US20100044016A1 - Multistage cooling of electronic components of an aircraft - Google Patents

Multistage cooling of electronic components of an aircraft Download PDF

Info

Publication number
US20100044016A1
US20100044016A1 US12/514,731 US51473107A US2010044016A1 US 20100044016 A1 US20100044016 A1 US 20100044016A1 US 51473107 A US51473107 A US 51473107A US 2010044016 A1 US2010044016 A1 US 2010044016A1
Authority
US
United States
Prior art keywords
coolant
aircraft
electronic system
heat exchanger
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/514,731
Inventor
Andreas Frey
Ahmet Kayihan Kiryaman
Markus Kerber
Michael Dreyhaupt
Carsten Colberg
Peter Schwebke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200610054560 external-priority patent/DE102006054560A1/en
Priority claimed from DE200710020037 external-priority patent/DE102007020037B4/en
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Priority to US12/514,731 priority Critical patent/US20100044016A1/en
Assigned to AIRBUS DEUTSCHLAND GMBH reassignment AIRBUS DEUTSCHLAND GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHWEBKE, PETER, DREYHAUPT, MICHAEL, KIRYAMAN, AHMET KAYIHAN, KERBER, MARKUS, COLBERG, CARSTEN, FREY, ANDREAS
Publication of US20100044016A1 publication Critical patent/US20100044016A1/en
Assigned to AIRBUS OPERATIONS GMBH reassignment AIRBUS OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: AIRBUS DEUTSCHLAND GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20127Natural convection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20872Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0614Environmental Control Systems with subsystems for cooling avionics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the invention relates to multistage cooling of electronic components and electronic assemblies, in particular of an electronic entertainment system, in an aircraft.
  • Electronic entertainment systems are an essential part of the comfort provided for an air passenger in modern passenger aircraft.
  • the requirements to be met by the entertainment electronics depend on increasingly more efficient electronic components, electronic assemblies and computer systems.
  • the accompanying high power density results in the generation of a continuously increasing amount of waste heat, which must be removed in order to ensure that the entertainment electronics can operate over a long period of time.
  • cooling systems for the entertainment electronics of an aircraft which draw in air from a bilge region or a cargo region in order to cool an entertainment system of the aircraft.
  • these non-air-conditioned regions have the disadvantage of depending on the ambient air temperature.
  • the temperature of the air in the bilge region and in the cargo compartment can rise significantly when the aircraft is on the ground.
  • Components of the aircraft electronic system may be damaged on account of a high operating temperature.
  • a multistage cooling system for an aircraft electronic system comprises at least one electronic component which delivers heat.
  • the aircraft electronic system also comprises a closed circuit which is thermally coupled to the electronic component and in which an internal coolant circulates in order to carry heat from the at least one electronic component to a heat exchanger.
  • the heat exchanger is adapted to deliver the heat with which it is supplied by the internal coolant to an external coolant which flows and/or circulates from a source outside of the aircraft electronic system through the heat exchanger to a sink outside of the aircraft electronic system.
  • the closed circuit of the aircraft electronic system is configured so that the internal coolant flows from the heat exchanger in the direction of the at least one electronic component.
  • the at least one component of the aircraft electronic system is therefore cooled by a multistage cooling system, wherein the heat exchanger can be associated with precisely one aircraft electronic system.
  • the multistage feature results from the use of a plurality of cooling circuits.
  • the aircraft electronic system can be disposed in an electronics cabinet, a so-called rack.
  • the aircraft electronic system can be located in a closed container.
  • the heat exchanger can be disposed inside or outside of the container for the aircraft electronic system.
  • the internal coolant is cooled in the heat exchanger by the external coolant which flows through the latter.
  • the internal coolant is therefore actively cooled.
  • the closed circuit of the internal coolant can represent an internal cooling circuit.
  • the internal cooling circuit can comprise the heat exchanger as the only heat sink. Therefore the internal coolant does not pass through an evaporator of a refrigerating machine or similar.
  • the external coolant can circulate in a closed circuit which can form an external cooling circuit.
  • the external coolant can be actively cooled.
  • a pump or a cooling system for the external coolant can be considered both as a source and as a sink.
  • the internal coolant can be at a temperature which is different to that of the external coolant.
  • the aircraft electronic system can as a result always be kept within a suitable temperature range, irrespective of the temperature of the external coolant. Moreover, high temperature gradients within the aircraft electronic system on account of a possibly very cold external coolant are prevented.
  • the closed circuit can be thermally coupled to a plurality of electronic components, so that the internal coolant can cool a plurality of electronic components.
  • the internal coolant can be gaseous.
  • the internal coolant can circulate on the basis of natural convection or on the basis of forced convection.
  • the forced convection can be produced by a fan, for example. If the internal coolant is gaseous, no smoke can enter the cabin in the event of the aircraft electronic system malfunctioning, as the gaseous internal coolant circulates in a closed circuit and the aircraft electronic system is located in a closed container.
  • the gaseous internal coolant circulates in a closed circuit, the formation of condensation water at the electronic components and/or inside the aircraft electronic system is prevented.
  • the gaseous internal coolant preferably has a low air humidity.
  • the internal coolant can be liquid and circulate on the basis of natural convection or on the basis of forced convection.
  • the forced convection can be guaranteed by a pump.
  • the liquid coolant can flow around individual components, through the printed circuit boards of electronic assemblies, and/or coolant can flow completely or partly through the container, so that coolant flows around the electronic components. It is in addition possible to dispose electronic assemblies on bodies through which liquid flows. The advantage of this lies in the fact that the circuit of the internal coolant does not have to be opened when an electronic assembly is to be replaced. Further possibilities for cooling electronic assemblies which can be employed in the present invention are described in DE 10 2006 041 788.7 or the corresponding international application, the content of which is hereby included by reference. The applicant expressly reserves the right to direct an application for protection on a combination of the content of this application and the content of DE 10 2006 041 788.7.
  • the internal coolant can always be in the gaseous or in the liquid state when flowing through the cooling circuit. However the internal coolant can also change its state from gaseous to liquid and vice versa when flowing through the cooling circuit.
  • the circuit of the internal coolant is connectable to a feed line via which a further coolant can be supplied from outside into the closed circuit in order to cool the at least one electronic component.
  • the circuit of the internal coolant is adapted to be opened in order to enable a coolant which is supplied from outside to cool the at least one electronic component.
  • Valves can be provided in order to open the circuit of the internal coolant. Should the fan or the pump of the circuit of the internal coolant fail, no forced convection takes place in the aircraft electronic system. This can lead to failure of the aircraft electronic system. In this case the previously described valves can be opened, so that the external coolant, as further coolant, cools the components. A further coolant supplied from outside can be used if the external coolant or the heat exchanger fails.
  • the external coolant can circulate in a circuit which is connected to a liquid cooling system in order to cool the external coolant.
  • the external coolant can be liquid.
  • a liquid external coolant has the advantage that only a relatively small cross section is required for the lines of the external coolant, as a liquid coolant can remove substantially more heat than a gaseous coolant.
  • a central liquid cooling system or a plurality of decentralised liquid cooling systems can be provided in the aircraft.
  • the internal coolant can be gaseous or liquid, in which case a liquid coolant is preferred, so that, in the event of a failure, the external coolant can be used to cool the at least one component.
  • the internal coolant can be at a higher temperature than the external coolant, so that the components of the aircraft electronic system are within a suitable temperature range and high temperature gradients within the aircraft electronic system are prevented.
  • the air-conditioning system of an aircraft could have smaller dimensions if using a liquid cooling system.
  • the external coolant can always be in the gaseous or in the liquid state when flowing through the cooling circuit. However the external coolant can also change its state from gaseous to liquid and vice versa when flowing through the cooling circuit.
  • the liquid external coolant and/or the liquid internal coolant can be replaced during operation by water from a water system, for example the fresh water system, of the aircraft.
  • a water system for example the fresh water system
  • the closed circuit in which the internal coolant circulates and/or the circuit in which the liquid external coolant circulates is connectable to a water system of the aircraft. It is as a result possible to compensate for leakages also during flight, and the electronic devices of the aircraft and, in particular, the aircraft electronic system, can continue to be operated.
  • Additives can be admixed with the water which replaces the internal and/or external coolant.
  • the external coolant can be cooled with an adsorption cooling system.
  • the heat exchanger through which the external coolant flows is preferably connected to the adsorption cooling system.
  • a plurality of decentralised adsorption cooling systems can be provided in the aircraft.
  • An adsorption cooling system described therein can be used in the present invention. The applicant expressly reserves the right to direct an application for protection on any desired combination of the content of this application and the content of DE 10 2006 054 560.5.
  • the external coolant can be fresh water.
  • the fresh water can flow from a fresh water tank to a waste water tank.
  • the fresh water can also flow from a fresh water tank to a tank for heated fresh water.
  • the fresh water can be used as coolant in particular, in an emergency if the liquid cooling system or the adsorption cooling system for the external coolant has failed.
  • the fresh water can be cooled by another cooling system after flowing through the heat exchanger and returned to the fresh water tank again. Additives for improving the cooling properties can be added to the fresh water which is used as coolant.
  • valves can also be opened in an emergency, so that the fresh water cools the components and/or assemblies of the aircraft electronic system directly, provided that the liquid in question is not conductive or the internal circuit is equipped with a plate-shaped heat exchanger on which the assemblies are mounted.
  • the external coolant can be gaseous. Air can be used as the external coolant, for example. If the external coolant is gaseous, it is preferable for the internal coolant likewise to be gaseous. Should the forced convection of the internal coolant fail, in this case the previously described valves can be opened, so that the external coolant cools the at least one electronic component.
  • the internal coolant can be at a temperature which is different to that of the external coolant.
  • the internal coolant can be at a higher temperature than the external coolant, so that the electronic components of the aircraft electronic system are within the optimum temperature range and no excessively high temperature gradients occur within the aircraft electronic system.
  • the external coolant can be at a higher pressure than the environment.
  • the invention also relates to an aircraft electronic system with at least one electronic component which delivers heat and a closed circuit which is thermally coupled to the electronic component and in which an internal coolant circulates in order to carry heat from the at least one electronic component to a Peltier element.
  • the closed circuit of the aircraft electronic system is configured so that the internal coolant flows from the Peltier element in the direction of the at least one electronic component.
  • the Peltier element forms the heat exchanger.
  • the Peltier element is connected to the electrical power supply of the aircraft, so that cold can be generated on the basis of a flow of current.
  • the invention further relates to an aircraft electronic system with at least one electronic component which delivers heat and a closed circuit which is thermally coupled to the electronic component and in which an internal coolant circulates in order to carry heat from the at least one electronic component to a heat exchanger of a refrigerating machine with a compressor, a condenser and an evaporator.
  • the closed circuit of the aircraft electronic system is configured so that the internal coolant flows from the heat exchanger of the refrigerating machine in the direction of the at least one electronic component.
  • the external coolant therefore changes its state from gaseous to liquid and vice versa.
  • the heat exchanger can be the evaporator.
  • the refrigerating machine can be associated with one or a plurality of aircraft electronic system(s).
  • the applicants expressly reserves the right to direct an application for protection on any cooled aircraft electronic system which is described in the following.
  • the applicant also reserves the right to direct an application for protection on a combination of the aircraft electronic systems which are described in the following or the cooling thereof.
  • FIG. 1 shows an electronic aircraft entertainment system which is cooled with an actively cooled airstream
  • FIG. 2 shows an embodiment of the invention in which the electronic aircraft entertainment system comprises a closed internal coolant circuit which contains air;
  • FIG. 3 shows an embodiment of the invention in which the closed circuit of the internal coolant can be opened in order that the electronic aircraft entertainment system can be cooled with a coolant which is supplied from outside;
  • FIG. 4 shows an embodiment of the invention in which the internal coolant is liquid and assemblies of the electronic aircraft entertainment system are disposed on plate-shaped heat exchangers;
  • FIG. 5 shows an embodiment of the invention with a heat exchanger wherein the internal coolant is liquid
  • FIG. 6 shows an embodiment of the invention in which the external coolant is cooled by a liquid cooling system
  • FIG. 7 shows an embodiment of the invention in which the external coolant is cooled by an adsorption cooling system
  • FIG. 8 shows an embodiment of the invention in which the external coolant is fresh water
  • FIG. 9 shows an embodiment of the invention in which the external coolant can be replenished with water during operation
  • FIG. 10 shows an embodiment of the invention in which the internal coolant can be replenished with water
  • FIG. 11 shows an embodiment of the invention in which a Peltier element replaces the heat exchanger
  • FIG. 12 shows an embodiment in which the internal coolant is cooled with a refrigerating machine.
  • FIG. 1 shows an electronic aircraft entertainment system 2 (IFE: In flight Entertainment System) which is cooled by an airstream 8 , 10 , 12 .
  • a fan 16 draws in air 8 from the environment and supplies it to a heat exchanger 6 .
  • the air 8 which is drawn in is the internal coolant.
  • the heat exchanger 6 is connected to a cooling system via a connection 4 .
  • An external coolant which can be gaseous or liquid, is supplied to the heat exchanger 6 via the connection 4 .
  • the air 8 which is supplied to the heat exchanger 6 by the fan 16 is delivered as cooled air 10 and flows into the electronic aircraft entertainment system 2 .
  • As it cools the electronic components of the aircraft entertainment system the air warms up and leaves the aircraft entertainment system 2 as relatively warm outlet air 12 .
  • the temperature of the air 10 leaving the heat exchanger 6 is lower than the temperature of the air 8 which is drawn in as well as the temperature of the outlet air 12 leaving the aircraft entertainment system 2 .
  • FIG. 2 shows an embodiment of the invention in which an internal coolant 14 circulates in a closed circuit.
  • the internal coolant 14 is air, although any other desired gaseous coolant can be used.
  • the fan 14 provides forced convection.
  • the heat exchanger 6 cools the internal coolant before it enters the electronic aircraft entertainment system 2 .
  • the electronic aircraft entertainment system 2 comprises a closed container or a closed housing in order to minimise the loss of internal coolant 14 . It is possible to pressurise the internal coolant 14 to a pressure which is higher than ambient pressure.
  • the heat exchanger 6 is connected via a connection 4 to a cooling system which supplies an external coolant.
  • the external coolant can be gaseous or liquid.
  • the temperature of the internal coolant 14 can be in a range which is different to that of the external coolant.
  • the components of the aircraft electronic system 2 can as a result be kept within a suitable temperature range, irrespective of the temperature of the external coolant.
  • the internal coolant 14 preferably has a low moisture content.
  • This embodiment of the invention has the advantage of preventing condensation water from precipitating.
  • This embodiment of the invention also has the advantage of no dirt being brought into the electronic aircraft entertainment system 2 by the internal coolant 14 , as the internal coolant 14 circulates in a closed circuit. If smoke is produced on account of the electronic aircraft entertainment system 2 malfunctioning, this cannot enter the cabin, as the smoke remains in the closed circuit of the internal coolant. The passengers of the aircraft are consequently not alarmed by the possible development of smoke.
  • FIG. 3 shows an embodiment of the invention in which the circuit of the internal coolant can be opened. If the fan 16 , the flow of the external coolant or the cooling of the external coolant fails, so that there is no cooled external coolant at the connection 4 of the heat exchanger 6 , valves 5 a and 5 b are switched so that a further coolant stream with a coolant 14 a, 14 b supplied from outside flows through the electronic aircraft entertainment system 2 .
  • the internal coolant is gaseous and the coolant which is supplied from outside must consequently also be gaseous. It is also possible to dispose the valves 5 a and 5 b so that the external coolant flows through the electronic aircraft entertainment system 2 . However this arrangement has no redundancy in the case of a failure where the flow of the external coolant or the cooling of the external coolant fails.
  • the heat exchanger 6 can be formed integrally as a unit. This unit can be disposed in the aircraft entertainment system 2 .
  • FIG. 4 shows a liquid-cooled electronic aircraft entertainment system 2 .
  • Liquid coolant is supplied to the aircraft entertainment system 2 via a connection 4 and a line 18 .
  • a plurality of electronic assemblies 24 are disposed on a plate-shaped heat exchanger 26 through which cooling liquid flows.
  • a liquid coolant can remove a substantially greater quantity of heat from the aircraft entertainment system 2 , so that the lines 18 can have a smaller cross section. If the electronic aircraft entertainment system 2 is cooled with a liquid coolant, any desired cooling arrangement which is described in DE 10 2006 041 788.7 can be used.
  • FIG. 5 shows a further embodiment of a liquid-cooled electronic aircraft entertainment system.
  • This embodiment comprises, in addition to the embodiment of FIG. 4 , a heat exchanger 6 which delivers the heat of the internal coolant to the external coolant.
  • the external coolant flows through a connection 4 into the heat exchanger 6 .
  • the external coolant can be liquid or gaseous.
  • the internal coolant can be within a temperature range which is different to that of the external coolant, thereby ensuring that the electronic components of the aircraft entertainment system 2 are always within an optimum temperature range and high temperature gradients in the aircraft entertainment system are prevented.
  • a pump which is responsible for forced convection can be provided in the circuit of the internal coolant. Any desired arrangement which is described in DE 10 2006 041 788.7 can also be used to cool the electronic components or assemblies of the aircraft entertainment system 2 in this embodiment.
  • the pump, the heat exchanger 6 and the connection 4 can be formed integrally as a unit. This unit can be disposed in the aircraft entertainment system 2 .
  • the cooling of an aircraft entertainment system 2 with a closed circuit of the internal coolant can be tested independently of the cooling system of the aircraft. Moreover, no dirt can be transferred between the external and the internal coolant.
  • This aircraft entertainment system 2 with the heat exchanger 6 and the connection 4 can also be replaced particularly easily.
  • FIG. 6 shows an embodiment of the invention in which the external coolant is constantly in the liquid state.
  • the external coolant circulates in a closed circuit 22 .
  • a liquid cooling system 20 cools the external coolant.
  • the external coolant absorbs the heat which is generated by the aircraft entertainment system 2 via a heat exchanger 6 .
  • a liquid cooling system 20 the mass of the aircraft increases to a lesser extent when compared with a conventional cooling system which supplies cold air to the aircraft entertainment system 2 which is to be cooled or the heat exchanger 6 .
  • the external coolant is liquid
  • pipelines having a smaller cross section can be used, as distinctly larger quantities of heat can be transported away with a liquid coolant than with a gaseous coolant. The space required for cooling is as a result also reduced.
  • the coolant lines of a liquid-based cooling system can be installed in the aircraft with greater flexibility, i.e. with fewer restrictions, and also supply with a high cooling capacity locations which could not be supplied with such a high cooling capacity by a conventional cooling system.
  • the external coolant is liquid
  • the previously described improvement in efficiency results in a lower power consumption for cooling the aircraft entertainment system and therefore the entire aircraft.
  • the external coolant can be gaseous or liquid.
  • the electronic aircraft entertainment system 2 and the circuit with the internal coolant can be formed as described on connection with FIGS. 1 to 3 , with the closed cooling circuit according to FIGS. 2 and 3 being preferred. If a liquid internal coolant is used, the electronic aircraft entertainment system 2 and the circuit with the internal coolant can be formed as described in connection with FIGS. 4 to 5 .
  • the liquid cooling system can be a central or decentralised liquid cooling system.
  • FIG. 7 shows an embodiment in which the external coolant 6 is cooled by an adsorption cooling system.
  • the external coolant flows through the heat exchanger 6 in order to absorb from the internal coolant the heat which is generated by the aircraft entertainment system 2 .
  • the internal coolant can be gaseous or liquid, the internal coolant can flow in a closed circuit and/or the aircraft entertainment system 2 can be cooled as was described with regard to FIGS. 1 to 5 .
  • An adsorption cooling system 28 can be used as a local cooling system which is independent during flight. However it is also possible for a central adsorption cooling system to be provided.
  • FIG. 8 shows an embodiment in which the external coolant is fresh water.
  • the external coolant flows from a fresh water container 30 via a heat exchanger 6 to a waste water container 32 .
  • the external coolant absorbs the heat of the internal coolant which is generated by the electronic aircraft entertainment system 2 .
  • the electronic aircraft entertainment system 2 can be formed and cooled as was described with regard to FIGS. 1 to 5 . After the water has flowed through the heat exchanger 6 , the water can also flow into a hot water container. This type of cooling can be provided as emergency cooling, for example.
  • the fresh water can also be used to directly cool the electronic components or assemblies of the aircraft entertainment system 2 by opening the circuit of the internal coolant through valves, for example.
  • FIG. 9 shows a further embodiment of the invention in which a liquid external coolant flows through a cooling circuit 34 with the heat exchanger 6 and the liquid cooling system 20 .
  • a liquid external coolant flows through a cooling circuit 34 with the heat exchanger 6 and the liquid cooling system 20 .
  • water can be supplied as external coolant from the water system 38 of the aircraft via a valve 36 , so that substantially the original quantity of liquid external coolant can be re-established.
  • the valve 36 can be actuated automatically, even during flight.
  • FIG. 10 shows a further embodiment of the invention in which a liquid internal coolant flows through the heat exchanger 6 and the plate-shaped heat exchanger 26 to cool the electronic assembles 24 of an electronic aircraft entertainment system 2 .
  • the valve 36 can be opened in order to remove water from the water system 38 of the aircraft to replenish the internal coolant.
  • the valve 36 can be actuated automatically, even during flight.
  • FIG. 11 shows a further embodiment of the invention in which a Peltier element 40 replaces the heat exchanger.
  • a temperature difference is produced through applying an electrical voltage and the associated flow of current. This temperature difference can be used to cool a medium.
  • the Peltier element 40 cools the internal coolant, which was heated upon cooling the electronic aircraft entertainment system 2 .
  • the electronic aircraft electronic system 2 and the cooling thereof can be formed as was described with regard to FIGS. 1 to 5 .
  • a Peltier element or a plurality of Peltier elements can be disposed in the circuit of the internal coolant.
  • the other side of the Peltier element can be disposed outside of the circuit of the internal coolant and deliver the heat to the environment or a coolant by means of a cooling body.
  • a Peltier element can also supply a liquid internal coolant with cold and a Peltier element can consequently also be used in conjunction with the embodiments which are depicted in FIGS. 4 and 5 .
  • FIG. 12 is an embodiment in which the internal coolant for cooling the electronic aircraft entertainment system 2 is cooled by a refrigerating machine 42 , a so-called air chiller.
  • the refrigerating machine 42 comprises a compressor, a condenser and an evaporator.
  • the refrigerating machine can, for example, be formed as a local, decentralised refrigerating machine.
  • the external coolant changes its state from gaseous to liquid and vice versa in a closed circuit.
  • the electronic aircraft entertainment system 2 can in this respect be composed and cooled as was described in connection with FIGS. 1 to 3 if the internal coolant is gaseous. If the internal coolant is liquid, the aircraft entertainment system 2 can be composed and cooled as was described in connection with FIGS. 4 and 5 .
  • One advantage of the present invention is that, on account of the closed circuit of the internal coolant, no dirt can enter the aircraft electronic system.
  • the internal coolant As a result of separating the external coolant from the internal coolant by means of the heat exchanger 6 , which is responsible for a heat transfer between the external and the internal coolant, it is possible for the internal coolant to have a temperature range which is optimum for the electronic components and assemblies. High temperature gradients in the aircraft electronic system can as a result also be prevented. Moreover, the precipitation of condensation water is prevented due to the closed circuit of the internal coolant.
  • the cooling of the aircraft electronic system is independent of the air-conditioning system of the aircraft. The described type of cooling of the aircraft electronic system produces less noise than conventional electronic cooling systems.
  • the comfort of an air passenger is not reduced. If the external coolant is liquid, the previously described improvement in efficiency results in a lower power consumption for cooling the aircraft electronic system and therefore the entire aircraft.
  • the air-conditioning system which is used for the air conditioning of the cabin can therefore be of a smaller design, which entails an additional weight saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The invention discloses the multistage cooling of an aircraft electronic system (2) with at least one electronic component which delivers heat. The multistage feature results from the use of a plurality of circuits for transferring the waste heat. An internal coolant (14) circulating in a closed circuit which is thermally coupled to the electronic component carries heat from the at least one electronic component to a heat exchanger (6) which delivers the heat to an external coolant which flows and/or circulates from a source outside of the aircraft electronic system (2) through the heat exchanger (6) to a sink outside of the aircraft electronic system (2). The internal coolant flows from the heat exchanger (6) in the direction of the at least one electronic component and/or circulates in a closed circuit.

Description

  • The invention relates to multistage cooling of electronic components and electronic assemblies, in particular of an electronic entertainment system, in an aircraft.
  • Electronic entertainment systems are an essential part of the comfort provided for an air passenger in modern passenger aircraft. The requirements to be met by the entertainment electronics depend on increasingly more efficient electronic components, electronic assemblies and computer systems. The accompanying high power density results in the generation of a continuously increasing amount of waste heat, which must be removed in order to ensure that the entertainment electronics can operate over a long period of time.
  • Modern electronic systems and, in particular, entertainment systems of an aircraft require such large quantities of air for cooling them that these cannot always be removed from the surrounding air-conditioned passenger cabin. In order to cool electronic aircraft entertainment systems, long air ducts, for example, are used in the prior art in order to supply an appropriate quantity of cold air to the aircraft electronic system and to remove heated air from the latter. These long air ducts are difficult to install in an aircraft, as they must have special minimum bend radii and, on account of their relatively large cross section, take up space which could be used for other aircraft components.
  • Also known are cooling systems for the entertainment electronics of an aircraft which draw in air from a bilge region or a cargo region in order to cool an entertainment system of the aircraft. However these non-air-conditioned regions have the disadvantage of depending on the ambient air temperature. The temperature of the air in the bilge region and in the cargo compartment can rise significantly when the aircraft is on the ground.
  • Components of the aircraft electronic system may be damaged on account of a high operating temperature.
  • It is an object of the invention to provide an aircraft electronic system with efficient cooling.
  • A multistage cooling system for an aircraft electronic system, in particular an electronic aircraft entertainment system, comprises at least one electronic component which delivers heat. The aircraft electronic system also comprises a closed circuit which is thermally coupled to the electronic component and in which an internal coolant circulates in order to carry heat from the at least one electronic component to a heat exchanger. The heat exchanger is adapted to deliver the heat with which it is supplied by the internal coolant to an external coolant which flows and/or circulates from a source outside of the aircraft electronic system through the heat exchanger to a sink outside of the aircraft electronic system. The closed circuit of the aircraft electronic system is configured so that the internal coolant flows from the heat exchanger in the direction of the at least one electronic component. The at least one component of the aircraft electronic system is therefore cooled by a multistage cooling system, wherein the heat exchanger can be associated with precisely one aircraft electronic system. The multistage feature results from the use of a plurality of cooling circuits.
  • Generally speaking, it was initially to be expected that the use of a multistage cooling system to cool an aircraft electronic system would lead to a weight increase of particular disadvantage in aircraft construction. However it surprisingly became apparent that, depending on the aircraft size and the number of installed aircraft electronic systems, it is even possible to achieve a weight reduction, as the long air ducts initially mentioned are omitted. The closed internal circuit in particular contributes to efficient cooling, which enables the refrigerating devices of the aircraft to be of a smaller design.
  • As the internal coolant circulates in a closed circuit, no dirt is brought into the aircraft electronic system by the coolant. This increases the functional reliability of the electronic aircraft electronic system. Should the aircraft electronic system malfunction, contamination of the external coolant is prevented. The fail safety of other aircraft components which are cooled with the external coolant is as a result increased. Moreover, the thermal behaviour of the aircraft electronic system and the cooling thereof can be tested independently of other cooling devices of the aircraft.
  • The aircraft electronic system can be disposed in an electronics cabinet, a so-called rack. The aircraft electronic system can be located in a closed container. The heat exchanger can be disposed inside or outside of the container for the aircraft electronic system.
  • The internal coolant is cooled in the heat exchanger by the external coolant which flows through the latter. The internal coolant is therefore actively cooled. The closed circuit of the internal coolant can represent an internal cooling circuit. The internal cooling circuit can comprise the heat exchanger as the only heat sink. Therefore the internal coolant does not pass through an evaporator of a refrigerating machine or similar. The external coolant can circulate in a closed circuit which can form an external cooling circuit. The external coolant can be actively cooled. In the case of a closed external cooling circuit a pump or a cooling system for the external coolant can be considered both as a source and as a sink.
  • The internal coolant can be at a temperature which is different to that of the external coolant. The aircraft electronic system can as a result always be kept within a suitable temperature range, irrespective of the temperature of the external coolant. Moreover, high temperature gradients within the aircraft electronic system on account of a possibly very cold external coolant are prevented.
  • The closed circuit can be thermally coupled to a plurality of electronic components, so that the internal coolant can cool a plurality of electronic components.
  • The internal coolant can be gaseous. The internal coolant can circulate on the basis of natural convection or on the basis of forced convection. The forced convection can be produced by a fan, for example. If the internal coolant is gaseous, no smoke can enter the cabin in the event of the aircraft electronic system malfunctioning, as the gaseous internal coolant circulates in a closed circuit and the aircraft electronic system is located in a closed container.
  • As the gaseous internal coolant circulates in a closed circuit, the formation of condensation water at the electronic components and/or inside the aircraft electronic system is prevented. The gaseous internal coolant preferably has a low air humidity.
  • The internal coolant can be liquid and circulate on the basis of natural convection or on the basis of forced convection. The forced convection can be guaranteed by a pump. The liquid coolant can flow around individual components, through the printed circuit boards of electronic assemblies, and/or coolant can flow completely or partly through the container, so that coolant flows around the electronic components. It is in addition possible to dispose electronic assemblies on bodies through which liquid flows. The advantage of this lies in the fact that the circuit of the internal coolant does not have to be opened when an electronic assembly is to be replaced. Further possibilities for cooling electronic assemblies which can be employed in the present invention are described in DE 10 2006 041 788.7 or the corresponding international application, the content of which is hereby included by reference. The applicant expressly reserves the right to direct an application for protection on a combination of the content of this application and the content of DE 10 2006 041 788.7.
  • The internal coolant can always be in the gaseous or in the liquid state when flowing through the cooling circuit. However the internal coolant can also change its state from gaseous to liquid and vice versa when flowing through the cooling circuit.
  • Preferably, the circuit of the internal coolant is connectable to a feed line via which a further coolant can be supplied from outside into the closed circuit in order to cool the at least one electronic component. In other words, the circuit of the internal coolant is adapted to be opened in order to enable a coolant which is supplied from outside to cool the at least one electronic component. Valves can be provided in order to open the circuit of the internal coolant. Should the fan or the pump of the circuit of the internal coolant fail, no forced convection takes place in the aircraft electronic system. This can lead to failure of the aircraft electronic system. In this case the previously described valves can be opened, so that the external coolant, as further coolant, cools the components. A further coolant supplied from outside can be used if the external coolant or the heat exchanger fails.
  • The external coolant can circulate in a circuit which is connected to a liquid cooling system in order to cool the external coolant. In this case the external coolant can be liquid. A liquid external coolant has the advantage that only a relatively small cross section is required for the lines of the external coolant, as a liquid coolant can remove substantially more heat than a gaseous coolant. A central liquid cooling system or a plurality of decentralised liquid cooling systems can be provided in the aircraft.
  • If the external coolant is liquid, the internal coolant can be gaseous or liquid, in which case a liquid coolant is preferred, so that, in the event of a failure, the external coolant can be used to cool the at least one component. As previously mentioned, the internal coolant can be at a higher temperature than the external coolant, so that the components of the aircraft electronic system are within a suitable temperature range and high temperature gradients within the aircraft electronic system are prevented. The air-conditioning system of an aircraft could have smaller dimensions if using a liquid cooling system.
  • The external coolant can always be in the gaseous or in the liquid state when flowing through the cooling circuit. However the external coolant can also change its state from gaseous to liquid and vice versa when flowing through the cooling circuit.
  • The liquid external coolant and/or the liquid internal coolant can be replaced during operation by water from a water system, for example the fresh water system, of the aircraft. For this purpose the closed circuit in which the internal coolant circulates and/or the circuit in which the liquid external coolant circulates is connectable to a water system of the aircraft. It is as a result possible to compensate for leakages also during flight, and the electronic devices of the aircraft and, in particular, the aircraft electronic system, can continue to be operated. Additives can be admixed with the water which replaces the internal and/or external coolant.
  • The external coolant can be cooled with an adsorption cooling system. For this purpose the heat exchanger through which the external coolant flows is preferably connected to the adsorption cooling system. A plurality of decentralised adsorption cooling systems can be provided in the aircraft. DE 10 2006 054 560.5 or the corresponding international application, the content of which is hereby included by reference, discloses an adsorption cooling system for an aircraft. An adsorption cooling system described therein can be used in the present invention. The applicant expressly reserves the right to direct an application for protection on any desired combination of the content of this application and the content of DE 10 2006 054 560.5.
  • The external coolant can be fresh water. The fresh water can flow from a fresh water tank to a waste water tank. The fresh water can also flow from a fresh water tank to a tank for heated fresh water. The fresh water can be used as coolant in particular, in an emergency if the liquid cooling system or the adsorption cooling system for the external coolant has failed. The fresh water can be cooled by another cooling system after flowing through the heat exchanger and returned to the fresh water tank again. Additives for improving the cooling properties can be added to the fresh water which is used as coolant. The above-mentioned valves can also be opened in an emergency, so that the fresh water cools the components and/or assemblies of the aircraft electronic system directly, provided that the liquid in question is not conductive or the internal circuit is equipped with a plate-shaped heat exchanger on which the assemblies are mounted.
  • The external coolant can be gaseous. Air can be used as the external coolant, for example. If the external coolant is gaseous, it is preferable for the internal coolant likewise to be gaseous. Should the forced convection of the internal coolant fail, in this case the previously described valves can be opened, so that the external coolant cools the at least one electronic component. The internal coolant can be at a temperature which is different to that of the external coolant. The internal coolant can be at a higher temperature than the external coolant, so that the electronic components of the aircraft electronic system are within the optimum temperature range and no excessively high temperature gradients occur within the aircraft electronic system. The external coolant can be at a higher pressure than the environment.
  • The invention also relates to an aircraft electronic system with at least one electronic component which delivers heat and a closed circuit which is thermally coupled to the electronic component and in which an internal coolant circulates in order to carry heat from the at least one electronic component to a Peltier element. The closed circuit of the aircraft electronic system is configured so that the internal coolant flows from the Peltier element in the direction of the at least one electronic component. In this aircraft electronic system the Peltier element forms the heat exchanger. The Peltier element is connected to the electrical power supply of the aircraft, so that cold can be generated on the basis of a flow of current.
  • The invention further relates to an aircraft electronic system with at least one electronic component which delivers heat and a closed circuit which is thermally coupled to the electronic component and in which an internal coolant circulates in order to carry heat from the at least one electronic component to a heat exchanger of a refrigerating machine with a compressor, a condenser and an evaporator. The closed circuit of the aircraft electronic system is configured so that the internal coolant flows from the heat exchanger of the refrigerating machine in the direction of the at least one electronic component. The external coolant therefore changes its state from gaseous to liquid and vice versa. The heat exchanger can be the evaporator. The refrigerating machine can be associated with one or a plurality of aircraft electronic system(s).
  • Embodiments of the invention and cooled aircraft electronic systems are illustrated by way of example in the following with reference to the accompanying drawings.
  • The applicants expressly reserves the right to direct an application for protection on any cooled aircraft electronic system which is described in the following. The applicant also reserves the right to direct an application for protection on a combination of the aircraft electronic systems which are described in the following or the cooling thereof.
  • In the drawings:
  • FIG. 1 shows an electronic aircraft entertainment system which is cooled with an actively cooled airstream;
  • FIG. 2 shows an embodiment of the invention in which the electronic aircraft entertainment system comprises a closed internal coolant circuit which contains air;
  • FIG. 3 shows an embodiment of the invention in which the closed circuit of the internal coolant can be opened in order that the electronic aircraft entertainment system can be cooled with a coolant which is supplied from outside;
  • FIG. 4 shows an embodiment of the invention in which the internal coolant is liquid and assemblies of the electronic aircraft entertainment system are disposed on plate-shaped heat exchangers;
  • FIG. 5 shows an embodiment of the invention with a heat exchanger wherein the internal coolant is liquid;
  • FIG. 6 shows an embodiment of the invention in which the external coolant is cooled by a liquid cooling system;
  • FIG. 7 shows an embodiment of the invention in which the external coolant is cooled by an adsorption cooling system;
  • FIG. 8 shows an embodiment of the invention in which the external coolant is fresh water;
  • FIG. 9 shows an embodiment of the invention in which the external coolant can be replenished with water during operation;
  • FIG. 10 shows an embodiment of the invention in which the internal coolant can be replenished with water;
  • FIG. 11 shows an embodiment of the invention in which a Peltier element replaces the heat exchanger; and
  • FIG. 12 shows an embodiment in which the internal coolant is cooled with a refrigerating machine.
  • The cooling of an aircraft electronic system is now described in greater detail using the example of an electronic aircraft entertainment system. It is understood that the teaching described in the following can be employed in any aircraft electronic system.
  • FIG. 1 shows an electronic aircraft entertainment system 2 (IFE: In flight Entertainment System) which is cooled by an airstream 8, 10, 12. A fan 16 draws in air 8 from the environment and supplies it to a heat exchanger 6. The air 8 which is drawn in is the internal coolant. The heat exchanger 6 is connected to a cooling system via a connection 4. An external coolant, which can be gaseous or liquid, is supplied to the heat exchanger 6 via the connection 4. The air 8 which is supplied to the heat exchanger 6 by the fan 16 is delivered as cooled air 10 and flows into the electronic aircraft entertainment system 2. As it cools the electronic components of the aircraft entertainment system the air warms up and leaves the aircraft entertainment system 2 as relatively warm outlet air 12. The temperature of the air 10 leaving the heat exchanger 6 is lower than the temperature of the air 8 which is drawn in as well as the temperature of the outlet air 12 leaving the aircraft entertainment system 2.
  • FIG. 2 shows an embodiment of the invention in which an internal coolant 14 circulates in a closed circuit. The internal coolant 14 is air, although any other desired gaseous coolant can be used. The fan 14 provides forced convection. The heat exchanger 6 cools the internal coolant before it enters the electronic aircraft entertainment system 2.
  • The electronic aircraft entertainment system 2 comprises a closed container or a closed housing in order to minimise the loss of internal coolant 14. It is possible to pressurise the internal coolant 14 to a pressure which is higher than ambient pressure. The heat exchanger 6 is connected via a connection 4 to a cooling system which supplies an external coolant. The external coolant can be gaseous or liquid.
  • The temperature of the internal coolant 14 can be in a range which is different to that of the external coolant. The components of the aircraft electronic system 2 can as a result be kept within a suitable temperature range, irrespective of the temperature of the external coolant. The internal coolant 14 preferably has a low moisture content.
  • This embodiment of the invention has the advantage of preventing condensation water from precipitating. This embodiment of the invention also has the advantage of no dirt being brought into the electronic aircraft entertainment system 2 by the internal coolant 14, as the internal coolant 14 circulates in a closed circuit. If smoke is produced on account of the electronic aircraft entertainment system 2 malfunctioning, this cannot enter the cabin, as the smoke remains in the closed circuit of the internal coolant. The passengers of the aircraft are consequently not alarmed by the possible development of smoke.
  • FIG. 3 shows an embodiment of the invention in which the circuit of the internal coolant can be opened. If the fan 16, the flow of the external coolant or the cooling of the external coolant fails, so that there is no cooled external coolant at the connection 4 of the heat exchanger 6, valves 5 a and 5 b are switched so that a further coolant stream with a coolant 14 a, 14 b supplied from outside flows through the electronic aircraft entertainment system 2. In the embodiment which is shown in FIG. 3 the internal coolant is gaseous and the coolant which is supplied from outside must consequently also be gaseous. It is also possible to dispose the valves 5 a and 5 b so that the external coolant flows through the electronic aircraft entertainment system 2. However this arrangement has no redundancy in the case of a failure where the flow of the external coolant or the cooling of the external coolant fails.
  • If the internal coolant is gaseous, the previously described fan, the heat exchanger 6 and the connection 4, described previously in connection with FIGS. 1 to 3, of the heat exchanger 6 can be formed integrally as a unit. This unit can be disposed in the aircraft entertainment system 2.
  • FIG. 4 shows a liquid-cooled electronic aircraft entertainment system 2. Liquid coolant is supplied to the aircraft entertainment system 2 via a connection 4 and a line 18. A plurality of electronic assemblies 24 are disposed on a plate-shaped heat exchanger 26 through which cooling liquid flows. A liquid coolant can remove a substantially greater quantity of heat from the aircraft entertainment system 2, so that the lines 18 can have a smaller cross section. If the electronic aircraft entertainment system 2 is cooled with a liquid coolant, any desired cooling arrangement which is described in DE 10 2006 041 788.7 can be used.
  • FIG. 5 shows a further embodiment of a liquid-cooled electronic aircraft entertainment system. This embodiment comprises, in addition to the embodiment of FIG. 4, a heat exchanger 6 which delivers the heat of the internal coolant to the external coolant. The external coolant flows through a connection 4 into the heat exchanger 6. The external coolant can be liquid or gaseous. On account of the heat exchanger 6, the internal coolant can be within a temperature range which is different to that of the external coolant, thereby ensuring that the electronic components of the aircraft entertainment system 2 are always within an optimum temperature range and high temperature gradients in the aircraft entertainment system are prevented. A pump which is responsible for forced convection can be provided in the circuit of the internal coolant. Any desired arrangement which is described in DE 10 2006 041 788.7 can also be used to cool the electronic components or assemblies of the aircraft entertainment system 2 in this embodiment.
  • The pump, the heat exchanger 6 and the connection 4 can be formed integrally as a unit. This unit can be disposed in the aircraft entertainment system 2.
  • The cooling of an aircraft entertainment system 2 with a closed circuit of the internal coolant can be tested independently of the cooling system of the aircraft. Moreover, no dirt can be transferred between the external and the internal coolant. This aircraft entertainment system 2 with the heat exchanger 6 and the connection 4 can also be replaced particularly easily.
  • FIG. 6 shows an embodiment of the invention in which the external coolant is constantly in the liquid state. The external coolant circulates in a closed circuit 22. A liquid cooling system 20 cools the external coolant. The external coolant absorbs the heat which is generated by the aircraft entertainment system 2 via a heat exchanger 6.
  • If a liquid cooling system 20 is used, the mass of the aircraft increases to a lesser extent when compared with a conventional cooling system which supplies cold air to the aircraft entertainment system 2 which is to be cooled or the heat exchanger 6. If the external coolant is liquid, pipelines having a smaller cross section can be used, as distinctly larger quantities of heat can be transported away with a liquid coolant than with a gaseous coolant. The space required for cooling is as a result also reduced. On account of the smaller cross section of the coolant lines, the coolant lines of a liquid-based cooling system can be installed in the aircraft with greater flexibility, i.e. with fewer restrictions, and also supply with a high cooling capacity locations which could not be supplied with such a high cooling capacity by a conventional cooling system. Furthermore, if the external coolant is liquid, the previously described improvement in efficiency results in a lower power consumption for cooling the aircraft entertainment system and therefore the entire aircraft.
  • In the embodiment which is depicted in FIG. 6 the external coolant can be gaseous or liquid. The electronic aircraft entertainment system 2 and the circuit with the internal coolant can be formed as described on connection with FIGS. 1 to 3, with the closed cooling circuit according to FIGS. 2 and 3 being preferred. If a liquid internal coolant is used, the electronic aircraft entertainment system 2 and the circuit with the internal coolant can be formed as described in connection with FIGS. 4 to 5.
  • The liquid cooling system can be a central or decentralised liquid cooling system.
  • FIG. 7 shows an embodiment in which the external coolant 6 is cooled by an adsorption cooling system. The external coolant flows through the heat exchanger 6 in order to absorb from the internal coolant the heat which is generated by the aircraft entertainment system 2. The internal coolant can be gaseous or liquid, the internal coolant can flow in a closed circuit and/or the aircraft entertainment system 2 can be cooled as was described with regard to FIGS. 1 to 5.
  • An adsorption cooling system 28 can be used as a local cooling system which is independent during flight. However it is also possible for a central adsorption cooling system to be provided.
  • FIG. 8 shows an embodiment in which the external coolant is fresh water. The external coolant flows from a fresh water container 30 via a heat exchanger 6 to a waste water container 32. In the process the external coolant absorbs the heat of the internal coolant which is generated by the electronic aircraft entertainment system 2. The electronic aircraft entertainment system 2 can be formed and cooled as was described with regard to FIGS. 1 to 5. After the water has flowed through the heat exchanger 6, the water can also flow into a hot water container. This type of cooling can be provided as emergency cooling, for example. Referring to FIGS. 4 and 5, the fresh water can also be used to directly cool the electronic components or assemblies of the aircraft entertainment system 2 by opening the circuit of the internal coolant through valves, for example.
  • FIG. 9 shows a further embodiment of the invention in which a liquid external coolant flows through a cooling circuit 34 with the heat exchanger 6 and the liquid cooling system 20. Should there be a leakage in the circuit of the external coolant, water can be supplied as external coolant from the water system 38 of the aircraft via a valve 36, so that substantially the original quantity of liquid external coolant can be re-established. The valve 36 can be actuated automatically, even during flight.
  • FIG. 10 shows a further embodiment of the invention in which a liquid internal coolant flows through the heat exchanger 6 and the plate-shaped heat exchanger 26 to cool the electronic assembles 24 of an electronic aircraft entertainment system 2. Should there be a leakage, the valve 36 can be opened in order to remove water from the water system 38 of the aircraft to replenish the internal coolant. The valve 36 can be actuated automatically, even during flight.
  • FIG. 11 shows a further embodiment of the invention in which a Peltier element 40 replaces the heat exchanger. In the case of a Peltier element 40 a temperature difference is produced through applying an electrical voltage and the associated flow of current. This temperature difference can be used to cool a medium. In the embodiment which is represented in FIG. 11 the Peltier element 40 cools the internal coolant, which was heated upon cooling the electronic aircraft entertainment system 2. The electronic aircraft electronic system 2 and the cooling thereof can be formed as was described with regard to FIGS. 1 to 5.
  • If the internal coolant is gaseous, a Peltier element or a plurality of Peltier elements can be disposed in the circuit of the internal coolant. The other side of the Peltier element can be disposed outside of the circuit of the internal coolant and deliver the heat to the environment or a coolant by means of a cooling body.
  • A Peltier element can also supply a liquid internal coolant with cold and a Peltier element can consequently also be used in conjunction with the embodiments which are depicted in FIGS. 4 and 5.
  • FIG. 12 is an embodiment in which the internal coolant for cooling the electronic aircraft entertainment system 2 is cooled by a refrigerating machine 42, a so-called air chiller. The refrigerating machine 42 comprises a compressor, a condenser and an evaporator. The refrigerating machine can, for example, be formed as a local, decentralised refrigerating machine. The external coolant changes its state from gaseous to liquid and vice versa in a closed circuit.
  • The electronic aircraft entertainment system 2 can in this respect be composed and cooled as was described in connection with FIGS. 1 to 3 if the internal coolant is gaseous. If the internal coolant is liquid, the aircraft entertainment system 2 can be composed and cooled as was described in connection with FIGS. 4 and 5.
  • One advantage of the present invention is that, on account of the closed circuit of the internal coolant, no dirt can enter the aircraft electronic system. As a result of separating the external coolant from the internal coolant by means of the heat exchanger 6, which is responsible for a heat transfer between the external and the internal coolant, it is possible for the internal coolant to have a temperature range which is optimum for the electronic components and assemblies. High temperature gradients in the aircraft electronic system can as a result also be prevented. Moreover, the precipitation of condensation water is prevented due to the closed circuit of the internal coolant. The cooling of the aircraft electronic system is independent of the air-conditioning system of the aircraft. The described type of cooling of the aircraft electronic system produces less noise than conventional electronic cooling systems. As the airstream which is intended for the cabin is not used for cooling the aircraft electronic system, the comfort of an air passenger is not reduced. If the external coolant is liquid, the previously described improvement in efficiency results in a lower power consumption for cooling the aircraft electronic system and therefore the entire aircraft. The air-conditioning system which is used for the air conditioning of the cabin can therefore be of a smaller design, which entails an additional weight saving.

Claims (15)

1.-14. (canceled)
15. Multistage cooling system for an aircraft electronic system (2) comprising,
an inner circuit which is thermally coupled to at least one electronic component of the aircraft electronic system and in which an inner coolant (14) circulates in normal operation in order to carry heat from the at least one electronic component to a heat exchanger (6), wherein the heat exchanger (6) is adapted to deliver the heat with which it is supplied by the inner coolant (14) to a liquid outer coolant which circulates from a source outside of the aircraft electronic system (2) through the heat exchanger (6) to a sink outside of the aircraft electronic system (2), wherein the inner circuit is configured so that the inner coolant (14) flows from the heat exchanger (6) in the direction of the at least one electronic component,
characterised in that the circuit (22) in which the liquid outer coolant circulates is connectable by a third valve (36) to a water system (38) of the aircraft in order to at least partly replace the liquid outer coolant by water, if required, during operation of the aircraft electronic system (2).
16. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the inner circuit is thermally coupled to a plurality of electronic components, so that the inner coolant (14) cools a plurality of electronic components.
17. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the inner coolant (14) is gaseous.
18. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the inner coolant (14) is liquid.
19. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the inner circuit is configured so that the inner coolant (14) circulates on the basis of natural convection.
20. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the inner circuit is configured so that the inner coolant (14) circulates on the basis of forced convection.
21. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the outer coolant circulates in a circuit (22) which is connected to a liquid cooling system (20) in order to cool the outer coolant.
22. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the inner circuit in which the liquid inner coolant (14) circulates is connectable by a fourth valve (36) to a water system (38) of the aircraft in order to at least partly replace the liquid inner coolant (14) by water, if required, during operation of the aircraft electronic system (2).
23. Multistage cooling system for an aircraft electronic system (2) according to claim 15, wherein additives are admixed with the water which replaces the inner and/or outer coolant.
24. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the heat exchanger (6) is connected to an adsorption cooling system (28) in order to cool the outer coolant by means of the adsorption cooling system (28).
25. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the outer coolant is fresh water (30).
26. Multistage cooling system for an aircraft electronic system (2) according to claim 15,
characterised in that the outer coolant is gaseous.
27. Multistage cooling system for an aircraft electronic system (2) comprising,
an inner circuit which is thermally coupled to at least one electronic component of the aircraft electronic system and in which an inner coolant (14) circulates in normal operation in order to carry heat from the at least one electronic component to a heat exchanger (6), wherein the heat exchanger (6) is adapted to deliver the heat with which it is supplied by the inner coolant (14) to an outer coolant which flows and/or circulates from a source outside of the aircraft electronic system (2) through the heat exchanger (6) to a sink outside of the aircraft electronic system (2), wherein the inner circuit is configured so that the inner coolant (14) flows from the heat exchanger (6) in the direction of the at least one electronic component,
characterized in that the inner circuit of the inner coolant (14) is connected by a first valve (5 a; 36) to a feed line, by which additional coolant (14 a) is supplied from outside to the inner circuit, when the first valve (5 a; 36) is opened.
28. Multistage cooling system for an aircraft electronic system (2) according to claim 27,
characterized by a second valve (5 b) disposed in the inner circuit, wherein in the opened position of the second valve (5 b) coolant can exit from the inner circuit.
US12/514,731 2006-11-20 2007-11-20 Multistage cooling of electronic components of an aircraft Abandoned US20100044016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/514,731 US20100044016A1 (en) 2006-11-20 2007-11-20 Multistage cooling of electronic components of an aircraft

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US86645306P 2006-11-20 2006-11-20
DE200610054560 DE102006054560A1 (en) 2006-11-20 2006-11-20 Airplane device cooling system, has adsorbers with adsorption medium for adsorption of fluid that is evaporated in evaporators, and control system that is arranged to make or disconnect fluid connection between evaporators and adsorbers
DE102006054560.5 2006-11-20
US91436207P 2007-04-27 2007-04-27
DE102007020037.6 2007-04-27
DE200710020037 DE102007020037B4 (en) 2007-04-27 2007-04-27 Cooling arrangement for cooling an electronic device of an aircraft
PCT/EP2007/010049 WO2008061712A1 (en) 2006-11-20 2007-11-20 Multistage cooling of electronic components of an aircraft
US12/514,731 US20100044016A1 (en) 2006-11-20 2007-11-20 Multistage cooling of electronic components of an aircraft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010049 A-371-Of-International WO2008061712A1 (en) 2006-11-20 2007-11-20 Multistage cooling of electronic components of an aircraft

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/062,300 Continuation US9451732B2 (en) 2006-11-20 2013-10-24 Multistage cooling of electronic components of an aircraft

Publications (1)

Publication Number Publication Date
US20100044016A1 true US20100044016A1 (en) 2010-02-25

Family

ID=39080635

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/514,742 Expired - Fee Related US8438865B2 (en) 2006-11-20 2007-11-20 Cooling system and method for cooling an aircraft device
US12/514,731 Abandoned US20100044016A1 (en) 2006-11-20 2007-11-20 Multistage cooling of electronic components of an aircraft
US14/062,300 Expired - Fee Related US9451732B2 (en) 2006-11-20 2013-10-24 Multistage cooling of electronic components of an aircraft

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/514,742 Expired - Fee Related US8438865B2 (en) 2006-11-20 2007-11-20 Cooling system and method for cooling an aircraft device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/062,300 Expired - Fee Related US9451732B2 (en) 2006-11-20 2013-10-24 Multistage cooling of electronic components of an aircraft

Country Status (5)

Country Link
US (3) US8438865B2 (en)
EP (2) EP2081824B1 (en)
JP (2) JP2010510117A (en)
CA (2) CA2669180A1 (en)
WO (2) WO2008061713A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271915A1 (en) * 2012-04-17 2013-10-17 Airbus Operations Gmbh Heat dissipation of power electronics of a cooling unit
US20130319016A1 (en) * 2012-02-09 2013-12-05 Snecma Method for cooling electronic components in an aircraft turbojet engine
US20140332184A1 (en) * 2013-05-09 2014-11-13 Hon Hai Precision Industry Co., Ltd. Heat dissipation system and rack-mount server using the same
US20140352913A1 (en) * 2013-05-31 2014-12-04 Hamilton Sundstrand Corporation Aircraft refrigeration unit evaporator heater
US9185827B2 (en) 2011-03-14 2015-11-10 Ge Energy Power Conversion Technology Limited Energy conversion device, notably for a system for electrically driving an underwater compression and pumping station
US20160009405A1 (en) * 2013-03-08 2016-01-14 Rolls-Royce North America, Inc. Vehicle and system for supplying electrical power to a vehicle electrical load

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100011781A1 (en) 2008-07-21 2010-01-21 Lents Charles E Heat exchanger assembly for an aircraft control
FR2935132B1 (en) * 2008-08-21 2011-03-25 Airbus France COOLING SYSTEM FOR ELECTRIC OR ELECTRONIC EQUIPMENT OF AN AIRCRAFT
FR2935131B1 (en) * 2008-08-21 2011-03-25 Airbus France COOLING SYSTEM OF ELECTRIC OR ELECTRONIC EQUIPMENT OF AN AIRCRAFT
US20100084118A1 (en) * 2008-08-21 2010-04-08 Airbus Operations Cooling system for aircraft electric or electronic devices
DE102008044645B3 (en) 2008-08-27 2010-02-18 Airbus Deutschland Gmbh An aircraft signal computer system comprising a plurality of modular signal processor units
US8701426B2 (en) * 2011-04-28 2014-04-22 Lockheed Martin Corporation Enhanced boiler
US8934246B1 (en) * 2013-01-04 2015-01-13 James Nelson Keig Modular motor control unit for marine use
CN103662108B (en) * 2013-11-20 2015-08-12 上海宇航系统工程研究所 A kind of experimental set-up of simulation space dust atmosphere and method thereof
US9832910B2 (en) * 2014-08-12 2017-11-28 Hamilton Sundstrand Corporation Ram air fan and power electronics cooling systems

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387648A (en) * 1967-02-23 1968-06-11 Navy Usa Cabinet enclosed recirculation cooling system carried on extensible chassis mountingelectronic modules
US3842460A (en) * 1972-03-27 1974-10-22 H Wulf Hydraulic windshield wiper actuating mechanism
US4210102A (en) * 1978-11-17 1980-07-01 Dosmann Joseph B Space heater heat recovery system
US4739823A (en) * 1984-11-09 1988-04-26 Mcdonnell Douglas Heat exchanger structure
US5415012A (en) * 1992-07-06 1995-05-16 Zeo-Tech Gmbh Cooling system having a vacuum tight steam operating manifold
US5447042A (en) * 1991-03-29 1995-09-05 Hitachi, Ltd. Multiple type absorption air conditioning system
US5477706A (en) * 1991-11-19 1995-12-26 Rocky Research Heat transfer apparatus and methods for solid-vapor sorption systems
US5491979A (en) * 1993-11-26 1996-02-20 Daimler-Benz Aerospace Airbus Gmbh Apparatus for cooling food stuffs, especially in an aircraft
US5653111A (en) * 1993-07-07 1997-08-05 Hydrocool Pty. Ltd. Thermoelectric refrigeration with liquid heat exchange
US6205803B1 (en) * 1996-04-26 2001-03-27 Mainstream Engineering Corporation Compact avionics-pod-cooling unit thermal control method and apparatus
US6350376B1 (en) * 1999-03-19 2002-02-26 Organo Corporation Reductive heat exchange water and heat exchange system using such water
US6530420B1 (en) * 1999-09-17 2003-03-11 Sanyo Electric Co., Ltd. Heat carrier
US20040165351A1 (en) * 2003-02-26 2004-08-26 Tsung-Yueh Tsai [package structure compatible with cooling system]
US20050210910A1 (en) * 2004-03-29 2005-09-29 Rigney Richard N Cooling system for a commercial aircraft galley
US20070051166A1 (en) * 2005-09-02 2007-03-08 Baker Kenneth R Leak detection systems and methods
US7281388B2 (en) * 2004-03-31 2007-10-16 Intel Corporation Apparatus to use a refrigerator in mobile computing device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812739C1 (en) 1988-04-16 1989-07-06 Deutsche Lufthansa Ag, 5000 Koeln, De
FR2646500B1 (en) 1989-04-27 1994-11-25 Alsthom Gec METHOD FOR COOLING ELECTRICAL COMPONENTS, DEVICE FOR CARRYING OUT SAID METHOD AND APPLICATION TO COMPONENTS ON BOARD IN A VEHICLE
DE4105034A1 (en) 1991-02-19 1992-08-20 Klaus G Prof Dipl I Plassmeier Refrigerated container for already prepared aircraft meals - uses cold air stream to dissipate heat from coolant fed through pipe system
DE4327444A1 (en) 1993-08-14 1995-02-16 Indramat Gmbh Cooling device for a switching cabinet (electronics cabinet)
DE4340317C2 (en) 1993-11-26 1996-03-21 Daimler Benz Aerospace Airbus Cooling system for cooling food in an airplane
US5507150A (en) 1994-02-04 1996-04-16 Texas Instruments Incorporated Expendable liquid thermal management system
JPH08254369A (en) * 1995-03-17 1996-10-01 Nippondenso Co Ltd Adsorption type refrigerator
MY115676A (en) * 1996-08-06 2003-08-30 Advantest Corp Printed circuit board with electronic devices mounted thereon
RU2127212C1 (en) 1997-11-21 1999-03-10 Закрытое акционерное общество "Отделение морских систем ОКБ им.П.О.Сухого" Method of cooling on-board systems of flying vehicle
DE19811719A1 (en) 1998-03-18 1999-09-23 Alstom Lhb Gmbh Cooling device for cooling switch cabinets or components in rail vehicles
DE10009521A1 (en) 2000-02-29 2001-08-30 Mannesmann Sachs Ag Electrical system has parts of electrical component(s) and/or controler(s) to be cooled connected into conditioning system coolant circuit with e.g. compressor, condenser, evaporator
EP1158389A3 (en) 2000-05-25 2002-11-13 Kioan Cheon Computer having cooling apparatus and heat exchanging device of the cooling apparatus
FR2820196B1 (en) 2001-01-29 2006-12-29 Claude Antoine Blaizat METHOD FOR THE COLD HOLDING OF TROLLEYS ON BOARD AIRCRAFT ALSO PROVIDING HEATING OR HOT HOLDING AND THE ENTIRE CORRESPONDING DEVICE
US6993923B2 (en) * 2001-10-05 2006-02-07 Rich Beers Marine, Inc. Load bank
JP4199018B2 (en) 2003-02-14 2008-12-17 株式会社日立製作所 Rack mount server system
DE20308158U1 (en) 2003-03-07 2003-07-31 Rittal Gmbh & Co Kg Liquid cooling system for cooling electronic units has liquid cooling units connected via branch points to common central liquid cooling system integrated into rack or cabinet
DE10332770A1 (en) 2003-07-17 2005-02-24 Jürgen Dr.-Ing. Schulz-Harder Cooling device for dissipating heat loss from an electrical or electronic component or assembly
US7311817B2 (en) * 2003-11-14 2007-12-25 Semler Industries, Inc. System and method for sanitizing and refilling a potable water system onboard a transport vehicle
DE102004020642A1 (en) 2004-04-22 2005-11-10 Höhne, Sven, Dipl.-Ing (FH) Cooling device for electronic microprocessors operates with a gravity cooling element with a flow of liquid expanding during heating and a radiator for contracting liquid
US7581698B2 (en) * 2004-04-23 2009-09-01 Airbus Deutschland Gmbh Method and apparatus for tempering gaseous and/or liquid media in transportation vehicles, particularly in aircraft
DE102004019790B4 (en) 2004-04-23 2006-07-20 Airbus Deutschland Gmbh Device for virtually instantaneous temperature control of gaseous and / or liquid media in a means of transport, in particular in an aircraft
DE102005015718A1 (en) 2005-03-31 2006-10-05 Robert Bosch Gmbh Cooling arrangement for an electrical control unit
US8720217B2 (en) * 2006-07-10 2014-05-13 Mag Aerospace Industries, Inc. Galley cooling heat sink through water system
DE102006041788B4 (en) 2006-09-06 2012-06-14 Airbus Operations Gmbh An aircraft electronics cooling device for an aircraft with a liquid cooling system
DE102006054560A1 (en) 2006-11-20 2008-05-21 Airbus Deutschland Gmbh Airplane device cooling system, has adsorbers with adsorption medium for adsorption of fluid that is evaporated in evaporators, and control system that is arranged to make or disconnect fluid connection between evaporators and adsorbers

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387648A (en) * 1967-02-23 1968-06-11 Navy Usa Cabinet enclosed recirculation cooling system carried on extensible chassis mountingelectronic modules
US3842460A (en) * 1972-03-27 1974-10-22 H Wulf Hydraulic windshield wiper actuating mechanism
US4210102A (en) * 1978-11-17 1980-07-01 Dosmann Joseph B Space heater heat recovery system
US4739823A (en) * 1984-11-09 1988-04-26 Mcdonnell Douglas Heat exchanger structure
US5447042A (en) * 1991-03-29 1995-09-05 Hitachi, Ltd. Multiple type absorption air conditioning system
US5477706A (en) * 1991-11-19 1995-12-26 Rocky Research Heat transfer apparatus and methods for solid-vapor sorption systems
US5415012A (en) * 1992-07-06 1995-05-16 Zeo-Tech Gmbh Cooling system having a vacuum tight steam operating manifold
US5653111A (en) * 1993-07-07 1997-08-05 Hydrocool Pty. Ltd. Thermoelectric refrigeration with liquid heat exchange
US5491979A (en) * 1993-11-26 1996-02-20 Daimler-Benz Aerospace Airbus Gmbh Apparatus for cooling food stuffs, especially in an aircraft
US6205803B1 (en) * 1996-04-26 2001-03-27 Mainstream Engineering Corporation Compact avionics-pod-cooling unit thermal control method and apparatus
US6350376B1 (en) * 1999-03-19 2002-02-26 Organo Corporation Reductive heat exchange water and heat exchange system using such water
US6530420B1 (en) * 1999-09-17 2003-03-11 Sanyo Electric Co., Ltd. Heat carrier
US20040165351A1 (en) * 2003-02-26 2004-08-26 Tsung-Yueh Tsai [package structure compatible with cooling system]
US20050210910A1 (en) * 2004-03-29 2005-09-29 Rigney Richard N Cooling system for a commercial aircraft galley
US7281388B2 (en) * 2004-03-31 2007-10-16 Intel Corporation Apparatus to use a refrigerator in mobile computing device
US20070051166A1 (en) * 2005-09-02 2007-03-08 Baker Kenneth R Leak detection systems and methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185827B2 (en) 2011-03-14 2015-11-10 Ge Energy Power Conversion Technology Limited Energy conversion device, notably for a system for electrically driving an underwater compression and pumping station
US20130319016A1 (en) * 2012-02-09 2013-12-05 Snecma Method for cooling electronic components in an aircraft turbojet engine
US20130271915A1 (en) * 2012-04-17 2013-10-17 Airbus Operations Gmbh Heat dissipation of power electronics of a cooling unit
US9332671B2 (en) * 2012-04-17 2016-05-03 Airbus Operations Gmbh Heat dissipation of power electronics of a cooling unit
US20160009405A1 (en) * 2013-03-08 2016-01-14 Rolls-Royce North America, Inc. Vehicle and system for supplying electrical power to a vehicle electrical load
US9487303B2 (en) * 2013-03-08 2016-11-08 Rolls-Royce North American Technologies, Inc. Vehicle and system for supplying electrical power to a vehicle electrical load
US20170021783A1 (en) * 2013-03-08 2017-01-26 Rolls-Royce North American Technologies, Inc. Vehicle and system for supplying electrical power to a vehicle electrical load
US9889807B2 (en) * 2013-03-08 2018-02-13 Rolls-Royce North American Technologies, Inc. Vehicle and system for supplying electrical power to a vehicle electrical load
US20140332184A1 (en) * 2013-05-09 2014-11-13 Hon Hai Precision Industry Co., Ltd. Heat dissipation system and rack-mount server using the same
US9173328B2 (en) * 2013-05-09 2015-10-27 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Heat dissipation system and rack-mount server using the same
US20140352913A1 (en) * 2013-05-31 2014-12-04 Hamilton Sundstrand Corporation Aircraft refrigeration unit evaporator heater

Also Published As

Publication number Publication date
CA2668663A1 (en) 2008-05-29
EP2081824A1 (en) 2009-07-29
EP2081825B1 (en) 2011-06-22
US9451732B2 (en) 2016-09-20
JP2010510116A (en) 2010-04-02
EP2081824B1 (en) 2011-10-12
US20140146469A1 (en) 2014-05-29
EP2081825A1 (en) 2009-07-29
JP2010510117A (en) 2010-04-02
WO2008061713A1 (en) 2008-05-29
US8438865B2 (en) 2013-05-14
WO2008061712A1 (en) 2008-05-29
US20100051237A1 (en) 2010-03-04
CA2669180A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US9451732B2 (en) Multistage cooling of electronic components of an aircraft
US7920382B2 (en) Aircraft electronics cooling apparatus for an aircraft having a liquid cooling system
RU2457983C2 (en) Multistage system of aircraft electronic hardware cooling
US9752834B2 (en) Redundant integrated liquid cooling system for avionics
RU2420428C2 (en) Cooling system
US20100084118A1 (en) Cooling system for aircraft electric or electronic devices
CN101688477B (en) System for cooling and adjusting the temperature of apparatuses in the propulsion assembly of an aircraft
EP1902950B1 (en) Avionics cooling
US10611482B2 (en) Space-optimized cooling system for a galley, and method of operating such a cooling system
US9561856B2 (en) Heat exchanger, cooling system and method for operating a heat exchanger and a cooling system
US20230382187A1 (en) Heat pump assembly with a chiller for battery-powered vehicles and methods of operating the heat pump assembly
JP2011522408A (en) Cooling of electronic equipment in an aircraft, optionally with single-layer or double-layer cooling
CN101547832B (en) Multistage cooling of electronic components of an aircraft
CN103373469B (en) Method and the aircraft of aircraft thermal control system, operation thermal control system
DE102007020037B4 (en) Cooling arrangement for cooling an electronic device of an aircraft
EP2046642B1 (en) Galley cooling heat sink through water system
US20210197646A1 (en) Modular roof-mounted air-conditioning system
EP3904213A1 (en) Outer panel cooling system
BRPI0719043A2 (en) MULTI-STAGE COOLING SYSTEM FOR AN ELECTRONIC AIRCRAFT SYSTEM
CN115848629A (en) Evaporation circulation refrigeration device and method integrated with maintenance channel
JP2002127994A (en) Air conditioner
Wong et al. Dual Expansion Energy Recovery (DEER) Environmental Control System

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIRBUS DEUTSCHLAND GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FREY, ANDREAS;KIRYAMAN, AHMET KAYIHAN;KERBER, MARKUS;AND OTHERS;SIGNING DATES FROM 20090508 TO 20090723;REEL/FRAME:023171/0258

AS Assignment

Owner name: AIRBUS OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:AIRBUS DEUTSCHLAND GMBH;REEL/FRAME:025433/0975

Effective date: 20091110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION