US20080012087A1 - Bonded wafer avalanche photodiode and method for manufacturing same - Google Patents

Bonded wafer avalanche photodiode and method for manufacturing same Download PDF

Info

Publication number
US20080012087A1
US20080012087A1 US11/725,661 US72566107A US2008012087A1 US 20080012087 A1 US20080012087 A1 US 20080012087A1 US 72566107 A US72566107 A US 72566107A US 2008012087 A1 US2008012087 A1 US 2008012087A1
Authority
US
United States
Prior art keywords
avalanche photodiode
layer
further including
substrate
active substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/725,661
Inventor
Henri Dautet
Richard Seymour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Excelitas Canada Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/725,661 priority Critical patent/US20080012087A1/en
Assigned to PERKINELMER CANADA, INC. reassignment PERKINELMER CANADA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAUTET, HENRI, SEYMOUR, RICHARD
Priority to EP20070719577 priority patent/EP2013915A4/en
Priority to JP2009505690A priority patent/JP5079785B2/en
Priority to PCT/CA2007/000650 priority patent/WO2007118330A1/en
Priority to CA2643938A priority patent/CA2643938C/en
Publication of US20080012087A1 publication Critical patent/US20080012087A1/en
Assigned to EXCELITAS CANADA INC. reassignment EXCELITAS CANADA INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: EXCELITAS CANADA INC., PERKINELMER CANADA INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes

Definitions

  • This invention relates to avalanche photodiodes and their methods of manufacturing.
  • An avalanche photodiode is a semiconductor device that converts light into an electrical signal.
  • the APD detects low levels of electromagnetic radiation (photons) and is constructed so that a photon dislodges an electron (primary electron) and creates a hole-electron pair. These holes and electrons move in the opposite direction in the semiconductor device due to the electrical field that is applied across the photodiode. The movement of electrons through the structure is called photocurrent and it is proportional to the light intensity.
  • the primary electron hits other atoms with sufficient velocity and energy in the lattice structure to create additional electron-hole pairs. This cascade effect in avalanche photodiodes results in an effective gain and allows the detection of very low light levels. Indeed, even single photon detection is possible.
  • APDs are typically manufactured on thin wafers. This is because the use of an APD wafer having an active thickness on the order of or greater than 200 ⁇ m results in undesirable electrical characteristics of the APD. However, the thinness of typical APD wafers may make them fragile during handling and high temperature furnacing. Additionally, the frail nature of these wafers may make them unsuitable for large dimension APDs due to breakage and poor yield.
  • a prior method for increasing the thickness of APD wafers is to grow a thin electrically active “epi” layer over a thicker substrate layer.
  • a disadvantage to this approach is that is difficult to grow crystals having an acceptable quality on top of the substrate. This difficulty of growing acceptable crystals increases as the thickness of the crystal increases.
  • Another disadvantage is that the active layer can not be isolated from the substrate.
  • the subject invention results from the realization that an avalanche photodiode having greater thickness and strength can be manufactured by using a high quality optically active substrate, a handle substrate bonded to the active substrate, and an avalanche photodiode active area formed in the high quality optically active substrate that includes a high field region for generating avalanche current gain.
  • This invention features an avalanche photodiode including a high quality electrooptically active substrate, a handle substrate bonded to the active substrate, and an avalanche photodiode active area formed in the high quality electrooptically active substrate including a high field region for generating avalanche current gain.
  • the high quality electrooptically active substrate may include lightly doped silicon, which has a resistivity greater than 100 ohm ⁇ cm.
  • the handle substrate may include heavily doped silicon, which has a resistivity less than 1 ohm ⁇ cm.
  • the avalanche photodiode may further include a heavily doped layer between the lightly doped silicon layer and the heavily doped silicon layer.
  • the avalanche photodiode may also further include an oxide layer between the lightly doped silicon layer and the heavily doped silicon layer.
  • the high quality electrooptically active substrate may include p ⁇ silicon.
  • the handle substrate may include p+ silicon.
  • the avalanche photodiode may further include a p+ layer between the p ⁇ silicon layer and the p+ silicon layer.
  • the avalanche photodiode may further include an oxide layer between the p ⁇ silicon layer and the p+ silicon layer.
  • the high quality optically active substrate may include n ⁇ silicon.
  • the handle substrate may include n+ silicon.
  • the avalanche photodiode may further include an n+ layer between the n ⁇ silicon layer and the n+ silicon layer.
  • the avalanche photodiode may further include an oxide layer between the n ⁇ silicon layer and the n+ silicon layer.
  • the avalanche photodiode active area may include a gain region and a channel stop formed in the high quality optically active substrate.
  • the avalanche photodiode may further include a passivated layer formed on the surface of the avalanche photodiode for protecting the surface of the avalanche photodiode.
  • the avalanche photodiode may further include a junction formed adjacent the gain region for providing the high field region that generates avalanche current gain.
  • the avalanche photodiode may further include an anti-reflection coating formed adjacent the diffused junction for reducing the reflection of radiation from the avalanche photodiode.
  • the avalanche photodiode may further include a metallization layer for providing electrical contact.
  • the avalanche photodiode may further include a well in the handle substrate.
  • the avalanche photodiode may further include a heavily doped contact layer formed in the well.
  • the heavily doped contact layer may include p+ silicon.
  • the avalanche photodiode may further include a back metallization layer formed adjacent the heavily doped layer and adjacent the handle substrate.
  • This invention also features a method of manufacturing an avalanche photodiode, the method including providing a wafer having a high quality electrooptically active substrate and a handle substrate bonded to the active substrate, diffusing a gain region in the optically active substrate, and diffusing a junction adjacent the gain region to provide a high field region for generating avalanche current gain.
  • the method may further include the step of diffusing a channel stop in the optically active substrate to reduce current leakage.
  • the method may further include the step of passivating the surface of the avalanche photodiode for protecting the surface.
  • the method may further include the step of providing an anti-reflective coating on the diffused junction for reducing the reflection of radiation.
  • the method may further include the step of etching a well in the handle substrate.
  • the method may further include providing a heavily doped layer in the well.
  • This invention further features an avalanche photodiode including a high quality active substrate, a handle substrate bonded to the active substrate, a well formed in the handle substrate, and an avalanche photodiode active area formed in the high quality active substrate, the active area including a gain region diffused in the active substrate, and a junction diffused adjacent the gain region to provide a high field region for generating avalanche current gain.
  • the avalanche photodiode may further include a passivated layer formed adjacent the surface of the avalanche photodiode for protecting the surface of the avalanche photodiode.
  • the handle substrate may be an active substrate.
  • FIG. 1 is a schematic cross-sectional view of one example of a bonded wafer avalanche photodiode in accordance with the subject invention
  • FIGS. 2-5 are schematic diagrams illustrating the primary steps associated with the manufacture of the bonded wafer avalanche photodiode of FIG. 1 ;
  • FIGS. 6-9 are schematic diagrams that illustrate the primary steps associated with the manufacture of an alternative embodiment of a bonded wafer avalanche photodiode in which a well is etched in the back of the avalanche photodiode;
  • FIG. 10 is a schematic cross-sectional view of a front entry avalanche photodiode.
  • FIG. 11 is a schematic cross-sectional view of a rear entry avalanche photodiode.
  • avalanche photodiode (APD) 10 FIG. 1
  • wafer 11 comprising handle substrate 12 bonded to high quality optically active substrate 14 .
  • Optically active substrate 14 includes active area 16 that includes high field region 18 for generating avalanche current gain.
  • Handle substrate 12 may be purchased with active substrate 14 already bonded thereto. Alternatively, handle substrate 12 may be purchased separately from active substrate 14 and handle substrate 12 can be subsequently bonded to active substrate 14 .
  • One method of manufacturing bonded wafer APD 10 begins with providing a wafer 11 , FIG. 2A , in which handle substrate 12 is bonded to optically active substrate 14 .
  • Handle substrate 12 may have a thickness of 20-1000 ⁇ m, but preferably has a thickness of 250-500 ⁇ m.
  • Active substrate 14 may have the thickness of 2-200 ⁇ M, but preferably has a thickness of 6-150 ⁇ m.
  • Handle substrate 12 typically includes heavily doped silicon which is p+ silicon, but may alternatively be n+ silicon depending on the type of APD.
  • Optically active substrate 14 includes lightly doped silicon which is p ⁇ silicon, but may likewise alternatively be n ⁇ silicon depending on the type of APD.
  • An alternative embodiment of bonded wafer 11 a , FIG. 2B includes a heavily doped silicon layer 20 , FIG. 2A , which is added to active substrate 14 prior to bonding active substrate 14 to handle substrate 12 .
  • Heavily doped silicon layer 20 improves the interface quality between substrates 12 and 14 .
  • Heavily doped silicon layer 20 may include either a p+ layer or an n+ layer depending on the type of APD.
  • an oxide layer may be used between substrates 12 and 14 to improve interface quality.
  • Gain region 22 , FIG. 3 and channel stops 24 are diffused in the APD active area 16 a of optically active substrate 14 .
  • Channel stops 24 provide a barrier to prevent small leakage paths from traveling to the outside of optically active substrate 14 .
  • junction 26 , FIG. 4 is diffused adjacent gain region 22 to provide high field region 18 a which generates the avalanche current gain of APD 10 a .
  • a passivated layer 28 is formed on the surface of APD 10 a for protecting the surface of the APD. Passivated layer 28 preferably includes silicon nitride and silicon oxide.
  • Anti-reflection coating 30 is formed adjacent diffused junction 26 for reducing the reflection of radiation from APD 10 a .
  • Metallization layers 32 and 34 are provided for electrical contact.
  • Metallization layer 32 is formed adjacent diffused junction 26 and anti-reflection coating 30 .
  • Metallization layer 34 is formed adjacent handle substrate 12 .
  • high quality optically active substrate 14 is provided with a strong handle substrate 12 to provide an APD having greater thickness and strength than those of the prior art, without reducing the desirable electrical characteristics of the APD.
  • bonded silicon wafer 11 FIG. 6 which includes handle substrate 12 b and active substrate 14 b .
  • Wafer 11 a may additionally include a heavily doped layer 20 b , FIG. 6A , which is added prior to bonding substrates 12 b and 14 b as done in FIG. 2A .
  • heavily doped layer 20 a may include either a p+ layer or an n+ layer, depending on the type of APD.
  • Wafer 11 c may include oxide layer 40 , FIG. 6B , which may be added in addition to heavily doped layer 20 b.
  • FIG. 7 gain region 22 a and junction 26 a are diffused in active area 16 a of high quality active substrate 14 to create high gain region 18 b .
  • guard ring structure 42 may be provided to reduce the electric field at the edge of the junction.
  • Dividing line 40 is provided to show that APD 10 b may include oxide layer 40 but may be manufactured without the oxide layer.
  • Well 46 is etched in the back surface of handle substrate 12 b .
  • the etching of well 46 also removes oxide layer 40 if one is present in APD 10 b.
  • Heavily doped layer 48 is provided through the back contact of well 46 to provide improved performance of APD 10 b .
  • a front entry APD 10 b is formed by adding back metallization layers 50 and 52 and front metallization layer 54 and anti-reflection coating 56 .
  • a rear entry standard APD 10 d is provided by adding metallization layers 60 and 62 and anti-reflection coating 66 adjacent well 46 and adding reflective metallization layer 64 adjacent high gain region 18 b to the APD of 10 b of FIG. 9 .

Abstract

An avalanche photodiode includes a high quality electrooptically active substrate, a handle substrate bonded to the active substrate, and an avalanche photodiode active area formed in the high quality electrooptically active substrate including a high field region for generating avalanche current gain. By using a handle wafer bonded to the active substrate, the avalanche photodiode of the subject invention has a greater strength and thickness without the reduction of desirable electrical characteristics.

Description

    RELATED APPLICATIONS
  • This application claims benefit of U.S. Provisional Application Ser. No. 60/793,084, filed on Apr. 19, 2006, entitled “Bonded Wafer Avalanche Photodiode and Method for Manufacturing Same”, incorporated herein by this reference.
  • FIELD OF THE INVENTION
  • This invention relates to avalanche photodiodes and their methods of manufacturing.
  • BACKGROUND OF THE INVENTION
  • An avalanche photodiode (APD) is a semiconductor device that converts light into an electrical signal. The APD detects low levels of electromagnetic radiation (photons) and is constructed so that a photon dislodges an electron (primary electron) and creates a hole-electron pair. These holes and electrons move in the opposite direction in the semiconductor device due to the electrical field that is applied across the photodiode. The movement of electrons through the structure is called photocurrent and it is proportional to the light intensity. In APDs, the primary electron hits other atoms with sufficient velocity and energy in the lattice structure to create additional electron-hole pairs. This cascade effect in avalanche photodiodes results in an effective gain and allows the detection of very low light levels. Indeed, even single photon detection is possible.
  • One application of an avalanche photodiode is disclosed in U.S. Pat. No. 6,525,305 B2, which is incorporated herein by reference. The '305 patent discloses a large current watchdog circuit that includes a variable impedance to protect the photodetector from high current levels.
  • APDs are typically manufactured on thin wafers. This is because the use of an APD wafer having an active thickness on the order of or greater than 200 μm results in undesirable electrical characteristics of the APD. However, the thinness of typical APD wafers may make them fragile during handling and high temperature furnacing. Additionally, the frail nature of these wafers may make them unsuitable for large dimension APDs due to breakage and poor yield.
  • One prior method for increasing the thickness of APD wafers is to grow a thin electrically active “epi” layer over a thicker substrate layer. A disadvantage to this approach, however, is that is difficult to grow crystals having an acceptable quality on top of the substrate. This difficulty of growing acceptable crystals increases as the thickness of the crystal increases. Another disadvantage is that the active layer can not be isolated from the substrate.
  • BRIEF SUMMARY OF THE INVENTION
  • It is therefore an object of this invention to provide a new method for manufacturing an improved avalanche photodiode.
  • It is a further object of this invention to provide such an avalanche photodiode having a greater thickness.
  • It is a further object of this invention to provide such an avalanche photodiode having a greater strength.
  • It is a further object of this invention to provide such an avalanche photodiode having a greater electromagnetic detection in certain applications.
  • The subject invention results from the realization that an avalanche photodiode having greater thickness and strength can be manufactured by using a high quality optically active substrate, a handle substrate bonded to the active substrate, and an avalanche photodiode active area formed in the high quality optically active substrate that includes a high field region for generating avalanche current gain.
  • The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
  • This invention features an avalanche photodiode including a high quality electrooptically active substrate, a handle substrate bonded to the active substrate, and an avalanche photodiode active area formed in the high quality electrooptically active substrate including a high field region for generating avalanche current gain.
  • In one embodiment, the high quality electrooptically active substrate may include lightly doped silicon, which has a resistivity greater than 100 ohm×cm. The handle substrate may include heavily doped silicon, which has a resistivity less than 1 ohm×cm. The avalanche photodiode may further include a heavily doped layer between the lightly doped silicon layer and the heavily doped silicon layer. The avalanche photodiode may also further include an oxide layer between the lightly doped silicon layer and the heavily doped silicon layer. The high quality electrooptically active substrate may include p− silicon. The handle substrate may include p+ silicon. The avalanche photodiode may further include a p+ layer between the p− silicon layer and the p+ silicon layer. The avalanche photodiode may further include an oxide layer between the p− silicon layer and the p+ silicon layer. The high quality optically active substrate may include n− silicon. The handle substrate may include n+ silicon. The avalanche photodiode may further include an n+ layer between the n− silicon layer and the n+ silicon layer. The avalanche photodiode may further include an oxide layer between the n− silicon layer and the n+ silicon layer. The avalanche photodiode active area may include a gain region and a channel stop formed in the high quality optically active substrate. The avalanche photodiode may further include a passivated layer formed on the surface of the avalanche photodiode for protecting the surface of the avalanche photodiode. The avalanche photodiode may further include a junction formed adjacent the gain region for providing the high field region that generates avalanche current gain. The avalanche photodiode may further include an anti-reflection coating formed adjacent the diffused junction for reducing the reflection of radiation from the avalanche photodiode. The avalanche photodiode may further include a metallization layer for providing electrical contact. The avalanche photodiode may further include a well in the handle substrate. The avalanche photodiode may further include a heavily doped contact layer formed in the well. The heavily doped contact layer may include p+ silicon. The avalanche photodiode may further include a back metallization layer formed adjacent the heavily doped layer and adjacent the handle substrate.
  • This invention also features a method of manufacturing an avalanche photodiode, the method including providing a wafer having a high quality electrooptically active substrate and a handle substrate bonded to the active substrate, diffusing a gain region in the optically active substrate, and diffusing a junction adjacent the gain region to provide a high field region for generating avalanche current gain.
  • In one embodiment, the method may further include the step of diffusing a channel stop in the optically active substrate to reduce current leakage. The method may further include the step of passivating the surface of the avalanche photodiode for protecting the surface. The method may further include the step of providing an anti-reflective coating on the diffused junction for reducing the reflection of radiation. The method may further include the step of etching a well in the handle substrate. The method may further include providing a heavily doped layer in the well.
  • This invention further features an avalanche photodiode including a high quality active substrate, a handle substrate bonded to the active substrate, a well formed in the handle substrate, and an avalanche photodiode active area formed in the high quality active substrate, the active area including a gain region diffused in the active substrate, and a junction diffused adjacent the gain region to provide a high field region for generating avalanche current gain.
  • In one embodiment, the avalanche photodiode may further include a passivated layer formed adjacent the surface of the avalanche photodiode for protecting the surface of the avalanche photodiode. The handle substrate may be an active substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which the attached figures are embodiments of the bonded wafer APD and its method of manufacture.
  • FIG. 1 is a schematic cross-sectional view of one example of a bonded wafer avalanche photodiode in accordance with the subject invention;
  • FIGS. 2-5 are schematic diagrams illustrating the primary steps associated with the manufacture of the bonded wafer avalanche photodiode of FIG. 1;
  • FIGS. 6-9 are schematic diagrams that illustrate the primary steps associated with the manufacture of an alternative embodiment of a bonded wafer avalanche photodiode in which a well is etched in the back of the avalanche photodiode;
  • FIG. 10 is a schematic cross-sectional view of a front entry avalanche photodiode; and
  • FIG. 11 is a schematic cross-sectional view of a rear entry avalanche photodiode.
  • Although specific features of this invention are shown in some drawings and not others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention.
  • DISCLOSURE OF THE PREFERRED EMBODIMENT
  • Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
  • Whereas APDs in the prior art are typically manufactured on thin wafers, avalanche photodiode (APD) 10, FIG. 1, in accordance with this invention includes wafer 11 comprising handle substrate 12 bonded to high quality optically active substrate 14. Optically active substrate 14 includes active area 16 that includes high field region 18 for generating avalanche current gain. Handle substrate 12 may be purchased with active substrate 14 already bonded thereto. Alternatively, handle substrate 12 may be purchased separately from active substrate 14 and handle substrate 12 can be subsequently bonded to active substrate 14.
  • One method of manufacturing bonded wafer APD 10 begins with providing a wafer 11, FIG. 2A, in which handle substrate 12 is bonded to optically active substrate 14. Handle substrate 12 may have a thickness of 20-1000 μm, but preferably has a thickness of 250-500 μm. Active substrate 14 may have the thickness of 2-200 μM, but preferably has a thickness of 6-150 μm.
  • Handle substrate 12 typically includes heavily doped silicon which is p+ silicon, but may alternatively be n+ silicon depending on the type of APD. Optically active substrate 14 includes lightly doped silicon which is p− silicon, but may likewise alternatively be n− silicon depending on the type of APD.
  • An alternative embodiment of bonded wafer 11 a, FIG. 2B, includes a heavily doped silicon layer 20, FIG. 2A, which is added to active substrate 14 prior to bonding active substrate 14 to handle substrate 12. Heavily doped silicon layer 20 improves the interface quality between substrates 12 and 14. Heavily doped silicon layer 20 may include either a p+ layer or an n+ layer depending on the type of APD. Alternatively, rather than using a heavily doped silicon layer, an oxide layer may be used between substrates 12 and 14 to improve interface quality.
  • Gain region 22, FIG. 3 and channel stops 24 are diffused in the APD active area 16 a of optically active substrate 14. Channel stops 24 provide a barrier to prevent small leakage paths from traveling to the outside of optically active substrate 14.
  • Junction 26, FIG. 4 is diffused adjacent gain region 22 to provide high field region 18 a which generates the avalanche current gain of APD 10 a. A passivated layer 28 is formed on the surface of APD 10 a for protecting the surface of the APD. Passivated layer 28 preferably includes silicon nitride and silicon oxide.
  • Anti-reflection coating 30, FIG. 5 is formed adjacent diffused junction 26 for reducing the reflection of radiation from APD 10 a. Metallization layers 32 and 34 are provided for electrical contact. Metallization layer 32 is formed adjacent diffused junction 26 and anti-reflection coating 30. Metallization layer 34 is formed adjacent handle substrate 12.
  • Thus, with APD 10 a of FIG. 5, high quality optically active substrate 14 is provided with a strong handle substrate 12 to provide an APD having greater thickness and strength than those of the prior art, without reducing the desirable electrical characteristics of the APD.
  • In one alternative embodiment, bonded silicon wafer 11, FIG. 6, is provided which includes handle substrate 12 b and active substrate 14 b. Wafer 11 a may additionally include a heavily doped layer 20 b, FIG. 6A, which is added prior to bonding substrates 12 b and 14 b as done in FIG. 2A. As with heavily doped layer 20, heavily doped layer 20 a may include either a p+ layer or an n+ layer, depending on the type of APD. Wafer 11 c may include oxide layer 40, FIG. 6B, which may be added in addition to heavily doped layer 20 b.
  • To provide APD 10 b, FIG. 7 gain region 22 a and junction 26 a are diffused in active area 16 a of high quality active substrate 14 to create high gain region 18 b. Optionally, guard ring structure 42 may be provided to reduce the electric field at the edge of the junction. Dividing line 40 is provided to show that APD 10 b may include oxide layer 40 but may be manufactured without the oxide layer.
  • Well 46, FIG. 8, is etched in the back surface of handle substrate 12 b. The etching of well 46 also removes oxide layer 40 if one is present in APD 10 b.
  • Heavily doped layer 48, FIG. 9, is provided through the back contact of well 46 to provide improved performance of APD 10 b. A front entry APD 10 b is formed by adding back metallization layers 50 and 52 and front metallization layer 54 and anti-reflection coating 56. Alternatively, a rear entry standard APD 10 d, FIG. 10, is provided by adding metallization layers 60 and 62 and anti-reflection coating 66 adjacent well 46 and adding reflective metallization layer 64 adjacent high gain region 18 b to the APD of 10 b of FIG. 9.
  • The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. Other embodiments will occur to those skilled in the art and are within the following claims.
  • In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.

Claims (30)

1. An avalanche photodiode comprising:
a high quality electrooptically active substrate;
a handle substrate bonded to the active substrate; and
an avalanche photodiode active area formed in the high quality optically active substrate including a high field region for generating avalanche current gain.
2. The avalanche photodiode of claim 1 in which the high quality electrooptically active substrate includes lightly doped silicon.
3. The avalanche photodiode of claim 2 in which the handle substrate includes heavily doped silicon.
4. The avalanche photodiode of claim 3 further including a heavily doped layer between the lightly doped silicon layer and the heavily doped silicon layer.
5. The avalanche photodiode of claim 3 further including an oxide layer between the lightly doped silicon layer and the heavily doped silicon layer.
6. The avalanche photodiode of claim 2 in which the high quality electrooptically active substrate includes p− silicon.
7. The avalanche photodiode of claim 6 in which the handle substrate includes p+ silicon.
8. The avalanche photodiode of claim 7 further including a p+ layer between the p− silicon layer and the p+ silicon layer.
9. The avalanche photodiode of claim 7 further including an oxide layer between the p− silicon layer and the p+ silicon layer.
10. The avalanche photodiode of claim 2 in which the high quality electrooptically active substrate includes n− silicon.
11. The avalanche photodiode of claim 10 in which the handle substrate includes n+ silicon.
12. The avalanche photodiode of claim 11 further including an n+ layer between the n− silicon layer and the n+ silicon layer.
13. The avalanche photodiode of claim 11 further including an oxide layer between the n− silicon layer and the n+ silicon layer.
14. The avalanche photodiode of claim 1 in which the avalanche photodiode active area includes a gain region and a channel stop formed in the high quality optically active substrate.
15. The avalanche photodiode of claim 14 further including a passivated layer formed on the surface of the avalanche photodiode for protecting the surface of the avalanche photodiode.
16. The avalanche photodiode of claim 14 further including a junction formed adjacent the gain region for providing the high field region that generates avalanche current gain.
17. The avalanche photodiode of claim 16 further including an anti-reflection coating formed adjacent the diffused junction for reducing the reflection of radiation from the avalanche photodiode.
18. The avalanche photodiode of claim 1 further including a well in said handle substrate.
19. The avalanche photodiode of claim 18 further including a heavily doped contact layer formed in the well.
20. The avalanche photodiode of claim 19 in which the heavily doped contact layer includes p+ silicon.
21. The avalanche photodiode of claim 19 further including a back metallization layer formed adjacent the heavily doped layer and adjacent the handle substrate.
22. A method of manufacturing an avalanche photodiode, the method comprising:
providing a wafer having a high quality electrooptically active substrate and a handle substrate bonded to the active substrate;
diffusing a gain region in the electrooptically active substrate; and
diffusing a junction adjacent the gain region to provide a high field region for generating avalanche current gain.
23. The method of claim 22 further including the step of diffusing a channel stop in the electrooptically active substrate to reduce current leakage.
24. The method of claim 22 further including the step of passivating the surface of the avalanche photodiode for protecting the surface.
25. The method of claim 24 further including the step of providing an anti-reflective coating on the diffused junction for reducing the reflection of radiation.
26. The method of claim 22 further including the step of etching a well in the handle substrate.
27. The method of claim 26 further including providing a heavily doped layer in the well.
28. An avalanche photodiode comprising:
a high quality active substrate;
a handle substrate bonded to the active substrate;
a well formed in the handle substrate; and
an avalanche photodiode active area formed in the high quality active substrate, the active area including:
a gain region diffused in the active substrate, and
a junction diffused adjacent the gain region to provide a high field region for generating avalanche current gain.
29. The avalanche photodiode of claim 28, further including a passivated layer formed adjacent the surface of the avalanche photodiode for protecting the surface of the avalanche photodiode.
30. The avalanche photodiode of claim 28 in which the handle substrate is an active substrate.
US11/725,661 2006-04-19 2007-03-20 Bonded wafer avalanche photodiode and method for manufacturing same Abandoned US20080012087A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/725,661 US20080012087A1 (en) 2006-04-19 2007-03-20 Bonded wafer avalanche photodiode and method for manufacturing same
EP20070719577 EP2013915A4 (en) 2006-04-19 2007-04-18 Bonded wafer avalanche photodiode and method for manufacturing same
JP2009505690A JP5079785B2 (en) 2006-04-19 2007-04-18 Bonded wafer avalanche photodiode and manufacturing method thereof
PCT/CA2007/000650 WO2007118330A1 (en) 2006-04-19 2007-04-18 Bonded wafer avalanche photodiode and method for manufacturing same
CA2643938A CA2643938C (en) 2006-04-19 2007-04-18 Bonded wafer avalanche photodiode and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79308406P 2006-04-19 2006-04-19
US11/725,661 US20080012087A1 (en) 2006-04-19 2007-03-20 Bonded wafer avalanche photodiode and method for manufacturing same

Publications (1)

Publication Number Publication Date
US20080012087A1 true US20080012087A1 (en) 2008-01-17

Family

ID=38609008

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/725,661 Abandoned US20080012087A1 (en) 2006-04-19 2007-03-20 Bonded wafer avalanche photodiode and method for manufacturing same

Country Status (5)

Country Link
US (1) US20080012087A1 (en)
EP (1) EP2013915A4 (en)
JP (1) JP5079785B2 (en)
CA (1) CA2643938C (en)
WO (1) WO2007118330A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009615A1 (en) 2011-07-08 2013-01-17 Excelitas Technologies LED Solutions, Inc. Photon counting uv-apd
US20130214134A1 (en) * 2010-11-12 2013-08-22 Kabushiki Kaisha Toshiba Photon detector
US11081612B2 (en) * 2015-12-01 2021-08-03 Sharp Kabushiki Kaisha Avalanche photodiode
US20230065356A1 (en) * 2021-08-31 2023-03-02 Brookhaven Science Associates, Llc Simplified Structure for a Low Gain Avalanche Diode with Closely Spaced Electrodes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793273B1 (en) * 2013-04-17 2016-12-28 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Silicon photomultiplier with very low optical cross-talk and improved readout
JP7178613B2 (en) * 2019-03-29 2022-11-28 パナソニックIpマネジメント株式会社 photodetector

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127932A (en) * 1976-08-06 1978-12-05 Bell Telephone Laboratories, Incorporated Method of fabricating silicon photodiodes
US4727649A (en) * 1983-11-21 1988-03-01 Sumitomo Electric Industries, Ltd. Method for producing an optical device
US5021854A (en) * 1987-12-03 1991-06-04 Xsirius Photonics, Inc. Silicon avalanche photodiode array
US5374564A (en) * 1991-09-18 1994-12-20 Commissariat A L'energie Atomique Process for the production of thin semiconductor material films
US5451547A (en) * 1991-08-26 1995-09-19 Nippondenso Co., Ltd. Method of manufacturing semiconductor substrate
US5506153A (en) * 1993-12-08 1996-04-09 Siemens Aktiengesellschaft Method for manufacture of a controllable power semiconductor element with buffer zone
US5541122A (en) * 1995-04-03 1996-07-30 Motorola Inc. Method of fabricating an insulated-gate bipolar transistor
US5596186A (en) * 1993-12-08 1997-01-21 Nikon Corporation High sensitivity silicon avalanche photodiode
US5755914A (en) * 1992-08-25 1998-05-26 Canon Kabushiki Kaisha Method for bonding semiconductor substrates
US5804494A (en) * 1993-08-20 1998-09-08 Shin-Etsu Handotai Co., Ltd. Method of fabricating bonded wafer
US6136667A (en) * 1997-10-08 2000-10-24 Lucent Technologies Inc. Method for bonding two crystalline substrates together
US6229162B1 (en) * 1998-05-08 2001-05-08 Nec Corporation Planar-type avalanche photodiode
US6245161B1 (en) * 1997-05-12 2001-06-12 Silicon Genesis Corporation Economical silicon-on-silicon hybrid wafer assembly
US20010035540A1 (en) * 2000-04-28 2001-11-01 Fujitsu Limited, Kawasaki, Japan Photodetector having a mixed crystal layer of SiGeC
US6492239B2 (en) * 2000-06-29 2002-12-10 Samsung Electronic Co, Ltd Method for fabricating avalanche photodiode
US6525305B2 (en) * 2000-09-11 2003-02-25 Perkinelmer Canada, Inc. Large current watchdog circuit for a photodetector
US6548878B1 (en) * 1998-02-05 2003-04-15 Integration Associates, Inc. Method for producing a thin distributed photodiode structure
US20030178636A1 (en) * 2002-02-11 2003-09-25 Jds Uniphase Corporation Back illuminated photodiodes
US6690078B1 (en) * 1999-08-05 2004-02-10 Integration Associates, Inc. Shielded planar dielectrically isolated high speed pin photodiode and method for producing same
US20040087109A1 (en) * 2002-08-29 2004-05-06 Mccann Paul Damien Method for direct bonding two silicon wafers for minimising interfacial oxide and stresses at the bond interface, and an SOI structure
US20050133838A1 (en) * 2003-12-17 2005-06-23 Samsung Electronics Co., Ltd. Photodiode and method of manufacturing the same
US6943051B2 (en) * 2000-10-19 2005-09-13 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes integrated with CMOS
US20050205930A1 (en) * 2004-03-16 2005-09-22 Voxtel, Inc. Silicon-on-insulator active pixel sensors
US20050253132A1 (en) * 2002-07-11 2005-11-17 Marshall Gillian F Photodetector circuits
US7192841B2 (en) * 2002-04-30 2007-03-20 Agency For Science, Technology And Research Method of wafer/substrate bonding
US7341921B2 (en) * 2003-05-14 2008-03-11 University College Cork - National University Of Ireland, Cork Photodiode
US7605052B2 (en) * 1999-06-30 2009-10-20 Intersil Corporation Method of forming an integrated circuit having a device wafer with a diffused doped backside layer
US7655999B2 (en) * 2006-09-15 2010-02-02 Udt Sensors, Inc. High density photodiodes
US7759623B2 (en) * 2004-05-05 2010-07-20 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Silicon photoelectric multiplier (variants) and a cell for silicon photoelectric multiplier
US20100237366A1 (en) * 2009-03-17 2010-09-23 Kabushiki Kaisha Toshiba Method for manufacturing light emitting device and light emitting device
US7863647B1 (en) * 2007-03-19 2011-01-04 Northrop Grumman Systems Corporation SiC avalanche photodiode with improved edge termination
US20120117799A1 (en) * 2010-11-11 2012-05-17 Dr. Qi Luo Miniaturized Spring Contact
US20120293191A1 (en) * 2011-05-19 2012-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. HVMOS Reliability Evaluation using Bulk Resistances as Indices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215084A (en) * 1987-03-04 1988-09-07 Toshiba Corp Semiconductor photodetector
JP3091903B2 (en) * 1994-08-17 2000-09-25 セイコーインスツルメンツ株式会社 Avalanche photodiode and method of manufacturing the same
US6054369A (en) * 1997-06-30 2000-04-25 Intersil Corporation Lifetime control for semiconductor devices
JP2000174325A (en) * 1998-12-02 2000-06-23 Lucent Technol Inc Process for adhering crystalline substrate having different crystal lattices
JP2000252512A (en) * 1999-02-25 2000-09-14 Siird Center:Kk Pin photo-diode
US6593636B1 (en) * 2000-12-05 2003-07-15 Udt Sensors, Inc. High speed silicon photodiodes and method of manufacture

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127932A (en) * 1976-08-06 1978-12-05 Bell Telephone Laboratories, Incorporated Method of fabricating silicon photodiodes
US4727649A (en) * 1983-11-21 1988-03-01 Sumitomo Electric Industries, Ltd. Method for producing an optical device
US5021854A (en) * 1987-12-03 1991-06-04 Xsirius Photonics, Inc. Silicon avalanche photodiode array
US5451547A (en) * 1991-08-26 1995-09-19 Nippondenso Co., Ltd. Method of manufacturing semiconductor substrate
US5374564A (en) * 1991-09-18 1994-12-20 Commissariat A L'energie Atomique Process for the production of thin semiconductor material films
US5755914A (en) * 1992-08-25 1998-05-26 Canon Kabushiki Kaisha Method for bonding semiconductor substrates
US5804494A (en) * 1993-08-20 1998-09-08 Shin-Etsu Handotai Co., Ltd. Method of fabricating bonded wafer
US5506153A (en) * 1993-12-08 1996-04-09 Siemens Aktiengesellschaft Method for manufacture of a controllable power semiconductor element with buffer zone
US5596186A (en) * 1993-12-08 1997-01-21 Nikon Corporation High sensitivity silicon avalanche photodiode
US5541122A (en) * 1995-04-03 1996-07-30 Motorola Inc. Method of fabricating an insulated-gate bipolar transistor
US6245161B1 (en) * 1997-05-12 2001-06-12 Silicon Genesis Corporation Economical silicon-on-silicon hybrid wafer assembly
US6136667A (en) * 1997-10-08 2000-10-24 Lucent Technologies Inc. Method for bonding two crystalline substrates together
US6548878B1 (en) * 1998-02-05 2003-04-15 Integration Associates, Inc. Method for producing a thin distributed photodiode structure
US6229162B1 (en) * 1998-05-08 2001-05-08 Nec Corporation Planar-type avalanche photodiode
US7605052B2 (en) * 1999-06-30 2009-10-20 Intersil Corporation Method of forming an integrated circuit having a device wafer with a diffused doped backside layer
US6690078B1 (en) * 1999-08-05 2004-02-10 Integration Associates, Inc. Shielded planar dielectrically isolated high speed pin photodiode and method for producing same
US20010035540A1 (en) * 2000-04-28 2001-11-01 Fujitsu Limited, Kawasaki, Japan Photodetector having a mixed crystal layer of SiGeC
US6492239B2 (en) * 2000-06-29 2002-12-10 Samsung Electronic Co, Ltd Method for fabricating avalanche photodiode
US6525305B2 (en) * 2000-09-11 2003-02-25 Perkinelmer Canada, Inc. Large current watchdog circuit for a photodetector
US6943051B2 (en) * 2000-10-19 2005-09-13 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes integrated with CMOS
US20030178636A1 (en) * 2002-02-11 2003-09-25 Jds Uniphase Corporation Back illuminated photodiodes
US7192841B2 (en) * 2002-04-30 2007-03-20 Agency For Science, Technology And Research Method of wafer/substrate bonding
US20050253132A1 (en) * 2002-07-11 2005-11-17 Marshall Gillian F Photodetector circuits
US20040087109A1 (en) * 2002-08-29 2004-05-06 Mccann Paul Damien Method for direct bonding two silicon wafers for minimising interfacial oxide and stresses at the bond interface, and an SOI structure
US7341921B2 (en) * 2003-05-14 2008-03-11 University College Cork - National University Of Ireland, Cork Photodiode
US20050133838A1 (en) * 2003-12-17 2005-06-23 Samsung Electronics Co., Ltd. Photodiode and method of manufacturing the same
US20050205930A1 (en) * 2004-03-16 2005-09-22 Voxtel, Inc. Silicon-on-insulator active pixel sensors
US7759623B2 (en) * 2004-05-05 2010-07-20 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Silicon photoelectric multiplier (variants) and a cell for silicon photoelectric multiplier
US7655999B2 (en) * 2006-09-15 2010-02-02 Udt Sensors, Inc. High density photodiodes
US7863647B1 (en) * 2007-03-19 2011-01-04 Northrop Grumman Systems Corporation SiC avalanche photodiode with improved edge termination
US20100237366A1 (en) * 2009-03-17 2010-09-23 Kabushiki Kaisha Toshiba Method for manufacturing light emitting device and light emitting device
US20120117799A1 (en) * 2010-11-11 2012-05-17 Dr. Qi Luo Miniaturized Spring Contact
US20120293191A1 (en) * 2011-05-19 2012-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. HVMOS Reliability Evaluation using Bulk Resistances as Indices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lasky "Wafer bonding ro silicon on insulator technologies. Applied Physics letters Number 48 (1) january 6, 1986 pages 78-80. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130214134A1 (en) * 2010-11-12 2013-08-22 Kabushiki Kaisha Toshiba Photon detector
WO2013009615A1 (en) 2011-07-08 2013-01-17 Excelitas Technologies LED Solutions, Inc. Photon counting uv-apd
US8368159B2 (en) 2011-07-08 2013-02-05 Excelitas Canada, Inc. Photon counting UV-APD
US11081612B2 (en) * 2015-12-01 2021-08-03 Sharp Kabushiki Kaisha Avalanche photodiode
US20230065356A1 (en) * 2021-08-31 2023-03-02 Brookhaven Science Associates, Llc Simplified Structure for a Low Gain Avalanche Diode with Closely Spaced Electrodes

Also Published As

Publication number Publication date
EP2013915A4 (en) 2011-08-03
WO2007118330A1 (en) 2007-10-25
CA2643938C (en) 2014-12-09
JP2009533882A (en) 2009-09-17
JP5079785B2 (en) 2012-11-21
EP2013915A1 (en) 2009-01-14
CA2643938A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
TWI262611B (en) Avalanche photo diode
US6838741B2 (en) Avalanche photodiode for use in harsh environments
US7863647B1 (en) SiC avalanche photodiode with improved edge termination
JP2011009749A (en) Avalanche photodiode
US7084471B2 (en) Photosensitive device
US11239382B2 (en) Semiconductor photomultiplier
CA2643938C (en) Bonded wafer avalanche photodiode and method for manufacturing same
EP2355155B1 (en) Vertical silicon photomultipler with superior quantum efficiency at optical wavelengths
JPWO2008090733A1 (en) Semiconductor photo detector
US20060189027A1 (en) Method of fabricating avalanche photodiode
CN113921646A (en) Single-photon detector, manufacturing method thereof and single-photon detector array
JP4154293B2 (en) Avalanche photodiode, optical module and optical receiver
US20120299141A1 (en) Avalanche photodiode and avalanche photodiode array
US20110303949A1 (en) Semiconductor light-receiving element
CN106024922A (en) Photoelectric transistor based on GeSn materials and manufacturing method thereof
US10686093B2 (en) Semiconductor light receiving element including si avalanche multiplication part and compound semiconductor light receiving layer
EP3680941B1 (en) Avalanche photodiode and method for manufacturing same
JPH0513798A (en) Semiconductor photodetection device
TW202038479A (en) Semiconductor light-receiving element and method of manufacturing semiconductor light-receiving element
KR20040032026A (en) Avalanche Photodiode and Method for Fabricating the Same
JP2011176094A (en) Photodiode
KR20050029129A (en) Radiation hardened visible p-i-n detector
Zimmermann et al. Ultralow-capacitance lateral pin photodiode in a thin c-Si film
CN114927582A (en) Narrow-band near-infrared thermal electron photoelectric detector with completely embedded grating structure
JP2006245432A (en) Photodiode

Legal Events

Date Code Title Description
AS Assignment

Owner name: PERKINELMER CANADA, INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAUTET, HENRI;SEYMOUR, RICHARD;REEL/FRAME:019089/0473

Effective date: 20070313

AS Assignment

Owner name: EXCELITAS CANADA INC., QUEBEC

Free format text: MERGER;ASSIGNORS:PERKINELMER CANADA INC.;EXCELITAS CANADA INC.;REEL/FRAME:026686/0545

Effective date: 20101129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION