US20070212211A1 - Cross flow fan apparatus, electronic apparatus and impeller - Google Patents

Cross flow fan apparatus, electronic apparatus and impeller Download PDF

Info

Publication number
US20070212211A1
US20070212211A1 US11/682,785 US68278507A US2007212211A1 US 20070212211 A1 US20070212211 A1 US 20070212211A1 US 68278507 A US68278507 A US 68278507A US 2007212211 A1 US2007212211 A1 US 2007212211A1
Authority
US
United States
Prior art keywords
impeller
flow fan
cross flow
fan apparatus
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/682,785
Inventor
Makoto Chiyoda
Yuji Shishido
Takashi Mochida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Chiyoda, Makoto, MOCHIDA, TAKASHI, SHISHIDO, YUJI
Publication of US20070212211A1 publication Critical patent/US20070212211A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans

Definitions

  • the present disclosure relates to a cross flow fan which sends air in a direction substantially orthogonal to a rotating shaft of a motor. It also relates to an electronic apparatus in which such cross flow fan is installed, and an impeller to which the cross flow fan is mounted.
  • a type of fan called a cross flow fan which blows air in a direction substantially orthogonal to a rotating shaft of a motor is used mainly in an air conditioner.
  • the cross flow fan is also used in an air curtain device since it produces an air current in a form of a plane substantially parallel to the rotating shaft of the motor.
  • the rotating shaft of the motor is attached to one end of the fan body (impeller) and a rotating shaft, which is coaxial with the rotating shaft of the motor, is rotatably supported by a bearing at the other end of the fan body opposite to the rotating shaft of the motor.
  • a cross flow fan is generally assembled using sheet metal, so that an unbalance of rotation tends to occur while the fan body is rotating. For this reason, as recited in Japanese Patent Application Laid-Open publication No. 2002-243193 (see FIG. 4 ) and Japanese Patent Application Laid-Open publication No. Hei 11-141907 (see FIG. 2 ), stabilization of rotation is pursued by supporting the fan body with bearings respectively at both sides of the fan body.
  • a cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction.
  • the cross flow fan apparatus also includes a motor, having a rotating shaft provided along the predetermined direction, which drives to rotate the impeller.
  • the cross flow fan apparatus has a supporting body that supports the motor such that the impeller is cantilevered by the rotating shaft.
  • the rotating shaft of the motor cantilevers the impeller.
  • the number of component parts is reduced in comparison to a cross flow fan of a related art type in which the impeller is supported with bearings respectively at both sides thereof.
  • the manufacturing of the cross flow fan apparatus is simplified, and the manufacturing cost is reduced.
  • the impeller is made of a resin, the impeller is reduced in weight. As a result, even though the impeller is cantilevered, the rotation of the impeller is steady with less unbalance.
  • the impeller may have a joint portion that joins the plurality of blades at both ends thereof and the joint portion may be integrally molded with each of the plurality of blades.
  • the impeller of a related-art is manufactured by attaching each one of the blades to joint plates provided respectively at both sides of the plurality of blades.
  • the impeller of the present embodiment is integrally molded, the manufacturing process is made significantly simpler than before. Also, as the accuracy in the dimensions and form of the impeller improves, the unbalance of the rotation of the impeller is reduced, which results in accomplishment of steady rotation.
  • the motor has a fluid bearing that supports the rotating shaft. This configuration increases the rigidity of the rotating shaft and the bearing, thus the wobbling of the rotating shaft can be suppressed which enables even more steady rotation.
  • the cross flow fan apparatus further includes a supporting mechanism, disposed at a position opposite to the position where the motor is disposed and supports the impeller in a non contact manner.
  • the supporting mechanism may have both a shaft member made of a magnetic material attached to the impeller coaxially with the rotating shaft, and a magnet disposed on a supporting body and placed near the shaft member.
  • the magnet may be attached to the impeller while the supporting body is provided with a magnetic body.
  • the blades are arranged in a ring shape.
  • the impeller has a ring-shaped joint plate disposed at a position opposite to the position where the motor is disposed and joins each of the plurality of blades together.
  • the cross flow fan apparatus further includes a projecting member, being disposed in the supporting body such that to penetrate into an area surrounded by the blades from an outside of the impeller through an inside of the ring-shaped joint plate. Even if the rotating shaft wobbles, the joint plate is brought into contact with the projecting member that serves as a stopper. As a result, the impeller as a whole does not wobble largely.
  • each of the blades has a first main face, being a flat surface and disposed parallel to the direction of the rotating shaft.
  • each of the blades has a second main face, being a flat surface, parallel to the direction of the rotating shaft and opposite to the first main face. Accordingly, the impeller can be stripped off quite easily out of the molding die used for manufacturing the impeller. Additionally, when the second main face is disposed at angle to the first main face, the amount of air blown by the impeller can be increased.
  • impeller includes an engaging portion for joining a plurality of the impellers together in the predetermined direction.
  • the plurality of impellers can be joined together, and an impeller, or a blade, with a desired length can be achieved.
  • a cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction, a first side in the predetermined direction, and a second side opposite to the first side.
  • the cross flow fan apparatus also includes a pivot shaft attached to the first side of the impeller, and disposed along the predetermined direction.
  • the cross flow fan apparatus includes a motor having a rotating shaft a motor, having a rotating shaft being coaxial with the pivot shaft and supporting the impeller at the second side, which drives to rotate the impeller.
  • the cross flow fan apparatus includes a supporting body that supports the motor, having a seating surface for pivot where a tip end of the pivot shaft is in contact.
  • the cross flow fan apparatus has a simple structure in which one side of the impeller is provided with only the seating surface for pivot where the tip end of the pivot shaft is in contact instead of a bearing.
  • the cross flow fan apparatus of a related art is structured such that to have two bearings provided respectively to both sides of the impeller. With this configuration, not only the steady rotation of the impeller is realized but also the impeller may be manufactured more easily, leading to reduction in manufacturing cost.
  • the seating surface for pivot may be a flat surface or a curved surface.
  • An electronic apparatus includes a heat generator and a cross flow fan apparatus.
  • the cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction, a motor that drives to rotate the impeller and a supporting body that supports the motor such that the impeller is cantilevered by the rotating shaft.
  • the electronic apparatus of the embodiment further includes a casing in which the heat generator and the cross flow fan apparatus are disposed.
  • An electronic apparatus includes a heat generator and a cross flow fan apparatus.
  • the cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction, a first side in the predetermined direction, and a second side opposite to the first side.
  • the cross flow fan apparatus also includes a pivot shaft attached to the first side of the impeller and disposed along the predetermined direction.
  • the cross flow fan apparatus also includes a motor, having a rotating shaft being coaxial with the pivot shaft and supporting the impeller at the second side which drives to rotate the impeller, and a supporting body which supports the motor, having a seating surface for pivot where a tip end of the pivot shaft is in contact.
  • the electronic apparatus includes a casing in which the heat generator and the cross flow fan apparatus are disposed.
  • An impeller includes a plurality of blades extending in a predetermined direction and a joint member that joins the blades together.
  • Each of the blades has a first main face, being a flat surface, and disposed in the predetermined direction and a second main face, being a flat surface, and disposed approximately parallel to the direction of the rotating shaft and opposite to the first main face.
  • the manufacturing of the cross flow fan apparatus is simplified, thus lowering the manufacturing cost.
  • FIG. 1 is a perspective view illustrating an impeller to be mounted on a cross flow fan apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating the cross flow fan apparatus on which the impeller of FIG. 1 is mounted.
  • FIG. 3 is a cross-sectional view illustrating an impeller manufactured by integral molding.
  • FIG. 4 is a cross-sectional view of the impeller shown in FIG. 3 , taken along the line A-A.
  • FIG. 5 is a cross-sectional view illustrating a cross flow fan apparatus according to another embodiment.
  • FIG. 6 is a cross-sectional view illustrating a part of a cross flow fan apparatus according to yet another embodiment.
  • FIG. 7 is a cross-sectional view of the cross flow fan apparatus shown in FIG. 6 , taken along the line B-B.
  • FIG. 8 is a cross-sectional view illustrating a part of a cross flow fan apparatus according to another embodiment.
  • FIG. 9 is a cross-sectional view illustrating a modified example of the cross flow fan apparatus shown in FIG. 8 .
  • FIG. 10 is a cross-sectional view illustrating an impeller according to another embodiment.
  • FIG. 11 is a perspective view illustrating how the impellers shown in FIG. 10 are connected to one another.
  • FIG. 12 is a schematic cross-sectional view illustrating a flat panel display as an example of an electronic apparatus, in which one of the cross flow fan apparatuses is installed, according to the corresponding one of the embodiments.
  • FIG. 1 is a perspective view showing an impeller to be mounted on a cross flow fan apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the cross flow fan apparatus on which the impeller of FIG. 1 is mounted.
  • An impeller 5 has a plurality of blades 1 extending in a predetermined direction.
  • Joint members 2 and 3 being, for example, disc-shaped, join the blades 1 together so that the plurality of blades 1 , are disposed side by side and equidistant to each other.
  • a boss portion 2 a is provided to the center of the joint member 2 .
  • a rotating shaft 7 of a motor 6 is attached to the boss portion 2 a .
  • Each of the plurality of blade 1 extends in the axial direction of the rotating shaft 7 (a Y-direction).
  • the motor 6 has a stator 11 and a rotor 12 .
  • the stator 11 has a bearing 9 rotatably supporting the rotating shaft 7 and a coil 8 arranged around the bearing 9 .
  • the rotor 12 is attached to the rotating shaft 7 and a magnet 4 is fixed to the rotor 12 .
  • An example of the bearing 9 is a fluid journal bearing, or a fluid dynamic bearing.
  • the bearing 9 is structured such that a sleeve member 15 is being housed in a housing 14 .
  • a dynamic pressure groove (not shown) is formed in an inner circumference of the sleeve member 15 .
  • a fluid, such as oil, is filled in an interstice between the sleeve member 15 and the rotating shaft 7 .
  • the sleeve member 15 may be formed of an oil-impregnated sintered metal.
  • Use of such a fluid dynamic bearing makes the rotating shaft 7 and the bearing 9 more rigid and the wobbling of the rotating shaft 7 can be suppressed. As a result, a steady rotation can be achieved.
  • the bearing used here should not necessarily be a fluid dynamic bearing and a ball bearing may be used instead.
  • a supporting body 16 supports the motor 6 so that the motor 6 supports the impeller 5 cantilevered at one end thereof by the rotating shaft 7 .
  • motor 6 is fixed to the supporting body 16 with screws 13 or the like.
  • a cross flow fan apparatus 10 with a configuration described above blows air in the following way.
  • Rotation of the impeller 5 driven by the motor 6 generates a difference in pressure around each of the plurality of blades 1 that causes air to move from the outside of the impeller 5 to the inside (i.e. the area surrounded by the blades 1 ) and then to the outside of the impeller 5 .
  • the angle or the shape of the main face of the blade 1 is designed so that the air came inside the impeller 5 can be blown to the outside again.
  • the rotating shaft 7 of the motor 6 supports the impeller 5 cantilevered at one end.
  • the cross flow fan apparatus 10 can be produced more easily at lower manufacturing costs than the cross flow fan of a related art in which an impeller is supported by bearings provided at both ends of the impeller, since it requires a lower number of component parts.
  • the cross flow fan apparatus 10 becomes very advantageous to other cross flow fans of related art.
  • Such an impeller 5 is lighter in weight and is less unbalanced thus can rotate more stably even it is cantilevered.
  • This embodiment is also effective in a case where the impeller 5 is compact.
  • FIGS. 3 and 4 An example of the integrally molded impeller is shown in FIGS. 3 and 4 .
  • FIG. 3 is a cross-sectional view showing the integrally molded impeller 25 .
  • FIG. 4 is a cross-sectional view of the impeller 25 , taken along the line A-A in FIG. 3 . In FIG. 4 , the rotating direction is indicated with an arrow R.
  • Each of the blades 25 c of the impeller 25 has a first main face 25 d and a second main face 25 e which is provided to an opposite side of the first main face 25 d .
  • Both of the main faces 25 d and 25 e is a flat surface.
  • Shaping the main faces 25 d and 25 e to be flat surfaces has an advantage where, after the casting, the flat surfaces allow an easier operation in stripping the molding die off.
  • the molding die which is divided into the numbers of the blades 25 c can be removed by just pulling them out in a linear motion along a direction indicated by arrows “a” in FIG. 4 . In a case of an impeller of a related-art with curved blades, such an easy operation in stripping off the molding die is difficult.
  • joint plates 25 a and 25 b which join the blades 25 c together, can be formed integrally with the blades 25 c .
  • a boss portion 25 f is formed in the center of the joint plate 25 a , and allows the rotating shaft 7 of the motor 6 to be inserted thereinto.
  • the second main face 25 e is at angle to the first main face 25 d .
  • the first and the second main face 25 d and 25 e are connected to an outer circumferential face 25 g , and are also connected to an inner circumferential face 25 h .
  • Each of the outer and the inner circumferential faces 25 g and 25 h is shaped, for example, in an arc (or in a curved surface), but may be formed in flat faces.
  • the angular aperture ⁇ of the blade 25 c should necessarily be ⁇ (360°/n) where “n” is the number of blades 25 c .
  • n is the number of blades 25 c .
  • an impeller is manufactured by attaching blades, one by one, to the joint plates located respectively on both sides of each blade.
  • the impeller 25 being formed integrally, the process of manufacturing the impeller 25 is simplified significantly. Furthermore, since the accuracy in dimension and form of the impeller 25 improves by integral molding, it does not have to be processed manually after the molding, which leads to reduction in unbalanced rotation of the impeller 25 , thus enables steady rotation. With the steady rotation, the advantage of the cantilever structure described above can be achieved more fully in particular. In other words, the impeller 25 can be rotated steadily even with a cantilever structure.
  • the integrally-molded impeller 25 can be manufactured with ease, even if the diameter of the impeller 25 (the diameter of each of the joint plates 25 a and 25 b shown in FIG. 4 ) is not more than 25 mm.
  • FIG. 5 is a cross-sectional view illustrating a cross flow fan apparatus according to another embodiment.
  • descriptions concerning members and functions similar to those of the cross flow fan apparatus 10 of the embodiment shown in FIG. 2 will be given only briefly, or be omitted. Thus, the descriptions focus on the difference thereof with the embodiment shown in FIG. 2 .
  • a cross flow fan apparatus 20 has a supporting mechanism 21 that supports an impeller 35 in a non-contact manner.
  • the supporting mechanism 21 is provided to a side of the impeller 35 where a joint plate 35 b is provided, which is opposite to the side where a motor 6 is placed (i.e. where a joint plate 35 a is provided).
  • the supporting mechanism 21 has a pivot shaft 22 attached to the impeller 35 coaxially with the rotating shaft 7 of the motor 6 and a magnet 23 fixed to a supporting body 26 and disposed near the pivot shaft 22 .
  • the pivot shaft 22 is attached to a boss portion 35 d of the joint plate 35 b .
  • the shape of the magnet 23 is not limited to the form shown in FIG. 5 but it may be, for example, a ring shape surrounding the pivot shaft 22 , or an arc-block shape that constitutes a part of the ring.
  • reference numeral 35 c is a blade.
  • the pivot shaft 22 is made of a magnetic material, such as iron or nickel, a magnetic attraction from the magnet 23 acts on the pivot shaft 22 .
  • a load in a radial direction of the pivot shaft 22 i.e. a direction in a Y-Z plane
  • wobbling and whirl phenomena that would otherwise be caused by the unbalance can be suppressed.
  • FIG. 6 is a cross-sectional view illustrating a cross flow fan apparatus according to another embodiment.
  • FIG. 7 is a cross-sectional view of the cross flow fan apparatus taken along the line B-B in FIG. 7 .
  • the supporting body 36 has a side plate 36 a to which projecting members 37 are provided.
  • the side plate 36 a may be a part of the supporting body 36 as shown in FIG. 6 , or a separate member fixed to the supporting body 36 .
  • the projecting members 37 may be formed by flanging of sheet metal, or by molding.
  • An impeller 45 has a joint plate 45 a on a side where a motor 6 is placed, and has another joint plate 45 b on a side opposite the joint plate 45 a .
  • a hole 45 d is formed in the joint plate 45 b .
  • a projecting member 37 extends from the outside of the impeller 45 through the hole 45 d in the joint plate 45 b , and penetrates into an area E surrounded by blades 45 c (see FIG. 7 ).
  • a plurality of projecting members 37 are provided.
  • the number of the projecting members 37 may be just one.
  • the projecting members 37 may be arranged with regular intervals in a ring shape as shown in FIG. 7 but they may not always be arranged in the regular intervals.
  • the inner circumferential portion (hole) 45 d is brought into contact with the projecting member 37 that serves as a stopper.
  • the impeller 45 as a whole does not wobble greatly.
  • FIG. 8 is a cross-sectional view illustrating a part of a cross flow fan apparatus 40 according to another embodiment.
  • the cross flow fan apparatus 40 has a supporting body 46 , and a pressing member 41 is attached to the supporting body 46 .
  • the pressing member 41 presses a pivot shaft 42 in an axial direction with a force F.
  • the pressing member 41 has a seating surface for a pivot 41 a .
  • the tip end 42 a of the pivot shaft 42 is in contact with the seating surface 41 a .
  • This pressing member 41 is made of metal, resin, rubber, or the like.
  • the cross flow fan apparatus 40 has a structure in which just the seating surface 41 a for pivot, with which the tip end 42 a of the pivot shaft 42 is in contact, is provided as described above.
  • the structure of the cross flow fan apparatus 40 according to an embodiment is simpler than that of a cross flow fan of a related art with a configuration in which bearings are provided respectively to both sides of an impeller. As a result, besides the steady rotation of the impeller 35 , manufacturing of the impeller becomes easier and the cost can be reduced.
  • a modified example of the pressing member is a pressing member 43 with a curved seating surface for a pivot 43 a as in a cross flow fan apparatus 50 illustrated in FIG. 9 .
  • the curved surface is a spherical surface, an ellipsoidal surface, a hyperbolic surface, a parabolic surface, or the like. A combination of these surfaces may serve for the purpose.
  • FIG. 10 is a cross-sectional view illustrating an impeller according to another embodiment.
  • An engaging projection 55 d and an engaging groove 55 e are provided to an impeller 55 .
  • three of the engaging projections 55 d are formed with 120° intervals on a ring-shaped joint plate 55 b .
  • the engaging groove 55 e is formed in size that the corresponding engaging projection to be fitted thereinto.
  • Three of the engaging grooves 55 e are formed, for example, with 120° intervals on the ring-shaped joint plate 55 b .
  • An angular interval between one of the engaging projections 55 d and the adjacent one of the engaging grooves is set, for example, at 60°.
  • engaging projections 55 d and engaging grooves 55 e are formed on a joint plate 55 a placed on a side opposite to the joint plate 55 b .
  • the impellers 55 can be joined to one another in multiple rows in a direction of the rotational axis, as shown in FIG. 11 , and an impeller (or a blade) with a desired length can be achieved.
  • the arrangement of the engaging projections 55 d and engaging grooves 55 e formed on the joint plate 55 b is deviated from the arrangement of the engaging projections 55 d and engaging grooves 55 e formed on the joint plate 55 a by 60°. Accordingly, the plurality of impellers 55 can be joined together.
  • FIG. 12 is a schematic cross-sectional view illustrating an electronic apparatus in which any one of the cross flow fan apparatuses 10 , 20 and the like is disposed.
  • an electronic apparatus 100 for example, a flat panel display (FPD) apparatus, such as a liquid crystal display, is illustrated.
  • a fan 104 , a cross flow fan apparatus 10 , a display panel 102 , and other component parts 103 such as a power supply are placed in a casing 101 of the FPD apparatus 100 .
  • the display panel 102 has a circuit board that generates heat. The heat generated by the display panel 102 is kept in the casing 101 . Air from the outside is taken into the casing 101 by the fan 104 and as the cross flow fan apparatus 10 operates, air containing the heat is exhausted through, for example, an exhaust port 101 a formed in the casing 101 .
  • the length of the cross flow fan apparatus 10 along the direction X can be designed as appropriate, for example, in FIG. 12 , the length can be designed according to the length along the lateral direction of the casing 101 of the display 100 A.
  • “display” here includes a plasma display, a plasma address liquid crystal display, light emitting diode (LED) display, a field emission display (FED), a surface-conduction electron-emitter display (SED), an electro-luminescence (EL) display (including both organic and non-organic type thereof), and the like.
  • a possible embodiment is a combination of the embodiment shown in FIG. 5 to which the non-contact supporting mechanism 21 is provided and the embodiment shown in FIGS. 6 and 7 to which the projecting member 37 is provided.
  • Another possible embodiment is a combination of the embodiment shown in FIGS. 6 and 7 to which the projecting member 37 is provided and the embodiment shown in FIG. 8 or FIG. 9 to which the pressing member 41 or the like is provided.
  • impellers 5 or the like described in each of the embodiments described above may or may not be integrally-molded unless otherwise specified.
  • the electronic apparatus 100 shown in FIG. 12 is not limited to a display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A cross flow fan apparatus is provided. The cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction, a motor, having a rotating shaft provided along the predetermined direction, which drives to rotate the impeller and a supporting body which supports the motor such that the impeller is cantilevered by the rotating shaft.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • The present application claims priority to Japanese Patent Application JP 2006-064134 filed in the Japanese Patent Office on Mar. 9, 2006, the entire contents of which being incorporated herein by reference.
  • BACKGROUND
  • The present disclosure relates to a cross flow fan which sends air in a direction substantially orthogonal to a rotating shaft of a motor. It also relates to an electronic apparatus in which such cross flow fan is installed, and an impeller to which the cross flow fan is mounted.
  • In related art, a type of fan called a cross flow fan which blows air in a direction substantially orthogonal to a rotating shaft of a motor is used mainly in an air conditioner. The cross flow fan is also used in an air curtain device since it produces an air current in a form of a plane substantially parallel to the rotating shaft of the motor.
  • According to the cross flow fan of this kind, the rotating shaft of the motor is attached to one end of the fan body (impeller) and a rotating shaft, which is coaxial with the rotating shaft of the motor, is rotatably supported by a bearing at the other end of the fan body opposite to the rotating shaft of the motor. Such a cross flow fan is generally assembled using sheet metal, so that an unbalance of rotation tends to occur while the fan body is rotating. For this reason, as recited in Japanese Patent Application Laid-Open publication No. 2002-243193 (see FIG. 4) and Japanese Patent Application Laid-Open publication No. Hei 11-141907 (see FIG. 2), stabilization of rotation is pursued by supporting the fan body with bearings respectively at both sides of the fan body.
  • However, the case where the bearings are provided at both sides of the fan body requires an accurate centering of rotating shafts which renders the manufacturing of the cross flow fan difficult. Additionally, the manufacturing cost increases as the both bearings are to be provided at both sides.
  • In view of the forgoing it would be desirable to provide a cross flow fan apparatus and an electronic apparatus that is manufactured more easily and at less cost.
  • SUMMARY
  • A cross flow fan apparatus according to an embodiment includes an impeller having a plurality of blades extending in a predetermined direction. The cross flow fan apparatus also includes a motor, having a rotating shaft provided along the predetermined direction, which drives to rotate the impeller. Furthermore, the cross flow fan apparatus has a supporting body that supports the motor such that the impeller is cantilevered by the rotating shaft.
  • According to an embodiment, the rotating shaft of the motor cantilevers the impeller. Thus, the number of component parts is reduced in comparison to a cross flow fan of a related art type in which the impeller is supported with bearings respectively at both sides thereof. As a result, the manufacturing of the cross flow fan apparatus is simplified, and the manufacturing cost is reduced.
  • In particular, because the impeller is made of a resin, the impeller is reduced in weight. As a result, even though the impeller is cantilevered, the rotation of the impeller is steady with less unbalance. In such case, the impeller may have a joint portion that joins the plurality of blades at both ends thereof and the joint portion may be integrally molded with each of the plurality of blades. In other words, the impeller of a related-art is manufactured by attaching each one of the blades to joint plates provided respectively at both sides of the plurality of blades. However, because the impeller of the present embodiment is integrally molded, the manufacturing process is made significantly simpler than before. Also, as the accuracy in the dimensions and form of the impeller improves, the unbalance of the rotation of the impeller is reduced, which results in accomplishment of steady rotation.
  • In an embodiment, the motor has a fluid bearing that supports the rotating shaft. This configuration increases the rigidity of the rotating shaft and the bearing, thus the wobbling of the rotating shaft can be suppressed which enables even more steady rotation.
  • In an embodiment, the cross flow fan apparatus further includes a supporting mechanism, disposed at a position opposite to the position where the motor is disposed and supports the impeller in a non contact manner. With this configuration, load is constantly applied in a radial direction of the bearing as the impeller is being kept in the non-contact state. As a result, wobbling and whirl phenomena that are caused due to unbalancing of the impeller can be suppressed.
  • For example, the supporting mechanism may have both a shaft member made of a magnetic material attached to the impeller coaxially with the rotating shaft, and a magnet disposed on a supporting body and placed near the shaft member. Alternatively, the magnet may be attached to the impeller while the supporting body is provided with a magnetic body.
  • In an embodiment, the blades are arranged in a ring shape. The impeller has a ring-shaped joint plate disposed at a position opposite to the position where the motor is disposed and joins each of the plurality of blades together. The cross flow fan apparatus further includes a projecting member, being disposed in the supporting body such that to penetrate into an area surrounded by the blades from an outside of the impeller through an inside of the ring-shaped joint plate. Even if the rotating shaft wobbles, the joint plate is brought into contact with the projecting member that serves as a stopper. As a result, the impeller as a whole does not wobble largely.
  • In an embodiment, each of the blades has a first main face, being a flat surface and disposed parallel to the direction of the rotating shaft. In addition, each of the blades has a second main face, being a flat surface, parallel to the direction of the rotating shaft and opposite to the first main face. Accordingly, the impeller can be stripped off quite easily out of the molding die used for manufacturing the impeller. Additionally, when the second main face is disposed at angle to the first main face, the amount of air blown by the impeller can be increased.
  • In an embodiment, impeller includes an engaging portion for joining a plurality of the impellers together in the predetermined direction. With this configuration, the plurality of impellers can be joined together, and an impeller, or a blade, with a desired length can be achieved.
  • A cross flow fan apparatus according to an embodiment includes an impeller having a plurality of blades extending in a predetermined direction, a first side in the predetermined direction, and a second side opposite to the first side. The cross flow fan apparatus also includes a pivot shaft attached to the first side of the impeller, and disposed along the predetermined direction. Moreover, the cross flow fan apparatus includes a motor having a rotating shaft a motor, having a rotating shaft being coaxial with the pivot shaft and supporting the impeller at the second side, which drives to rotate the impeller. Furthermore, the cross flow fan apparatus includes a supporting body that supports the motor, having a seating surface for pivot where a tip end of the pivot shaft is in contact.
  • The cross flow fan apparatus according to an embodiment has a simple structure in which one side of the impeller is provided with only the seating surface for pivot where the tip end of the pivot shaft is in contact instead of a bearing. In contrast, the cross flow fan apparatus of a related art is structured such that to have two bearings provided respectively to both sides of the impeller. With this configuration, not only the steady rotation of the impeller is realized but also the impeller may be manufactured more easily, leading to reduction in manufacturing cost.
  • According to an embodiment, the seating surface for pivot may be a flat surface or a curved surface.
  • An electronic apparatus according to an embodiment includes a heat generator and a cross flow fan apparatus. The cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction, a motor that drives to rotate the impeller and a supporting body that supports the motor such that the impeller is cantilevered by the rotating shaft. The electronic apparatus of the embodiment further includes a casing in which the heat generator and the cross flow fan apparatus are disposed.
  • An electronic apparatus according to an embodiment includes a heat generator and a cross flow fan apparatus. The cross flow fan apparatus includes an impeller having a plurality of blades extending in a predetermined direction, a first side in the predetermined direction, and a second side opposite to the first side. The cross flow fan apparatus also includes a pivot shaft attached to the first side of the impeller and disposed along the predetermined direction. The cross flow fan apparatus also includes a motor, having a rotating shaft being coaxial with the pivot shaft and supporting the impeller at the second side which drives to rotate the impeller, and a supporting body which supports the motor, having a seating surface for pivot where a tip end of the pivot shaft is in contact. The electronic apparatus includes a casing in which the heat generator and the cross flow fan apparatus are disposed.
  • An impeller according to an embodiment includes a plurality of blades extending in a predetermined direction and a joint member that joins the blades together. Each of the blades has a first main face, being a flat surface, and disposed in the predetermined direction and a second main face, being a flat surface, and disposed approximately parallel to the direction of the rotating shaft and opposite to the first main face.
  • As described above, according to embodiments, the manufacturing of the cross flow fan apparatus is simplified, thus lowering the manufacturing cost.
  • Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a perspective view illustrating an impeller to be mounted on a cross flow fan apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating the cross flow fan apparatus on which the impeller of FIG. 1 is mounted.
  • FIG. 3 is a cross-sectional view illustrating an impeller manufactured by integral molding.
  • FIG. 4 is a cross-sectional view of the impeller shown in FIG. 3, taken along the line A-A.
  • FIG. 5 is a cross-sectional view illustrating a cross flow fan apparatus according to another embodiment.
  • FIG. 6 is a cross-sectional view illustrating a part of a cross flow fan apparatus according to yet another embodiment.
  • FIG. 7 is a cross-sectional view of the cross flow fan apparatus shown in FIG. 6, taken along the line B-B.
  • FIG. 8 is a cross-sectional view illustrating a part of a cross flow fan apparatus according to another embodiment.
  • FIG. 9 is a cross-sectional view illustrating a modified example of the cross flow fan apparatus shown in FIG. 8.
  • FIG. 10 is a cross-sectional view illustrating an impeller according to another embodiment.
  • FIG. 11 is a perspective view illustrating how the impellers shown in FIG. 10 are connected to one another.
  • FIG. 12 is a schematic cross-sectional view illustrating a flat panel display as an example of an electronic apparatus, in which one of the cross flow fan apparatuses is installed, according to the corresponding one of the embodiments.
  • DETAILED DESCRIPTION
  • Embodiments are described below with reference to the drawings.
  • FIG. 1 is a perspective view showing an impeller to be mounted on a cross flow fan apparatus according to an embodiment. FIG. 2 is a cross-sectional view showing the cross flow fan apparatus on which the impeller of FIG. 1 is mounted.
  • An impeller 5 has a plurality of blades 1 extending in a predetermined direction. Joint members 2 and 3, being, for example, disc-shaped, join the blades 1 together so that the plurality of blades 1, are disposed side by side and equidistant to each other. A boss portion 2 a is provided to the center of the joint member 2. A rotating shaft 7 of a motor 6 is attached to the boss portion 2 a. Each of the plurality of blade 1 extends in the axial direction of the rotating shaft 7 (a Y-direction).
  • The motor 6 has a stator 11 and a rotor 12. The stator 11 has a bearing 9 rotatably supporting the rotating shaft 7 and a coil 8 arranged around the bearing 9. The rotor 12 is attached to the rotating shaft 7 and a magnet 4 is fixed to the rotor 12.
  • An example of the bearing 9 is a fluid journal bearing, or a fluid dynamic bearing. Specifically, the bearing 9 is structured such that a sleeve member 15 is being housed in a housing 14. A dynamic pressure groove (not shown) is formed in an inner circumference of the sleeve member 15. A fluid, such as oil, is filled in an interstice between the sleeve member 15 and the rotating shaft 7. Alternatively, the sleeve member 15 may be formed of an oil-impregnated sintered metal. Use of such a fluid dynamic bearing makes the rotating shaft 7 and the bearing 9 more rigid and the wobbling of the rotating shaft 7 can be suppressed. As a result, a steady rotation can be achieved. The bearing used here should not necessarily be a fluid dynamic bearing and a ball bearing may be used instead.
  • A supporting body 16 supports the motor 6 so that the motor 6 supports the impeller 5 cantilevered at one end thereof by the rotating shaft 7. Specifically, motor 6 is fixed to the supporting body 16 with screws 13 or the like.
  • A cross flow fan apparatus 10 with a configuration described above blows air in the following way. Rotation of the impeller 5 driven by the motor 6 generates a difference in pressure around each of the plurality of blades 1 that causes air to move from the outside of the impeller 5 to the inside (i.e. the area surrounded by the blades 1) and then to the outside of the impeller 5. For example, the angle or the shape of the main face of the blade 1 is designed so that the air came inside the impeller 5 can be blown to the outside again.
  • As described above, according to the cross flow fan apparatus 10 of this embodiment, the rotating shaft 7 of the motor 6 supports the impeller 5 cantilevered at one end. As a result, the cross flow fan apparatus 10 can be produced more easily at lower manufacturing costs than the cross flow fan of a related art in which an impeller is supported by bearings provided at both ends of the impeller, since it requires a lower number of component parts.
  • Especially when the impeller 5 is made of resin, the cross flow fan apparatus 10 becomes very advantageous to other cross flow fans of related art. Such an impeller 5 is lighter in weight and is less unbalanced thus can rotate more stably even it is cantilevered. This embodiment is also effective in a case where the impeller 5 is compact.
  • If the impeller 5 were to be made of resin, it is possible to be manufactured by integral molding. An example of the integrally molded impeller is shown in FIGS. 3 and 4. FIG. 3 is a cross-sectional view showing the integrally molded impeller 25. FIG. 4 is a cross-sectional view of the impeller 25, taken along the line A-A in FIG. 3. In FIG. 4, the rotating direction is indicated with an arrow R.
  • Each of the blades 25 c of the impeller 25 has a first main face 25 d and a second main face 25 e which is provided to an opposite side of the first main face 25 d. Both of the main faces 25 d and 25 e is a flat surface. Shaping the main faces 25 d and 25 e to be flat surfaces has an advantage where, after the casting, the flat surfaces allow an easier operation in stripping the molding die off. The molding die which is divided into the numbers of the blades 25 c, can be removed by just pulling them out in a linear motion along a direction indicated by arrows “a” in FIG. 4. In a case of an impeller of a related-art with curved blades, such an easy operation in stripping off the molding die is difficult. Incidentally, joint plates 25 a and 25 b, which join the blades 25 c together, can be formed integrally with the blades 25 c. A boss portion 25 f is formed in the center of the joint plate 25 a, and allows the rotating shaft 7 of the motor 6 to be inserted thereinto.
  • As shown in FIG. 4, the second main face 25 e is at angle to the first main face 25 d. The first and the second main face 25 d and 25 e are connected to an outer circumferential face 25 g, and are also connected to an inner circumferential face 25 h. Each of the outer and the inner circumferential faces 25 g and 25 h is shaped, for example, in an arc (or in a curved surface), but may be formed in flat faces. When the first main face 25 d is at an angle α (α>0°) to the second main face 25 e, the angular aperture β of the blade 25 c, formed in a radial direction of the adjacent to blade 25 c, should necessarily be β<(360°/n) where “n” is the number of blades 25 c. For example, with n=12 and α=15°, β becomes 15°. It is confirmed in an experiment that the impeller 25 equipped with these blades generates an air flow 20% more in amount than the air flow generated by an impeller with blades that the first and the second main faces thereof are in parallel to each other (i.e. n=12 and α=0°, β=30°).
  • In a related art, an impeller is manufactured by attaching blades, one by one, to the joint plates located respectively on both sides of each blade. As the impeller 25 being formed integrally, the process of manufacturing the impeller 25 is simplified significantly. Furthermore, since the accuracy in dimension and form of the impeller 25 improves by integral molding, it does not have to be processed manually after the molding, which leads to reduction in unbalanced rotation of the impeller 25, thus enables steady rotation. With the steady rotation, the advantage of the cantilever structure described above can be achieved more fully in particular. In other words, the impeller 25 can be rotated steadily even with a cantilever structure.
  • Additionally, the integrally-molded impeller 25 can be manufactured with ease, even if the diameter of the impeller 25 (the diameter of each of the joint plates 25 a and 25 b shown in FIG. 4) is not more than 25 mm.
  • FIG. 5 is a cross-sectional view illustrating a cross flow fan apparatus according to another embodiment. In the following descriptions, descriptions concerning members and functions similar to those of the cross flow fan apparatus 10 of the embodiment shown in FIG. 2 will be given only briefly, or be omitted. Thus, the descriptions focus on the difference thereof with the embodiment shown in FIG. 2.
  • A cross flow fan apparatus 20 according to this embodiment has a supporting mechanism 21 that supports an impeller 35 in a non-contact manner. The supporting mechanism 21 is provided to a side of the impeller 35 where a joint plate 35 b is provided, which is opposite to the side where a motor 6 is placed (i.e. where a joint plate 35 a is provided). Specifically, the supporting mechanism 21 has a pivot shaft 22 attached to the impeller 35 coaxially with the rotating shaft 7 of the motor 6 and a magnet 23 fixed to a supporting body 26 and disposed near the pivot shaft 22. The pivot shaft 22 is attached to a boss portion 35 d of the joint plate 35 b. The shape of the magnet 23 is not limited to the form shown in FIG. 5 but it may be, for example, a ring shape surrounding the pivot shaft 22, or an arc-block shape that constitutes a part of the ring. In addition, reference numeral 35 c is a blade.
  • If the pivot shaft 22 is made of a magnetic material, such as iron or nickel, a magnetic attraction from the magnet 23 acts on the pivot shaft 22. In this configuration, a load in a radial direction of the pivot shaft 22 (i.e. a direction in a Y-Z plane) is constantly applied to the pivot shaft 22 in a non-contact manner. As a result, wobbling and whirl phenomena that would otherwise be caused by the unbalance can be suppressed.
  • FIG. 6 is a cross-sectional view illustrating a cross flow fan apparatus according to another embodiment. FIG. 7 is a cross-sectional view of the cross flow fan apparatus taken along the line B-B in FIG. 7. The supporting body 36 has a side plate 36 a to which projecting members 37 are provided. The side plate 36 a may be a part of the supporting body 36 as shown in FIG. 6, or a separate member fixed to the supporting body 36. The projecting members 37 may be formed by flanging of sheet metal, or by molding. An impeller 45 has a joint plate 45 a on a side where a motor 6 is placed, and has another joint plate 45 b on a side opposite the joint plate 45 a. A hole 45 d is formed in the joint plate 45 b. A projecting member 37 extends from the outside of the impeller 45 through the hole 45 d in the joint plate 45 b, and penetrates into an area E surrounded by blades 45 c (see FIG. 7).
  • In FIG. 6 and FIG. 7, a plurality of projecting members 37 are provided. However, it should be appreciated that the number of the projecting members 37 may be just one. In a case where the plurality of projecting members 37 are provided, the projecting members 37 may be arranged with regular intervals in a ring shape as shown in FIG. 7 but they may not always be arranged in the regular intervals.
  • According to the cross flow fan apparatus 30 of an embodiment, even if a posture thereof is changed and the change in the posture causes wobbling of the rotating shaft 7, the inner circumferential portion (hole) 45 d is brought into contact with the projecting member 37 that serves as a stopper. As a result, the impeller 45 as a whole does not wobble greatly.
  • FIG. 8 is a cross-sectional view illustrating a part of a cross flow fan apparatus 40 according to another embodiment. The cross flow fan apparatus 40 has a supporting body 46, and a pressing member 41 is attached to the supporting body 46. The pressing member 41 presses a pivot shaft 42 in an axial direction with a force F. The pressing member 41 has a seating surface for a pivot 41 a. The tip end 42 a of the pivot shaft 42 is in contact with the seating surface 41 a. This pressing member 41 is made of metal, resin, rubber, or the like.
  • The cross flow fan apparatus 40 according to an embodiment has a structure in which just the seating surface 41 a for pivot, with which the tip end 42 a of the pivot shaft 42 is in contact, is provided as described above. In other words, the structure of the cross flow fan apparatus 40 according to an embodiment is simpler than that of a cross flow fan of a related art with a configuration in which bearings are provided respectively to both sides of an impeller. As a result, besides the steady rotation of the impeller 35, manufacturing of the impeller becomes easier and the cost can be reduced.
  • A modified example of the pressing member is a pressing member 43 with a curved seating surface for a pivot 43 a as in a cross flow fan apparatus 50 illustrated in FIG. 9. In such a case, the curved surface is a spherical surface, an ellipsoidal surface, a hyperbolic surface, a parabolic surface, or the like. A combination of these surfaces may serve for the purpose.
  • FIG. 10 is a cross-sectional view illustrating an impeller according to another embodiment. An engaging projection 55 d and an engaging groove 55 e are provided to an impeller 55. For example, as shown in FIG. 11, three of the engaging projections 55 d are formed with 120° intervals on a ring-shaped joint plate 55 b. The engaging groove 55 e is formed in size that the corresponding engaging projection to be fitted thereinto. Three of the engaging grooves 55 e are formed, for example, with 120° intervals on the ring-shaped joint plate 55 b. An angular interval between one of the engaging projections 55 d and the adjacent one of the engaging grooves is set, for example, at 60°. Additionally, engaging projections 55 d and engaging grooves 55 e are formed on a joint plate 55 a placed on a side opposite to the joint plate 55 b. With this configuration, the impellers 55 can be joined to one another in multiple rows in a direction of the rotational axis, as shown in FIG. 11, and an impeller (or a blade) with a desired length can be achieved.
  • Furthermore, the arrangement of the engaging projections 55 d and engaging grooves 55 e formed on the joint plate 55 b is deviated from the arrangement of the engaging projections 55 d and engaging grooves 55 e formed on the joint plate 55 a by 60°. Accordingly, the plurality of impellers 55 can be joined together.
  • FIG. 12 is a schematic cross-sectional view illustrating an electronic apparatus in which any one of the cross flow fan apparatuses 10, 20 and the like is disposed. In FIG. 12, as an electronic apparatus 100, for example, a flat panel display (FPD) apparatus, such as a liquid crystal display, is illustrated. A fan 104, a cross flow fan apparatus 10, a display panel 102, and other component parts 103 such as a power supply are placed in a casing 101 of the FPD apparatus 100. The display panel 102 has a circuit board that generates heat. The heat generated by the display panel 102 is kept in the casing 101. Air from the outside is taken into the casing 101 by the fan 104 and as the cross flow fan apparatus 10 operates, air containing the heat is exhausted through, for example, an exhaust port 101 a formed in the casing 101.
  • Further, the length of the cross flow fan apparatus 10 along the direction X can be designed as appropriate, for example, in FIG. 12, the length can be designed according to the length along the lateral direction of the casing 101 of the display 100A. In addition to the liquid crystal display, “display” here includes a plasma display, a plasma address liquid crystal display, light emitting diode (LED) display, a field emission display (FED), a surface-conduction electron-emitter display (SED), an electro-luminescence (EL) display (including both organic and non-organic type thereof), and the like.
  • The embodiments are not limited to the examples described above, and various modifications are possible.
  • For example, a possible embodiment is a combination of the embodiment shown in FIG. 5 to which the non-contact supporting mechanism 21 is provided and the embodiment shown in FIGS. 6 and 7 to which the projecting member 37 is provided. Another possible embodiment is a combination of the embodiment shown in FIGS. 6 and 7 to which the projecting member 37 is provided and the embodiment shown in FIG. 8 or FIG. 9 to which the pressing member 41 or the like is provided.
  • The impellers 5 or the like described in each of the embodiments described above may or may not be integrally-molded unless otherwise specified.
  • The electronic apparatus 100 shown in FIG. 12 is not limited to a display. Examples of the possible electronic apparatus 100 include an air conditioner, a computer (for example, a PC=personal computer and the like), a projector, an audio/visual appliance, a game console, a car navigation system, a robotics device, an air curtain device, and other electric appliances.
  • It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims (15)

1. A cross flow fan apparatus comprising:
an impeller having a plurality of blades extending in a predetermined direction;
a motor, having a rotating shaft provided along the predetermined direction, which drives to rotate the impeller; and
a supporting body which supports the motor such that the impeller is cantilevered by the rotating shaft.
2. The cross flow fan apparatus as recited in claim 1, wherein the impeller is made of a resin.
3. The cross flow fan apparatus as recited in claim 2, wherein the impeller has a joint portion which joins the plurality of blades at both ends thereof, the joint portion being integrally molded with each of the plurality of blades.
4. The cross flow fan apparatus as recited in claim 1, wherein the motor has a fluid bearing that supports the rotating shaft.
5. The cross flow fan apparatus as recited in claim 1, further comprising:
a supporting mechanism, disposed at a position opposite to the position where the motor is disposed and that supports the impeller in a noncontact manner.
6. The cross flow fan apparatus as recited in claim 5, wherein the supporting mechanism includes:
a shaft member made of a magnetic material attached to the impeller coaxially with the rotating shaft, and
a magnet provided in the supporting body and placed near the shaft member.
7. The cross flow fan apparatus as recited in claim 1, wherein the blades are arranged in a ring shape, and
wherein the impeller has a ring-shaped joint plate disposed at a position opposite to the position where the motor is disposed and joins each of the plurality of blades together,
the cross flow fan apparatus further comprising:
a projecting member, being disposed in the supporting body and that penetrates into an area surrounded by the blades from an outside of the impeller through an inside of the ring-shaped joint plate.
8. The cross flow fan apparatus as recited in claim 3, wherein each of the plurality of blades includes:
a first main face, being a flat surface and disposed parallel to the direction of the rotating shaft; and
a second main face, being a flat surface and disposed at an angle to the first main face, parallel to the direction of the rotating shaft and opposite to the first main face.
9. The cross flow fan apparatus as recited in claim 1, wherein the impeller includes an engaging portion for joining a plurality of the impellers together in the predetermined direction.
10. A cross flow fan apparatus comprising:
an impeller having a plurality of blades extending in a predetermined direction, a first side in the predetermined direction, and a second side opposite to the first side;
a pivot shaft attached to the first side of the impeller, and disposed along the predetermined direction;
a motor, having a rotating shaft being coaxial with the pivot shaft and supporting the impeller at the second side, which drives to rotate the impeller; and
a supporting body which supports the motor, having a seating surface for pivot, where a tip end of the pivot shaft is in contact.
11. The cross flow fan apparatus as recited in claim 10, wherein the seating surface for pivot is a flat surface.
12. The cross flow fan apparatus as recited in claim 10, wherein the seating surface for pivot is a curved surface.
13. An electronic apparatus comprising:
a heat generator;
a cross flow fan apparatus which includes
an impeller having a plurality of blades extending in a predetermined direction,
a motor that drives to rotate the impeller, and
a supporting body that supports the motor such that the impeller is cantilevered by the rotating shaft; and
a casing in which the heat generator and the cross flow fan apparatus are disposed.
14. An electronic apparatus comprising:
a heat generator;
a cross flow fan apparatus which includes
an impeller having a plurality of blades extending in a predetermined direction, a first side in the predetermined direction, and a second side opposite to the first side,
a pivot shaft attached to the first side of the impeller, and disposed along the predetermined direction,
a motor, having a rotating shaft being coaxial with the pivot shaft and supporting the impeller at the second side, which drives to rotate the impeller, and
a supporting body which supports the motor, having a seating surface for pivot, where a tip end of the pivot shaft is in contact; and
a casing in which the heat generator and the cross flow fan apparatus are disposed.
15. An impeller comprising:
a plurality of blades extending in a predetermined direction, each of the blades includes
a first main face, being a flat surface and disposed in the predetermined direction, and
a second main face, being a flat surface and disposed approximately parallel to the direction of the rotating shaft and opposite to the first main face; and
a joint member which joins the blades together.
US11/682,785 2006-03-09 2007-03-06 Cross flow fan apparatus, electronic apparatus and impeller Abandoned US20070212211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006064134A JP4788409B2 (en) 2006-03-09 2006-03-09 Cross current blower and electronic device
JPJP2006-064134 2006-03-09

Publications (1)

Publication Number Publication Date
US20070212211A1 true US20070212211A1 (en) 2007-09-13

Family

ID=38479136

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/682,785 Abandoned US20070212211A1 (en) 2006-03-09 2007-03-06 Cross flow fan apparatus, electronic apparatus and impeller

Country Status (2)

Country Link
US (1) US20070212211A1 (en)
JP (1) JP4788409B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199514A1 (en) * 2004-11-29 2006-09-07 Sony Corporation Cooling fan and image display apparatus
US20070103864A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Cooling apparatus for flat display device and cross-flow fan of the cooling apparatus
US20090126906A1 (en) * 2007-11-16 2009-05-21 Manufacturing Resources International, Inc. Isolated Gas Cooling System for an Electronic Display
US20100296245A1 (en) * 2008-03-03 2010-11-25 Manufacturing Resources International, Inc. System for Using Constricted Convection with Closed Loop Plenum As the Convection Plate
US20110085301A1 (en) * 2008-03-03 2011-04-14 Manufacturing Resources International, Inc. Heat Exchanger for Back to Back Electronic Displays
US20120177477A1 (en) * 2009-09-11 2012-07-12 Sharp Kabushiki Kaisha Cross-flow fan, molding die, and fluid feeder
CN102865236A (en) * 2011-07-04 2013-01-09 建准电机工业股份有限公司 Fan with cooling device
WO2014056459A1 (en) * 2012-10-08 2014-04-17 中山市威宇技研机电有限公司 Crossflow fan module and building fan using crossflow fan
US20150056910A1 (en) * 2012-04-06 2015-02-26 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
WO2015149383A1 (en) * 2014-04-02 2015-10-08 梁卫昕 Crossflow-type flow pump
US9173325B2 (en) 2008-03-26 2015-10-27 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
WO2016082655A1 (en) * 2014-11-27 2016-06-02 梁卫昕 Crossflow-type flow-making pump
EP2474742B1 (en) * 2011-01-10 2016-07-06 Sunonwealth Electric Machine Industry Co., Ltd. Cooling fan
EP2450576B1 (en) * 2010-11-08 2016-08-03 Sunonwealth Electric Machine Industry Co., Ltd. Fan
US20170112019A1 (en) * 2014-03-25 2017-04-20 Kyocera Document Solutions Inc. Cross-Flow Fan, Electronic Device, and Impeller
US9723765B2 (en) 2015-02-17 2017-08-01 Manufacturing Resources International, Inc. Perimeter ventilation system for electronic display
US9797588B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US9801305B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US9894800B2 (en) 2008-03-03 2018-02-13 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US10080316B2 (en) 2009-11-13 2018-09-18 Manufacturing Resources International, Inc. Electronic display assembly having thermal cooling plate and optional convective air cooling loop
US10088702B2 (en) 2013-07-08 2018-10-02 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
US10194564B2 (en) 2014-04-30 2019-01-29 Manufacturing Resources International, Inc. Back to back electronic display assembly
US10212845B2 (en) 2014-03-11 2019-02-19 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for electronic display
US10314212B2 (en) 2008-12-18 2019-06-04 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US10398066B2 (en) 2017-04-27 2019-08-27 Manufacturing Resources International, Inc. System and method for preventing display bowing
US10420257B2 (en) 2008-03-26 2019-09-17 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
US10524397B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
CN111075735A (en) * 2018-10-18 2020-04-28 广东美的环境电器制造有限公司 Wind wheel subassembly and equipment of blowing
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US10820445B2 (en) 2016-03-04 2020-10-27 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
EP2045471B1 (en) * 2007-10-04 2020-12-30 LTG Aktiengesellschaft Ventilator with a wheel and method for operating a ventilator
US11019735B2 (en) 2018-07-30 2021-05-25 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
CN114659169A (en) * 2022-03-28 2022-06-24 青岛海尔空调器有限总公司 Indoor unit of air conditioner
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
US12004311B2 (en) 2023-12-15 2024-06-04 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201120363A (en) * 2009-12-04 2011-06-16 Prolynn Technology Inc LED lamp.
JP6189601B2 (en) * 2013-02-05 2017-08-30 株式会社Lixil Pulse shower device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138814A (en) * 1937-03-15 1938-12-06 Kol Master Corp Blower fan impeller
US3241742A (en) * 1960-03-11 1966-03-22 Laing Nikolaus Fan
US3263910A (en) * 1956-07-07 1966-08-02 Eck Bruno Cross-flow fans
US3305164A (en) * 1959-11-17 1967-02-21 Laing Vortex Inc Fans of the cross-flow type
US3310228A (en) * 1966-02-17 1967-03-21 Laing Nikolaus Flow machines
US3322931A (en) * 1956-12-31 1967-05-30 Laing Nikolaus Fans
US3649130A (en) * 1969-01-14 1972-03-14 Braun Ag Blower
US5114657A (en) * 1989-03-20 1992-05-19 Sanko Plastics Co., Ltd. Integrally molded cross-flow fan and method of making the same by radially withdrawing gap-forming molds
US5803707A (en) * 1993-08-30 1998-09-08 Ltg Lufttechnische Gesellschaft Mit Beschrankter Haftung Slide-in cross current ventilator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392597U (en) * 1990-01-09 1991-09-20
JP2001210896A (en) * 2000-01-28 2001-08-03 Ebara Corp Excimer laser device
JP3516909B2 (en) * 2000-08-28 2004-04-05 松下エコシステムズ株式会社 Centrifugal blower

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138814A (en) * 1937-03-15 1938-12-06 Kol Master Corp Blower fan impeller
US3263910A (en) * 1956-07-07 1966-08-02 Eck Bruno Cross-flow fans
US3322931A (en) * 1956-12-31 1967-05-30 Laing Nikolaus Fans
US3305164A (en) * 1959-11-17 1967-02-21 Laing Vortex Inc Fans of the cross-flow type
US3241742A (en) * 1960-03-11 1966-03-22 Laing Nikolaus Fan
US3310228A (en) * 1966-02-17 1967-03-21 Laing Nikolaus Flow machines
US3649130A (en) * 1969-01-14 1972-03-14 Braun Ag Blower
US5114657A (en) * 1989-03-20 1992-05-19 Sanko Plastics Co., Ltd. Integrally molded cross-flow fan and method of making the same by radially withdrawing gap-forming molds
US5803707A (en) * 1993-08-30 1998-09-08 Ltg Lufttechnische Gesellschaft Mit Beschrankter Haftung Slide-in cross current ventilator

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518864B2 (en) * 2004-11-29 2009-04-14 Sony Corporation Cooling fan and image display apparatus
US20060199514A1 (en) * 2004-11-29 2006-09-07 Sony Corporation Cooling fan and image display apparatus
US20070103864A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Cooling apparatus for flat display device and cross-flow fan of the cooling apparatus
US7457125B2 (en) * 2005-11-04 2008-11-25 Lg Electronics Inc. Cooling apparatus for flat display device and cross-flow fan of the cooling apparatus
EP2045471B1 (en) * 2007-10-04 2020-12-30 LTG Aktiengesellschaft Ventilator with a wheel and method for operating a ventilator
US8767165B2 (en) * 2007-11-16 2014-07-01 Manufacturing Resources International, Inc. Isolated gas cooling system for an electronic display
US20090126906A1 (en) * 2007-11-16 2009-05-21 Manufacturing Resources International, Inc. Isolated Gas Cooling System for an Electronic Display
US9030641B2 (en) 2008-03-03 2015-05-12 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
US11540418B2 (en) 2008-03-03 2022-12-27 Manufacturing Resources International, Inc. Electronic display with cooling
US8351014B2 (en) 2008-03-03 2013-01-08 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
US10506740B2 (en) 2008-03-03 2019-12-10 Manufacturing Resources International, Inc. Electronic display with cooling
US10506738B2 (en) 2008-03-03 2019-12-10 Manufacturing Resources International, Inc. Constricted convection cooling for an electronic display
US20100296245A1 (en) * 2008-03-03 2010-11-25 Manufacturing Resources International, Inc. System for Using Constricted Convection with Closed Loop Plenum As the Convection Plate
US10721836B2 (en) 2008-03-03 2020-07-21 Manufacturing Resources International, Inc. Electronic display with cooling
US11013142B2 (en) 2008-03-03 2021-05-18 Manufacturing Resources International, Inc. Electronic display with cooling
US11596081B2 (en) 2008-03-03 2023-02-28 Manufacturing Resources International, Inc. Electronic display with cooling
US9894800B2 (en) 2008-03-03 2018-02-13 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US9835893B2 (en) 2008-03-03 2017-12-05 Manufacturing Resources International, Inc. Heat exchanger for back to back electronics displays
US8274622B2 (en) 2008-03-03 2012-09-25 Manufacturing Resources International, Inc. System for using constricted convection with closed loop plenum as the convection plate
US9801305B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US9797588B2 (en) 2008-03-03 2017-10-24 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US20110085301A1 (en) * 2008-03-03 2011-04-14 Manufacturing Resources International, Inc. Heat Exchanger for Back to Back Electronic Displays
US10420257B2 (en) 2008-03-26 2019-09-17 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
US9173325B2 (en) 2008-03-26 2015-10-27 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
US11191193B2 (en) 2008-12-18 2021-11-30 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US10314212B2 (en) 2008-12-18 2019-06-04 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US9347461B2 (en) * 2009-09-11 2016-05-24 Sharp Kabushiki Kaisha Cross-flow fan, molding die, and fluid feeder
US20120177477A1 (en) * 2009-09-11 2012-07-12 Sharp Kabushiki Kaisha Cross-flow fan, molding die, and fluid feeder
US10736245B2 (en) 2009-11-13 2020-08-04 Manufacturing Resources International, Inc. Electronic display assembly with combined conductive and convective cooling
US10080316B2 (en) 2009-11-13 2018-09-18 Manufacturing Resources International, Inc. Electronic display assembly having thermal cooling plate and optional convective air cooling loop
EP2450576B1 (en) * 2010-11-08 2016-08-03 Sunonwealth Electric Machine Industry Co., Ltd. Fan
EP2474742B1 (en) * 2011-01-10 2016-07-06 Sunonwealth Electric Machine Industry Co., Ltd. Cooling fan
CN102865236A (en) * 2011-07-04 2013-01-09 建准电机工业股份有限公司 Fan with cooling device
US10436496B2 (en) * 2012-04-06 2019-10-08 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
US20150056910A1 (en) * 2012-04-06 2015-02-26 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
WO2014056459A1 (en) * 2012-10-08 2014-04-17 中山市威宇技研机电有限公司 Crossflow fan module and building fan using crossflow fan
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US10524397B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
US10088702B2 (en) 2013-07-08 2018-10-02 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
US10359659B2 (en) 2013-07-08 2019-07-23 Manufactruing Resources Internatonal, Inc. Cooling system for electronic display
US10212845B2 (en) 2014-03-11 2019-02-19 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for electronic display
US20170112019A1 (en) * 2014-03-25 2017-04-20 Kyocera Document Solutions Inc. Cross-Flow Fan, Electronic Device, and Impeller
US10054125B2 (en) * 2014-03-25 2018-08-21 Kyocera Document Solutions Inc. Cross-flow fan, electronic device, and impeller
WO2015149383A1 (en) * 2014-04-02 2015-10-08 梁卫昕 Crossflow-type flow pump
US10687446B2 (en) 2014-04-30 2020-06-16 Manufacturing Resources International, Inc. Back to back electronic display assembly
US10973156B2 (en) 2014-04-30 2021-04-06 Manufacturing Resources International, Inc. Dual electronic display assembly
US10194564B2 (en) 2014-04-30 2019-01-29 Manufacturing Resources International, Inc. Back to back electronic display assembly
WO2016082655A1 (en) * 2014-11-27 2016-06-02 梁卫昕 Crossflow-type flow-making pump
US9723765B2 (en) 2015-02-17 2017-08-01 Manufacturing Resources International, Inc. Perimeter ventilation system for electronic display
US10278311B2 (en) 2015-02-17 2019-04-30 Manufacturing Resources International, Inc. Perimeter ventilation system
US10548247B2 (en) 2015-02-17 2020-01-28 Manufacturing Resources International, Inc. Perimeter ventilation system
US10820445B2 (en) 2016-03-04 2020-10-27 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
US11744036B2 (en) 2016-03-04 2023-08-29 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
US10716224B2 (en) 2017-04-27 2020-07-14 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US11032923B2 (en) 2017-04-27 2021-06-08 Manufacturing Resources International, Inc. Field serviceable display assembly
US10398066B2 (en) 2017-04-27 2019-08-27 Manufacturing Resources International, Inc. System and method for preventing display bowing
US10925174B2 (en) 2017-04-27 2021-02-16 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
US10624218B2 (en) 2017-04-27 2020-04-14 Manufacturing Resources International, Inc. Field serviceable and replaceable display assembly
US11822171B2 (en) 2017-04-27 2023-11-21 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10757844B2 (en) 2017-04-27 2020-08-25 Manufacturing Resources International, Inc. System and method for reducing or combating display bowing
US11934054B2 (en) 2017-04-27 2024-03-19 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10499516B2 (en) 2017-04-27 2019-12-03 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
US11889636B2 (en) 2018-07-30 2024-01-30 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11019735B2 (en) 2018-07-30 2021-05-25 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
CN111075735A (en) * 2018-10-18 2020-04-28 广东美的环境电器制造有限公司 Wind wheel subassembly and equipment of blowing
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US11617287B2 (en) 2019-02-26 2023-03-28 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US11507141B2 (en) 2019-04-03 2022-11-22 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US11989059B2 (en) 2019-04-03 2024-05-21 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
CN114659169A (en) * 2022-03-28 2022-06-24 青岛海尔空调器有限总公司 Indoor unit of air conditioner
US12004310B2 (en) 2022-08-12 2024-06-04 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US12004311B2 (en) 2023-12-15 2024-06-04 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit

Also Published As

Publication number Publication date
JP2007239643A (en) 2007-09-20
JP4788409B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US20070212211A1 (en) Cross flow fan apparatus, electronic apparatus and impeller
US7946805B2 (en) Fan unit including tapered airflow passage
US7671498B2 (en) Fan motor and stator thereof
GB2442475A (en) Micro fan
US20200298426A1 (en) Rotary actuator and robot
US20190301472A1 (en) Counter-rotating fan
US10570903B2 (en) Centrifugal pump
JP2009014152A (en) Bearing unit, and motor and electronic apparatus having bearing unit
US8207641B2 (en) Motor having radial adjustment and buffer gaps
JPWO2019111430A1 (en) Electric motor and electric blower
JP2023100759A (en) Gas dynamic pressure bearing, motor and fan motor
JP5095329B2 (en) Motor and blower fan
JP5373663B2 (en) Fan motor
JP2016125405A (en) fan
US8182219B2 (en) Fan and bearing structure
JP2019030192A (en) Electric motor and heat sink device using the same
JP2007507193A (en) motor
US10158269B1 (en) Electric motor and heat sink apparatus using the same
WO2022239399A1 (en) Motor and fan using same, and motor cartridge
JP7490101B2 (en) Electric motors, fans and air conditioners
KR102186247B1 (en) Fan motor
JP2019062672A (en) motor
JP2018093584A (en) Parallel fan
US20140015360A1 (en) Motor structure
WO2018158905A1 (en) Rotary operating component

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIYODA, MAKOTO;SHISHIDO, YUJI;MOCHIDA, TAKASHI;REEL/FRAME:019301/0968;SIGNING DATES FROM 20070411 TO 20070424

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION