-Slc-7a1 lentivirus
  • FIGS. 4A-B shows the results of ES-like colonies produced after transduction with 4 factors, i.e., OCT3/4, SOX2, KLF4, and c-MYC (OSMK), as well as with 3 factors, i.e., OCT3/4, SOX2, KLF4 in the presence of various miRNAs (OSK+).
  • FIG. 4A shows the number of human ES-like colonies obtained by transduction with 4 factors (OSMK), and with 3 factors without c-MYC plus miRNAs (OSK+).
  • FIG. 4B shows the morphology of ES-like colonies from a subset of the samples counted in FIG. 4A .
  • FIG. 5 shows expression of ES cell markers in iPS cells produced by nuclear reprogramming of mouse Tail Tip Fibroblasts (TTFs) with 4 factors (OCT3/4, SOX2, c-MYC, and KLF4) and with 3 factors (OCT3/4, SOX2, and KLF4, i.e. “Myc( ⁇ )3f”)+mmu-miR-295/295* or DsRed.
  • FIGS. 6A-B show the results of MEFs infected with 3 factors (Oct3/4, c-MycWT, and Klf4, i.e., “Sox( ⁇ )”) with mmu-miR-290-295 cluster, 290-5p/290-3p(mmu-miR-290), 291a-5p/291a-3p(mmu-miR-291a), 292-5p/292-3p(mmu-miR-292), 293/293*(mmu-miR-293), 294/294*(mmu-miR-294) or 295/295*(mmu-miR-295).
  • FIG. 6A shows the number of Nanog GFP positive colonies.
  • FIG. 6B shows expression of ES marker genes in iPS cells checked with RT-PCR.
  • FIGS. 7A-C show the results of iPS induction with Fb-Ng MEFs (MEFs derived from Fbx 15- ⁇ geo/Nanog-IRES-Puro r reporter mouse) over-expressing Oct3/4, c-Myc, and Klf4 (“Sox( ⁇ )”)+mmu-miR-295/295* or hsa-miR-302-367 cluster miRNAs.
  • FIG. 7A shows cell morphology of MEFs transduced with Oct3/4, c-Myc, and Klf4 (“Sox( ⁇ )”)+mmu-miR-295/295*.
  • FIG. 7A shows cell morphology of MEFs transduced with Oct3/4, c-Myc, and Klf4 (“Sox( ⁇ )”)+mmu-miR-295/295*.
  • FIG. 7B shows chimeras derived from iPS cells induced with Sox( ⁇ )3f+mmu-miR-295/295*.
  • FIG. 7C shows embryoid body (EB)-mediated in vitro differentiation by human iPS cells.
  • Human iPS cells (61B1, 61N2) were established by transduction of 4 genes (OCT3/4, KLF4, SOX2, and c-MYC, i.e., “OSMK”) or 3 genes (OCT3/4, KLF4, and c-MYC, i.e., “OMK(SOX( ⁇ )”) in the presence of hsa-miR-302-367 cluster miRNA.
  • AFP a-fetoprotein
  • a-SMA ⁇ -smooth muscle actin
  • DAKO GFAP
  • FIG. 8 shows cell morphology of iPS cells induced with OSMK; SOX( ⁇ ) (OKM)+hsa-miR-302-367 cluster miRNA; and OCT3/4+KLF4+hsa-miR-302-367 cluster miRNA.
  • Transduction with DsRed was performed as a as control. On Day 40 after infection, the number of ES-like colonies was counted.
  • TABLE 3 shows the results of six independent experiments (Exp. 54, 61, 63, 114, 130 and 133).
  • the present invention provides methods for efficiently preparing induced pluripotent stem cells through reprogramming of one or more somatic cells.
  • the present invention provides efficient preparation of induced pluripotent stem cells in the presence of miRNA.
  • the present invention also provides efficient preparation with or without using a suspected tumorigenic factor: c-Myc.
  • the present invention also provides efficient preparation with or without using Sox2.
  • the nuclear reprogramming is preferably performed without c-Myc and/or Sox2.
  • the inventors of the present invention have conducted intensive studies, and as a result, they have found that induced pluripotent stem cells can be efficiently prepared by introduction of nuclear reprogramming-inducing gene(s) into somatic cells in the presence of specific miRNA.
  • the present invention was achieved on the basis of the above findings.
  • the present invention thus provides a method of preparing induced pluripotent stem cells, comprising nuclear reprogramming with a nuclear reprogramming factor in the presence of miRNA, wherein said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • a preferred embodiment of the present invention provides the aforementioned method wherein: (a) said miRNA is expressed in embryonic stem cells at a higher level than in somatic cells; and/or (b) said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof and/or (c) said nuclear reprogramming is performed in the presence of increased levels of one or more miRNAs as compared to the level(s) present in the somatic cell prior to nuclear reprogramming.
  • Another preferred embodiment of the present invention provides: the aforementioned method wherein the nuclear reprogramming factor is either a single substance, or a combination of a plurality of substances, which is/are positive in the screening method of nuclear reprogramming factor described in International Publication No. WO2005/80598 A1, incorporated by reference herein in its entirety; the aforementioned method wherein the nuclear reprogramming factor is either a gene product of a single gene, or a combination of gene products of a plurality of genes, which is/are positive in the screening method of nuclear reprogramming factor described in International Publication No.
  • WO2005/80598 A1 incorporated by reference herein in its entirety; the aforementioned method wherein the nuclear reprogramming with the nuclear reprogramming factor is carried out by introduction of the aforementioned gene(s) and/or substance(s) into somatic cells; the aforementioned method wherein introduction of the aforementioned gene(s) into somatic cells is carried out with a recombinant vector; and the aforementioned method wherein the nuclear reprogramming with the nuclear reprogramming factor is carried out by introduction of gene product(s) of the aforementioned gene(s) into somatic cells.
  • the gene encoding the reprogramming factor comprises one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene, preferably a combination of two genes selected from the aforementioned genes except for the Myc family genes of Sox family genes, more preferably a combination of three genes, and particularly preferably a combination four or more genes.
  • the combination can be any combination of factors which does not comprise c-Myc or Sox2.
  • More preferable combinations are: (a) a combination of two genes comprising of an Oct family gene and a Sox family gene; (b) a combination of three genes comprising an Oct family gene, a Klf family gene, and a Sox family gene; and (c) a combination of four genes comprising an Oct family gene, a Sox family gene, a Lin family gene, and a Nanog gene. Further, it is also preferable to combine any of the above genes with a TERT gene and/or a SV40 Large T antigen gene. It may be preferable to omit Klf family genes depending on the situation. The Myc family genes may or may not be included in these combinations. Combinations without the Myc family gene can be suitably used according to the present invention.
  • particularly preferable combinations are: a combination of two genes comprising Oct3/4 and Sox2; a combination of three genes comprising Oct3/4, Klf4, and Sox2; and a combination of four genes comprising Oct3/4, Sox2, Lin28, and Nanog. It is also preferable to combine any of the above genes with a TERT gene and/or a SV40 Large T antigen gene. It may be preferable to omit Klf4 depending on the situation. c-Myc may be included in these combinations. However, combinations without c-Myc can be suitably used in the present invention.
  • a combination of two genes comprising of an Oct family gene and a Klf family gene (b) a combination of three genes comprising an Oct family gene, a Klf family gene, and a Myc family gene.
  • the somatic cells are those derived from mammals including human, mouse, rat, cattle, sheep, horse, monkey, and hamster, preferably somatic cells from human or mouse, and most preferably somatic cells from human; the aforementioned method wherein the somatic cells are human embryonic cells, or adult human-derived somatic cells; and the aforementioned method wherein the somatic cells are somatic cells collected from a patient.
  • the miRNA comprises one or more miRNA(s) included in the RNA sequences specified by the registration names of the miRBase database or the accession numbers shown in Table 1 or Table 2; the aforementioned method wherein the RNA sequences specified by the registration names of the miRBase database (and the accession numbers) shown in Table 1 or Table 2 comprise one or more RNA(s) selected from hsa-miR-372 (MI0000780), hsa-miR-373 (MI0000781), hsa-miR-302b (MI0000772), hsa-miR-302c (MI0000773), hsa-miR-302a (MI0000738), hsa-miR-302d (MI0000774), hsa-miR-367 (MI0000775), hsa-miR-520c (MI0003158), mmu-miR-290 (MI0000781), hsa-miR-372 (
  • the present invention provides an oligonucleotide comprising at least 10 contiguous nucleotides in the nucleotide sequence of the miRNA of the present invention, and an antisense oligonucleotide having a sequence that is complementary to that of the above oligonucleotide.
  • the present invention also provides an oligonucleotide comprising at least 15, at least 20, at least 30, at least 50, or at least 60 contiguous nucleotides in the nucleotide sequence of the miRNA of the present invention.
  • the present invention also provides an oligonucleotide comprising at least 70, at least 80, at least 100, at least 150, at least 200, at least 300, at least 400, at least 600, or at least 800 contiguous nucleotides in the nucleotide sequence of the miRNA of the present invention.
  • the present invention also provides induced pluripotent stem cells that can be obtained by the aforementioned method.
  • the present invention also provides somatic cells obtained by inducing differentiation from the abovementioned induced pluripotent stem cells.
  • the present invention provides a stem cell therapy comprising transplanting somatic cells into a patient, wherein the somatic cells are obtained by inducing differentiation from induced pluripotent stem cells that are obtained according to the aforementioned method by using somatic cells isolated and collected from a patient.
  • the present invention provides a method for evaluation of physiological effect or toxicity of a compound, a drug, or a toxic agent, with use of various cells obtained by inducing differentiation from induced pluripotent stem cells that are obtained by the aforementioned method.
  • the present invention provides: a method for preparing induced pluripotent stem cells which uses miRNA expressed in embryonic stem cells at a higher level than in somatic cells, and having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof; and a nuclear reprogramming method of somatic cells which uses miRNA expressed in embryonic stem cells at a higher level than in somatic cells, and having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • the present invention provides methods comprising the use of miRNA expressed in embryonic stem cells at a higher level than in somatic cells (e.g., the miRNA may be expressed at levels which are higher in the ES cell as compared to the ES cell which has differentiated or which has begun differentiating such as determined by RT-PCR or Northern blot analysis), and having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof, for preparation of induced pluripotent stem cells; and methods relating to the use of miRNA expressed in embryonic stem cells at a higher level than in somatic cells, and having a property of providing a higher nuclear reprogramming efficiency in the presence of the miRNA than in the absence thereof, for nuclear reprogramming of somatic cells.
  • the miRNA may be expressed at levels which are higher in the ES cell as compared to the ES cell which has differentiated or which has begun differentiating such as determined by RT-PCR or Northern blot analysis
  • nuclear reprogramming and thus, induced pluripotent stem cell production, can be performed in the presence of miRNA and in the absence of miRNA.
  • the nuclear reprogramming may also be performed in the presence of various amounts and/or kinds of miRNA, such that, for example, the efficiency of the nuclear reprogramming is increased when the level of the miRNA is increased in the somatic cell prior to nuclear reprogramming.
  • the present invention provides methods comprising the use of miRNA having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof, for preparation of induced pluripotent stem cells.
  • the presence of added miRNA can provide the formation of an induced pluripotent stem cell as compared to the lack of formation in the absence of the miRNA.
  • increased efficiency can be observed when a greater number of induced pluripotent stem cells are generated in the sample which comprises the addition of miRNA than in the sample without the addition of miRNA.
  • increased efficiency of induced pluripotent stems cell production can also be achieved with increased amounts of miRNA as compared to miRNA amounts present in the somatic cell prior to nuclear reprogramming.
  • the methods of the present invention relate to, e.g., a method for preparing induced pluripotent stem cells, comprising nuclear reprogramming with a nuclear reprogramming factor in the presence of miRNA, wherein said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • said miRNA is expressed in embryonic stem cells at a higher level than in somatic cells; and (b) said RNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • the miRNA for example, its classification and in vivo functions are described in Jikken Igaku (Experimental Medicine), 24, pp. 814-819, 2006; microRNA Jikken Purotokoru (microRNA Experimental Protocol), pp. 20-35, 2008, YODOSHA CO., LTD.
  • the number of nucleotides of miRNA is for example 18 to 25, and preferably about 19 to 23.
  • a database storing data relating to about 1,000 miRNA sequences is available (for example, miRBase, Griffiths-Jones et al. Nucleic Acids Research 36:D154-D158, 2008 (published online Nov.
  • transgenic mice are generated by insertion of sequences encoding Enhanced Green Fluorescent Protein (EGFP) and a puromycin resistance gene downstream of a Nanog gene promoter region, the expression of which is specific to ES cells; then, three genes, for example, Oct3/4, Sox2, and Klf4, and various miRNAs are introduced into embryonic fibroblasts derived from these transgenic mice to induce nuclear reprogramming, followed by confirmation of the production efficiency of induced pluripotent stem cells.
  • the production efficiency can be determined, for example, by counting the number of colonies.
  • the number of colonies can be compared by the following manner: drug selection is started from the 21st day after introduction of the above genes and miRNA; and the number of total colonies and the number of Nanog GFP positive colonies (GFP, the expression of which is induced by the Nanog gene promoter region, is observable under fluorescent microscopy) are counted on the 28th day.
  • GFP Nanog GFP positive colonies
  • the confirmation of the nuclear reprogramming efficiency is not limited to the above method; appropriate modification and alteration can be made in the above method; and any appropriate method can be employed by those skilled in the art.
  • miRNA it is preferable to use miRNA derived from the same animal species as the target animal whose somatic cells are to be reprogrammed.
  • Usable miRNA includes wild type miRNA as well as miRNAs in which one to several nucleotides (for example 1 to 6 nucleotides, preferably 1 to 4 nucleotides, more preferably 1 to 3 nucleotides, yet more preferably 1 or 2 nucleotides, and most preferably 1 nucleotide) are substituted, inserted, and/or deleted, and which are capable of exerting equivalent functions to those of the wild type miRNA in vivo.
  • nucleotides for example 1 to 6 nucleotides, preferably 1 to 4 nucleotides, more preferably 1 to 3 nucleotides, yet more preferably 1 or 2 nucleotides, and most preferably 1 nucleotide
  • the miRNA of the present invention includes miRNAs in which one to several nucleotides are substituted, inserted, and/or deleted, and which increase the efficiency of iPS cell production.
  • the miRNA of the present invention also includes miRNAs in which one to several nucleotides are substituted, inserted, and/or deleted, and which improve the efficiency of nuclear reprogramming.
  • the miRNA of the present invention also includes miRNAs in which one to several nucleotides are substituted, inserted, and/or deleted, and which regulate DNA methylation.
  • the present invention also includes such miRNAs wherein the DNA methylation is down-regulated.
  • the present invention also includes such miRNAs wherein the DNA methylation is de novo DNA methylation.
  • Examples of the miRNA preferably used in the methods of the present invention can include, but are not limited to, one or more miRNA(s) included in the following RNA sequences registered in the miRBase: hsa-miR-372 (MI0000780), hsa-miR-373 (MI0000781), hsa-miR-302b (MI0000772), hsa-miR-302c (MI0000773), hsa-miR-302a (MI0000738), hsa-miR-302d (MI0000774), hsa-miR-367 (MI0000775), hsa-miR-520c (MI0003158), mmu-miR-290 (MI0000388), mmu-miR-291a (MI0000389), mmu-miR-294 (MI0000392), and mmu-miR-295 (MI0000393) (Numbers in the brackets respectively indicate mi
  • miRNAs that have been confirmed to improve the nuclear reprogramming efficiency in the above manner can be used either alone or in combinations of two or more types.
  • a plurality of miRNAs forming a cluster may also be used.
  • hsa-miR-302-367 which is available as a miRNA cluster, or individual miRNAs from the hsa-miR-302-367 cluster, and the like may be used.
  • Examples of RNA sequences for use in the present invention are shown in SEQ IDS: 1 to 14 in the Sequence Listing.
  • SEQ ID: 1 mmu-miR-294 (MI0000392); SEQ ID: 2: mmu-miR-295 (MI0000393); SEQ ID: 3: hsa-miR-372 (MI0000780); SEQ ID: 4: hsa-miR-373 (MI0000781); SEQ ID: 5: hsa-miR-302b (MI0000772); SEQ ID: 6: hsa-miR-302c (MI0000773); SEQ ID: 7: hsa-miR-302a (MI0000738); SEQ ID: 8: hsa-miR-302d (MI0000774); SEQ ID: 9: hsa-miR-367 (MI0000775); SEQ ID: 10: hsa-miR-520c (MI0003158); SEQ ID: 11: mmu-miR-291a (MI0000389); SEQ ID:13: mmu-
  • RNA represented by SEQ ID: 12: hsa-miR-302-367 cluster can also be preferably used.
  • some RNA sequences may include a plurality of miRNAs within one sequence. Use of such an RNA sequence may achieve efficient production of iPS cells.
  • an RNA sequence including a plurality of miRNAs within one sequence and one or more other RNA sequence(s) including one or more miRNA(s) can also be used in combination.
  • miRNA is non-coding RNA which is not translated into a protein. miRNA is first transcribed as pri-miRNA from a corresponding gene, then this pri-miRNA generates pre-miRNA having a characteristic hairpin structure of about 70 nucleotides, and this pre-miRNA is further processed into mature miRNA, which is mediated by Dicer.
  • pri-miRNA not only mature miRNA but also pri-miRNA or pre-miRNA can be used as long as the effect of the present invention is not impaired.
  • miRNA for use in the present invention may be either natural type or non-natural type. Thus, any small RNA or RNA precursor may be used as long as the effect of the pre/sent invention is not impaired.
  • miRNA for use in the present invention is not specifically limited, although the production can be achieved, for example, by a chemical synthetic method or a method using genetic recombination technique.
  • miRNA for use in the present invention can, for example, be produced through transcription reaction with use of a DNA template and a RNA polymerase obtained by means of gene recombination.
  • RNA polymerase examples include a T7 RNA polymerase, a T3 RNA polymerase, and a SP6 RNA polymerase.
  • a recombinant vector capable of expressing miRNA can be produced by insertion of miRNA-encoding DNA into an appropriate vector under the regulation of expression control sequences (promoter and enhancer sequences and the like).
  • expression control sequences promoter and enhancer sequences and the like.
  • the type of vector used herein is not specifically limited, although DNA vectors are preferred. Examples thereof can include viral vectors and plasmid vectors.
  • the viral vector is not specifically limited, although retroviral vectors, adenoviral vectors, adeno-associated viralvectors, and the like can be employed.
  • mammalian expression plasmids well known to those skilled in the art can be employed.
  • Methods for using a retrovirus as a vector are disclosed in WO 2007/69666 A1; Takahashi et al., Cell 126:663-676, 2006; and Takahashi et al., Cell 131:861-872, 2007, which are herein incorportated by reference in their entireties.
  • Methods for using a lentivirus as a vector are disclosed in Yu et al., Science 318:1917-1920, 2007, which is herein incorporated by reference in its entirety.
  • Methods for using adenovirus as a vector are disclosed in Stadtfeld et al., Science 322:945-949, 2008, which is herein incorporated by reference in its entirety.
  • Nuclear reprogramming can be performed in the presence of miRNA in any number of ways.
  • the manner of providing the miRNA is not specifically limited, although examples thereof can include a method for directly injecting miRNA into nuclei of somatic cells, and a method for introducing an appropriate recombinant vector capable of expressing miRNA into somatic cells. However, these methods are not to be considered as limiting.
  • the method for introducing a recombinant vector into somatic cells is not specifically limited, and can be carried out by any method well known to those skilled in the art.
  • Examples of the employable methods can include transient transfection, microinjection, a calcium phosphate precipitation method, liposome-mediated transfection, DEAE dextran-mediated transfection, electroporation, and methods comprising the use of a gene gun.
  • nuclear reprogramming factor for example, the screening method of nuclear reprogramming factor described in International Publication No. WO2005/80598 A1, incorporated by reference herein in its entirety, can be used. Those skilled in the art are able to screen a nuclear reprogramming factor for use in the method of the present invention by referring to the above publication. In addition, the nuclear reprogramming factor can also be confirmed by using a method in which appropriate modification or alteration has been made in the above screening method.
  • Examples of the gene encoding a reprogramming factor that can be used for the method of the present invention can include: one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene; preferably one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Lin family gene, and a Nanog gene, and excluding a Myc family gene; one or more gene(s) selected from an Oct family gene, a Klf family gene, a Myc family gene, a Lin family gene, and a Nanog gene, and excluding a Sox family gene; more preferably a combination of two genes; yet more preferably a combination of three genes; and most preferably a combination of four genes.
  • Lin family gene examples include, for example, Lin28 and Lin28b.
  • the NCBI accession numbers of Lin28 are NM 145833 (mouse) and NM — 024674 (human).
  • the NCBI accession numbers of Lin28b are NM — 001031772 (mouse) and NM — 001004317 (human).
  • reprogramming factor(s) encoded by one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene may be substituted by, for example a cytokine, or one or more other low molecular weight compound(s) in some cases.
  • low molecular weight compound(s) can include low molecular weight compounds having an enhancing action on the expression of one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene.
  • Those skilled in the art are able to readily screen such low molecular weight compound(s).
  • genes derived from any mammal for example, derived from a mammal such as human, mouse, rat, cattle, sheep, horse, and monkey
  • genes derived from any mammal can be employed.
  • a stable type variant e.g., (T58A) and the like may also be used as well as the wild type.
  • the same principle can be applied to other gene products.
  • a gene encoding a factor which induces immortalization of cells may also be combined.
  • a gene encoding a factor which induces immortalization of cells may also be combined.
  • one or more gene(s) selected from a TERT gene, and following genes: SV40 Large T antigen, HPV16 E6, HPV16 E7, and Bmil, can be either solely used or jointly used in an appropriate combination.
  • one or more gene(s) selected from Fbx15, ERas, ECAT15-2, Tell, and ⁇ -catenin may be combined, and/or one or more gene(s) selected from ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sal14, Rex1, UTF1, Stella, Stat3, and Grb2 may also be combined. These combinations are specifically described in International Publication No. WO2007/069666 A1.
  • the factors including the gene products as mentioned above may also be combined with one or more gene product(s) of gene(s) selected from: Fbx15, Nanog, ERas, ECAT15-2, Tell, and ⁇ -catenin. Further, these factors may also be combined with one or more gene product(s) of gene(s) selected from: ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sal14, Rex1, UTF1, Stella, Stat3, and Grb2, for example. These gene products are disclosed in International Publication No. WO2007/069666 A1. However, gene products that can be included in the nuclear reprogramming factors of the present invention are not limited to the gene products of genes specifically described above.
  • the nuclear reprogramming factors of the present invention can include other gene products which can function as a nuclear reprogramming factor, as well as one or more factors involving differentiation, development, or proliferation, and factors having other physiological activities. It should be understood that the aforementioned aspect may also be included within the scope of the present invention.
  • gene product(s) if one or more gene product(s) is/are already expressed in somatic cells to be reprogrammed, such gene products can be excluded from the factors to be introduced.
  • one or more gene(s) besides the already-expressed gene(s) can be introduced into somatic cells by an appropriate gene introduction method, for example, a method using a recombinant vector.
  • the other one or more gene(s) can be introduced by an appropriate gene introduction method, for example, a method using a recombinant vector.
  • a gene product serving as a nuclear reprogramming factor may be either a protein itself produced from the abovementioned gene, or in the form of a fusion gene product between such a protein and another protein, a peptide, or the like.
  • a fusion protein having Green Fluorescent Protein (GFP) and a fusion gene product having a peptide such as a histidine tag may also be used.
  • GFP Green Fluorescent Protein
  • a fusion gene product having a peptide such as a histidine tag
  • use of a prepared fusion protein having a HIV virus-derived TAT peptide enables the promotion of endocytosis of a nuclear reprogramming factor through cell membrane, and also enables the induction of reprogramming by simply adding such a fusion protein into the medium while avoiding complicated manipulations such as gene introduction.
  • the preparation method of the aforementioned fusion gene product is well known to those skilled in the art, and therefore those skilled in the art are able to readily design and prepare
  • induced pluripotent stem cells refers to cells having similar properties to those of ES cells, and more specifically the term includes undifferentiated cells which are reprogrammed from somatic cells and have pluripotency and proliferation potency.
  • this term is not to be construed as limiting in any sense, and should be construed to have its broadest meaning.
  • the preparation method of induced pluripotent stem cells with the use of a nuclear reprogramming factor is described in International Publication No. WO2005/80598 A1 (the term “ES-like cell” is used in this publication), and methods for isolating induced pluripotent stem cells are also specifically described.
  • the preparation method of induced pluripotent stem cells from somatic cells by the method of the present invention is not specifically limited, and any method can be employed as long as the method enables nuclear reprogramming of somatic cells with a nuclear reprogramming factor in the presence of miRNA in an environment where somatic cells and induced pluripotent stem cells can grow.
  • a vector comprising a gene which can express a nuclear reprogramming factor can be used to introduce such a gene into somatic cells, and at either the same or different timing, a recombinant vector which can express miRNA can be introduced into the somatic cells. If such vectors are used, two or more genes may be incorporated into a vector to effect simultaneous expression of respective gene products in somatic cells.
  • the expression vector may be introduced into somatic cells that have been cultured on feeder cells, or the expression vector may also be introduced into somatic cells alone. The latter method is sometimes more suitable in order to improve the introduction efficiency of the expression vector.
  • the feeder cells there may be appropriately used feeder cells for use in culture of embryonic stem cells. Examples thereof can include primary culture cells of 14 or 15 day-mouse embryonic fibroblasts and STO cells of fibroblast cell line, which are treated with either radiation or a drug such as mitomycin C.
  • the culture of somatic cells introduced with a nuclear reprogramming factor under an appropriate condition leads to autonomous nuclear reprogramming, as a result of which induced pluripotent stem cells can be produced from somatic cells.
  • the process for introducing a gene encoding a nuclear reprogramming factor and/or miRNA into somatic cells with use of an expression vector to thereby obtain induced pluripotent stem cells can be performed in accordance with, for example, a method using a retrovirus. Examples of such method include methods described in publications such as Takahashi et al., Cell 126:663-76, 2006; Takahashi et al., Cell 131:861-72, 2007; Yu et al., Science 318:1917-20, 2007.
  • human induced pluripotent stem cells When human induced pluripotent stem cells are to be produced, it is desirable to set the cell culture density after the introduction of an expression vector to be lower than normal cases for culturing animal cells. For example, it is preferable to keep culturing at a density of 1 ⁇ 10 4 to 1 ⁇ 10 5 cells/10 cm dish, and more preferably about 5 ⁇ 10 4 cells/10 cm dish.
  • the medium for use in culture is not specifically limited, and can be appropriately selected by those skilled in the art, although for example it is sometimes preferable to use a medium suitable for human ES cell culture for the production of human induced pluripotent stem cells.
  • the medium selection and culture condition can be referred to the above publications.
  • pluripotent stem cells can be checked with various markers specific to undifferentiated cells, and the means therefor is described in the above publications specifically in detail.
  • pluripotent cell markers include: alkaline phosphatase (AP); ABCG2; stage specific embryonic antigen-1 (SSEA-1); SSEA-3; SSEA-4; TRA-1-60; TRA-1-81; Tra-2-49/6E; ERas/ECAT5, E-cadherin; ⁇ III-tubulin; ⁇ -smooth muscle actin ( ⁇ -SMA); fibroblast growth factor 4 (Fgf4), Cripto, Dax1; zinc finger protein 296 (Zfp296); N-acetyltransferase-1 (Nat1); (ES cell associated transcript 1 (ECAT1); ESG1/DPPA5/ECAT2; ECAT3; ECAT6; ECAT7; ECAT8; ECAT9; ECAT10; ECAT15-1; ECAT15-2; Fthl17; Sal14;
  • ECAT1
  • markers can include Dnmt3L; Sox15; Stat3; Grb2; SV40 Large T Antigen; HPV16 E6; HPV16 E7, 13-catenin, and Bmi1.
  • Such cells can also be characterized by the down-regulation of markers characteristic of the differentiated cell from which the iPS cell is induced.
  • iPS cells derived from fibroblasts may be characterized by down-regulation of the fibroblast cell marker Thy1 and/or up-regulation of SSEA-3 and 4.
  • markers such as cell surface markers, antigens, and other gene products including ESTs, RNA (including microRNAs and antisense RNA), DNA (including genes and cDNAs), and portions thereof.
  • induced pluripotent stem cells capable of retaining undifferentiation property and pluripotency of ES cells and various media incapable of retaining these properties are known in the art, and appropriate combination of these media enables efficient isolation of induced pluripotent stem cells.
  • the differentiation ability and proliferation potency of thus isolated induced pluripotent stem cells can be readily checked by those skilled in the art, with use of general checking means for ES cells.
  • colonies of induced pluripotent stem cells can be obtained by growing thus produced induced pluripotent stem cells under an appropriate condition, and the presence of these induced pluripotent stem cells can be identified with reference to the shape of their colonies. For example, it is known that mouse induced pluripotent stem cells form raised colonies, while human induced pluripotent stem cells form flat colonies. These colony shapes are respectively very similar to those of mouse ES cells and human ES cells, and those skilled in the art are thus able to identify these produced induced pluripotent stem cells with reference to the shape of their colonies.
  • somatic cell to be reprogrammed by the method of the present invention is not specifically limited, and any somatic cell can be used.
  • somatic cells derived from any mammal for example, derived from a mammal such as human, mouse, rat, cattle, sheep, horse, and monkey
  • embryonic somatic cells not only embryonic somatic cells but also neonatal somatic cells, matured somatic cells, and tissue stem cells may also be used.
  • various somatic cells such as skin cells, liver cells, and gastric mucosa cells can be reprogrammed.
  • somatic cells involved in a disease and somatic cells associated with a therapy for a disease can be used.
  • induced pluripotent stem cells produced by the method of the present invention is not specifically limited, and these cells can be used for every examination/study to be performed with use of ES cells, and for any disease therapy which utilizes ES cells.
  • induced pluripotent stem cells obtained by the method of the present invention can be induced into desired differentiated cells (such as nerve cells, myocardial cells, blood cells and insulin-producing cells) by treatment with retinoic acid, a growth factor such as EGF, or glucocorticoid, so that appropriate tissue can be formed.
  • desired differentiated cells such as nerve cells, myocardial cells, blood cells and insulin-producing cells
  • retinoic acid a growth factor such as EGF, or glucocorticoid
  • Stem cell therapies through autologous cell transplantation can be achieved by returning these differentiated cells or tissue obtained in the above manner, into the patient.
  • the application of the induced pluripotent stem cells of the present invention is not to be limited to the abovementioned specific aspects.
  • pMXs-based retroviral vectors which respectively encode each of three genes of mouse-derived Oct3/4, Sox2, and Klf4, control DsRed or each miRNA of 18 types of miRNAs, were transfected into PLAT-E cells using FuGENE 6 reagent (Roche) to get retroviruses.
  • FuGENE 6 reagent FuGENE 6 reagent (Roche) to get retroviruses.
  • embryonic fibroblasts Neanog GFP MEF, WO2007/069666 A1
  • derived from transgenic mice generated by insertion of sequences encoding EGFP gene and puromycin resistance gene downstream of a Nanog gene promoter region were seeded at 1 ⁇ 10 5 cells/well in 6-well plates.
  • these cells were infected with retroviruses expressing Oct3/4, Sox2, Klf4, and each type of miRNA selected from 18 types of miRNAs, at a ratio of 1 ml of virus mixture expressing these three factors to 1 ml of virus solution expressing miRNA or DsRed, so as to prepare induced pluripotent stem cells through nuclear reprogramming.
  • the cells were cultured in an ES cell medium containing LIF.
  • the cells were harvested by trypsinization, and the whole amount thereof was spread over mytomicin-C treated STO cells as feeder cells. Every other day thereafter, the ES cell medium containing LIF was replaced.
  • drug selection was started with addition of puromycin at a final concentration of 1.5 ⁇ g/ml.
  • the number of Nanog GFP positive colonies (GFP, the expression of which is induced by a Nanog gene promoter region, can be observed with the use of fluorescent microscopy) was counted.
  • DsRed was used in place of miRNA. The results are shown in FIG.
  • mmu-miR-294 and mmu-miR-295 could respectively improve the nuclear reprogramming efficiency when introduced into mouse embryonic fibroblasts together with three factors of Oct3/4, Sox2, and Klf4, and could enable efficient establishment of induced pluripotent stem cells.
  • pMXs-based retroviral vectors which respectively encode each of three genes of mouse-derived Oct3/4, Sox2, and Klf4, DsRed (control), or mmu-miR-295, were transfected into PLAT-E cells using FuGENE 6 reagent (Roche) to get retroviruses.
  • tail tip fibroblasts Nanog GFP tailtip fibroblasts derived from transgenic mice generated by insertion of sequences encoding EGFP gene and puromycin resistance gene downstream of a Nanog gene promoter region, were seeded at 1 ⁇ 10 5 cells/well in 6-well plates.
  • these cells were infected with retroviruses expressing three factors of Oct3/4, Sox2, and Klf4, and either DsRed or mmu-miR-295, at a ratio of 1:1:1:1, so as to prepare induced pluripotent stem cells through nuclear reprogramming.
  • the cells were cultured in an ES cell medium containing LIF.
  • the cells were harvested by trypsinization and the whole amount thereof was spread over mytomicin-C treated STO cells as feeder cells. Every other day thereafter, the ES cell medium containing LIF was replaced.
  • drug selection was started with addition of puromycin at a final concentration of 1.5 ⁇ g/ml.
  • the number of total colonies and the number of Nanog GFP positive colonies were counted. The results are shown in FIG. 2 .
  • mmu-miR-295 could improve the nuclear reprogramming efficiency when introduced into mouse tail tip fibroblasts together with three factors of Oct3/4, Sox2, and Klf4, and could accelerate the reprogramming speed and enable efficient establishment of induced pluripotent stem cells.
  • pMXs-based retroviral vectors which encode three genes of human-derived OCT3/4, SOX2, and KLF4, and control DsRed or either 23 types of miRNAs or an miRNA cluster, were transfected into PLAT-E cells using FuGENE 6 reagent (Roche) to get retroviruses.
  • FuGENE 6 reagent FuGENE 6 reagent (Roche) to get retroviruses.
  • adult human dermal fibroblasts aHDF
  • aHDF-Slc7a1 a rodent ecotropic virus receptor Slc7a1
  • the cells were infected with retroviruses expressing three genes of OCT3/4, SOX2, KLF4, and various types of miRNAs, at a ratio of 1:1:1:1, so as to produce induced pluripotent stem cells through nuclear reprogramming.
  • 3 ⁇ 10 5 aHDF-Slc7a1 cells were plated on 60 mm gelatin coated dishes and infected with retrovirus to express DsRed, 4 factors (OCT3/4, SOX2, c-MYC, and KLF4), or 3 factors (OCT3/4, SOX2, KLF4) in the presence of various miRNAs independently.
  • 4 factors OCT3/4, SOX2, c-MYC, and KLF4
  • 3 factors OCT3/4, SOX2, KLF4
  • FIG. 4A shows the results of three independent experiments. It was found that the number of colonies of induced pluripotent stem cells increased, as compared to the control, by introduction of three genes in the presence of hsa-miR-372, 373/373*(hsa-miR-373), 371-373 cluster (including 371, 372, and 373), 302b/302b* (hsa-miR-302b), 302-367 cluster (including 302b, 302c, 302a, 302d, and 367), 520c-5p/520c-3p (hsa-miR-520c), mmu-mir-290-5p/290-3p (mmu-mir-290), mmu-mir-291a-5p/291a-3p (mmu-mir-291a), 294/294* (mmu-mir-294), or 295/295* (mmu-mir-295).
  • FIG. 4B shows the morphology of ES-like colonies of iPS cells by using microscopy.
  • TTFs Mouse Tail Tip Fibroblasts
  • OCT3/4, SOX2, c-MYC, and KLF4 4 Factors
  • 3 Factors OCT3/4, SOX2, and KLF4+mmu-miR-295/295*
  • FbNg TTFs TTFs derived from Fbx15- ⁇ geo/Nanog-IRES-Puro r reporter mouse cells were plated on gelatin coated 6-well plates and infected with retrovirus to express 3 factors (Oct3/4, Sox2, Klf4) plus either DsRed (Myc( ⁇ )3f+DsRed), mmu-miR-295/295* (Myc( ⁇ )3f+mmu-miR-295/295*), or c-Myc (4 factor).
  • RT-PCR analysis using the Rever Tra Ace Kit showed that the iPS cells transfected with 4 factors (OCT3/4, SOX2, c-MYC, and KLF4), or with 3 factors (OCT3/4, SOX2, and KLF4)+mmu-miR-295/295* expressed the ES cell specific marker genes Oct3/4, Sox2, Nanog, and that the amounts of expression thereof were equivalent to those obtained with mouse ES cells(ES) and mouse iPS cells (Fbx iPS) ( FIG. 5 ).
  • 4 factors OCT3/4, SOX2, c-MYC, and KLF4
  • 3 factors OCT3/4, SOX2, and KLF4+mmu-miR-295/295* expressed the ES cell specific marker genes Oct3/4, Sox2, Nanog
  • Nanog MEFs (MEFs derived from Nanog-IRES-Puro r reporter mouse) were plated on gelatin coated 6-well plates and infected with retrovirus to express 3 factors (Oct3/4, c-MycWT(wild type), and Klf4) with mmu-miR-290-295 cluster, 290-5p/290-3p (mmu-miR-290), 291a-5p/291a-3p (mmu-miR-291), 292-5p/292-3p (mmu-miR-292), 293/293* (mmu-miR-293), 294/294* (mmu-miR-294) or 295/295* (mmu-miR-295) miRNAs (1:1). On day 4 after infection, half of the cells were reseeded on Puromycin and Hygromycin-resistant-MSTO (PH-MSTO) cells. Puromycin selection was started from 14 days after infection.
  • PH-MSTO Hygromycin-resistant-MS
  • FIG. 6A shows the number of Nanog GFP positive colonies. The results of three independent experiments are shown with different colors. “DsRed” indicates the combination of Oct3/4, Klf4, c-Myc and DsRed.
  • FIG. 6B shows the results of RT-PCR analysis.
  • RT-PCR analysis using the Rever Tra Ace Kit showed that the iPS cells transfected with 4 factors (OCT3/4, SOX2, c-MYC, and KLF4), or with 3 factors (OCT3/4, SOX2, and KLF4)+mmu-miR-290-295 cluster, 291a-5p/291a-3p, 294/294* and 295/295* expressed the ES cell specific marker genes Oct3/4, Sox2, Nanog, and that the amounts of expression thereof were equivalent to those obtained with mouse ES cells (ES) and mouse iPS cells (Fbx iPS).
  • Fb-Ng MEFs (MEFs derived from Fbx15- ⁇ geo/Nanog-IRES-Puro r reporter mouse) were plated on gelatin coated 6-well plates and infected with retrovirus to express 3 factors (Oct3/4, c-MycWT(wild type), Klf4)+miR-295/295*or hsa-miR-302-367 cluster.
  • 3 factors Oct3/4, c-MycWT(wild type), Klf4+miR-295/295*or hsa-miR-302-367 cluster.
  • PH-MSTO Hygromycin resistant mytomycin-C treated STO cells
  • FIG. 7A shows cell morphology of MEFs transduced with Oct3/4, c-Myc, and Klf4 (“Sox( ⁇ )”)+mmu-miR-295/295*.
  • the colonies showed morphology similar to that of ES cells.
  • FIG. 7B shows chimeras derived from iPS cells induced with Sox( ⁇ )3f+mmu-miR-295/295*.
  • FIG. 7C shows embryoid body (EB)-mediated in vitro differentiation by human iPS cells.
  • Human iPS cells (61B1, 61N2) which were established by transduction of 4 genes (OCT3/4, KLF4, SOX2, and c-MYC, i.e. “OSMK”) or 3 genes (OCT3/4, KLF4, and c-MYC, i.e., “OMK(SOX( ⁇ )”)+hsa-miR-302-367 cluster miRNA were plated on a low-binding dish, and embryoid bodies were formed on 100 mm dishes in accordance with the method described in Takahashi et al., Cell 131:861-872, 2007.
  • ⁇ -fetoprotein R&D systems
  • DAKO ⁇ -smooth muscle actin
  • GFAP Glial Fibrillary Astrocytic Protein
  • Cells were infected with DsRed as control.
  • 6 days after infection 5 ⁇ 10 5 aHDF-Slc7a1 cells were reseeded on mytomicin-C treated STO cells (MSTOcells). On Day 40 after infection, the number of ES-like colonies was counted.
  • TABLE 3 shows the number of human ES(hES)-like colonies in aHDF-Slc7a1 cells transduced with OSMK, OMK with or without miRNAs, and with OK with or without miRNAs.
  • the hES-like colonies showed in cells transduced with OSMK, OMK+miRNAs (hsa-miR-371-373 cluster, hsa-miR-302-367 cluster, or hsa-miR-371-373 cluster+302-367 cluster) were detected by six independent experiments (Exp. 54, 61, 63, 114, 130, and 133).
  • FIG. 8 shows cell morphology of iPS cells induced with OSMK (61B1); OMK (SOX( ⁇ ))+hsa-miR-302-367 cluster miRNA (61N2); and OK+hsa-miR-302-367 cluster miRNA (133O1).
  • the present invention provides an efficient method for preparing induced pluripotent stem cells.
  • the method of the present invention has higher nuclear reprogramming efficiency as compared to conventional methods.
  • safe induced pluripotent stem cells can be efficiently produced without using c-Myc or gene products thereof.
  • the method of the present invention enables efficient production of highly safe induced pluripotent stem cells from a patient's own somatic cells.
  • Cells differentiated from such pluripotent stem cells for example, myocardial cells, insulin-producing cells, or nerve cells
  • stem cell transplantation therapies for treatment of various diseases, such as heart failure, insulin dependent diabetes mellitus, Parkinson's diseases, and spinal cord injury.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Transplantation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A method of preparing induced pluripotent stem cells, comprising a nuclear reprogramming step with a nuclear reprogramming factor in the presence of miRNA, wherein said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.

Description

    PRIOR RELATED APPLICATIONS
  • This application is a continuation-in-part of PCT/JP2008/59586, filed May 23, 2008, which claims priority of U.S. Provisional Application No. 60/996,893, filed Dec. 10, 2007, and this application also claims priority of U.S. Provisional Application No. 60/996,893, filed Dec. 10, 2007. The entire disclosures of each of the above-cited applications are considered as being part of this application and are expressly incorporated by reference herein in their entireties.
  • FIELD OF THE INVENTION
  • The present invention relates to efficient methods for preparing induced pluripotent stem cells through reprogramming of somatic cells, to induced pluripotent stem cells, to uses of induced pluripotent stem cells and to somatic cells derived by inducing differentiation of said pluripotent cells. The present invention also relates to nuclear reprogramming factors and to miRNAs involved in generating induced pluripotent stem cells. The present invention also relates to screening methods, treatments, and therapies involving the use of induced pluripotent stem cells.
  • BACKGROUND OF THE INVENTION
  • Embryonic stem cells (ES cells) are stem cells established from human or mouse early embryos which have a characteristic feature that they can be cultured over a long period of time while maintaining pluripotent ability to differentiate into all kinds of cells existing in living bodies. Human embryonic stem cells are expected for use as resources for cell transplantation therapies for various diseases such as Parkinson's disease, juvenile diabetes, and leukemia, taking advantage of the aforementioned properties. However, transplantation of ES cells has a problem of causing rejection in the same manner as organ transplantation. Moreover, from an ethical viewpoint, there are many dissenting opinions against the use of ES cells which are established by destroying human embryos.
  • If dedifferentiation of patients' own differentiated somatic cells could be induced to establish cells having pluripotency and growth ability similar to those of ES cells (these cells are referred herein to as “induced pluripotent stem cells” or “iPS cells,” though they are sometimes called “embryonic stem cell-like cells” or “ES-like cells”), it is expected that such cells would be useful as ideal pluripotent cells, free from rejection or ethical difficulties. Recently, it has been reported that such iPS cells can be produced from differentiated cells of mouse or human, which has created a great sensation (International Publication No. WO2007/069666 A1; Takahashi et al., Cell 126:663-76, 2006; Takahashi et al., Cell 131:861-72, 2007; Yu et al., Science 318:1917-20, 2007; and Park et al., Nature 451:141-46, 2008, herein incorporated by reference in their entireties). Thus, the term “induced pluripotent stem cells (iPS cells)” refers to cells having similar properties to those of ES cells, and more specifically the term includes undifferentiated cells which are reprogrammed from somatic cells and have pluripotency and proliferation potency. However, this term is not to be construed as limiting in any sense, and should be construed to have its broadest meaning.
  • These methods include a reprogramming step through introduction of a plurality of specific factors (for example, four factors of Oct3/4, Sox2, Klf4, and c-Myc can be used in Takahashi et al., Cell 126:663-76, 2006), and the introduction of these factors is mediated by viral vectors such as retroviral or lentiviral vectors. However, all previously reported nuclear reprogramming methods mediated by the introduction of genes involve a problem of low efficiency in which only a small number of induced pluripotent stem cells can be obtained. In particular, there is a problem in that, if reprogramming is carried out in somatic cells through the introduction of three factors (namely, Oct3/4, Sox2, and Klf4) excluding c-Myc, then the production efficiency of induced pluripotent stem cells becomes low. Nevertheless, the efficient production of iPS cells without the use of c-Myc would provide certain advantages, as c-Myc is suspected to cause tumorigenesis in tissues and in chimeric mice generated from induced pluripotent stem cells.
  • It is known that various small RNAs are expressed in cells. Examples of small RNA include RNA molecules of about 18-25 nucleotides in length which can be cleaved out with a dicer, an RNase specific to double-stranded RNA. Small RNA is mainly classified into siRNA (small interfering RNA) and miRNA (microRNA, hereinafter abbreviated as “miRNA”). Small RNA is known to function as a guide molecule for finding target sequences in processes such as translational suppression, mRNA degradation, or alteration of chromatin structure. Small RNAs function via RNA interference (RNAi) or miRNA molecular mechanisms. In addition, small RNA is also known to play an important role in the regulation of developmental processes (for example, as general remarks, refer to Jikken Igaku (Experimental Medicine), 24, pp. 814-819, 2006; and microRNA Jikken Purotokoru (microRNA Experimental Protocol), pp. 20-35, 2008, YODOSHA CO., LTD., herein incorporated by reference in their entireties).
  • ES cell-specific microRNAs have been identified (Houbaviy et al., Developmental Cell 5:351-58, 2003). In particular, ES cell-specific expression of a microRNA cluster, which includes several types of miRNAs in mouse ES cells, has been reported (Houbaviy et al., Developmental Cell 5:351-58, 2003, herein incorporated by reference in its entirety). It has also been reported that miRNA-295 suppressed the expression of Rb12, a member of the Rb tumor suppressor gene family, and increased the expression of methylase to be thereby associated with DNA methylation (Sinkkonen et al., Nature Structural & Molecular Biology 15:259-267, 2008; Benetti et al., Nature Structural & Molecular Biology 15:268-279, 2008, herein incorporated by reference in their entireties). However, these documents do not disclose any role of small RNA in the nuclear reprogramming of somatic cells.
  • SUMMARY OF THE INVENTION
  • The present invention relates to methods for efficiently preparing induced pluripotent stem cells. The present invention provides methods for achieving efficient preparation of induced pluripotent stem cells in the presence of miRNA. The present invention also provides methods for efficient preparation of induced pluripotent stem cells with a nuclear reprogramming factor. The present invention also provides methods for efficient preparation of induced pluripotent stem cells with a nuclear reprogramming factor in the presence of increased miRNA as compared to the level present in the somatic cell prior to nuclear reprogramming. The present invention also provides such methods wherein the nuclear reprogramming factor does not include c-Myc and/or Sox2.
  • The invention provides a method of preparing induced pluripotent stem cells, comprising nuclear reprogramming at least one somatic cell with nuclear reprogramming factor and at least one miRNA, wherein the at least one miRNA increases efficiency of the nuclear reprogramming of the at least one somatic cell compared to nuclear reprogramming of the at least one somatic cell with the nuclear reprogramming factor in the absence of the at least one miRNA.
  • The invention also provides such a method, wherein the at least one miRNA is expressed in embryonic stem cells at a higher level than in somatic cells.
  • The invention also provides such a method, wherein a gene encoding the nuclear reprogramming factor and/or the at least one miRNA is introduced into the at least one somatic cell.
  • The invention also provides such a method, wherein a vector comprising the gene and/or a vector encoding the at least one miRNA is introduced into the at least one somatic cell.
  • The invention also provides such a method, wherein the vector comprising the gene or encoding the at least one miRNA is a retroviral vector.
  • The invention also provides such a method, wherein the gene is selected from an Oct family gene, a Klf family gene, and a Sox family gene.
  • The invention also provides such a method, wherein the gene is selected from Oct3/4, Klf4, and Sox2.
  • The invention also provides such a method, wherein the nuclear reprogramming factor comprises Oct3/4, Klf4, and Sox2.
  • The invention also provides such a method, wherein the at least one miRNA is introduced into the at least one somatic cell as primary miRNA.
  • The invention also provides such a method, wherein the at least one miRNA is introduced into the at least one somatic cell as pre-miRNA.
  • The invention also provides such a method, wherein the at least one miRNA comprises at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • The invention also provides such a method, wherein the at least one miRNA comprises at least one miRNA contained in miRNA cluster hsa-miR-302-367 cluster.
  • The invention also provides such a method, wherein the at least one miRNA regulates DNA methylation.
  • The invention also provides such a method, wherein the at least one miRNA regulates de novo DNA methylation.
  • The invention also provides such a method, wherein the at least one miRNA down-regulates DNA methylation.
  • The invention also provides such a method, wherein the at least one miRNA comprises at least 10 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • The invention also provides such a method, wherein the at least one miRNA comprises at least 30 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • The invention also provides such a method, wherein the at least one miRNA comprises at least 60 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
  • The invention also provides such a method, wherein the nuclear reprogramming factor does not include c-Myc and/or Sox2.
  • The invention also provides such a method, wherein the at least one miRNA comprises hsa-miR-302-367 cluster miRNA.
  • The invention also provides such a method, wherein the nuclear reprogramming factor comprises an Oct family gene member, a Sox family gene member, and a Klf family gene member.
  • The invention also provides such a method, wherein the at least one miRNA comprises mmu-miR-295/295* and mmu-miR-294/294*.
  • The invention also provides such a method, wherein the at least one miRNA comprises hsa-miR-302-367 cluster, hsa-miR-371-373 cluster and hsa-miR-520c miRNA.
  • The invention also provides such a method, wherein the nuclear reprogramming factor comprises a Klf family gene, and an Oct family gene.
  • The invention also provides such a method, wherein the nuclear reprogramming factor further comprises a Myc family gene.
  • The invention also provides such a method, wherein the nuclear reprogramming factor further comprises a Sox family gene.
  • The invention also provides such a method, wherein the nuclear reprogramming factor further comprises a Sox family gene.
  • The invention also provides such a method, wherein the nuclear reprogramming factor comprises KLF4 and OCT3/4.
  • The invention also provides such a method, wherein the nuclear reprogramming factor excludes a Sox family gene.
  • The invention also provides such a method, wherein the nuclear reprogramming factor excludes a Myc family gene.
  • The invention also provides such a method, where the at least one somatic cell comprises a plurality of somatic cells.
  • The invention also provides a method of increasing the efficiency of nuclear reprogramming comprising: adding a nuclear reprogramming factor and at least one miRNA to at least one somatic cell so that the number of induced pluripotent stem cells produced is greater than in the absence of the added miRNA.
  • The invention also provides an induced pluripotent stem cell induced by reprogramming a somatic cell, wherein the reprogramming is performed by adding at least one miRNA and in the absence of eggs, embryos, or embryonic stem (ES) cells.
  • The invention also provides such an induced pluripotent stem cell, wherein the induced pluripotent stem cell is a human cell.
  • The invention also provides an induced pluripotent stem cell obtained by a method of preparing induced pluripotent stem cells, comprising nuclear reprogramming at least one somatic cell with nuclear reprogramming factor and at least one miRNA, wherein the at least one miRNA increases efficiency of the nuclear reprogramming of the at least one somatic cell compared to nuclear reprogramming of the at least one somatic cell with the nuclear reprogramming factor in the absence of the at least one miRNA.
  • The invention also provides an pluripotent stem cell obtained by a method of increasing the efficiency of nuclear reprogramming comprising: adding a nuclear reprogramming factor and at least one miRNA to at least one somatic cell so that the number of induced pluripotent stem cells produced is greater than in the absence of the added miRNA.
  • The invention also provides somatic cell derived by inducing differentiation of any of the above pluripotent stem cells.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the results of confirmation on the production efficiency of induced pluripotent stem cells through induction of nuclear reprogramming in mouse embryonic fibroblasts with a combination of three genes comprising Oct3/4, Klf4, and Sox2 (this combination—represented as “3f”, “c-Myc(−)”, or OSK”—means that c-Myc was omitted from a combination of four genes comprising Oct3/4, Klf4, Sox2 and c-Myc, which is highly efficient for nuclear reprogramming), in the presence of various miRNAs. 3f+DsRed represents a combination where DsRed (Discosoma sp. red fluorescent protein) as a control was added to the combination of the aforementioned three genes. The results of three independent experiments are shown. The graph shows the number of ES-like colonies in the cells transduced with OSK with or without DsRed, or with various miRNAs.
  • FIG. 2 shows the production efficiency of induced pluripotent stem cells. The top row of images shows the results of nuclear reprogramming in mouse tail tip fibroblasts (TTFs) when DsRed was added, as a control, to the combination of three genes comprising Oct3/4, Klf4, and Sox2 (a combination of three genes in which c-Myc was omitted from the combination of four genes). The bottom row of images shows the results of induction of nuclear reprogramming in mouse TTFs with the combination of three genes comprising Oct3/4, Klf4, and Sox2 in the presence of mmu-miR-295. The number in the figure indicates the number of Nanog GFP positive colonies/the number of total colonies on days 7, 21, and 28 after drug selection was started.
  • FIG. 3 shows the results of confirmation on the production efficiency of induced pluripotent stem cells through induction of nuclear reprogramming in adult human dermal fibroblasts expressing the mouse ecotropic virus receptor Slc7a1 gene using lentivirus (aHDF-Slc-7a1) with the combination of three genes comprising Oct3/4, Klf4, and Sox2 (Myc(−)3f: a combination of three genes in which c-Myc was omitted from the combination of four genes comprising Oct3/4, Klf4, Sox2, and c-Myc), or the combination of four genes comprising Oct3/4, Klf4, Sox2, and c-Myc (Y4f), in the presence of various miRNAs.
  • FIGS. 4A-B shows the results of ES-like colonies produced after transduction with 4 factors, i.e., OCT3/4, SOX2, KLF4, and c-MYC (OSMK), as well as with 3 factors, i.e., OCT3/4, SOX2, KLF4 in the presence of various miRNAs (OSK+). FIG. 4A shows the number of human ES-like colonies obtained by transduction with 4 factors (OSMK), and with 3 factors without c-MYC plus miRNAs (OSK+). FIG. 4B shows the morphology of ES-like colonies from a subset of the samples counted in FIG. 4A.
  • FIG. 5 shows expression of ES cell markers in iPS cells produced by nuclear reprogramming of mouse Tail Tip Fibroblasts (TTFs) with 4 factors (OCT3/4, SOX2, c-MYC, and KLF4) and with 3 factors (OCT3/4, SOX2, and KLF4, i.e. “Myc(−)3f”)+mmu-miR-295/295* or DsRed.
  • FIGS. 6A-B show the results of MEFs infected with 3 factors (Oct3/4, c-MycWT, and Klf4, i.e., “Sox(−)”) with mmu-miR-290-295 cluster, 290-5p/290-3p(mmu-miR-290), 291a-5p/291a-3p(mmu-miR-291a), 292-5p/292-3p(mmu-miR-292), 293/293*(mmu-miR-293), 294/294*(mmu-miR-294) or 295/295*(mmu-miR-295). FIG. 6A shows the number of Nanog GFP positive colonies. FIG. 6B shows expression of ES marker genes in iPS cells checked with RT-PCR.
  • FIGS. 7A-C show the results of iPS induction with Fb-Ng MEFs (MEFs derived from Fbx 15-β geo/Nanog-IRES-Puror reporter mouse) over-expressing Oct3/4, c-Myc, and Klf4 (“Sox(−)”)+mmu-miR-295/295* or hsa-miR-302-367 cluster miRNAs. FIG. 7A shows cell morphology of MEFs transduced with Oct3/4, c-Myc, and Klf4 (“Sox(−)”)+mmu-miR-295/295*. FIG. 7B shows chimeras derived from iPS cells induced with Sox(−)3f+mmu-miR-295/295*. FIG. 7C shows embryoid body (EB)-mediated in vitro differentiation by human iPS cells. Human iPS cells (61B1, 61N2) were established by transduction of 4 genes (OCT3/4, KLF4, SOX2, and c-MYC, i.e., “OSMK”) or 3 genes (OCT3/4, KLF4, and c-MYC, i.e., “OMK(SOX(−)”) in the presence of hsa-miR-302-367 cluster miRNA. After culturing for 16 days, immunohistochemistry analysis was performed in the cells by using an antibody against each of a-fetoprotein (AFP) which is a differentiation marker for endodermal cells, α-smooth muscle actin (a-SMA) which is a differentiation marker for mesodermal cells, and GFAP (DAKO) which is a differentiation marker for ectodermal cells. Nuclei were stained with Hoechst 33342 (Invitrogen).
  • FIG. 8 shows cell morphology of iPS cells induced with OSMK; SOX(−) (OKM)+hsa-miR-302-367 cluster miRNA; and OCT3/4+KLF4+hsa-miR-302-367 cluster miRNA.
  • TABLE 3 shows iPS induction by transduction with 4 factors (OCT3/4, SOX2, MYC, KLF4, i.e., “OSMK”), with 3 factors (SOX(−)3factors, i.e., “OMK”) plus various miRNAs (OMK:mock or miRNAs=2.5:1.5), and with 2 factors (OCT3/4+KLF4, i.e., “OK”) plus various miRNAs. Transduction with DsRed was performed as a as control. On Day 40 after infection, the number of ES-like colonies was counted. TABLE 3 shows the results of six independent experiments (Exp. 54, 61, 63, 114, 130 and 133).
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides methods for efficiently preparing induced pluripotent stem cells through reprogramming of one or more somatic cells. In particular, the present invention provides efficient preparation of induced pluripotent stem cells in the presence of miRNA. The present invention also provides efficient preparation with or without using a suspected tumorigenic factor: c-Myc. The present invention also provides efficient preparation with or without using Sox2. The nuclear reprogramming is preferably performed without c-Myc and/or Sox2.
  • The inventors of the present invention have conducted intensive studies, and as a result, they have found that induced pluripotent stem cells can be efficiently prepared by introduction of nuclear reprogramming-inducing gene(s) into somatic cells in the presence of specific miRNA. The present invention was achieved on the basis of the above findings.
  • The present invention thus provides a method of preparing induced pluripotent stem cells, comprising nuclear reprogramming with a nuclear reprogramming factor in the presence of miRNA, wherein said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • A preferred embodiment of the present invention provides the aforementioned method wherein: (a) said miRNA is expressed in embryonic stem cells at a higher level than in somatic cells; and/or (b) said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof and/or (c) said nuclear reprogramming is performed in the presence of increased levels of one or more miRNAs as compared to the level(s) present in the somatic cell prior to nuclear reprogramming.
  • Another preferred embodiment of the present invention provides: the aforementioned method wherein the nuclear reprogramming factor is either a single substance, or a combination of a plurality of substances, which is/are positive in the screening method of nuclear reprogramming factor described in International Publication No. WO2005/80598 A1, incorporated by reference herein in its entirety; the aforementioned method wherein the nuclear reprogramming factor is either a gene product of a single gene, or a combination of gene products of a plurality of genes, which is/are positive in the screening method of nuclear reprogramming factor described in International Publication No. WO2005/80598 A1, incorporated by reference herein in its entirety; the aforementioned method wherein the nuclear reprogramming with the nuclear reprogramming factor is carried out by introduction of the aforementioned gene(s) and/or substance(s) into somatic cells; the aforementioned method wherein introduction of the aforementioned gene(s) into somatic cells is carried out with a recombinant vector; and the aforementioned method wherein the nuclear reprogramming with the nuclear reprogramming factor is carried out by introduction of gene product(s) of the aforementioned gene(s) into somatic cells.
  • Yet another preferred embodiment of the present invention provides the aforementioned method wherein: the gene encoding the reprogramming factor comprises one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene, preferably a combination of two genes selected from the aforementioned genes except for the Myc family genes of Sox family genes, more preferably a combination of three genes, and particularly preferably a combination four or more genes. In a preferred embodiment, the combination can be any combination of factors which does not comprise c-Myc or Sox2.
  • More preferable combinations are: (a) a combination of two genes comprising of an Oct family gene and a Sox family gene; (b) a combination of three genes comprising an Oct family gene, a Klf family gene, and a Sox family gene; and (c) a combination of four genes comprising an Oct family gene, a Sox family gene, a Lin family gene, and a Nanog gene. Further, it is also preferable to combine any of the above genes with a TERT gene and/or a SV40 Large T antigen gene. It may be preferable to omit Klf family genes depending on the situation. The Myc family genes may or may not be included in these combinations. Combinations without the Myc family gene can be suitably used according to the present invention.
  • Among these embodiments, particularly preferable combinations are: a combination of two genes comprising Oct3/4 and Sox2; a combination of three genes comprising Oct3/4, Klf4, and Sox2; and a combination of four genes comprising Oct3/4, Sox2, Lin28, and Nanog. It is also preferable to combine any of the above genes with a TERT gene and/or a SV40 Large T antigen gene. It may be preferable to omit Klf4 depending on the situation. c-Myc may be included in these combinations. However, combinations without c-Myc can be suitably used in the present invention.
  • Other preferable combinations are: (a) a combination of two genes comprising of an Oct family gene and a Klf family gene; (b) a combination of three genes comprising an Oct family gene, a Klf family gene, and a Myc family gene. Yet another preferred embodiment of the present invention provides: the aforementioned method wherein the somatic cells are those derived from mammals including human, mouse, rat, cattle, sheep, horse, monkey, and hamster, preferably somatic cells from human or mouse, and most preferably somatic cells from human; the aforementioned method wherein the somatic cells are human embryonic cells, or adult human-derived somatic cells; and the aforementioned method wherein the somatic cells are somatic cells collected from a patient.
  • Yet another preferred embodiment of the present invention provides the aforementioned method wherein the miRNA comprises one or more miRNA(s) included in the RNA sequences specified by the registration names of the miRBase database or the accession numbers shown in Table 1 or Table 2; the aforementioned method wherein the RNA sequences specified by the registration names of the miRBase database (and the accession numbers) shown in Table 1 or Table 2 comprise one or more RNA(s) selected from hsa-miR-372 (MI0000780), hsa-miR-373 (MI0000781), hsa-miR-302b (MI0000772), hsa-miR-302c (MI0000773), hsa-miR-302a (MI0000738), hsa-miR-302d (MI0000774), hsa-miR-367 (MI0000775), hsa-miR-520c (MI0003158), mmu-miR-290 (MI0000388), mmu-miR-291a (MI0000389), mmu-miR-294 (MI0000392), and mmu-miR-295 (MI0000393); the aforementioned method wherein the miRNA comprises miRNA included in RNA specified by hsa-miR-302-367; and the aforementioned method wherein the miRNA comprises one or more miRNA(s) included in one or more RNA sequence(s) selected from the RNA sequences represented by SEQ IDS: 1 to 14 in the Sequence Listing.
  • The present invention provides an oligonucleotide comprising at least 10 contiguous nucleotides in the nucleotide sequence of the miRNA of the present invention, and an antisense oligonucleotide having a sequence that is complementary to that of the above oligonucleotide. The present invention also provides an oligonucleotide comprising at least 15, at least 20, at least 30, at least 50, or at least 60 contiguous nucleotides in the nucleotide sequence of the miRNA of the present invention. The present invention also provides an oligonucleotide comprising at least 70, at least 80, at least 100, at least 150, at least 200, at least 300, at least 400, at least 600, or at least 800 contiguous nucleotides in the nucleotide sequence of the miRNA of the present invention.
  • The present invention also provides induced pluripotent stem cells that can be obtained by the aforementioned method. In addition, the present invention also provides somatic cells obtained by inducing differentiation from the abovementioned induced pluripotent stem cells.
  • Further, the present invention provides a stem cell therapy comprising transplanting somatic cells into a patient, wherein the somatic cells are obtained by inducing differentiation from induced pluripotent stem cells that are obtained according to the aforementioned method by using somatic cells isolated and collected from a patient.
  • In addition, the present invention provides a method for evaluation of physiological effect or toxicity of a compound, a drug, or a toxic agent, with use of various cells obtained by inducing differentiation from induced pluripotent stem cells that are obtained by the aforementioned method.
  • Further, the present invention provides: a method for preparing induced pluripotent stem cells which uses miRNA expressed in embryonic stem cells at a higher level than in somatic cells, and having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof; and a nuclear reprogramming method of somatic cells which uses miRNA expressed in embryonic stem cells at a higher level than in somatic cells, and having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • In addition, the present invention provides methods comprising the use of miRNA expressed in embryonic stem cells at a higher level than in somatic cells (e.g., the miRNA may be expressed at levels which are higher in the ES cell as compared to the ES cell which has differentiated or which has begun differentiating such as determined by RT-PCR or Northern blot analysis), and having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof, for preparation of induced pluripotent stem cells; and methods relating to the use of miRNA expressed in embryonic stem cells at a higher level than in somatic cells, and having a property of providing a higher nuclear reprogramming efficiency in the presence of the miRNA than in the absence thereof, for nuclear reprogramming of somatic cells. In other words, nuclear reprogramming, and thus, induced pluripotent stem cell production, can be performed in the presence of miRNA and in the absence of miRNA. The nuclear reprogramming may also be performed in the presence of various amounts and/or kinds of miRNA, such that, for example, the efficiency of the nuclear reprogramming is increased when the level of the miRNA is increased in the somatic cell prior to nuclear reprogramming.
  • In addition, the present invention provides methods comprising the use of miRNA having a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof, for preparation of induced pluripotent stem cells. For example, the presence of added miRNA can provide the formation of an induced pluripotent stem cell as compared to the lack of formation in the absence of the miRNA. Also, for example when nuclear reprogramming is performed on the same number of somatic cells in the presence of a nuclear reprogramming factor containing the same components in the same concentrations with and without addition of miRNA, increased efficiency can be observed when a greater number of induced pluripotent stem cells are generated in the sample which comprises the addition of miRNA than in the sample without the addition of miRNA. In another embodiment, increased efficiency of induced pluripotent stems cell production can also be achieved with increased amounts of miRNA as compared to miRNA amounts present in the somatic cell prior to nuclear reprogramming.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The methods of the present invention relate to, e.g., a method for preparing induced pluripotent stem cells, comprising nuclear reprogramming with a nuclear reprogramming factor in the presence of miRNA, wherein said miRNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof. In a preferred embodiment of the present invention, (a) said miRNA is expressed in embryonic stem cells at a higher level than in somatic cells; and (b) said RNA has a property of providing a higher nuclear reprogramming efficiency in the presence of said miRNA than in the absence thereof.
  • As for the miRNA, for example, its classification and in vivo functions are described in Jikken Igaku (Experimental Medicine), 24, pp. 814-819, 2006; microRNA Jikken Purotokoru (microRNA Experimental Protocol), pp. 20-35, 2008, YODOSHA CO., LTD. The number of nucleotides of miRNA is for example 18 to 25, and preferably about 19 to 23. At present, a database storing data relating to about 1,000 miRNA sequences is available (for example, miRBase, Griffiths-Jones et al. Nucleic Acids Research 36:D154-D158, 2008 (published online Nov. 8, 2007), see also http://microrna.sanger.ac.uk/sequences/index.shtml [online]), and it is possible for those skilled in the art to obtain any miRNA data therefrom, and to readily extract miRNA expressed in embryonic stem cells at a higher level than in somatic cells. In addition, it is also possible to readily specify miRNA expressed in embryonic stem cells at a higher level than in somatic cells by confirming the difference in miRNA expression between embryonic stem cells and somatic cells with use of available techniques for those skilled in the art such as miRNA microarray and real-time PCR analyses.
  • The difference in the nuclear reprogramming efficiency with and without miRNA can be understood by the following manner, as specifically described in Examples of this application: transgenic mice are generated by insertion of sequences encoding Enhanced Green Fluorescent Protein (EGFP) and a puromycin resistance gene downstream of a Nanog gene promoter region, the expression of which is specific to ES cells; then, three genes, for example, Oct3/4, Sox2, and Klf4, and various miRNAs are introduced into embryonic fibroblasts derived from these transgenic mice to induce nuclear reprogramming, followed by confirmation of the production efficiency of induced pluripotent stem cells. The production efficiency can be determined, for example, by counting the number of colonies. More specifically, the number of colonies can be compared by the following manner: drug selection is started from the 21st day after introduction of the above genes and miRNA; and the number of total colonies and the number of Nanog GFP positive colonies (GFP, the expression of which is induced by the Nanog gene promoter region, is observable under fluorescent microscopy) are counted on the 28th day. It should be understood, however, that: the confirmation of the nuclear reprogramming efficiency is not limited to the above method; appropriate modification and alteration can be made in the above method; and any appropriate method can be employed by those skilled in the art.
  • As for the miRNA, it is preferable to use miRNA derived from the same animal species as the target animal whose somatic cells are to be reprogrammed. Usable miRNA includes wild type miRNA as well as miRNAs in which one to several nucleotides (for example 1 to 6 nucleotides, preferably 1 to 4 nucleotides, more preferably 1 to 3 nucleotides, yet more preferably 1 or 2 nucleotides, and most preferably 1 nucleotide) are substituted, inserted, and/or deleted, and which are capable of exerting equivalent functions to those of the wild type miRNA in vivo. For example, the miRNA of the present invention includes miRNAs in which one to several nucleotides are substituted, inserted, and/or deleted, and which increase the efficiency of iPS cell production. The miRNA of the present invention also includes miRNAs in which one to several nucleotides are substituted, inserted, and/or deleted, and which improve the efficiency of nuclear reprogramming. The miRNA of the present invention also includes miRNAs in which one to several nucleotides are substituted, inserted, and/or deleted, and which regulate DNA methylation. The present invention also includes such miRNAs wherein the DNA methylation is down-regulated. The present invention also includes such miRNAs wherein the DNA methylation is de novo DNA methylation.
  • Examples of the miRNA preferably used in the methods of the present invention can include, but are not limited to, one or more miRNA(s) included in the following RNA sequences registered in the miRBase: hsa-miR-372 (MI0000780), hsa-miR-373 (MI0000781), hsa-miR-302b (MI0000772), hsa-miR-302c (MI0000773), hsa-miR-302a (MI0000738), hsa-miR-302d (MI0000774), hsa-miR-367 (MI0000775), hsa-miR-520c (MI0003158), mmu-miR-290 (MI0000388), mmu-miR-291a (MI0000389), mmu-miR-294 (MI0000392), and mmu-miR-295 (MI0000393) (Numbers in the brackets respectively indicate miRBase accession numbers. The symbol “hsa-miR-” represents human miRNA, and the symbol “mmu-miR-” represents mouse miRNA.).
  • In the method of the present invention, miRNAs that have been confirmed to improve the nuclear reprogramming efficiency in the above manner can be used either alone or in combinations of two or more types. In addition, a plurality of miRNAs forming a cluster may also be used. For example, hsa-miR-302-367 which is available as a miRNA cluster, or individual miRNAs from the hsa-miR-302-367 cluster, and the like may be used. Examples of RNA sequences for use in the present invention are shown in SEQ IDS: 1 to 14 in the Sequence Listing. SEQ ID: 1: mmu-miR-294 (MI0000392); SEQ ID: 2: mmu-miR-295 (MI0000393); SEQ ID: 3: hsa-miR-372 (MI0000780); SEQ ID: 4: hsa-miR-373 (MI0000781); SEQ ID: 5: hsa-miR-302b (MI0000772); SEQ ID: 6: hsa-miR-302c (MI0000773); SEQ ID: 7: hsa-miR-302a (MI0000738); SEQ ID: 8: hsa-miR-302d (MI0000774); SEQ ID: 9: hsa-miR-367 (MI0000775); SEQ ID: 10: hsa-miR-520c (MI0003158); SEQ ID: 11: mmu-miR-291a (MI0000389); SEQ ID:13: mmu-miR-290 (MI0000388), and SEQ ID:14: hsa-miR-371-373 cluster. In addition, RNA represented by SEQ ID: 12: hsa-miR-302-367 cluster can also be preferably used. Among these RNA sequences, some RNA sequences may include a plurality of miRNAs within one sequence. Use of such an RNA sequence may achieve efficient production of iPS cells. Further, an RNA sequence including a plurality of miRNAs within one sequence and one or more other RNA sequence(s) including one or more miRNA(s) can also be used in combination.
  • miRNA is non-coding RNA which is not translated into a protein. miRNA is first transcribed as pri-miRNA from a corresponding gene, then this pri-miRNA generates pre-miRNA having a characteristic hairpin structure of about 70 nucleotides, and this pre-miRNA is further processed into mature miRNA, which is mediated by Dicer. In the present invention, not only mature miRNA but also pri-miRNA or pre-miRNA can be used as long as the effect of the present invention is not impaired. In addition, miRNA for use in the present invention may be either natural type or non-natural type. Thus, any small RNA or RNA precursor may be used as long as the effect of the pre/sent invention is not impaired.
  • The production method of miRNA for use in the present invention is not specifically limited, although the production can be achieved, for example, by a chemical synthetic method or a method using genetic recombination technique. When the production is carried out by a method using genetic recombination technique, miRNA for use in the present invention can, for example, be produced through transcription reaction with use of a DNA template and a RNA polymerase obtained by means of gene recombination. Examples of usable RNA polymerase include a T7 RNA polymerase, a T3 RNA polymerase, and a SP6 RNA polymerase.
  • Alternatively, a recombinant vector capable of expressing miRNA can be produced by insertion of miRNA-encoding DNA into an appropriate vector under the regulation of expression control sequences (promoter and enhancer sequences and the like). The type of vector used herein is not specifically limited, although DNA vectors are preferred. Examples thereof can include viral vectors and plasmid vectors. The viral vector is not specifically limited, although retroviral vectors, adenoviral vectors, adeno-associated viralvectors, and the like can be employed. In addition, as to the above plasmids, mammalian expression plasmids well known to those skilled in the art can be employed.
  • Methods for using a retrovirus as a vector are disclosed in WO 2007/69666 A1; Takahashi et al., Cell 126:663-676, 2006; and Takahashi et al., Cell 131:861-872, 2007, which are herein incorportated by reference in their entireties. Methods for using a lentivirus as a vector are disclosed in Yu et al., Science 318:1917-1920, 2007, which is herein incorporated by reference in its entirety. Methods for using adenovirus as a vector are disclosed in Stadtfeld et al., Science 322:945-949, 2008, which is herein incorporated by reference in its entirety. Methods for using a plasmid as a non-viral vector are disclosed in U.S. Provisional Application No. 61/071,508; U.S. Provisional Application No. 61/136,246; U.S. Provisional Application No. 61/136,615; and U.S. Provisional application Ser. No. ______ (Attorney Docket No. V35667) entitled “Method for Nuclear Reprogramming” filed Nov. 21, 2008; and Okita et al., Science 322:949-953, 2008, which are herein incorporated by reference in their entireties. One of ordinary skill in the art could choose and use an appropriate method from among the above known methods, or from any of the other known methods or vectors available in the prior art.
  • Nuclear reprogramming can be performed in the presence of miRNA in any number of ways. The manner of providing the miRNA is not specifically limited, although examples thereof can include a method for directly injecting miRNA into nuclei of somatic cells, and a method for introducing an appropriate recombinant vector capable of expressing miRNA into somatic cells. However, these methods are not to be considered as limiting.
  • The method for introducing a recombinant vector into somatic cells is not specifically limited, and can be carried out by any method well known to those skilled in the art. Examples of the employable methods can include transient transfection, microinjection, a calcium phosphate precipitation method, liposome-mediated transfection, DEAE dextran-mediated transfection, electroporation, and methods comprising the use of a gene gun.
  • As to confirming a nuclear reprogramming factor, for example, the screening method of nuclear reprogramming factor described in International Publication No. WO2005/80598 A1, incorporated by reference herein in its entirety, can be used. Those skilled in the art are able to screen a nuclear reprogramming factor for use in the method of the present invention by referring to the above publication. In addition, the nuclear reprogramming factor can also be confirmed by using a method in which appropriate modification or alteration has been made in the above screening method.
  • Examples of the combination of genes encoding reprogramming factors are disclosed in International Publication No. WO2007/069666 A1 and its family member U.S. patent application Ser. No. 12/213,035 and U.S. patent application Ser. No. 12/289,873, filed Nov. 6, 2008, entitled “Nuclear Reprogramming Factor and Induced Pluripotent Stem Cells” which are incorporated by reference herein in their entireties. Those skilled in the art are able to appropriately select a gene that can be preferably used for the method of the present invention by referring to the above publication. In addition, other examples of the combinations of genes encoding reprogramming factors are disclosed, for example, in Yu et al., Science 318:1917-20, 2007, incorporated by reference herein in its entirety. Accordingly, those skilled in the art are able to understand the variety of the combination of genes encoding reprogramming factors, and are able to employ an appropriate combination of genes in the method of the present invention, which combination is not disclosed in International Publication No. WO2007/069666 A1 or Yu et al., Science 318:1917-20, 2007, by using the screening method of nuclear reprogramming factor described in International Publication No. WO2005/80598 A1.
  • Examples of the gene encoding a reprogramming factor that can be used for the method of the present invention can include: one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene; preferably one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Lin family gene, and a Nanog gene, and excluding a Myc family gene; one or more gene(s) selected from an Oct family gene, a Klf family gene, a Myc family gene, a Lin family gene, and a Nanog gene, and excluding a Sox family gene; more preferably a combination of two genes; yet more preferably a combination of three genes; and most preferably a combination of four genes.
  • Regarding the Oct family gene, Klf family gene, Sox family gene, and Myc family gene, specific examples of these family genes are described in International Publication No. WO2007/069666 A1. Regarding the Lin family gene, those skilled in the art are able to extract the family gene in a similar way. Examples of the Lin family genes include, for example, Lin28 and Lin28b. The NCBI accession numbers of Lin28 are NM 145833 (mouse) and NM024674 (human). The NCBI accession numbers of Lin28b are NM001031772 (mouse) and NM001004317 (human).
  • In addition, reprogramming factor(s) encoded by one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene, may be substituted by, for example a cytokine, or one or more other low molecular weight compound(s) in some cases. Examples of such low molecular weight compound(s) can include low molecular weight compounds having an enhancing action on the expression of one or more gene(s) selected from an Oct family gene, a Klf family gene, a Sox family gene, a Myc family gene, a Lin family gene, and a Nanog gene. Those skilled in the art are able to readily screen such low molecular weight compound(s).
  • More preferable combinations of genes are as follows:
  • (a) a combination of two genes comprising an Oct family gene and a Sox family gene;
    (b) a combination of three genes comprising an Oct family gene, a Klf family gene, and a Sox family gene;
    (c) a combination of four genes comprising an Oct family gene, a Sox family gene, a Lin family gene, and a Nanog gene;
    (d) a combination of two genes comprising an Oct family gene and a Klf family gene; and
    (e) a combination of three genes comprising an Oct family gene, a Klf family gene, and a Myc family gene.
    However, these combinations are not to be considered as limiting.
  • All of these genes are commonly present in mammals, including human. In order to use the above genes according to the present invention, genes derived from any mammal (for example, derived from a mammal such as human, mouse, rat, cattle, sheep, horse, and monkey) can be employed. In addition, it is also possible to use a wild type gene product, as well as mutant gene products in which several amino acids (for example 1 to 10 amino acids, preferably 1 to 6 amino acids, more preferably 1 to 4 amino acids, yet more preferably 1 to 3 amino acids, and most preferably 1 or 2 amino acids) have been substituted, inserted, and/or deleted, and which have comparable equivalent functions to those of the wild type gene product. For example, as to the c-Myc gene product, a stable type variant, e.g., (T58A) and the like may also be used as well as the wild type. The same principle can be applied to other gene products.
  • In addition to the above genes, a gene encoding a factor which induces immortalization of cells may also be combined. As disclosed in International Publication No. WO2007/069666 A1, for example, one or more gene(s) selected from a TERT gene, and following genes: SV40 Large T antigen, HPV16 E6, HPV16 E7, and Bmil, can be either solely used or jointly used in an appropriate combination.
  • Preferable combinations are as follows, for example:
  • (e) a combination of four genes comprising an Oct family gene, a Klf family gene, a Sox family gene, and a TERT gene;
    (f) a combination of four genes comprising an Oct family gene, a Klf family gene, a Sox family gene, and a SV40 Large T antigen gene; and
    (g) a combination of five genes comprising an Oct family gene, a Klf family gene, a Sox family gene, a TERT gene, and a SV40 Large T antigen gene.
    The Klf family gene may be omitted from the above combinations.
  • Further, in addition to the above genes, one or more gene(s) selected from Fbx15, ERas, ECAT15-2, Tell, and β-catenin may be combined, and/or one or more gene(s) selected from ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sal14, Rex1, UTF1, Stella, Stat3, and Grb2 may also be combined. These combinations are specifically described in International Publication No. WO2007/069666 A1.
  • Particularly preferable combinations of genes are as follows:
  • (1) a combination of two genes comprising Oct3/4 and Sox2;
    (2) a combination of three genes comprising Oct3/4, Klf4, and Sox2;
    (3) a combination of four genes comprising Oct3/4, Sox2, Lin28, and Nanog;
    (4) a combination of four genes comprising Oct3/4, Sox2, TERT, and SV40 Large T antigen gene;
    (5) a combination of five genes comprising Oct3/4, Klf4, Sox2, TERT, and SV40 Large T antigen gene;
    (6) a combination of two genes comprising Oct3/4 and Klf4;
    (7) a combination of three genes comprising Oct3/4, Klf4, and c-Myc; and
    (8) a combination of four genes comprising Oct3/4, Sox2, Klf4, and c-Myc.
    However, these combinations are not to be considered as limiting.
  • The factors including the gene products as mentioned above may also be combined with one or more gene product(s) of gene(s) selected from: Fbx15, Nanog, ERas, ECAT15-2, Tell, and β-catenin. Further, these factors may also be combined with one or more gene product(s) of gene(s) selected from: ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sal14, Rex1, UTF1, Stella, Stat3, and Grb2, for example. These gene products are disclosed in International Publication No. WO2007/069666 A1. However, gene products that can be included in the nuclear reprogramming factors of the present invention are not limited to the gene products of genes specifically described above. The nuclear reprogramming factors of the present invention can include other gene products which can function as a nuclear reprogramming factor, as well as one or more factors involving differentiation, development, or proliferation, and factors having other physiological activities. It should be understood that the aforementioned aspect may also be included within the scope of the present invention.
  • Among these genes, if one or more gene product(s) is/are already expressed in somatic cells to be reprogrammed, such gene products can be excluded from the factors to be introduced. For example, one or more gene(s) besides the already-expressed gene(s) can be introduced into somatic cells by an appropriate gene introduction method, for example, a method using a recombinant vector. Alternatively, among these genes, if one or more gene product(s) is/are introduced into nuclei by a technique such as addition of an HIV virus-derived TAT peptide and/or nuclear localization signal to form a fusion protein or by a technique such as nuclear microinjection, or simply by addition of a small molecule capable of diffusing across the plasma membrane, the other one or more gene(s) can be introduced by an appropriate gene introduction method, for example, a method using a recombinant vector.
  • In addition, a gene product serving as a nuclear reprogramming factor may be either a protein itself produced from the abovementioned gene, or in the form of a fusion gene product between such a protein and another protein, a peptide, or the like. For example, a fusion protein having Green Fluorescent Protein (GFP) and a fusion gene product having a peptide such as a histidine tag may also be used. Further, use of a prepared fusion protein having a HIV virus-derived TAT peptide enables the promotion of endocytosis of a nuclear reprogramming factor through cell membrane, and also enables the induction of reprogramming by simply adding such a fusion protein into the medium while avoiding complicated manipulations such as gene introduction. The preparation method of the aforementioned fusion gene product is well known to those skilled in the art, and therefore those skilled in the art are able to readily design and prepare an appropriate fusion gene product according to the purpose.
  • In this application, the term “induced pluripotent stem cells (iPS cells)” refers to cells having similar properties to those of ES cells, and more specifically the term includes undifferentiated cells which are reprogrammed from somatic cells and have pluripotency and proliferation potency. However, this term is not to be construed as limiting in any sense, and should be construed to have its broadest meaning. The preparation method of induced pluripotent stem cells with the use of a nuclear reprogramming factor is described in International Publication No. WO2005/80598 A1 (the term “ES-like cell” is used in this publication), and methods for isolating induced pluripotent stem cells are also specifically described. In addition, specific examples of the reprogramming factor and specific examples of the reprogramming method of somatic cells with use of such a reprogramming factor are disclosed in International Publication No. WO2007/069666 μl. Accordingly, it is desirable for those skilled in the art to refer to these publications for carrying out the present invention.
  • The preparation method of induced pluripotent stem cells from somatic cells by the method of the present invention is not specifically limited, and any method can be employed as long as the method enables nuclear reprogramming of somatic cells with a nuclear reprogramming factor in the presence of miRNA in an environment where somatic cells and induced pluripotent stem cells can grow. For example, a vector comprising a gene which can express a nuclear reprogramming factor can be used to introduce such a gene into somatic cells, and at either the same or different timing, a recombinant vector which can express miRNA can be introduced into the somatic cells. If such vectors are used, two or more genes may be incorporated into a vector to effect simultaneous expression of respective gene products in somatic cells.
  • When gene(s) and/or miRNA are introduced into somatic cells with use of a vector which can express the above gene(s), the expression vector may be introduced into somatic cells that have been cultured on feeder cells, or the expression vector may also be introduced into somatic cells alone. The latter method is sometimes more suitable in order to improve the introduction efficiency of the expression vector. As to the feeder cells, there may be appropriately used feeder cells for use in culture of embryonic stem cells. Examples thereof can include primary culture cells of 14 or 15 day-mouse embryonic fibroblasts and STO cells of fibroblast cell line, which are treated with either radiation or a drug such as mitomycin C.
  • The culture of somatic cells introduced with a nuclear reprogramming factor under an appropriate condition leads to autonomous nuclear reprogramming, as a result of which induced pluripotent stem cells can be produced from somatic cells. The process for introducing a gene encoding a nuclear reprogramming factor and/or miRNA into somatic cells with use of an expression vector to thereby obtain induced pluripotent stem cells can be performed in accordance with, for example, a method using a retrovirus. Examples of such method include methods described in publications such as Takahashi et al., Cell 126:663-76, 2006; Takahashi et al., Cell 131:861-72, 2007; Yu et al., Science 318:1917-20, 2007. When human induced pluripotent stem cells are to be produced, it is desirable to set the cell culture density after the introduction of an expression vector to be lower than normal cases for culturing animal cells. For example, it is preferable to keep culturing at a density of 1×104 to 1×105 cells/10 cm dish, and more preferably about 5×104 cells/10 cm dish. The medium for use in culture is not specifically limited, and can be appropriately selected by those skilled in the art, although for example it is sometimes preferable to use a medium suitable for human ES cell culture for the production of human induced pluripotent stem cells. The medium selection and culture condition can be referred to the above publications.
  • Thus produced induced pluripotent stem cells can be checked with various markers specific to undifferentiated cells, and the means therefor is described in the above publications specifically in detail. For example, some pluripotent cell markers include: alkaline phosphatase (AP); ABCG2; stage specific embryonic antigen-1 (SSEA-1); SSEA-3; SSEA-4; TRA-1-60; TRA-1-81; Tra-2-49/6E; ERas/ECAT5, E-cadherin; βIII-tubulin; α-smooth muscle actin (α-SMA); fibroblast growth factor 4 (Fgf4), Cripto, Dax1; zinc finger protein 296 (Zfp296); N-acetyltransferase-1 (Nat1); (ES cell associated transcript 1 (ECAT1); ESG1/DPPA5/ECAT2; ECAT3; ECAT6; ECAT7; ECAT8; ECAT9; ECAT10; ECAT15-1; ECAT15-2; Fthl17; Sal14; undifferentiated embryonic cell transcription factor (Utf1); Rex1; p53; G3PDH; telomerase, including TERT; silent X chromosome genes; Dnmt3a; Dnmt3b; TRIM28; F-box containing protein 15 (Fbx15); Nanog/ECAT4; Oct3/4; Sox2; Klf4; c-Myc; Esrrb; TDGF1; GABRB3; Zfp42, FoxD3; GDF3; CYP25A1; developmental pluripotency-associated 2 (DPPA2); and T-cell lymphoma breakpoint 1 (Tell); DPPA3/Stella; DPPA4. Other markers can include Dnmt3L; Sox15; Stat3; Grb2; SV40 Large T Antigen; HPV16 E6; HPV16 E7, 13-catenin, and Bmi1. Such cells can also be characterized by the down-regulation of markers characteristic of the differentiated cell from which the iPS cell is induced. For example, iPS cells derived from fibroblasts may be characterized by down-regulation of the fibroblast cell marker Thy1 and/or up-regulation of SSEA-3 and 4. It is understood that the present invention is not limited to those markers listed herein, and encompasses markers such as cell surface markers, antigens, and other gene products including ESTs, RNA (including microRNAs and antisense RNA), DNA (including genes and cDNAs), and portions thereof.
  • Various media capable of retaining undifferentiation property and pluripotency of ES cells and various media incapable of retaining these properties are known in the art, and appropriate combination of these media enables efficient isolation of induced pluripotent stem cells. The differentiation ability and proliferation potency of thus isolated induced pluripotent stem cells can be readily checked by those skilled in the art, with use of general checking means for ES cells. In addition, colonies of induced pluripotent stem cells can be obtained by growing thus produced induced pluripotent stem cells under an appropriate condition, and the presence of these induced pluripotent stem cells can be identified with reference to the shape of their colonies. For example, it is known that mouse induced pluripotent stem cells form raised colonies, while human induced pluripotent stem cells form flat colonies. These colony shapes are respectively very similar to those of mouse ES cells and human ES cells, and those skilled in the art are thus able to identify these produced induced pluripotent stem cells with reference to the shape of their colonies.
  • The type of somatic cell to be reprogrammed by the method of the present invention is not specifically limited, and any somatic cell can be used. For example, somatic cells derived from any mammal (for example, derived from a mammal such as human, mouse, rat, cattle, sheep, horse, and monkey) can be employed. Not only embryonic somatic cells but also neonatal somatic cells, matured somatic cells, and tissue stem cells may also be used. In addition, various somatic cells such as skin cells, liver cells, and gastric mucosa cells can be reprogrammed. For use of induced pluripotent stem cells in therapies against diseases, it is desirable to use somatic cells isolated from the patient. For example, somatic cells involved in a disease and somatic cells associated with a therapy for a disease can be used.
  • The application of induced pluripotent stem cells produced by the method of the present invention is not specifically limited, and these cells can be used for every examination/study to be performed with use of ES cells, and for any disease therapy which utilizes ES cells. For example, induced pluripotent stem cells obtained by the method of the present invention can be induced into desired differentiated cells (such as nerve cells, myocardial cells, blood cells and insulin-producing cells) by treatment with retinoic acid, a growth factor such as EGF, or glucocorticoid, so that appropriate tissue can be formed. Stem cell therapies through autologous cell transplantation can be achieved by returning these differentiated cells or tissue obtained in the above manner, into the patient. However, the application of the induced pluripotent stem cells of the present invention is not to be limited to the abovementioned specific aspects.
  • EXAMPLES
  • The present invention will be explained more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.
  • Example 1 Preparation of Induced Pluripotent Stem Cells Through Nuclear Reprogramming of Mouse Embryonic Fibroblasts
  • pMXs-based retroviral vectors, which respectively encode each of three genes of mouse-derived Oct3/4, Sox2, and Klf4, control DsRed or each miRNA of 18 types of miRNAs, were transfected into PLAT-E cells using FuGENE 6 reagent (Roche) to get retroviruses. On the next day, embryonic fibroblasts (Nanog GFP MEF, WO2007/069666 A1) derived from transgenic mice generated by insertion of sequences encoding EGFP gene and puromycin resistance gene downstream of a Nanog gene promoter region, were seeded at 1×105 cells/well in 6-well plates. On the next day, these cells were infected with retroviruses expressing Oct3/4, Sox2, Klf4, and each type of miRNA selected from 18 types of miRNAs, at a ratio of 1 ml of virus mixture expressing these three factors to 1 ml of virus solution expressing miRNA or DsRed, so as to prepare induced pluripotent stem cells through nuclear reprogramming.
  • TABLE 1
    miRNA sequence (other name(s) miRBase
    miRNA number indicated in parentheses) accession number
    1 mmu-miR-150 MI0000172
    2 mmu-miR-182 MI0000224
    3 mmu-miR-126 MI0000153
    4 mmu-miR-290-295 cluster
    5 mmu-miR-290 MI0000388
    (mmu-miR-290-5p/290-3p)
    6 mmu-miR-291a MI0000389
    (mmu-miR-291a-5p/291a-3p)
    7 mmu-miR-292 MI0000390
    (mmu-miR-292-5p/292-3p)
    8 mmu-miR-294 MI0000392
    (mmu-miR-294/294*)
    X(9) mmu-miR-295 MI0000393
    (mmu-miR-295/295*)
    10 mmu-miR-17-92 cluster
    11 mmu-miR-323 MI0000592
    12 mmu-miR-130b MI0000408
    13 mmu-miR-7a-1 MI0000728
    14 mmu-miR-7a-2 MI0000729
    15 mmu-miR-205 MI0000248
    16 mmu-miR-200a MI0000554
    17 mmu-miR-200c MI0000694
    18 mmu-miR-mix
    *indicates star form of miRNA.
  • From the third day after infection, the cells were cultured in an ES cell medium containing LIF. On the fourth day after infection, the cells were harvested by trypsinization, and the whole amount thereof was spread over mytomicin-C treated STO cells as feeder cells. Every other day thereafter, the ES cell medium containing LIF was replaced. From the 21st day after infection, drug selection was started with addition of puromycin at a final concentration of 1.5 μg/ml. On the 28th day, the number of Nanog GFP positive colonies (GFP, the expression of which is induced by a Nanog gene promoter region, can be observed with the use of fluorescent microscopy) was counted. As a control, DsRed was used in place of miRNA. The results are shown in FIG. 1. It was found that mmu-miR-294 and mmu-miR-295 could respectively improve the nuclear reprogramming efficiency when introduced into mouse embryonic fibroblasts together with three factors of Oct3/4, Sox2, and Klf4, and could enable efficient establishment of induced pluripotent stem cells.
  • Example 2 Preparation of Induced Pluripotent Stem Cells Through Nuclear Reprogramming of Mouse Tail Tip Fibroblasts
  • pMXs-based retroviral vectors, which respectively encode each of three genes of mouse-derived Oct3/4, Sox2, and Klf4, DsRed (control), or mmu-miR-295, were transfected into PLAT-E cells using FuGENE 6 reagent (Roche) to get retroviruses. On the next day, tail tip fibroblasts (Nanog GFP tailtip fibroblasts) derived from transgenic mice generated by insertion of sequences encoding EGFP gene and puromycin resistance gene downstream of a Nanog gene promoter region, were seeded at 1×105 cells/well in 6-well plates. On the next day, these cells were infected with retroviruses expressing three factors of Oct3/4, Sox2, and Klf4, and either DsRed or mmu-miR-295, at a ratio of 1:1:1:1, so as to prepare induced pluripotent stem cells through nuclear reprogramming.
  • Since the third day after infection, the cells were cultured in an ES cell medium containing LIF. On the fourth day after infection, the cells were harvested by trypsinization and the whole amount thereof was spread over mytomicin-C treated STO cells as feeder cells. Every other day thereafter, the ES cell medium containing LIF was replaced. From the 7th, 21st, or 28th day after infection, drug selection was started with addition of puromycin at a final concentration of 1.5 μg/ml. On the 39th day, the number of total colonies and the number of Nanog GFP positive colonies (GFP, the expression of which is induced by Nanog promoter region, can be observed with fluorescent microscopy) were counted. The results are shown in FIG. 2. It was found that mmu-miR-295 could improve the nuclear reprogramming efficiency when introduced into mouse tail tip fibroblasts together with three factors of Oct3/4, Sox2, and Klf4, and could accelerate the reprogramming speed and enable efficient establishment of induced pluripotent stem cells.
  • Example 3 Preparation of Induced Pluripotent Stem Cells Through Nuclear Reprogramming of Adult Human Dermal Fibroblasts
  • pMXs-based retroviral vectors, which encode three genes of human-derived OCT3/4, SOX2, and KLF4, and control DsRed or either 23 types of miRNAs or an miRNA cluster, were transfected into PLAT-E cells using FuGENE 6 reagent (Roche) to get retroviruses. On the next day, adult human dermal fibroblasts (aHDF) which were generated to express a rodent ecotropic virus receptor Slc7a1 (aHDF-Slc7a1), were seeded at 3×105 cells/well in 6-cm dishes. On the next day, the cells were infected with retroviruses expressing three genes of OCT3/4, SOX2, KLF4, and various types of miRNAs, at a ratio of 1:1:1:1, so as to produce induced pluripotent stem cells through nuclear reprogramming.
  • TABLE 2
    miRNA sequence (other
    miRNA name(s) indicated in miRBase
    number parentheses) accession number
    1 hsa-miR-371 MI0000779
    (hsa-miR-371-5p/371-3p)
    2 hsa-miR-372 MI0000780
    3 hsa-miR-373 MI0000781
    (hsa-miR-373/373*)
    4 hsa-miR-371-373 cluster
    5 hsa-miR-93 MI0000095
    (hsa-miR-93/93*)
    6 hsa-miR-302a MI0000738
    (hsa-miR-302a/302a*)
    7 hsa-miR-302b MI0000772
    (hsa-miR-302b/302b*)
    8 hsa-miR-302c MI0000773
    (hsa-miR-302c/302c*)
    9 hsa-miR-302d MI0000774
    (hsa-miR-302d/302d*)
    10 hsa-miR-367 MI0000775
    (hsa-miR-367/367*)
    11 hsa-miR-302-367 cluster
    12 hsa-miR-520a MI0003149
    (hsa-miR-520a-5p/520a-3p)
    13 hsa-miR-520b MI0003155
    14 hsa-miR-520c MI0003158
    (hsa-miR-520c-5p/520c-3p)
    15 hsa-miR-520d MI0003164
    (hsa-miR-520d-5p/520d-3p)
    16 hsa-miR-520e MI0003143
    17 mmu-miR-290-295 cluster
    18 mmu-miR-290 MI0000388
    (mmu-miR-290-5p/290-3p)
    19 mmu-miR-291a MI0000389
    (mmu-miR-291a-5p/291a-3p)
    20 mmu-miR-292 MI0000390
    (mmu-miR-292-5p/292-3p)
    21 mmu-miR-293 MI0000391
    (mmu-miR-293/293*)
    22 mmu-miR-294 MI0000392
    (mmu-miR-294/294*)
    23 mmu-miR-295 MI0000393
    (mmu-miR-295/295*)
  • On the sixth day after infection, the cells were harvested by trypsinization and the whole amount of 5×105 cells was spread over on mytomicin-C treated STO cells as feeder cells. Every other day thereafter, human ES cell medium containing bFGF (ReproCELL) was replaced. On the 24th, 32nd, and 40th day, the number of total colonies and the number of colonies having morphology of human ES-like cells were counted. As a control, DsRed was used in place of miRNA. The results are shown in FIG. 3. It was found that the number of colonies of induced pluripotent stem cells increased twice or more, as compared to the control, by introduction of three genes in the presence of hsa-miR-372, 373, 302b, 302-367 cluster (including 302b, 302c, 302a, 302d, and 367), 520c, mmu-miR-291a, 294, or 295.
  • Example 4 Preparation of Induced Pluripotent Stem Cells Through Nuclear Reprogramming of Adult Human Dermal Fibroblasts
  • 3×105 aHDF-Slc7a1 cells were plated on 60 mm gelatin coated dishes and infected with retrovirus to express DsRed, 4 factors (OCT3/4, SOX2, c-MYC, and KLF4), or 3 factors (OCT3/4, SOX2, KLF4) in the presence of various miRNAs independently. Six days after infection, 5×105 aHDF-Slc7a1 cells were reseeded on mytomicin-C treated STO cells. Forty days after infection, the number of human ES-like colonies was counted. The same experiment was repeated three times.
  • FIG. 4A shows the results of three independent experiments. It was found that the number of colonies of induced pluripotent stem cells increased, as compared to the control, by introduction of three genes in the presence of hsa-miR-372, 373/373*(hsa-miR-373), 371-373 cluster (including 371, 372, and 373), 302b/302b* (hsa-miR-302b), 302-367 cluster (including 302b, 302c, 302a, 302d, and 367), 520c-5p/520c-3p (hsa-miR-520c), mmu-mir-290-5p/290-3p (mmu-mir-290), mmu-mir-291a-5p/291a-3p (mmu-mir-291a), 294/294* (mmu-mir-294), or 295/295* (mmu-mir-295).
  • FIG. 4B shows the morphology of ES-like colonies of iPS cells by using microscopy.
  • Example 5 Expression of ES Cell Markers in iPS Cells Produced by Nuclear Reprogramming of Mouse Tail Tip Fibroblasts (TTFs) with 4 Factors (OCT3/4, SOX2, c-MYC, and KLF4) and with 3 Factors (OCT3/4, SOX2, and KLF4)+mmu-miR-295/295*
  • 5×104 FbNg TTFs (TTFs derived from Fbx15-β geo/Nanog-IRES-Puror reporter mouse) cells were plated on gelatin coated 6-well plates and infected with retrovirus to express 3 factors (Oct3/4, Sox2, Klf4) plus either DsRed (Myc(−)3f+DsRed), mmu-miR-295/295* (Myc(−)3f+mmu-miR-295/295*), or c-Myc (4 factor). On Day 4 after infection, all the cells (Myc( )3f+DsRed; Myc(−)3f+mmu-miR-295/295*) or 20 times diluted cells (4 factors) were reseeded on Puromycin and Hygromycin-resistant-MSTO (PH-MSTO) cells. Puromycin selection was started on Day 7, 14, 21, 28.
  • RT-PCR analysis using the Rever Tra Ace Kit (Takara) showed that the iPS cells transfected with 4 factors (OCT3/4, SOX2, c-MYC, and KLF4), or with 3 factors (OCT3/4, SOX2, and KLF4)+mmu-miR-295/295* expressed the ES cell specific marker genes Oct3/4, Sox2, Nanog, and that the amounts of expression thereof were equivalent to those obtained with mouse ES cells(ES) and mouse iPS cells (Fbx iPS) (FIG. 5).
  • Example 6 Preparation of Induced Pluripotent Stem Cells Through Nuclear Reprogramming of Mouse Embryonic Fibroblasts with 3 Factors (Oct3/4, Klf4, and c-Myc) with miRNAs
  • 1×105 Nanog MEFs (MEFs derived from Nanog-IRES-Puror reporter mouse) were plated on gelatin coated 6-well plates and infected with retrovirus to express 3 factors (Oct3/4, c-MycWT(wild type), and Klf4) with mmu-miR-290-295 cluster, 290-5p/290-3p (mmu-miR-290), 291a-5p/291a-3p (mmu-miR-291), 292-5p/292-3p (mmu-miR-292), 293/293* (mmu-miR-293), 294/294* (mmu-miR-294) or 295/295* (mmu-miR-295) miRNAs (1:1). On day 4 after infection, half of the cells were reseeded on Puromycin and Hygromycin-resistant-MSTO (PH-MSTO) cells. Puromycin selection was started from 14 days after infection.
  • FIG. 6A shows the number of Nanog GFP positive colonies. The results of three independent experiments are shown with different colors. “DsRed” indicates the combination of Oct3/4, Klf4, c-Myc and DsRed.
  • FIG. 6B shows the results of RT-PCR analysis. RT-PCR analysis using the Rever Tra Ace Kit (Takara) showed that the iPS cells transfected with 4 factors (OCT3/4, SOX2, c-MYC, and KLF4), or with 3 factors (OCT3/4, SOX2, and KLF4)+mmu-miR-290-295 cluster, 291a-5p/291a-3p, 294/294* and 295/295* expressed the ES cell specific marker genes Oct3/4, Sox2, Nanog, and that the amounts of expression thereof were equivalent to those obtained with mouse ES cells (ES) and mouse iPS cells (Fbx iPS).
  • Example 7 iPS Induction with Fb-Ng MEFs (MEFs Derived from Fbx15-β geo/Nanog-IRES-Puror Reporter Mouse) Over-Expressing Oct3/4, c-Myc, and Klf4 (“Sox(−)”)+mmu-miR-295/295* or hsa-miR-302-367 Cluster miRNAs
  • 1×105 Fb-Ng MEFs (MEFs derived from Fbx15-β geo/Nanog-IRES-Puror reporter mouse) were plated on gelatin coated 6-well plates and infected with retrovirus to express 3 factors (Oct3/4, c-MycWT(wild type), Klf4)+miR-295/295*or hsa-miR-302-367 cluster. On day 4 after infection, cells were reseeded on Puromycin and Hygromycin resistant mytomycin-C treated STO cells (PH-MSTO) by in 6-well or 10 cm dishes. Puromycin selection was started from 7 days after infection.
  • FIG. 7A shows cell morphology of MEFs transduced with Oct3/4, c-Myc, and Klf4 (“Sox(−)”)+mmu-miR-295/295*. The colonies showed morphology similar to that of ES cells. FIG. 7B shows chimeras derived from iPS cells induced with Sox(−)3f+mmu-miR-295/295*.
  • FIG. 7C shows embryoid body (EB)-mediated in vitro differentiation by human iPS cells. Human iPS cells (61B1, 61N2) which were established by transduction of 4 genes (OCT3/4, KLF4, SOX2, and c-MYC, i.e. “OSMK”) or 3 genes (OCT3/4, KLF4, and c-MYC, i.e., “OMK(SOX(−)”)+hsa-miR-302-367 cluster miRNA were plated on a low-binding dish, and embryoid bodies were formed on 100 mm dishes in accordance with the method described in Takahashi et al., Cell 131:861-872, 2007. After culturing for 2 weeks, the cells were stained using an antibody against each of α-fetoprotein (R&D systems) which is a differentiation marker for endodermal cells, α-smooth muscle actin (DAKO) which is a differentiation marker for mesodermal cells, and Glial Fibrillary Astrocytic Protein (GFAP) (DAKO) which is a differentiation marker for ectodermal cells. The expression of each marker was confirmed by staining. Nuclei were stained with Hoechst 33342 (Invitrogen).
  • Example 8 iPS Induction with 4 Factors (OCT3/4, SOX2, MYC, KLF4) or 3 Factors (OCT3/4, MYC, KLF4, i.e., “SOX(−)3”) with and without Various miRNAs
  • 3×105 cells of aHDF-Slc7a1 cells were plated on 60 mm gelatin coated dishes and infected with retrovirus to express 4 factors: OCT3/4, SOX2, c-MYC, KLF4 (OSMK) or 3 factors: SOX(−)3factors (OMK) in the presence of miRNAs as indicated (OMK:mock or miRNAs=2.5:1.5), or with 2 factors: OCT3/4+KLF4 (OK) in the presence of miRNAs as indicated. Cells were infected with DsRed as control. Six days after infection, 5×105 aHDF-Slc7a1 cells were reseeded on mytomicin-C treated STO cells (MSTOcells). On Day 40 after infection, the number of ES-like colonies was counted.
  • TABLE 3 shows the number of human ES(hES)-like colonies in aHDF-Slc7a1 cells transduced with OSMK, OMK with or without miRNAs, and with OK with or without miRNAs. The hES-like colonies showed in cells transduced with OSMK, OMK+miRNAs (hsa-miR-371-373 cluster, hsa-miR-302-367 cluster, or hsa-miR-371-373 cluster+302-367 cluster) were detected by six independent experiments (Exp. 54, 61, 63, 114, 130, and 133).
  • TABLE 3
    Number of hES-like colonies Exp. 54 Exp. 61 Exp. 63 Exp. 114 Exp. 130 Exp. 133
    A control DsRed 0 0 0 0 0 0
    B OSMK Y4f (O:S:M:K = 1:1:1:1) 5 41 54 37 39 100
    G Y4f (OMK:S = 2.5:1.5) 13 7 4 22
    H OMK + mock Sox(−)Y3f + mock 0 0 0 0 0 0
    I or miRNA Sox(−)Y3f + h-miR-371-373 cluster 0 0 1 0 0 0
    J Sox(−)Y3f + h-miR-302-367 cluster 0 2 3 0 8 5
    K Sox(−)Y3f + h-mir-371-373 cluster + 302-367 0 0 6
    cluster
    M OK + mock OK + mock 0 0 0
    N or miRNA OK + h-miR-371-373 cluster 0 0 0
    O OK + h-miR-302-367 cluster 0 0 4
    P OK + h-miR-371-373 cluster + 302-367 cluster 1 0 0
  • FIG. 8 shows cell morphology of iPS cells induced with OSMK (61B1); OMK (SOX(−))+hsa-miR-302-367 cluster miRNA (61N2); and OK+hsa-miR-302-367 cluster miRNA (133O1).
  • INDUSTRIAL APPLICABILITY
  • The present invention provides an efficient method for preparing induced pluripotent stem cells. The method of the present invention has higher nuclear reprogramming efficiency as compared to conventional methods. For example, safe induced pluripotent stem cells can be efficiently produced without using c-Myc or gene products thereof. Accordingly, the method of the present invention enables efficient production of highly safe induced pluripotent stem cells from a patient's own somatic cells. Cells differentiated from such pluripotent stem cells (for example, myocardial cells, insulin-producing cells, or nerve cells) can be safely utilized in stem cell transplantation therapies for treatment of various diseases, such as heart failure, insulin dependent diabetes mellitus, Parkinson's diseases, and spinal cord injury.
  • Although the present invention has been described in considerable detail with regard to certain versions thereof, other versions are possible, and alterations, permutations, and equivalents of the versions shown will become apparent to those skilled in the art upon a reading of the specification and study of the drawings. Also, the various features of the versions herein can be combined in various ways to provide additional versions of the present invention. Furthermore, certain terminology has been used for the purposes of descriptive clarity, and not to limit the present invention. Therefore, any appended claims should not be limited to the description of the preferred versions contained herein and should include all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
  • Having now fully described this invention, it will be understood to those of ordinary skill in the art that the methods of the present invention can be carried out with a wide and equivalent range of conditions, formulations, and other parameters without departing from the scope of the invention or any embodiments thereof.
  • All the disclosures of the above publication are incorporated herein by reference.
  • The attached Sequence Listing includes SEQ ID NOs: 13 and 14, as well as those sequences disclosed in PCT/JP2008/59586, which is incorporated by reference herein in its entirety.

Claims (38)

1. A method of preparing induced pluripotent stem cells, comprising nuclear reprogramming at least one somatic cell with nuclear reprogramming factor and at least one miRNA, wherein the at least one miRNA increases efficiency of the nuclear reprogramming of the at least one somatic cell compared to nuclear reprogramming of the at least one somatic cell with the nuclear reprogramming factor in the absence of the at least one miRNA.
2. The method according to claim 1, wherein the at least one miRNA is expressed in embryonic stem cells at a higher level than in somatic cells.
3. The method according to claim 1, wherein a gene encoding the nuclear reprogramming factor and/or the at least one miRNA is introduced into the at least one somatic cell.
4. The method according to claim 3, wherein a vector comprising the gene and/or a vector encoding the at least one miRNA is introduced into the at least one somatic cell.
5. The method according to claim 4, wherein the vector comprising the gene or encoding the at least one miRNA is a retroviral vector.
6. The method according to claim 3, wherein the gene is selected from an Oct family gene, a Klf family gene, and a Sox family gene.
7. The method according to claim 3, wherein the gene is selected from Oct3/4, Klf4, and Sox2.
8. The method according to claim 3, wherein the nuclear reprogramming factor comprises Oct3/4, Klf4, and Sox2.
9. The method according to claim 3, wherein the at least one miRNA is introduced into the at least one somatic cell as primary miRNA.
10. The method according to claim 3, wherein the at least one miRNA is introduced into the at least one somatic cell as pre-miRNA.
11. The method according to claim 1, wherein the at least one miRNA comprises at least one miRNA represented by SEQ ID NOs: 1 to 14.
12. The method according to claim 1, wherein the at least one miRNA comprises at least one miRNA contained in miRNA cluster hsa-miR-302-367 cluster, hsa-miR-371-373 cluster and hsa-miR-520c.
13. The method according to claim 1, wherein the at least one miRNA regulates DNA methylation.
14. The method according to claim 11, wherein the at least one miRNA regulates de novo DNA methylation.
15. The method according to claim 11, wherein the at least one miRNA down-regulates DNA methylation.
16. The method according to claim 1, wherein the at least one miRNA comprises at least 10 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
17. The method according to claim 1, wherein the at least one miRNA comprises at least 30 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
18. The method according to claim 1, wherein the at least one miRNA comprises at least 60 contiguous nucleotides of at least one miRNA represented by SEQ ID NOs: 1 to 14.
19. The method according to claim 1, wherein the nuclear reprogramming factor does not include c-Myc and/or Sox2.
20. The method according to claim 1, wherein the at least one miRNA comprises hsa-miR-302-367 cluster, hsa-miR-371-373 cluster and hsa-miR-520C miRNA.
21. The method according to claim 20, wherein the nuclear reprogramming factor comprises an Oct family gene member, a Sox family gene member, and a Klf family gene member.
22. The method according to claim 1, wherein the at least one miRNA comprises mmu-miR-295/295* and 294/294*.
23. The method according to claim 1, wherein the at least one miRNA comprises hsa-miR-302-367 cluster and hsa-miR-371-373 cluster miRNA.
24. The method according to claim 1, wherein the nuclear reprogramming factor comprises a Klf family gene, and an Oct family gene.
25. The method according to claim 24, wherein the nuclear reprogramming factor further comprises a Myc family gene.
26. The method according to claim 24, wherein the nuclear reprogramming factor further comprises a Sox family gene.
27. The method according to claim 25, wherein the nuclear reprogramming factor further comprises a Sox family gene.
28. The method according to claim 24, wherein the nuclear reprogramming factor comprises KLF4 and OCT3/4.
29. A method of increasing the efficiency of nuclear reprogramming comprising: adding a nuclear reprogramming factor and at least one miRNA to at least one somatic cell so that the number of induced pluripotent stem cells produced is greater than in the absence of the added miRNA.
30. An induced pluripotent stem cell induced by reprogramming a somatic cell, wherein the reprogramming is performed by adding at least one miRNA and in the absence of eggs, embryos, or embryonic stem (ES) cells.
31. The induced pluripotent stem cell according to claim 30, wherein the induced pluripotent stem cell is a human cell.
32. An induced pluripotent stem cell obtained by the method of claim 1.
33. An induced pluripotent stem cell obtained by the method of claim 29.
34. A somatic cell derived by inducing differentiation of the pluripotent stem cell according to claim 32.
35. A somatic cell derived by inducing differentiation of the pluripotent stem cell of claim 33.
36. The method according to claim 25, wherein the nuclear reprogramming factor excludes a Sox family gene.
37. The method according to claim 26, wherein the nuclear reprogramming factor excludes a Myc family gene.
38. The method according to claim 1, where the at least one somatic cell comprises a plurality of somatic cells.
US12/292,717 2007-12-10 2008-11-25 Efficient method for nuclear reprogramming Abandoned US20100075421A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/292,717 US20100075421A1 (en) 2007-12-10 2008-11-25 Efficient method for nuclear reprogramming
US12/379,564 US9683232B2 (en) 2007-12-10 2009-02-25 Efficient method for nuclear reprogramming
US13/313,670 US8791248B2 (en) 2007-12-10 2011-12-07 Nuclear reprogramming factor comprising miRNA and a protein factor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US99689307P 2007-12-10 2007-12-10
PCT/JP2008/059586 WO2009075119A1 (en) 2007-12-10 2008-05-23 Effective nucleus initialization method
US12/292,717 US20100075421A1 (en) 2007-12-10 2008-11-25 Efficient method for nuclear reprogramming

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059586 Continuation-In-Part WO2009075119A1 (en) 2007-12-10 2008-05-23 Effective nucleus initialization method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/379,564 Continuation-In-Part US9683232B2 (en) 2007-12-10 2009-02-25 Efficient method for nuclear reprogramming
US13/313,670 Continuation US8791248B2 (en) 2007-12-10 2011-12-07 Nuclear reprogramming factor comprising miRNA and a protein factor

Publications (1)

Publication Number Publication Date
US20100075421A1 true US20100075421A1 (en) 2010-03-25

Family

ID=40755366

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/292,717 Abandoned US20100075421A1 (en) 2007-12-10 2008-11-25 Efficient method for nuclear reprogramming
US13/313,670 Active 2029-04-03 US8791248B2 (en) 2007-12-10 2011-12-07 Nuclear reprogramming factor comprising miRNA and a protein factor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/313,670 Active 2029-04-03 US8791248B2 (en) 2007-12-10 2011-12-07 Nuclear reprogramming factor comprising miRNA and a protein factor

Country Status (5)

Country Link
US (2) US20100075421A1 (en)
JP (1) JP5558097B2 (en)
KR (1) KR101532442B1 (en)
AU (1) AU2008286249B2 (en)
WO (1) WO2009075119A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047263A1 (en) * 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US20090068742A1 (en) * 2005-12-13 2009-03-12 Shinya Yamanaka Nuclear Reprogramming Factor
US20090191159A1 (en) * 2007-06-15 2009-07-30 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US20090299763A1 (en) * 2007-06-15 2009-12-03 Izumi Bio, Inc. Methods of cell-based technologies
WO2010115050A2 (en) * 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
US20100279404A1 (en) * 2008-05-02 2010-11-04 Shinya Yamanaka Method of nuclear reprogramming
WO2011058300A3 (en) * 2009-11-12 2011-09-22 The University Of Nottingham Induced pluripotent stem cell
WO2011139688A2 (en) 2010-04-28 2011-11-10 The J. David Gladstone Institutes Methods for generating cardiomyocytes
WO2011154553A3 (en) * 2010-06-11 2012-02-16 Cellartis Ab Micrornas for the detection and isolation of human embryonic stem cell -derived cardiacv cell types
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
WO2012151309A1 (en) * 2011-05-02 2012-11-08 Sanford-Burnham Medical Research Institute Methods for regulating induced pluripotent stem cell generation and compositions thereof
WO2013033213A1 (en) 2011-08-30 2013-03-07 The J. David Gladstone Institutes Methods for generating cardiomyocytes
WO2013090457A2 (en) 2011-12-12 2013-06-20 Oncoimmunin Inc. In vivo delivery of oligonucleotides
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
WO2014037574A1 (en) * 2012-09-10 2014-03-13 Sanofi Methods for reprogramming a somatic cell
US8791248B2 (en) 2007-12-10 2014-07-29 Kyoto University Nuclear reprogramming factor comprising miRNA and a protein factor
US8852941B2 (en) 2010-02-18 2014-10-07 Osaka University Method for producing induced pluripotent stem cells
US9228204B2 (en) 2011-02-14 2016-01-05 University Of Utah Research Foundation Constructs for making induced pluripotent stem cells
US9376669B2 (en) 2012-11-01 2016-06-28 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9422577B2 (en) 2011-12-05 2016-08-23 Factor Bioscience Inc. Methods and products for transfecting cells
US20160298089A1 (en) * 2013-11-15 2016-10-13 The Mclean Hospital Corporation Synergistic genome-nonintegrating reprogramming by micrornas and transcription factors
US9770489B2 (en) 2014-01-31 2017-09-26 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
US10137206B2 (en) 2016-08-17 2018-11-27 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
CN109642212A (en) * 2016-06-16 2019-04-16 西达-赛奈医疗中心 Blood is reprogrammed into the novel and effective method induced multi-potent stem cell
US10265347B2 (en) 2013-08-29 2019-04-23 Norimasa Miura Biomolecular group related to cell anti-aging
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
CN113462638A (en) * 2021-06-30 2021-10-01 呈诺再生医学科技(珠海横琴新区)有限公司 Efficient genetic-modification-free iPSC induction and industrialization monoclonal picking platform and application
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453219B2 (en) * 2003-05-15 2016-09-27 Mello Biotech Taiwan Co., Ltd. Cosmetic designs and products using intronic RNA
EP2072618A1 (en) * 2007-12-14 2009-06-24 Johannes Gutenberg-Universität Mainz Use of RNA for reprogramming somatic cells
CN101970664B (en) * 2008-01-16 2013-08-21 林希龙 Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
AU2010279913B2 (en) 2009-08-07 2016-04-28 Kyoto University Method of efficiently establishing induced pluripotent stem cells
GB0915523D0 (en) 2009-09-07 2009-10-07 Genome Res Ltd Cells and methods for obtaining them
CN103189511B (en) 2010-07-12 2016-10-12 国立大学法人鸟取大学 Utilize the novel hiPSC facture that siRNA imports
WO2012074106A1 (en) 2010-12-03 2012-06-07 国立大学法人京都大学 Method for production of eosinophil from pluripotent stem cell
CN107988381B (en) 2011-07-25 2021-05-28 国立大学法人京都大学 Method for screening induced pluripotent stem cells
CN103917641B (en) 2011-10-21 2018-04-27 爱科来株式会社 The cultivation of the single cell dispersion of the maintenance versatility carried out by laminar flow
JP5850702B2 (en) * 2011-10-25 2016-02-03 国立大学法人岐阜大学 Differentiation regulator of mesenchymal cells, medicament using the same, and screening method for substances having differentiation regulating action on mesenchymal cells
WO2013077423A1 (en) 2011-11-25 2013-05-30 国立大学法人京都大学 Method for culturing pluripotent stem cell
CN104471060B (en) 2012-05-23 2021-11-05 国立大学法人京都大学 Efficient method for establishing induced pluripotent stem cells
AU2013274197A1 (en) * 2012-06-13 2015-01-22 Stemgent, Inc. Methods of preparing pluripotent stem cells
JP2014082956A (en) 2012-10-19 2014-05-12 Somar Corp Cell culture substrate, cell culture method using cell culture substrate, and pluripotent stem cell differentiation inducing method using cell culture substrate
JP2015534830A (en) * 2012-11-02 2015-12-07 ロンザ ウォーカーズビル MicroRNA and cell reprogramming
JP6495658B2 (en) 2013-02-08 2019-04-03 国立大学法人京都大学 Method for producing megakaryocytes and platelets
WO2014136581A1 (en) 2013-03-06 2014-09-12 国立大学法人京都大学 Culture system for pluripotent stem cells and method for subculturing pluripotent stem cells
JP6473077B2 (en) 2013-03-21 2019-02-20 国立大学法人京都大学 Pluripotent stem cells for inducing neural differentiation
JP6473686B2 (en) 2013-03-25 2019-02-20 公益財団法人神戸医療産業都市推進機構 Cell sorting method
JP6461787B2 (en) 2013-04-12 2019-01-30 国立大学法人京都大学 Method for inducing alveolar epithelial progenitor cells
US9822342B2 (en) 2013-05-14 2017-11-21 Kyoto University Method of efficiently inducing cardiomyocytes
KR101870174B1 (en) 2013-05-31 2018-06-22 아이하트 재팬 가부시키가이샤 Layered cell sheet incorporating hydrogel
EP3020803B1 (en) 2013-06-11 2020-03-11 Kyoto University Method for producing renal precursor cells
CN104293785A (en) * 2013-06-28 2015-01-21 四川大学华西医院 Use of microRNA302s in preparation of antitumor drugs
US9796962B2 (en) 2013-08-07 2017-10-24 Kyoto University Method for generating pancreatic hormone-producing cells
DK3042951T3 (en) 2013-09-05 2019-04-15 Univ Kyoto UNKNOWN PROCEDURE FOR INducing DOPAMINE-PRODUCING NEURAL PRECURSOR CELLS
US10100283B2 (en) 2013-11-01 2018-10-16 Kyoto University Efficient chondrocyte induction method
TWI719939B (en) 2014-07-14 2021-03-01 日商中外製藥股份有限公司 Method of identifying protein epitopes
WO2016104717A1 (en) 2014-12-26 2016-06-30 国立大学法人京都大学 Hepatocyte induction method
JP6873911B2 (en) 2015-04-06 2021-05-19 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー In vitro methods to induce gene regulation of target nucleic acids in primary cells
EP3081638A1 (en) 2015-04-16 2016-10-19 Kyoto University Method for producing pseudo-islets
WO2016190899A1 (en) * 2015-05-23 2016-12-01 Beem Alan M H Pri-mirna libraries and methods for making and using pri-mirna libraries
EP3447130A4 (en) 2016-04-22 2019-11-13 Kyoto University Method for producing dopamine-producing neural precursor cells
US11352605B2 (en) 2016-05-12 2022-06-07 Erasmus University Medical Center Rotterdam Method for culturing myogenic cells, cultures obtained therefrom, screening methods, and cell culture medium
EP3510151A4 (en) 2016-09-09 2020-04-15 The Board of Trustees of the Leland Stanford Junior University High-throughput precision genome editing
TWI814716B (en) 2016-12-27 2023-09-11 日商住友化學股份有限公司 Evaluating method and selecting method of induced pluripotent stem cells, and manufacturing method of induced pluripotent stem cells
EP3572502B1 (en) 2017-01-20 2023-01-11 Kyoto University Method for producing cd8alpha +beta + cytotoxic t cells
EP3575392A4 (en) 2017-01-26 2020-08-26 Osaka University Medium for inducing differentiation of stem cells into mesodermal cells and method for producing mesodermal cells
JP7171055B2 (en) 2017-03-14 2022-11-15 国立大学法人京都大学 Method for producing helper T cells from pluripotent stem cells
CN117802033A (en) 2017-05-25 2024-04-02 国立大学法人京都大学 Method for producing primitive streak cells of mesodermal lineage from pluripotent stem cells
CN111164209A (en) 2017-06-19 2020-05-15 公益财团法人神户医疗产业都市推进机构 Method for predicting differentiation potency of pluripotent stem cell and reagent for use in the prediction method
NL2019517B1 (en) 2017-09-08 2019-03-19 Univ Erasmus Med Ct Rotterdam New therapy for Pompe disease
JP7140400B2 (en) 2017-10-17 2022-09-21 国立大学法人京都大学 Methods for obtaining artificial neuromuscular junctions from pluripotent stem cells
SG11202100260QA (en) 2018-07-13 2021-02-25 Univ Kyoto METHOD FOR PRODUCING γδ T CELLS
JP7285015B2 (en) 2018-07-19 2023-06-01 国立大学法人京都大学 Lamellar cartilage derived from pluripotent stem cells and method for producing the same
US20210332329A1 (en) 2018-07-23 2021-10-28 Kyoto University Novel renal progenitor cell marker and method for concentrating renal progenitor cells using same
WO2020116606A1 (en) 2018-12-06 2020-06-11 キリンホールディングス株式会社 Production method for t cells or nk cells, medium for culturing t cells or nk cells, method for culturing t cells or nk cells, method for maintaining undifferentiated state of undifferentiated t cells, and growth-accelerating agent for t cells or nk cells
EP3900787A4 (en) 2018-12-21 2022-02-23 Kyoto University Lubricin-localized cartilage-like tissue, method for producing same and composition comprising same for treating articular cartilage damage
WO2020138371A1 (en) 2018-12-26 2020-07-02 キリンホールディングス株式会社 Modified tcr and production method therefor
EP3974519A4 (en) 2019-05-20 2023-07-12 Ajinomoto Co., Inc. Expansion culture method for cartilage or bone precursor cells
EP4074321A4 (en) 2019-12-12 2024-01-03 Univ Chiba Nat Univ Corp Freeze-dried preparation containing megakaryocytes and platelets
EP4110904A1 (en) 2020-02-28 2023-01-04 Takeda Pharmaceutical Company Limited Method for producing natural killer cells from pluripotent stem cells
EP3922431A1 (en) 2020-06-08 2021-12-15 Erasmus University Medical Center Rotterdam Method of manufacturing microdevices for lab-on-chip applications
EP4170020A1 (en) 2020-06-17 2023-04-26 Kyoto University Chimeric antigen receptor-expressing immunocompetent cells
MX2022016474A (en) 2020-07-01 2023-04-14 Elevatebio Tech Inc Compositions and methods for cellular reprogramming using circular rna.
JP7429294B2 (en) 2020-07-13 2024-02-07 国立大学法人京都大学 Skeletal muscle progenitor cells and methods for purifying the same, compositions for treating myogenic diseases, and methods for producing cell groups containing skeletal muscle progenitor cells
EP4180514A1 (en) 2020-07-20 2023-05-17 Aichi Medical University Composition for undifferentiated maintenance culture of pluripotent cells, medium for undifferentiated maintenance culture of pluripotent cells, maintenance culture method in undifferentiated state of pluripotent cells, and method for producing pluripotent cells
EP4202041A1 (en) 2020-08-18 2023-06-28 Kyoto University Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
WO2022196714A1 (en) 2021-03-17 2022-09-22 アステラス製薬株式会社 Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
CA3218400A1 (en) 2021-04-30 2022-11-03 Riken Cord-like aggregates of retinal pigment epithelial cells, device and production method for producing same, and therapeutic agent comprising said cord-like aggregates
WO2022255489A1 (en) 2021-06-04 2022-12-08 キリンホールディングス株式会社 Cell composition, method for producing cell composition, and pharmaceutical composition containing cell composition
WO2022259721A1 (en) 2021-06-10 2022-12-15 味の素株式会社 Method for producing mesenchymal stem cells
WO2022260719A1 (en) * 2021-06-12 2022-12-15 Lin Shi Lung Novel rna composition and production method for use in ips cell generation
CA3222770A1 (en) 2021-06-15 2022-12-22 Takeda Pharmaceutical Company Limited Method for producing natural killer cells from pluripotent stem cells
EP4372080A1 (en) 2021-07-15 2024-05-22 Astellas Pharma Inc. Pericyte-like cell expressing vascular endothelial growth factor (vegf) at high level
EP4372079A1 (en) 2021-07-15 2024-05-22 Astellas Pharma Inc. Pericyte-like cells expressing vascular endothelial growth factor (vegf) at high level
WO2023017848A1 (en) 2021-08-11 2023-02-16 国立大学法人京都大学 Method for producing renal interstitial progenitor cells, erythropoietin-producing cells, and method for producing renin-producing cells
KR20240055811A (en) 2021-09-10 2024-04-29 애질런트 테크놀로지스, 인크. Guide RNA with chemical modifications for prime editing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155013A1 (en) * 2004-03-23 2007-07-05 Toshihiro Akaike Pluripotent stem cell growing method
US20090191159A1 (en) * 2007-06-15 2009-07-30 Kazuhiro Sakurada Multipotent/pluripotent cells and methods

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL142094A0 (en) 1998-09-29 2002-03-10 Gamida Cell Ltd Methods of controlling proliferation and differentiation of stem and progenitor cells
US6667176B1 (en) 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
WO2000027995A1 (en) 1998-11-09 2000-05-18 Monash University Embryonic stem cells
US6280718B1 (en) 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
JP2002065261A (en) 2000-08-30 2002-03-05 Mitsubishi Kasei Institute Of Life Sciences Method for obtaining reproductive cell
AU2002247875B2 (en) 2000-11-27 2007-09-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Transfection of human embryonic stem cells
JP2003009854A (en) 2001-04-09 2003-01-14 Kyowa Hakko Kogyo Co Ltd Method for embryoid body formation and use thereof
JP4183614B2 (en) 2001-05-31 2008-11-19 伸弥 山中 ES cell specific expression gene
WO2003018780A1 (en) 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
CA2461185A1 (en) 2001-09-21 2003-04-03 Japan Science And Technology Corporation Method of screening reprogramming factor, reprogramming factor screened by the method, method of using the reprogramming factor, method of differentiating undifferentiated fused cells and method of constructing cell, tissues and organs
JP2004248505A (en) 2001-09-21 2004-09-09 Norio Nakatsuji Undifferentiated fusion cell of somatic cell derived from es cell deficient in part or all of transplantation antigen and method for producing the same
WO2004024940A2 (en) * 2002-09-16 2004-03-25 University Of Southern California Rna-mediated gene modulation
JP3736517B2 (en) 2002-11-13 2006-01-18 学校法人近畿大学 Somatic cell nuclear reprogramming factor
AU2003901099A0 (en) 2003-03-11 2003-03-27 Es Cell International Pte Ltd. Methods of inducing differentiation of stem cells
US9453219B2 (en) * 2003-05-15 2016-09-27 Mello Biotech Taiwan Co., Ltd. Cosmetic designs and products using intronic RNA
US9567591B2 (en) * 2003-05-15 2017-02-14 Mello Biotechnology, Inc. Generation of human embryonic stem-like cells using intronic RNA
JP2005095027A (en) 2003-09-22 2005-04-14 Reprocell Inc Undifferentiated state marker promoter of cell and its utilization
US7682828B2 (en) 2003-11-26 2010-03-23 Whitehead Institute For Biomedical Research Methods for reprogramming somatic cells
US7964401B2 (en) 2004-02-19 2011-06-21 Kyoto University Screening method for somatic cell nuclear reprogramming substance affecting ECAT2 and ECAT3
JPWO2006035741A1 (en) 2004-09-29 2008-05-15 伸弥 山中 ES cell specific expression gene and use thereof
WO2007026255A2 (en) 2005-06-22 2007-03-08 Universitetet I Oslo Dedifferentiated cells and methods of making and using dedifferentiated cells
CN101864392B (en) 2005-12-13 2016-03-23 国立大学法人京都大学 Nuclear reprogramming factor
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US20090227032A1 (en) 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
EP1987148A4 (en) 2006-02-27 2009-08-05 Imgen Co Ltd De-differentiation of astrocytes into neural stem cell using bmi-1
US20090252711A1 (en) 2006-05-11 2009-10-08 Andrew Craig Boquest Stem Cells And Methods Of Making And Using Stem Cells
US20090028835A1 (en) 2006-09-08 2009-01-29 Michigan State University Human transcriptome corresponding to human oocytes and use of said genes or the corresponding polypeptides to trans-differentiate somatic cells
WO2008105630A1 (en) 2007-02-27 2008-09-04 Procell Therapeutics Inc. Combined use of cell permeable nanog and oct4 for increasing self-renewal and suppressing differentiation of stem cells
JP5813321B2 (en) 2007-03-23 2015-11-17 ウィスコンシン アラムニ リサーチ ファンデーション Somatic cell reprogramming
CA3071055A1 (en) * 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
EP2164951A2 (en) 2007-05-30 2010-03-24 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
WO2009032456A2 (en) 2007-08-01 2009-03-12 Primegen Biotech Llc Non-viral delivery of transcription factors that reprogram human somatic cells into a stem cell-like state
WO2009057831A1 (en) 2007-10-31 2009-05-07 Kyoto University Nuclear reprogramming method
JP5626619B2 (en) 2008-12-08 2014-11-19 国立大学法人京都大学 Efficient nuclear initialization method
US9683232B2 (en) 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
WO2009075119A1 (en) 2007-12-10 2009-06-18 Kyoto University Effective nucleus initialization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155013A1 (en) * 2004-03-23 2007-07-05 Toshihiro Akaike Pluripotent stem cell growing method
US20090191159A1 (en) * 2007-06-15 2009-07-30 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20090304646A1 (en) * 2007-06-15 2009-12-10 Kazuhiro Sakurada Multipotent/Pluripotent Cells and Methods

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210014A1 (en) * 2005-12-13 2010-08-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US20090068742A1 (en) * 2005-12-13 2009-03-12 Shinya Yamanaka Nuclear Reprogramming Factor
US20090047263A1 (en) * 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US8058065B2 (en) 2005-12-13 2011-11-15 Kyoto University Oct3/4, Klf4, c-Myc and Sox2 produce induced pluripotent stem cells
US8048999B2 (en) 2005-12-13 2011-11-01 Kyoto University Nuclear reprogramming factor
US20100105100A1 (en) * 2007-06-15 2010-04-29 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20090324559A1 (en) * 2007-06-15 2009-12-31 Izumi Bio, Inc. Methods and platforms for drug discovery
US20100240090A1 (en) * 2007-06-15 2010-09-23 Izumi Bio, Inc. Methods and platforms for drug discovery
US20090191159A1 (en) * 2007-06-15 2009-07-30 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20100267135A1 (en) * 2007-06-15 2010-10-21 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US9714433B2 (en) 2007-06-15 2017-07-25 Kyoto University Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US20110039332A1 (en) * 2007-06-15 2011-02-17 Kazuhiro Sakurada Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
US20090299763A1 (en) * 2007-06-15 2009-12-03 Izumi Bio, Inc. Methods of cell-based technologies
US8257941B2 (en) 2007-06-15 2012-09-04 Kyoto University Methods and platforms for drug discovery using induced pluripotent stem cells
US8211697B2 (en) 2007-06-15 2012-07-03 Kyoto University Induced pluripotent stem cells produced using reprogramming factors and a rho kinase inhibitor or a histone deacetylase inhibitor
US20100120069A1 (en) * 2007-06-15 2010-05-13 Kazuhiro Sakurada Multipotent/pluripotent cells and methods
US20090304646A1 (en) * 2007-06-15 2009-12-10 Kazuhiro Sakurada Multipotent/Pluripotent Cells and Methods
US8791248B2 (en) 2007-12-10 2014-07-29 Kyoto University Nuclear reprogramming factor comprising miRNA and a protein factor
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
US20100279404A1 (en) * 2008-05-02 2010-11-04 Shinya Yamanaka Method of nuclear reprogramming
US9353352B2 (en) 2009-04-01 2016-05-31 The Regents Of The University Of California Embryonic stem cell specific microRNAs promote induced pluripotency
WO2010115050A3 (en) * 2009-04-01 2011-03-31 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
US8852940B2 (en) 2009-04-01 2014-10-07 The Regents Of The University Of California Embryonic stem cell specific microRNAs promote induced pluripotency
WO2010115050A2 (en) * 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
WO2011058300A3 (en) * 2009-11-12 2011-09-22 The University Of Nottingham Induced pluripotent stem cell
US8852941B2 (en) 2010-02-18 2014-10-07 Osaka University Method for producing induced pluripotent stem cells
WO2011139688A2 (en) 2010-04-28 2011-11-10 The J. David Gladstone Institutes Methods for generating cardiomyocytes
US9517251B2 (en) 2010-04-28 2016-12-13 The J. David Gladstone Institutes Methods for generating cardiomyocytes
US9517250B2 (en) 2010-04-28 2016-12-13 The J. David Gladstone Institutes Methods for generating cardiomyocytes
WO2011154553A3 (en) * 2010-06-11 2012-02-16 Cellartis Ab Micrornas for the detection and isolation of human embryonic stem cell -derived cardiacv cell types
US9228204B2 (en) 2011-02-14 2016-01-05 University Of Utah Research Foundation Constructs for making induced pluripotent stem cells
WO2012151309A1 (en) * 2011-05-02 2012-11-08 Sanford-Burnham Medical Research Institute Methods for regulating induced pluripotent stem cell generation and compositions thereof
US9828585B2 (en) 2011-08-30 2017-11-28 The J. David Gladstone Instututes Methods for generating cardiomyocytes
WO2013033213A1 (en) 2011-08-30 2013-03-07 The J. David Gladstone Institutes Methods for generating cardiomyocytes
US9695401B2 (en) 2011-12-05 2017-07-04 Factor Bioscience Inc. Methods and products for transfection
US9605277B2 (en) 2011-12-05 2017-03-28 Factor Bioscience, Inc. Methods and products for transfecting cells
US11708586B2 (en) 2011-12-05 2023-07-25 Factor Bioscience Inc. Methods and products for transfecting cells
US11692203B2 (en) 2011-12-05 2023-07-04 Factor Bioscience Inc. Methods and products for transfecting cells
US11492600B2 (en) 2011-12-05 2022-11-08 Factor Bioscience Inc. Methods and products for transfection
US11466293B2 (en) 2011-12-05 2022-10-11 Factor Bioscience Inc. Methods and products for transfecting cells
US9399761B2 (en) 2011-12-05 2016-07-26 Factor Bioscience Inc. Methods of reprogramming cells to a less differentiated state
US10982229B2 (en) 2011-12-05 2021-04-20 Factor Bioscience Inc. Methods and products for transfecting cells
US9127248B2 (en) 2011-12-05 2015-09-08 Factor Bioscience Inc. Products for transfection and reprogramming
US9562218B2 (en) 2011-12-05 2017-02-07 Factor Bioscience Inc. Reprogramming cells to a less differentiated state
US9605278B2 (en) 2011-12-05 2017-03-28 Factor Bioscience Inc. Methods and products for transfecting cells
US10301599B2 (en) 2011-12-05 2019-05-28 Factor Bioscience Inc. Methods and products for transfection
US10829738B2 (en) 2011-12-05 2020-11-10 Factor Bioscience Inc. Methods and products for transfecting cells
US10443045B2 (en) 2011-12-05 2019-10-15 Factor Bioscience Inc. Methods and products for transfection
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
US9422577B2 (en) 2011-12-05 2016-08-23 Factor Bioscience Inc. Methods and products for transfecting cells
US10662410B1 (en) 2011-12-05 2020-05-26 Factor Bioscience Inc. Methods and products for transfecting cells
US10131882B2 (en) 2011-12-05 2018-11-20 Factor Bioscience Inc. Methods and products for transfection
US9879228B2 (en) 2011-12-05 2018-01-30 Factor Bioscience Inc. Methods and products for transfection
US9969983B2 (en) 2011-12-05 2018-05-15 Factor Bioscience Inc. Methods and products for transfection
US10472611B2 (en) 2011-12-05 2019-11-12 Factor Bioscience Inc. Methods and products for transfecting cells
WO2013090457A2 (en) 2011-12-12 2013-06-20 Oncoimmunin Inc. In vivo delivery of oligonucleotides
WO2014037574A1 (en) * 2012-09-10 2014-03-13 Sanofi Methods for reprogramming a somatic cell
US9758797B2 (en) 2012-11-01 2017-09-12 Factor Bioscience, Inc. Methods and products for expressing proteins in cells
US9376669B2 (en) 2012-11-01 2016-06-28 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11339410B2 (en) 2012-11-01 2022-05-24 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11339409B2 (en) 2012-11-01 2022-05-24 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11332759B2 (en) 2012-11-01 2022-05-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11332758B2 (en) 2012-11-01 2022-05-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10415060B2 (en) 2012-11-01 2019-09-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9464285B2 (en) 2012-11-01 2016-10-11 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9487768B2 (en) 2012-11-01 2016-11-08 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10752917B2 (en) 2012-11-01 2020-08-25 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10752919B2 (en) 2012-11-01 2020-08-25 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9657282B2 (en) 2012-11-01 2017-05-23 Factor Bioscience, Inc. Methods and products for expressing proteins in cells
US10590437B2 (en) 2012-11-01 2020-03-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10767195B2 (en) 2012-11-01 2020-09-08 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9447395B2 (en) 2012-11-01 2016-09-20 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10724053B2 (en) 2012-11-01 2020-07-28 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10752918B2 (en) 2012-11-01 2020-08-25 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10265347B2 (en) 2013-08-29 2019-04-23 Norimasa Miura Biomolecular group related to cell anti-aging
US11001809B2 (en) * 2013-11-15 2021-05-11 The Mclean Hospital Corporation Synergistic genome-nonintegrating reprogramming by microRNAs and transcription factors
US11898169B2 (en) 2013-11-15 2024-02-13 The Mclean Hospital Corporation Synergistic genome-nonintegrating reprogramming by microRNAs and transcription factors
US20160298089A1 (en) * 2013-11-15 2016-10-13 The Mclean Hospital Corporation Synergistic genome-nonintegrating reprogramming by micrornas and transcription factors
US10124042B2 (en) 2014-01-31 2018-11-13 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
US9770489B2 (en) 2014-01-31 2017-09-26 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
CN109642212A (en) * 2016-06-16 2019-04-16 西达-赛奈医疗中心 Blood is reprogrammed into the novel and effective method induced multi-potent stem cell
US11904023B2 (en) 2016-08-17 2024-02-20 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10894092B2 (en) 2016-08-17 2021-01-19 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10137206B2 (en) 2016-08-17 2018-11-27 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10888627B2 (en) 2016-08-17 2021-01-12 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10576167B2 (en) 2016-08-17 2020-03-03 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10369233B2 (en) 2016-08-17 2019-08-06 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10363321B2 (en) 2016-08-17 2019-07-30 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10350304B2 (en) 2016-08-17 2019-07-16 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10556855B1 (en) 2019-07-30 2020-02-11 Factor Bioscience Inc. Cationic lipids and transfection methods
US11242311B2 (en) 2019-07-30 2022-02-08 Factor Bioscience Inc. Cationic lipids and transfection methods
US10752576B1 (en) 2019-07-30 2020-08-25 Factor Bioscience Inc. Cationic lipids and transfection methods
US11814333B2 (en) 2019-07-30 2023-11-14 Factor Bioscience Inc. Cationic lipids and transfection methods
US10611722B1 (en) 2019-07-30 2020-04-07 Factor Bioscience Inc. Cationic lipids and transfection methods
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
CN113462638A (en) * 2021-06-30 2021-10-01 呈诺再生医学科技(珠海横琴新区)有限公司 Efficient genetic-modification-free iPSC induction and industrialization monoclonal picking platform and application

Also Published As

Publication number Publication date
KR101532442B1 (en) 2015-06-29
US20130102768A1 (en) 2013-04-25
JPWO2009075119A1 (en) 2011-04-28
KR20100101043A (en) 2010-09-16
AU2008286249A1 (en) 2009-06-25
JP5558097B2 (en) 2014-07-23
AU2008286249B2 (en) 2013-10-10
WO2009075119A1 (en) 2009-06-18
US8791248B2 (en) 2014-07-29

Similar Documents

Publication Publication Date Title
US8791248B2 (en) Nuclear reprogramming factor comprising miRNA and a protein factor
US9683232B2 (en) Efficient method for nuclear reprogramming
JP5626619B2 (en) Efficient nuclear initialization method
Takahashi et al. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
Guo et al. microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming
US20190309263A1 (en) Method of efficiently establishing induced pluripotent stem cells
US9499797B2 (en) Method of making induced pluripotent stem cells
KR101774206B1 (en) Method of efficiently establishing induced pluripotent stem cells
US8927277B2 (en) Method of efficiently establishing induced pluripotent stem cells
JP4183742B1 (en) Method for producing induced pluripotent stem cells
US20110250692A1 (en) Method for producing induced pluripotent stem cells
US20110189137A1 (en) Method for generation and regulation of ips cells and compositions thereof
CN104630136A (en) Method for preparing induced pluripotent stem cells as well as composition used in method and application of composition
WO2012151309A1 (en) Methods for regulating induced pluripotent stem cell generation and compositions thereof
CA2658463C (en) Efficient method for nuclear reprogramming

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOTO UNIVERSITY,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMANAKA, SHINYA;KOYANAGI, MICHIYO;SIGNING DATES FROM 20090212 TO 20090219;REEL/FRAME:022457/0164

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION