US20070237169A1 - Apparatus and method of controlling transmission in reverse direction - Google Patents

Apparatus and method of controlling transmission in reverse direction Download PDF

Info

Publication number
US20070237169A1
US20070237169A1 US11/394,215 US39421506A US2007237169A1 US 20070237169 A1 US20070237169 A1 US 20070237169A1 US 39421506 A US39421506 A US 39421506A US 2007237169 A1 US2007237169 A1 US 2007237169A1
Authority
US
United States
Prior art keywords
aggregation
data units
responder
reverse direction
initiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/394,215
Other versions
US7706397B2 (en
Inventor
Solomon Trainin
Adrian Stephens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to US11/394,215 priority Critical patent/US7706397B2/en
Priority to PCT/US2007/064730 priority patent/WO2007117947A1/en
Priority to TW096110775A priority patent/TWI335749B/en
Publication of US20070237169A1 publication Critical patent/US20070237169A1/en
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEPHENS, ADRIAN, TRAININ, SOLOMON B
Priority to US12/703,847 priority patent/US8644293B2/en
Application granted granted Critical
Publication of US7706397B2 publication Critical patent/US7706397B2/en
Assigned to APPLE INC. reassignment APPLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTEL CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • H04L12/4035Bus networks with centralised control, e.g. polling in which slots of a TDMA packet structure are assigned based on a contention resolution carried out at a master unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways

Definitions

  • a wireless local area network may include a basic service set (BSS).
  • the BSS may include an access point (AP) and one or more stations (STA).
  • the AP may transmit data frames to the one or more stations over a downlink channel and may receive data frames over an uplink channel.
  • the BSS may include a Direct Link Service (DLS) to allow the stations to transfer data between the stations without the AP intervention.
  • the sequence of frames that may be used to transmit data from one station to one or more other stations, and to receive a response(s) from the one or more stations may be referred to as a transmit sequence.
  • the transmit sequence may include an aggregation of data units which may be transmitted by an Initiator, and one or more response frames from a Responder.
  • the Initiator may be an AP and the Responder may be a mobile unit.
  • TxOP transmit opportunity
  • the AP for example, an Initiator
  • a mobile station e.g. a Responder
  • TxOP time slot may not be fully occupied by transmissions of the Initiator and the Responder.
  • FIG. 1 is a schematic illustration of a wireless communication system according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic illustration of a data frame including data units according to some exemplary embodiments of the present invention
  • FIG. 3 is a schematic illustration of a procedure of data units between an Initiator and a Responder according to some exemplary embodiments of the present invention
  • FIG. 4 is a schematic illustration of a procedure of data units between an Initiator and a Responder according to some other exemplary embodiments of the present invention.
  • FIG. 5 is a schematic flow chart of a method of exchanging an aggregation of data units in a reverse direction during an allocated time slot by an Initiator according to some exemplary embodiments of the present invention.
  • FIG. 6 is a schematic flow chart of a method of exchanging an aggregation of data units in a reverse direction during an allocated time slot by a responder according to some exemplary embodiments of the present invention.
  • the present invention may be used in a variety of applications. Although the present invention is not limited in this respect, the circuits and techniques disclosed herein may be used in many apparatuses such as stations of a radio system. Stations intended to be included within the scope of the present invention include, by way of example only, wireless local area network (WLAN) stations, two-way radio stations, digital system stations, analog system stations, cellular radiotelephone stations, and the like.
  • WLAN wireless local area network
  • Types of WLAN stations intended to be within the scope of the present invention include, although are not limited to, mobile stations, access points, stations for receiving and transmitting spread spectrum signals such as, for example, Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK), Orthogonal Frequency-Division Multiplexing (OFDM) and the like.
  • FHSS Frequency Hopping Spread Spectrum
  • DSSS Direct Sequence Spread Spectrum
  • CK Complementary Code Keying
  • OFDM Orthogonal Frequency-Division Multiplexing
  • Some embodiments of the invention may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine (for example, by a wireless station, and/or by other suitable machines), cause the machine to perform a method and/or operations in accordance with embodiments of the invention.
  • a machine for example, by a wireless station, and/or by other suitable machines
  • Such machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software.
  • the machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, various types of Digital Versatile Disks (DVDs), or the like.
  • any suitable type of memory unit for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk
  • the instructions may include any suitable type of code, for example, source code, compiled code, interpreted code, executable code, static code, dynamic code, or the like, and may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, e.g., C, C++, Java, high level design programming language, assembly language, machine code, or the like.
  • a wireless communication system 100 for example, a WLAN, according to embodiments of the present invention.
  • the exemplary WLAN 100 may be defined, e.g., by IEEE 802.11-1999 standard family, as a basic service set (BSS).
  • the BSS may include a station 110 and station 120 , if desired.
  • stations 110 and 120 may transmit an aggregation of data units, if desired.
  • the transmission of the aggregation of data units may be done according to IEEE 802.11n/D1.0 standard which published on March 2006, if desired.
  • Station 110 for example, an accesses point (AP), may be referred to herein as an Initiator and station 150 , for example, a wireless mobile unit, may be referred to herein as a Responder.
  • AP accesses point
  • station 150 for example, a wireless mobile unit, may be referred to herein as a Responder.
  • station 110 may include a transceiver 120 , a medium access controller (MAC) 130 and an antenna 140 .
  • Station 150 may include a transceiver 160 , a MAC 170 and an antenna 180 .
  • antennas 140 and 180 or both of antennas 140 and 180 may include an omni-directional antenna, a monopole antenna, a dipole antenna, an end fed antenna, a circularly polarized antenna, a micro-strip antenna, a diversity antenna, an antenna array, an internal antenna or the like. It should be understood that in some embodiments of the invention stations 110 and 150 may include two or more antennas.
  • Initiator 110 may exchange one or more transmissions of an aggregation of data units with Responder 150 within an allocated time slot which may be referred to in the context of with embodiments of the present invention as a transmit opportunity (TxOP).
  • Initiator 120 may transmit the aggregation of data units over a downlink 190 and may enable Responder 150 to transmit the aggregation of data units in a reverse direction, e.g., over an uplink 195 , by transferring its originator rights to the Responder 150 .
  • Responder 150 may be authorized to transmit the aggregation of data units within the time slot of TxOP.
  • Transceivers 120 and 160 may transmit and/or receive transmissions and MACs 130 and 170 may control the direction of transmission, allocate a TxOP, control data unit transportation over the WLAN according to a medium access scheme, for example, a Request_To_Send/Clear_To_Send (RTS/CTS) scheme, or the like.
  • a medium access scheme for example, a Request_To_Send/Clear_To_Send (RTS/CTS) scheme, or the like.
  • data frame 200 may include a MAC protocol Data Unit (MPDU) Header.
  • MPDU MAC protocol Data Unit
  • the MPDU Header may include control data in one or more fields, and/or one or more bits to control the transportation of data units.
  • a frame control field 210 may include a MPDU type and subtype and/or other related control bits.
  • a duration field 220 may include a remaining TxOP time.
  • Address fields 230 , 240 , 250 and 270 may be used for addressing a transferring source station, a destination station, and/or intermediate stations.
  • a Sequence control field 260 may include sequence number of the MPDU.
  • a quality of service (QoS) field 280 may be used for priority signaling.
  • a High Throughput Control field 290 may include, for example, an Access Category (AC) Constrain flag (bit 30 ) and a Reverse Direction (RD) flag (bit 31 ) flags.
  • bit 31 may be used to set or reset the Originator rights of the stations, if desired.
  • Bit 30 may be used to control insertion of AC data. For example, if bit 30 is reset, then insertion of AC data in the reverse direction may be allowed; else, insertion of AC data similar to the AC data sent by the Initiator may be allowed.
  • a TxOP time slot 300 may be allocated by the Initiator, e.g., Initiator 110 , to exchange an aggregation of data units with the Responder (e.g. Responder 150 ).
  • the Initiator may transmit the aggregation of data unit, e.g., MPDU 4 , 3 , and a block acknowledge request (BAR) to the Responder.
  • a HTC field 290 of MPDU header may include setting of a RD flag (e.g., bit 31 ) and a remaining time of TxOP in duration field 220 .
  • the Initiator is the originator of the transmissions and may instruct the responder by resetting the RD flag (e.g., bit 31 ) to operate as a recipient.
  • the responder may reply with a block acknowledgement (BA), and the remaining time of the TxOP (e.g., TxOP rem 2 ).
  • the Initiator may transmit MPDU 6 , 5 , BAR, the remaining time of TxOP (e.g., TxOP rem 3 ) and may enable the Responder to have the Originator rights by setting the RD flag (e.g., bit 31 ).
  • the Responder may take the Originator rights from the Initiator (text block 310 ) and may transmit a BA, MPDUs 1 , 2 , 3 , BAR, the remaining time of the TxOP (e.g., TxOP rem 4 ) and may request from the Initiator to continue to transmit in the reverse direction by setting the RD flag (e.g., RDC set).
  • the RD flag e.g., RDC set
  • the Initiator may take back its Originator rights from the Responder (text block 320 ).
  • the Initiator may transmit to the Responder MPDU 8 , 7 and a BA with RD flag reset and the remaining time of the TxOP (TxOP rem 5 ).
  • FIG. 4 a schematic illustration of a procedure for exchanging data units between an Initiator and a Responder according to two other exemplary embodiments of the present invention is shown.
  • a first example 410 demonstrates the Responder that transmits a BA, then transmits the aggregation of data units, and then may return Originator rights to the Initiator (text block 420 ).
  • a second example 450 demonstrates a failure in receiving a BA of the Responder.
  • the Initiator may transmit aggregation of data units, e.g., MPDU 1 and 2 , with a BAR and may transfer its originator rights to the Responder by setting the RD flag.
  • the Responder after a delay of a first predetermined time period, for example, a short interframe space (SIFS), may respond with a BA and setting of the RD flag.
  • the Responder may, after a delay of a second predetermined time period, for example, a priority interframe space (PIFS), transmit the aggregation of data units (e.g., MPDU 1 , 2 ) flowed by a BAR and returning the Originator rights to the Initiator (text block 420 ).
  • the Initiator may respond after a delay of SIFS with a BA.
  • the Initiator may not receive from the Responder the BA with the RD flag set after a delay of SIFS (as is shown with reference number 460 ).
  • the Initiator may retransmit after a delay of SIFS the BAR with the RD flag set (as is shown with reference number 470 ).
  • the Responder may respond with the BA after a delay of SIFS, may set the RD flag, and may become the Originator.
  • the Responder may then transmit aggregation of data units to the Initiator, if desired.
  • the Responder may continue with aggregation of data unit after a delay of SIFS following the BA end, and the Initiator may wait a PIFS following the end of the expected BA to issue a BAR ( 470 ), although the scope of the present invention is not limited in this respect.
  • FIG. 5 a flow chart of a method of exchanging aggregation of data units in a reverse direction during an allocated time slot by an Initiator according to some exemplary embodiments of the present invention is shown.
  • the Initiator e.g., Initiator 110
  • the time slot may be allocated based on a channel access scheme, for example, RTS/CTS, that may perform a handshake procedure with the Responder, if desired (text block 510 ).
  • the Initiator may transmit one or more MPDUs that may include a value of a remaining time of TxOP (text block 520 ).
  • the Initiator may transmit the aggregation of data units with a BAR and the RD flag in the data units, e.g., MPDU may be set to a reverse direction enable (RDE) setting (text block 530 ).
  • RDE reverse direction enable
  • the Initiator may receive from the Responder a single BA with the RD flag set to reverse direction continue (RDC) (text block 540 ). In some other embodiments of the invention, the Initiator may receive from the Responder sequences of aggregation of data units with RDC set and without requesting a BA (text block 550 ). The Initiator may respond with the BA as long as the aggregation of data units with BAR may be received (text block 560 ).
  • the Initiator may respond with a BA with at least one of the flowing settings and/or resettings of the RD flag in the BA. For example, the Initiator may take back its originator rights by resetting RDE in the BA. The Initiator may grant originator rights to the Responder by asserting the RDE in the BA. Furthermore, if RDC is set in a previous data unit, the Initiator may delay its transmission for a predetermined time, for example, PIFS, after sending the BA with the RDE reset. The PIFS delay may be needed to allow the Originator to transmit before or without receiving the BA.
  • PIFS predetermined time
  • the Initiator may truncate the TxOP time slot if there is no data units to transmit and the responder is not active after a predetermined delay e.g., PIFS (text block 570 ).
  • PIFS text block 570
  • FIG. 6 a flow chart of a method of exchanging aggregated data units in a reverse direction during an allocated time slot by a Responder according to some exemplary embodiments of the present invention is shown.
  • the Responder may receive a sequence or aggregation of data units from the Initiator with a remaining time of an allocated time slot for transmission (e.g. TxOP remainder) and a RDE set/reset in an MPDU with or without a BA request (text box 610 ).
  • the Responder may respond with a BA as long as it receives aggregated data units with the BA request (text box 620 ).
  • the Responder may transmit an aggregation of data units that includes the BA and the MPDUs.
  • the Responder may transmit a single BA with a RD flag asserted as RDC and may wait a predetermined time period (e.g., PIFS) to start transmitting (text block 640 ).
  • PIFS predetermined time period
  • the PIFS delay may be needed to allow the Originator to retransmit without receiving the BA.
  • the Responder may reset the RDC in the BA thus returning the Originator rights to the Initiator (text block 650 ). Furthermore, in order to keep the Originator rights, the Responder may transmit an aggregation of MPDUs with the RDC set, if desired (text block 660 ). In some other embodiments of the invention, the Responder may return the Originator rights to Initiator while receiving a BA with a RDE reset (text block 670 ).
  • one event of fault resolution may be when an Originator does not receive an expected BA after sending BAR, and instead may receive, e.g., a PHY_Rx_Indication and may not receive a correct BA.
  • the Originator may retransmit a BAR after a predetermined delay, for example, SIFS.
  • Another event of fault resolution may be when the Originator expects to receive the BA and may not receive a PHY_Rx_Indication, in which case the Originator may retransmit the BAR after a predetermined delay for example, a PIFS, after an end of a last transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Briefly, a wireless communication system that includes an Initiator and a Responder to transmit an aggregation of data units in a reverse direction is provided. The Initiator includes a medium access controller capable of allocating a time slot for exchanging one or more transmissions of aggregation of data units with the Responder. The medium access controller includes a channel access scheme, which is able to allocate the time slot for the Responder to transmit the aggregation of data units in the reverse direction, and to grant Originator rights of the Initiator to the Responder within said time slot.

Description

    BACKGROUND OF THE INVENTION
  • A wireless local area network (WLAN) may include a basic service set (BSS). The BSS may include an access point (AP) and one or more stations (STA). The AP may transmit data frames to the one or more stations over a downlink channel and may receive data frames over an uplink channel. In a high throughput WLAN the uplink and the downlink channels may employ an intensive traffic of data frames. The BSS may include a Direct Link Service (DLS) to allow the stations to transfer data between the stations without the AP intervention. The sequence of frames that may be used to transmit data from one station to one or more other stations, and to receive a response(s) from the one or more stations, may be referred to as a transmit sequence. The transmit sequence may include an aggregation of data units which may be transmitted by an Initiator, and one or more response frames from a Responder. For example, the Initiator may be an AP and the Responder may be a mobile unit.
  • In WLAN a collision of transmissions from different mobile units and the AP may occur. In order to avoid collisions the AP may initiate a transmit opportunity (TxOP) time slot. In the TxOP time slot the AP, for example, an Initiator, may transmit data frames to a mobile station (e.g. a Responder). For example, according to IEEE 802.11e standard, only an owner of the TxOP may be allowed to transmit during the TxOP time slot. Thus, TxOP time slot may not be fully occupied by transmissions of the Initiator and the Responder.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanied drawings in which:
  • FIG. 1 is a schematic illustration of a wireless communication system according to an exemplary embodiment of the present invention;
  • FIG. 2 is a schematic illustration of a data frame including data units according to some exemplary embodiments of the present invention;
  • FIG. 3 is a schematic illustration of a procedure of data units between an Initiator and a Responder according to some exemplary embodiments of the present invention;
  • FIG. 4 is a schematic illustration of a procedure of data units between an Initiator and a Responder according to some other exemplary embodiments of the present invention;
  • FIG. 5 is a schematic flow chart of a method of exchanging an aggregation of data units in a reverse direction during an allocated time slot by an Initiator according to some exemplary embodiments of the present invention; and
  • FIG. 6 is a schematic flow chart of a method of exchanging an aggregation of data units in a reverse direction during an allocated time slot by a responder according to some exemplary embodiments of the present invention.
  • It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.
  • Some portions of the detailed description, which follow, are presented in terms of algorithms and symbolic representations of operations on data bits or binary digital signals within a computer memory. These algorithmic descriptions and representations may be the techniques used by those skilled in the data processing arts to convey the substance of their work to others skilled in the art.
  • Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes, medium access processor (MAC), digital signal processor (DSP) and/or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, or transmission devices.
  • It should be understood that the present invention may be used in a variety of applications. Although the present invention is not limited in this respect, the circuits and techniques disclosed herein may be used in many apparatuses such as stations of a radio system. Stations intended to be included within the scope of the present invention include, by way of example only, wireless local area network (WLAN) stations, two-way radio stations, digital system stations, analog system stations, cellular radiotelephone stations, and the like.
  • Types of WLAN stations intended to be within the scope of the present invention include, although are not limited to, mobile stations, access points, stations for receiving and transmitting spread spectrum signals such as, for example, Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK), Orthogonal Frequency-Division Multiplexing (OFDM) and the like.
  • Some embodiments of the invention may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine (for example, by a wireless station, and/or by other suitable machines), cause the machine to perform a method and/or operations in accordance with embodiments of the invention. Such machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, various types of Digital Versatile Disks (DVDs), or the like. The instructions may include any suitable type of code, for example, source code, compiled code, interpreted code, executable code, static code, dynamic code, or the like, and may be implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language, e.g., C, C++, Java, high level design programming language, assembly language, machine code, or the like.
  • Turning first to FIG. 1, a wireless communication system 100, for example, a WLAN, according to embodiments of the present invention, is shown. Although the scope of the present invention is not limited in this respect, the exemplary WLAN 100 may be defined, e.g., by IEEE 802.11-1999 standard family, as a basic service set (BSS). For example, the BSS may include a station 110 and station 120, if desired.
  • According to this exemplary embodiment of the present invention, stations 110 and 120 may transmit an aggregation of data units, if desired. For example, the transmission of the aggregation of data units may be done according to IEEE 802.11n/D1.0 standard which published on March 2006, if desired. Station 110, for example, an accesses point (AP), may be referred to herein as an Initiator and station 150, for example, a wireless mobile unit, may be referred to herein as a Responder.
  • According to this exemplary embodiment of the invention, station 110 may include a transceiver 120, a medium access controller (MAC) 130 and an antenna 140. Station 150 may include a transceiver 160, a MAC 170 and an antenna 180.
  • Although the scope of the present invention is not limited in this respect, at least one of antennas 140 and 180 or both of antennas 140 and 180 may include an omni-directional antenna, a monopole antenna, a dipole antenna, an end fed antenna, a circularly polarized antenna, a micro-strip antenna, a diversity antenna, an antenna array, an internal antenna or the like. It should be understood that in some embodiments of the invention stations 110 and 150 may include two or more antennas.
  • Although the scope of the present invention is not limited in this respect, Initiator 110 may exchange one or more transmissions of an aggregation of data units with Responder 150 within an allocated time slot which may be referred to in the context of with embodiments of the present invention as a transmit opportunity (TxOP). Initiator 120 may transmit the aggregation of data units over a downlink 190 and may enable Responder 150 to transmit the aggregation of data units in a reverse direction, e.g., over an uplink 195, by transferring its originator rights to the Responder 150. Thus, Responder 150 may be authorized to transmit the aggregation of data units within the time slot of TxOP.
  • Transceivers 120 and 160 may transmit and/or receive transmissions and MACs 130 and 170 may control the direction of transmission, allocate a TxOP, control data unit transportation over the WLAN according to a medium access scheme, for example, a Request_To_Send/Clear_To_Send (RTS/CTS) scheme, or the like.
  • Turning to FIG. 2, a schematic illustration of a data frame 200 including data units according to some exemplary embodiments of the present invention, is shown. Although the scope of the present invention is not limited in this respect, data frame 200 may include a MAC protocol Data Unit (MPDU) Header. According to this exemplary embodiment of the invention, the MPDU Header may include control data in one or more fields, and/or one or more bits to control the transportation of data units. A frame control field 210 may include a MPDU type and subtype and/or other related control bits. A duration field 220 may include a remaining TxOP time. Address fields 230, 240, 250 and 270 may be used for addressing a transferring source station, a destination station, and/or intermediate stations. A Sequence control field 260 may include sequence number of the MPDU. A quality of service (QoS) field 280 may be used for priority signaling. A High Throughput Control field 290 may include, for example, an Access Category (AC) Constrain flag (bit 30) and a Reverse Direction (RD) flag (bit 31) flags. For example, bit 31 may be used to set or reset the Originator rights of the stations, if desired. Bit 30 may be used to control insertion of AC data. For example, if bit 30 is reset, then insertion of AC data in the reverse direction may be allowed; else, insertion of AC data similar to the AC data sent by the Initiator may be allowed.
  • Turning to FIG. 3, a schematic illustration of a procedure for exchanging of data units between an Initiator and a Responder according to some exemplary embodiments of the present invention is shown. Although the scope of the present invention is not limited in this respect, a TxOP time slot 300 may be allocated by the Initiator, e.g., Initiator 110, to exchange an aggregation of data units with the Responder (e.g. Responder 150). The Initiator may transmit the aggregation of data unit, e.g., MPDU 4, 3, and a block acknowledge request (BAR) to the Responder. A HTC field 290 of MPDU header may include setting of a RD flag (e.g., bit 31) and a remaining time of TxOP in duration field 220.
  • According to this exemplary embodiment of the invention, the Initiator is the originator of the transmissions and may instruct the responder by resetting the RD flag (e.g., bit 31) to operate as a recipient. The responder may reply with a block acknowledgement (BA), and the remaining time of the TxOP (e.g., TxOP rem 2). In the next transmission, the Initiator may transmit MPDU 6, 5, BAR, the remaining time of TxOP (e.g., TxOP rem 3) and may enable the Responder to have the Originator rights by setting the RD flag (e.g., bit 31). In response, the Responder may take the Originator rights from the Initiator (text block 310) and may transmit a BA, MPDUs 1, 2, 3, BAR, the remaining time of the TxOP (e.g., TxOP rem 4) and may request from the Initiator to continue to transmit in the reverse direction by setting the RD flag (e.g., RDC set).
  • Although the scope of the present invention is not limited in this respect, the Initiator may take back its Originator rights from the Responder (text block 320). The Initiator may transmit to the Responder MPDU 8, 7 and a BA with RD flag reset and the remaining time of the TxOP (TxOP rem 5).
  • Turning to FIG. 4, a schematic illustration of a procedure for exchanging data units between an Initiator and a Responder according to two other exemplary embodiments of the present invention is shown. Although the scope of the present invention is not limited in this respect, a first example 410 demonstrates the Responder that transmits a BA, then transmits the aggregation of data units, and then may return Originator rights to the Initiator (text block 420). A second example 450 demonstrates a failure in receiving a BA of the Responder.
  • More specifically, in the first example 410, the Initiator may transmit aggregation of data units, e.g., MPDU 1 and 2, with a BAR and may transfer its originator rights to the Responder by setting the RD flag. The Responder after a delay of a first predetermined time period, for example, a short interframe space (SIFS), may respond with a BA and setting of the RD flag. The Responder may, after a delay of a second predetermined time period, for example, a priority interframe space (PIFS), transmit the aggregation of data units (e.g., MPDU 1, 2) flowed by a BAR and returning the Originator rights to the Initiator (text block 420). The Initiator may respond after a delay of SIFS with a BA.
  • In the second example 450, the Initiator may not receive from the Responder the BA with the RD flag set after a delay of SIFS (as is shown with reference number 460). According to this example, the Initiator may retransmit after a delay of SIFS the BAR with the RD flag set (as is shown with reference number 470). The Responder may respond with the BA after a delay of SIFS, may set the RD flag, and may become the Originator. The Responder may then transmit aggregation of data units to the Initiator, if desired. Alternatively, the Responder may continue with aggregation of data unit after a delay of SIFS following the BA end, and the Initiator may wait a PIFS following the end of the expected BA to issue a BAR (470), although the scope of the present invention is not limited in this respect.
  • Turning to FIG. 5, a flow chart of a method of exchanging aggregation of data units in a reverse direction during an allocated time slot by an Initiator according to some exemplary embodiments of the present invention is shown. Although the scope of the present invention is not limited in this respect, the Initiator (e.g., Initiator 110) may allocate a time slot for exchanging one or more transmissions of aggregation of data units (e.g., TxOP). The time slot may be allocated based on a channel access scheme, for example, RTS/CTS, that may perform a handshake procedure with the Responder, if desired (text block 510). The Initiator may transmit one or more MPDUs that may include a value of a remaining time of TxOP (text block 520). In addition, the Initiator may transmit the aggregation of data units with a BAR and the RD flag in the data units, e.g., MPDU may be set to a reverse direction enable (RDE) setting (text block 530).
  • According to some embodiments of the invention, the Initiator may receive from the Responder a single BA with the RD flag set to reverse direction continue (RDC) (text block 540). In some other embodiments of the invention, the Initiator may receive from the Responder sequences of aggregation of data units with RDC set and without requesting a BA (text block 550). The Initiator may respond with the BA as long as the aggregation of data units with BAR may be received (text block 560).
  • According to some embodiments of the invention, the Initiator may respond with a BA with at least one of the flowing settings and/or resettings of the RD flag in the BA. For example, the Initiator may take back its originator rights by resetting RDE in the BA. The Initiator may grant originator rights to the Responder by asserting the RDE in the BA. Furthermore, if RDC is set in a previous data unit, the Initiator may delay its transmission for a predetermined time, for example, PIFS, after sending the BA with the RDE reset. The PIFS delay may be needed to allow the Originator to transmit before or without receiving the BA.
  • According to some embodiments of the invention, the Initiator may truncate the TxOP time slot if there is no data units to transmit and the responder is not active after a predetermined delay e.g., PIFS (text block 570).
  • Turning to FIG. 6 a flow chart of a method of exchanging aggregated data units in a reverse direction during an allocated time slot by a Responder according to some exemplary embodiments of the present invention is shown. Although the scope of the present invention is not limited in this respect, the Responder may receive a sequence or aggregation of data units from the Initiator with a remaining time of an allocated time slot for transmission (e.g. TxOP remainder) and a RDE set/reset in an MPDU with or without a BA request (text box 610). The Responder may respond with a BA as long as it receives aggregated data units with the BA request (text box 620).
  • According to some embodiments of the present invention, if the RD flag is set as RDE in the last received aggregation of data units with BAR (text block 630), then the Responder may transmit an aggregation of data units that includes the BA and the MPDUs. Alternatively, the Responder may transmit a single BA with a RD flag asserted as RDC and may wait a predetermined time period (e.g., PIFS) to start transmitting (text block 640). In some embodiments of the invention, the PIFS delay may be needed to allow the Originator to retransmit without receiving the BA.
  • According to some embodiments of the present invention, if the RD flag is set as RDC in the last received aggregation with BAR (text block 630), then the Responder may reset the RDC in the BA thus returning the Originator rights to the Initiator (text block 650). Furthermore, in order to keep the Originator rights, the Responder may transmit an aggregation of MPDUs with the RDC set, if desired (text block 660). In some other embodiments of the invention, the Responder may return the Originator rights to Initiator while receiving a BA with a RDE reset (text block 670).
  • Although the scope of the present invention is not limited in this respect, one event of fault resolution may be when an Originator does not receive an expected BA after sending BAR, and instead may receive, e.g., a PHY_Rx_Indication and may not receive a correct BA. The Originator may retransmit a BAR after a predetermined delay, for example, SIFS. Another event of fault resolution may be when the Originator expects to receive the BA and may not receive a PHY_Rx_Indication, in which case the Originator may retransmit the BAR after a predetermined delay for example, a PIFS, after an end of a last transmission.
  • While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims (39)

1. A method comprising:
allocating, based on a channel access scheme of an Initiator, a time slot for exchanging between the Initiator and a Responder one or more transmissions of an aggregation of data units and
enabling the Responder to transmit the aggregation of data units in a reverse direction by transferring to the Responder Originator rights of the Initiator with the data units of the aggregation.
2. The method of claim 1, comprising:
transferring back the Originator rights from the Responder within the time slot.
3. The method of claim 1, comprising:
using a remaining time of the time slot to exchange information incorporated within the aggregation of data units for allocating transmission time to the Responder.
4. The method of claim 1, comprising:
exchanging Originator rights between the Initiator and the Responder by changing a status of a bit flag.
5. The method of claim 1, comprising:
setting a block acknowledge request and a reverse direction flag in the aggregation of data units to enable a transmission of the aggregation of data units in the reverse direction; and
transmitting the aggregation of data units in the reverse direction.
6. The method of claim 5, comprising:
receiving from the Responder a block acknowledge and a request to continue with the transmission of the aggregation of data units in the reverse direction.
7. The method of claim 5, comprising:
receiving from the Responder a block acknowledge request and the Originator rights.
8. The method of claim 5, comprising:
delaying for a predetermined time a transmission of the aggregated data following the block acknowledge request transmission.
9. The method of claim 1, comprising:
waiting for receiving a block acknowledge from the Responder; and
retransmitting the block acknowledge request after a predetermined delay relatively after receiving the block acknowledge.
10. A wireless communication device comprising:
a medium access controller to allocate, based on a channel access scheme of an Initiator, a time slot for exchanging between the Initiator and a Responder one or more transmissions of an aggregation of data units, and to enable the Responder to transmit the aggregation of data units in a reverse direction by transferring to the Responder Originator rights of the Initiator with the data units of the aggregation.
11. The wireless communication device of claim 10, wherein the medium access controller is capable of transferring back the Originator rights from the Responder within the time slot.
12. The wireless communication device of claim 10, wherein the medium access controller is capable of using a remaining time of the time slot to exchange information incorporated within the aggregation of data units.
13. The wireless communication device of claim 10, wherein the medium access controller is capable of setting a block acknowledge request and a reverse direction flag in the aggregation of data units to enable a transmission of the aggregation of data units in the reverse direction and to transmit the aggregation of data units.
14. The wireless communication device of claim 13, wherein the medium access controller is capable of receiving from the Responder a block acknowledge and a request to continue with the transmission of the aggregation of data units in the reverse direction.
15. The wireless communication device of claim 13, wherein the medium access controller is capable of receiving from the Responder a block acknowledge request and the originator rights.
16. The wireless communication device of claim 13, wherein the medium access controller is capable of delaying for a predetermined time a transmission of the aggregated data following the block acknowledge request transmission.
17. The wireless communication device of claim 13, wherein the medium access controller is capable of expecting to receive a block acknowledge from the Responder, and retransmitting the block acknowledge request after a predetermined delay.
18. The wireless communication device of claim 10, wherein the aggregation of data units comprises:
a data unit including one or more frames, which include at least one bit to control the reverse direction and one or more bits to store a remaining time information of the time slot.
19. A wireless communication system comprising:
an Initiator having a medium access controller capable of allocating a time slot for exchanging one or more transmissions of an aggregation of data units with a Responder, wherein the medium access controller includes a channel access scheme to allocate the time slot for the Responder to transmit the aggregation of data units in a reverse direction within said time slot and to grant to the Responder Originator rights of the Initiator by changing a status of a reverse direction flag in the data units of the aggregation.
20. The wireless communication system of claim 19, wherein the medium access controller of the Initiator is capable of taking back the Originator rights from the responder within said time slot.
21. The wireless communication system of claim 19, wherein the medium access controller of the Initiator is able to use a remaining time of the time slot to exchange information incorporated within the aggregation of data units and to transmit the aggregation of data units.
22. The wireless communication system of claim 19, wherein the medium access controller of the Initiator is capable of setting a block acknowledge request and a reverse direction flag in the aggregation of data units to enable transmission of the aggregation of data units in the reverse direction.
23. The wireless communication system of claim 22, wherein the Initiator is capable of receiving from the Responder a block acknowledge and a request to continue with the transmission of the aggregation of data units in the reverse direction.
24. The wireless communication system of claim 22, wherein the Initiator is capable of receiving from the Responder a block acknowledge request and the Originator rights.
25. The wireless communication system of claim 22, wherein the medium access controller of the Initiator is capable of delaying for a predetermined time a transmission of the block acknowledge.
26. The wireless communication system of claim 22, wherein the medium access controller of the Initiator is capable of expecting to receive a block acknowledge from the Responder; and retransmitting the block acknowledge request after a predetermined delay.
27. The wireless communication system of claim 19, wherein the aggregation of data units comprises:
a data unit that includes one or more frames, which include at least one bit to control the reverse direction and one or more bits to store a remaining time information of the time slot.
28. A wireless communication device comprising:
a transmitter operably coupled to a dipole antenna to transmit an aggregation of data units; and
a medium access controller having a channel access scheme to allocate a time slot for exchanging with a Responder one or more transmissions of an aggregation of data units, and to enable the Responder to transmit the aggregation of data units in a reverse direction within said time slot and to grant Originator rights to the Responder by changing a statues of a reverse direction flag in the data units of the aggregation.
29. The wireless communication device of claim 28, wherein the medium access controller is capable of taking back the originator rights from the Responder within the time slot.
30. The wireless communication device of claim 28, wherein the medium access controller is capable of using a remaining time of the time slot to exchange information incorporated within the aggregation of data units.
31. The wireless communication device of claim 28, wherein the medium access controller is capable of setting a block acknowledge request and a reverse direction flag in the aggregation of data units to enable a transmission of the aggregation of data units in the reverse direction, and transmitting the aggregation of data units.
32. An article comprising a storage medium having stored thereon instructions that when executed, result in:
allocating, based on a channel access scheme of an Initiator, a time slot for exchanging between the Initiator and a Responder one or more transmissions of an aggregation of data units; and
enabling the Responder to transmit the aggregation of data units in a reverse direction by transferring to the Responder Originator rights of the Initiator with the data units of the aggregation.
33. The article of claim 32, wherein the instructions, when executed, result in:
transferring back the Originator rights from the Responder within the time slot.
34. The article of claim 32, wherein the instructions, when executed, result in:
using a remaining time of the time slot to exchange information incorporated within the aggregation of data units for allocating transmission time to the Responder.
35. The article of claim 32, wherein the instructions, when executed, result in:
setting a block acknowledge request and a reverse direction flag in the aggregation of data units to enable transmission of the aggregation of data units in the reverse direction; and
transmitting the aggregation of data units in the reverse direction.
36. The article of claim 35, wherein the instructions, when executed, result in:
receiving from the Responder a block acknowledge and a request to continue with the transmission of the aggregation of data units in the reverse direction.
37. The article of claim 35, wherein the instructions, when executed, result in:
receiving from the Responder a block acknowledge request and the Originator rights.
38. The article of claim 35, wherein the instructions, when executed, result in:
delaying for a predetermined time a transmission of the aggregated data following the block acknowledge transmission.
39. The article of claim 32, wherein the instructions, when executed, result in:
waiting for receiving a block acknowledge from the Responder; and
retransmitting the block acknowledge request after a predetermined delay from receiving the block acknowledge.
US11/394,215 2006-03-31 2006-03-31 Apparatus and method of controlling transmission in reverse direction Active 2029-02-25 US7706397B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/394,215 US7706397B2 (en) 2006-03-31 2006-03-31 Apparatus and method of controlling transmission in reverse direction
PCT/US2007/064730 WO2007117947A1 (en) 2006-03-31 2007-03-22 Apparatus and method of controlling transmission in reverse direction
TW096110775A TWI335749B (en) 2006-03-31 2007-03-28 Apparatus and method of controlling transmission in reverse direction
US12/703,847 US8644293B2 (en) 2006-03-31 2010-02-11 Apparatus and method of controlling transmission in reverse direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/394,215 US7706397B2 (en) 2006-03-31 2006-03-31 Apparatus and method of controlling transmission in reverse direction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/703,847 Continuation US8644293B2 (en) 2006-03-31 2010-02-11 Apparatus and method of controlling transmission in reverse direction

Publications (2)

Publication Number Publication Date
US20070237169A1 true US20070237169A1 (en) 2007-10-11
US7706397B2 US7706397B2 (en) 2010-04-27

Family

ID=38575174

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/394,215 Active 2029-02-25 US7706397B2 (en) 2006-03-31 2006-03-31 Apparatus and method of controlling transmission in reverse direction
US12/703,847 Active 2029-01-24 US8644293B2 (en) 2006-03-31 2010-02-11 Apparatus and method of controlling transmission in reverse direction

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/703,847 Active 2029-01-24 US8644293B2 (en) 2006-03-31 2010-02-11 Apparatus and method of controlling transmission in reverse direction

Country Status (3)

Country Link
US (2) US7706397B2 (en)
TW (1) TWI335749B (en)
WO (1) WO2007117947A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090183238A1 (en) * 2008-01-15 2009-07-16 Axis Ab Method and devices for handling access privileges
US20100131815A1 (en) * 2008-01-15 2010-05-27 Mathilde Benveniste Method and apparatus performing express retransmission of frames
US20130089047A1 (en) * 2011-10-11 2013-04-11 Qualcomm Incorporated Multi-user transmission during reverse direction grant
US20130128814A1 (en) * 2009-08-01 2013-05-23 Robert J. Pera Wireless network communication system and method
JP2014030275A (en) * 2013-11-13 2014-02-13 Toshiba Corp Wireless device
WO2014039140A1 (en) 2012-09-04 2014-03-13 Intel Corporation Device, system and method of communicating data during an allocated time period
US20150098461A1 (en) * 2012-01-11 2015-04-09 Intel Corporation Device, system and method of communicating aggregate data units
US20170195915A1 (en) * 2014-09-19 2017-07-06 Huawei Technologies Co., Ltd. Wireless local area network data transmission method and apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706397B2 (en) * 2006-03-31 2010-04-27 Intel Corporation Apparatus and method of controlling transmission in reverse direction
US20090138603A1 (en) * 2007-11-28 2009-05-28 Qualcomm Incorporated Protection for direct link setup (dls) transmissions in wireless communications systems
JP2009278354A (en) * 2008-05-14 2009-11-26 Sony Corp Communication device, communication method, program and communication system
US8681612B2 (en) * 2010-10-07 2014-03-25 Qualcomm Incorporated Methods and devices to implement a reduced contention period to facilitate channel access for access terminals operating in a wireless communication environment
US8855088B2 (en) * 2010-12-22 2014-10-07 Intel Corporation Reverse protocol for low latency wireless applications
EP2814394A1 (en) 2012-02-13 2014-12-24 Koninklijke Philips N.V. Simplified method for robust estimation of parameter values
US8948081B2 (en) * 2012-04-13 2015-02-03 Intel Corporation Device, system and method of multiple-stream wireless communication
US8904246B2 (en) * 2012-04-27 2014-12-02 International Business Machines Corporation Variable acknowledge rate to reduce bus contention in presence of communication errors
WO2014099030A1 (en) * 2012-12-18 2014-06-26 Intel Corporation Wireless station and methods for tof positioning using reverse-direction grant
US20170141842A1 (en) * 2014-03-29 2017-05-18 Intel IP Corporation Methods and arrangements for power efficient reverse direction communications
US9985901B2 (en) 2015-05-27 2018-05-29 Intel IP Corporation Apparatus, system and method of wireless communication to a plurality of stations
WO2021010664A1 (en) * 2019-07-12 2021-01-21 한국전자통신연구원 Method and apparatus for performing block ack in multiple link of wireless lan communication system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039224A1 (en) * 2001-07-07 2003-02-27 Samsung Electronics Co., Ltd. Data transmitting and receiving method in a mobile communication system
US6683866B1 (en) * 1999-10-29 2004-01-27 Ensemble Communications Inc. Method and apparatus for data transportation and synchronization between MAC and physical layers in a wireless communication system
US20040151126A1 (en) * 2002-11-29 2004-08-05 Kabushiki Kaisha Toshiba Communication system, communication control method and communication control method
US20050285719A1 (en) * 2004-06-24 2005-12-29 Intel Corporation Method and apparatus to manage reverse data flow in a high throughput wireless network
US20050286445A1 (en) * 2004-06-24 2005-12-29 Intel Corporation Method and apparatus to control training for reverse direction data in a high throughput wireless network
US20060029073A1 (en) * 2000-07-07 2006-02-09 Gerard Cervello Collision avoidance in IEEE 802.11 contention free period (CFP) with overlapping basic service sets (BSSs)
US20060083233A1 (en) * 2004-10-19 2006-04-20 Yasuyuki Nishibayashi Communication apparatus and method
US20060227801A1 (en) * 2004-03-26 2006-10-12 Sanjiv Nanda Method and apparatus for an ad-hoc wireless communications system
US20060227733A1 (en) * 2005-03-18 2006-10-12 Airgo Networks, Inc. Efficient wireless transmission opportunity handoff
US7385976B2 (en) * 2004-08-12 2008-06-10 Mitsubishi Electric Research Laboratories, Inc. Method for acknowledging data packets in a network
US7539930B2 (en) * 2005-09-28 2009-05-26 Intel Corporation System, method and apparatus of protecting a wireless transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678941B1 (en) 2004-09-03 2007-02-07 삼성전자주식회사 Method for transceiving data bi-directionally during allocated time and wireless device using the method
US7706397B2 (en) * 2006-03-31 2010-04-27 Intel Corporation Apparatus and method of controlling transmission in reverse direction

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683866B1 (en) * 1999-10-29 2004-01-27 Ensemble Communications Inc. Method and apparatus for data transportation and synchronization between MAC and physical layers in a wireless communication system
US20060029073A1 (en) * 2000-07-07 2006-02-09 Gerard Cervello Collision avoidance in IEEE 802.11 contention free period (CFP) with overlapping basic service sets (BSSs)
US20030039224A1 (en) * 2001-07-07 2003-02-27 Samsung Electronics Co., Ltd. Data transmitting and receiving method in a mobile communication system
US20040151126A1 (en) * 2002-11-29 2004-08-05 Kabushiki Kaisha Toshiba Communication system, communication control method and communication control method
US20060227801A1 (en) * 2004-03-26 2006-10-12 Sanjiv Nanda Method and apparatus for an ad-hoc wireless communications system
US20050285719A1 (en) * 2004-06-24 2005-12-29 Intel Corporation Method and apparatus to manage reverse data flow in a high throughput wireless network
US20050286445A1 (en) * 2004-06-24 2005-12-29 Intel Corporation Method and apparatus to control training for reverse direction data in a high throughput wireless network
US7385976B2 (en) * 2004-08-12 2008-06-10 Mitsubishi Electric Research Laboratories, Inc. Method for acknowledging data packets in a network
US20060083233A1 (en) * 2004-10-19 2006-04-20 Yasuyuki Nishibayashi Communication apparatus and method
US20060227733A1 (en) * 2005-03-18 2006-10-12 Airgo Networks, Inc. Efficient wireless transmission opportunity handoff
US7539930B2 (en) * 2005-09-28 2009-05-26 Intel Corporation System, method and apparatus of protecting a wireless transmission

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131815A1 (en) * 2008-01-15 2010-05-27 Mathilde Benveniste Method and apparatus performing express retransmission of frames
US8301955B2 (en) * 2008-01-15 2012-10-30 Avaya Inc. Method and apparatus performing express retransmission of frames
US20090183238A1 (en) * 2008-01-15 2009-07-16 Axis Ab Method and devices for handling access privileges
US8713643B2 (en) * 2008-01-15 2014-04-29 Axis Ab Method and devices for handling access privileges
US20130128814A1 (en) * 2009-08-01 2013-05-23 Robert J. Pera Wireless network communication system and method
US9241345B2 (en) * 2009-08-01 2016-01-19 Ubiquiti Networks Wireless network communication system and method
US9179476B2 (en) * 2011-10-11 2015-11-03 Qualcomm Incorporated Multi-user transmission during reverse direction grant
US20130089047A1 (en) * 2011-10-11 2013-04-11 Qualcomm Incorporated Multi-user transmission during reverse direction grant
US20150103791A1 (en) * 2012-01-11 2015-04-16 Intel Corporation Device, system and method of communicating aggregate data units
US9712284B2 (en) 2012-01-11 2017-07-18 Intel Corporation Device, system and method of communicating aggregate data units
US20150098461A1 (en) * 2012-01-11 2015-04-09 Intel Corporation Device, system and method of communicating aggregate data units
US9219578B2 (en) * 2012-01-11 2015-12-22 Intel Corporation Device, system and method of communicating aggregate data units
US9325455B2 (en) * 2012-01-11 2016-04-26 Intel Corporation Device, system and method of communicating aggregate data units
WO2014039140A1 (en) 2012-09-04 2014-03-13 Intel Corporation Device, system and method of communicating data during an allocated time period
EP2893761A4 (en) * 2012-09-04 2016-04-13 Intel Corp Device, system and method of communicating data during an allocated time period
JP2014030275A (en) * 2013-11-13 2014-02-13 Toshiba Corp Wireless device
US20170195915A1 (en) * 2014-09-19 2017-07-06 Huawei Technologies Co., Ltd. Wireless local area network data transmission method and apparatus
US10893438B2 (en) * 2014-09-19 2021-01-12 Huawei Technologies Co., Ltd. Wireless local area network data transmission method and apparatus
US11223973B2 (en) * 2014-09-19 2022-01-11 Huawei Technologies Co., Ltd. Wireless local area network data transmission method and apparatus
US11870623B2 (en) 2014-09-19 2024-01-09 Huawei Technologies Co., Ltd. Wireless local area network data transmission method and apparatus

Also Published As

Publication number Publication date
TWI335749B (en) 2011-01-01
TW200803378A (en) 2008-01-01
US7706397B2 (en) 2010-04-27
WO2007117947A1 (en) 2007-10-18
US20100182990A1 (en) 2010-07-22
US8644293B2 (en) 2014-02-04

Similar Documents

Publication Publication Date Title
US7706397B2 (en) Apparatus and method of controlling transmission in reverse direction
US10548154B2 (en) Uplink multi-user transmission method in wireless LAN system and apparatus therefor
USRE47579E1 (en) Method and apparatus for transmitting control frame to hidden node in wireless LAN
US9295074B2 (en) Acknowledgement, error recovery and backoff operation of uplink multi-user multiple-input-multiple-output communication in wireless networks
US8457087B2 (en) Method and apparatus to enable multiple receivers
US9634811B2 (en) Access point and method for communicating with stations in accordance with a multiple-access technique
US9131399B2 (en) Control data unit format for WLAN
US8588122B2 (en) Method of transmitting data to multi destinations in wireless LAN system
US20070171933A1 (en) Medium access control and physical layer headers for high throughput data in wlan systems
US20130294373A1 (en) Radio system, radio base station and radio terminal
US7502383B2 (en) Apparatus and method of controlling transmission of response frame
JP5335918B2 (en) System and method for providing scheduled legacy protection frames
JP4110522B2 (en) Wireless communication apparatus and communication control method
JP2023043892A (en) Station device and communication method
US20200267766A1 (en) Signaling individualized transmission duration threshold for rts/cts
JP2006261984A (en) Communication method
US10582449B2 (en) Intra-PDDU power saving in WLAN
US9839008B2 (en) Avoiding extended interframe space
US20210321458A1 (en) Signaling individualized transmission duration threshold for rts/cts
WO2006121432A1 (en) Method and apparatus to enable multiple receivers
WO2023276907A1 (en) Communication device
JP2023043893A (en) Station device and communication method
JP2023043894A (en) Station device and communication method

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRAININ, SOLOMON B;STEPHENS, ADRIAN;REEL/FRAME:020114/0235

Effective date: 20060522

Owner name: INTEL CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRAININ, SOLOMON B;STEPHENS, ADRIAN;REEL/FRAME:020114/0235

Effective date: 20060522

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: APPLE INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEL CORPORATION;REEL/FRAME:052414/0001

Effective date: 20191130

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12