US20070169863A1 - Autoignition main gas generant - Google Patents

Autoignition main gas generant Download PDF

Info

Publication number
US20070169863A1
US20070169863A1 US11/656,319 US65631907A US2007169863A1 US 20070169863 A1 US20070169863 A1 US 20070169863A1 US 65631907 A US65631907 A US 65631907A US 2007169863 A1 US2007169863 A1 US 2007169863A1
Authority
US
United States
Prior art keywords
gas
ammonium nitrate
gas generant
composition
gas generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/656,319
Inventor
Deborah Hordos
Sean Burns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TK Holdings Inc
Original Assignee
TK Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TK Holdings Inc filed Critical TK Holdings Inc
Priority to US11/656,319 priority Critical patent/US20070169863A1/en
Assigned to TK HOLDINGS, INC. reassignment TK HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURNS, SEAN P., HORDOS, DEBORAH L.
Publication of US20070169863A1 publication Critical patent/US20070169863A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters

Definitions

  • the present invention relates generally to gas generating systems, and to gas generant compositions employed in gas generator devices for automotive restraint systems, for example.
  • the present invention relates to nontoxic gas generating compositions that upon combustion rapidly generate gases that are useful for inflating occupant safety restraints in motor vehicles and specifically, the invention relates to thermally stable nonazide gas generants having not only acceptable burn rates, but that also, upon combustion, exhibit a relatively high gas volume to solid particulate ratio at acceptable flame temperatures.
  • pyrotechnic nonazide gas generants contain ingredients such as oxidizers to provide the required oxygen for rapid combustion and reduce the quantity of toxic gases generated, a catalyst to promote the conversion of toxic oxides of carbon and nitrogen to innocuous gases, and a slag forming constituent to cause the solid and liquid products formed during and immediately after combustion to agglomerate into filterable clinker-like particulates.
  • ingredients such as oxidizers to provide the required oxygen for rapid combustion and reduce the quantity of toxic gases generated, a catalyst to promote the conversion of toxic oxides of carbon and nitrogen to innocuous gases, and a slag forming constituent to cause the solid and liquid products formed during and immediately after combustion to agglomerate into filterable clinker-like particulates.
  • Other optional additives such as burning rate enhancers or ballistic modifiers and ignition aids, are used to control the ignitability and combustion properties of the gas generant.
  • nonazide gas generant compositions One of the disadvantages of known nonazide gas generant compositions is the amount and physical nature of the solid residues formed during combustion. When employed in a vehicle occupant protection system, the solids produced as a result of combustion must be filtered and otherwise kept away from contact with the occupants of the vehicle. It is therefore highly desirable to develop compositions that produce a minimum of solid particulates while still providing adequate quantities of a nontoxic gas to inflate the safety device at a high rate.
  • phase stabilized ammonium nitrate as an oxidizer, for example, is desirable because it generates abundant nontoxic gases and minimal solids upon combustion.
  • gas generants for automotive applications must be thermally stable when aged for 400 hours or more at 107 degree C.
  • the compositions must also retain structural integrity when cycled between ⁇ 40 degree C. and 107 degree C.
  • gas generant compositions incorporating phase stabilized or pure ammonium nitrate sometimes exhibit poor thermal stability, and produce unacceptably high levels of toxic gases, CO and NO.sub.x for example, depending on the composition of the associated additives such as plasticizers and binders.
  • Yet another concern includes slower cold start ignitions of typical smokeless gas generant compositions, that is gas generant compositions that when combusted result in at least 80 weight % of gaseous combustion products as compared to the overall weight of the combustion products.
  • compositions containing phase stabilized ammonium nitrate contain an azole-based fuel such as a tetrazole. Although proven to be satisfactory in many applications, one concern is that azole-based fuels sometimes have a relatively shorter burnout time thereby complicating the inflation profile requirements. Furthermore, it is also an ongoing effort to economize the design of an inflator by increasing the functionality of a given composition, as an autoignition (less than 160 Celsius, perhaps) and primary gas generant for example.
  • FIG. 1 is an exemplary inflator incorporating a composition of the present invention.
  • FIG. 2 is an exemplary gas generating system, in this case a vehicle occupant protection system, incorporating the inflator of FIG. 1 .
  • gas generating systems including a gas generant composition containing phase stabilized ammonium nitrate, stabilized in a known manner, metal oxides including transitional metal oxides such as copper oxide, and a non-azole fuel, that is a fuel not containing tetrazole, triazoles, furazans, or azoles.
  • typical fuels include amides and imides such as azodicarbonamide for example, or metal amine-based fuels such as copper diamine dinitrate.
  • gas generating systems including a gas generant composition containing phase stabilized ammonium nitrate, stabilized in a known manner, metal oxides including transitional metal oxides such as copper oxide, and a fuel having non-azole character, that is a fuel not containing, or a fuel absent of any tetrazoles, triazoles, furazans, or azoles.
  • a gas generant composition may be described as having a non-azole character because it does not contain an azole-based fuel as described herein.
  • typical fuels include at least one of amides and imides such as dihydrazides, hydrazides, succinic dihydrazide, hydrazodicarbonamide, dicyandiamide, urea, carbohydrazide, oxamide, oxamic hydrazide, Bi-(carbonamide)amine, azodicarbonamide, derivatives thereof, d- or l-tartaric acid amide derivatives, and mixtures thereof, for example; metal amine-based fuels such as copper diamine di-nitrate; and mixtures thereof.
  • Exemplary methods of stabilizing the phase stabilized ammonium nitrate include co-crystallization of the ammonium nitrate with potassium salts (e.g. KNO3 at about 10-15% by weight of the total weight of the PSAN), or by the solid-state melting of ammonium nitrate with transition metal oxides.
  • potassium salts e.g. KNO3 at about 10-15% by weight of the total weight of the P
  • Ammonium nitrate or phase stabilized ammonium nitrate is provided at about 60-80%, and more preferably at about 65-75% by weight of the total composition.
  • a metal oxide is provided at about 2-10%, and more preferably at about 3-7%, by weight of the total composition.
  • the fuel is provided at about 18-38% by weight of the total composition. It will be appreciated that the various percentages may be varied based on design requirements such as autoignition temperature and burn rate.
  • One embodiment includes 68.27% PSAN, 3.25% copper oxide, and 27.50% azodicarbonamide.
  • the resulting gas generation is 94.9% of the total combustion products.
  • a typical dry blend ratio of PSAN to the metal oxide is about 10 to 1 respectively, but may be modified as per the weight percents described above.
  • Differential Scanning Calorimeter (DSC) laboratory results indicate a composition containing ammonium nitrate melt phase stabilized with copper oxide, combined with azodicarbonamide, exhibits an autoignition onset temperature of 150.20C, with a peak autoignition temperature of 155.48C.
  • nitrocellulose smokeless powder
  • the present compositions may be employed within a gas generating system.
  • a vehicle occupant protection system made in a known way contains crash sensors in electrical or operable communication with an airbag inflator in a steering wheel or otherwise within the vehicle, and also within a seatbelt assembly.
  • the gas generating compositions of the present invention may be employed in both subassemblies within the broader vehicle occupant protection system or gas generating system. More specifically, each gas generator employed in the automotive gas generating system may contain a gas generating composition as described herein.
  • an exemplary inflator incorporates a dual chamber design to tailor the force of deployment an associated airbag.
  • an inflator containing a primary autoigniting gas generating composition 12 formed as described herein, may be manufactured as known in the art.
  • U.S. Pat. Nos. 6,422,601, 6,805,377, 6,659,500, 6,749,219, and 6,752,421 exemplify typical airbag inflator designs and are each incorporated herein by reference in their entirety.
  • Airbag system 200 includes at least one airbag 202 and an inflator 10 containing a gas generant composition 12 in accordance with the present invention, coupled to airbag 202 so as to enable fluid communication with an interior of the airbag.
  • Airbag system 200 may also include (or be in communication with) a crash event sensor 210 .
  • Crash event sensor 210 includes a known crash sensor algorithm that signals actuation of airbag system 200 via, for example, activation of airbag inflator 10 in the event of a collision.
  • airbag system 200 may also be incorporated into a broader, more comprehensive vehicle occupant restraint system 180 including additional elements such as a safety belt assembly 150 .
  • FIG. 2 shows a schematic diagram of one exemplary embodiment of such a restraint system.
  • Safety belt assembly 150 includes a safety belt housing 152 and a safety belt 100 extending from housing 152 .
  • a safety belt retractor mechanism 154 (for example, a spring-loaded mechanism) may be coupled to an end portion of the belt.
  • a safety belt pretensioner 156 containing propellant 12 and autoignition 14 may be coupled to belt retractor mechanism 154 to actuate the retractor mechanism in the event of a collision.
  • Typical seat belt retractor mechanisms which may be used in conjunction with the safety belt embodiments of the present invention are described in U.S. Pat. Nos.
  • Safety belt assembly 150 may also include (or be in operable communication with) a crash event sensor 158 (for example, an inertia sensor or an accelerometer) including a known crash sensor algorithm that signals actuation of belt pretensioner 156 via, for example, activation of a pyrotechnic igniter (not shown) incorporated into the pretensioner.
  • a crash event sensor 158 for example, an inertia sensor or an accelerometer
  • U.S. Pat. Nos. 6,505,790 and 6,419,177 previously incorporated herein by reference, provide illustrative examples of pretensioners actuated in such a manner.
  • safety belt assembly. 150 airbag system 200 , and more broadly, vehicle occupant protection system 180 exemplify but do not limit gas generating systems contemplated in accordance with the present invention.
  • compositions may be dry or wet mixed using methods known in the art.
  • the various constituents are generally provided in particulate form and mixed to form a uniform mixture with the other gas generant constituents.
  • the mixture is then pelletized or formed into other useful shapes in a safe manner known in the art.
  • forming a complex between ammonium nitrate and the metal oxide, copper oxide for example may best be accomplished by melting the two compounds and then homogeneously mixing the melt.
  • a heating/mixing vessel may be employed wherein ammonium nitrate, or phase stabilized ammonium nitrate, is heated to its melting point. It has been found that heating ammonium nitrate or phase stabilized ammonium nitrate (co-precipitated with 10-15 wt % potassium nitrate for example) at about 150-175C provides a sufficient melt. Copper oxide, or any other metal oxide such as a transitional metal oxide, is then mixed in and melted as well.
  • the contents of the vessel may be stirred and heated to complex the copper or copper oxide with the ammonium nitrate or phase stabilized ammonium nitrate. After stirring to provide a substantially homogeneous mixture, about 15-20 minutes for example, the heat is removed and the melt is preferably slowly cooled to room temperature. After the melt solidifies into the copper complex, the solid may be ground by mortar and pestle, or other known grinding techniques. Powdered fuel and powdered complex may then be homogeneously mixed in a planetary mixer for example, and then compacted and pelletized in a known manner.
  • the melt constituents are of course provided in the weight percents characterized herein.
  • the present invention provides simplification of the inflator design by only requiring a gas generating composition (auto-igniting below 200C), rather than an auto-ignition composition and a separate gas generating composition.
  • a booster composition must also be employed to provide the energy needed to combust the primary gas generant in the event of a fire.
  • the need for a booster composition may also be eliminated if desired.
  • decomposition products typically associated with the decomposition of the auto-ignition composition in typical inflators is avoided. As such, the integrity of the propellant and the performance reliability of the inflator are favorably enhanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

A gas generating composition of the present invention contains at least one fuel selected from amides, imides, and metal amine-based fuels, ammonium nitrate or phase stabilized ammonium nitrate, and at least one metal oxide. A gas generating system 200 containing a-gas generant in accordance with the present invention is also contemplated.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of U.S. Provisional Application No. 60/761,017 having a filing date of Jan. 19, 2006.
  • TECHNICAL FIELD
  • The present invention relates generally to gas generating systems, and to gas generant compositions employed in gas generator devices for automotive restraint systems, for example.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to nontoxic gas generating compositions that upon combustion rapidly generate gases that are useful for inflating occupant safety restraints in motor vehicles and specifically, the invention relates to thermally stable nonazide gas generants having not only acceptable burn rates, but that also, upon combustion, exhibit a relatively high gas volume to solid particulate ratio at acceptable flame temperatures.
  • The evolution from azide-based gas generants to nonazide gas generants is well-documented in the prior art. The advantages of nonazide gas generant compositions in comparison with azide gas generants have been extensively described in the patent literature, for example, U.S. Pat. Nos. 4,370,181; 4,909,549; 4,948,439; 5,084,118; 5,139,588 and 5,035,757, the discussions of which are hereby incorporated by reference.
  • In addition to a fuel constituent, pyrotechnic nonazide gas generants contain ingredients such as oxidizers to provide the required oxygen for rapid combustion and reduce the quantity of toxic gases generated, a catalyst to promote the conversion of toxic oxides of carbon and nitrogen to innocuous gases, and a slag forming constituent to cause the solid and liquid products formed during and immediately after combustion to agglomerate into filterable clinker-like particulates. Other optional additives, such as burning rate enhancers or ballistic modifiers and ignition aids, are used to control the ignitability and combustion properties of the gas generant.
  • One of the disadvantages of known nonazide gas generant compositions is the amount and physical nature of the solid residues formed during combustion. When employed in a vehicle occupant protection system, the solids produced as a result of combustion must be filtered and otherwise kept away from contact with the occupants of the vehicle. It is therefore highly desirable to develop compositions that produce a minimum of solid particulates while still providing adequate quantities of a nontoxic gas to inflate the safety device at a high rate.
  • The use of phase stabilized ammonium nitrate as an oxidizer, for example, is desirable because it generates abundant nontoxic gases and minimal solids upon combustion. To be useful, however, gas generants for automotive applications must be thermally stable when aged for 400 hours or more at 107 degree C. The compositions must also retain structural integrity when cycled between −40 degree C. and 107 degree C. Further, gas generant compositions incorporating phase stabilized or pure ammonium nitrate sometimes exhibit poor thermal stability, and produce unacceptably high levels of toxic gases, CO and NO.sub.x for example, depending on the composition of the associated additives such as plasticizers and binders.
  • Yet another problem that must be addressed is that the U.S.
  • Department of Transportation (DOT) regulations require “cap testing” for gas generants. Because of the sensitivity to detonation of fuels often used in conjunction with ammonium nitrate, many propellants incorporating ammonium nitrate do not pass the cap test unless shaped into large disks, which in turn reduces design flexibility of the inflator.
  • Yet another concern includes slower cold start ignitions of typical smokeless gas generant compositions, that is gas generant compositions that when combusted result in at least 80 weight % of gaseous combustion products as compared to the overall weight of the combustion products.
  • Many compositions containing phase stabilized ammonium nitrate contain an azole-based fuel such as a tetrazole. Although proven to be satisfactory in many applications, one concern is that azole-based fuels sometimes have a relatively shorter burnout time thereby complicating the inflation profile requirements. Furthermore, it is also an ongoing effort to economize the design of an inflator by increasing the functionality of a given composition, as an autoignition (less than 160 Celsius, perhaps) and primary gas generant for example.
  • Accordingly, ongoing efforts in the design of automotive gas generating systems, for example, include other initiatives that desirably produce more gas and less solids without the drawbacks mentioned above.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exemplary inflator incorporating a composition of the present invention.
  • FIG. 2 is an exemplary gas generating system, in this case a vehicle occupant protection system, incorporating the inflator of FIG. 1.
  • SUMMARY OF THE INVENTION
  • The above-referenced concerns are resolved by gas generating systems including a gas generant composition containing phase stabilized ammonium nitrate, stabilized in a known manner, metal oxides including transitional metal oxides such as copper oxide, and a non-azole fuel, that is a fuel not containing tetrazole, triazoles, furazans, or azoles. Accordingly, typical fuels include amides and imides such as azodicarbonamide for example, or metal amine-based fuels such as copper diamine dinitrate.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • The above-referenced concerns are resolved by gas generating systems including a gas generant composition containing phase stabilized ammonium nitrate, stabilized in a known manner, metal oxides including transitional metal oxides such as copper oxide, and a fuel having non-azole character, that is a fuel not containing, or a fuel absent of any tetrazoles, triazoles, furazans, or azoles. Stated another way, the gas generant composition may be described as having a non-azole character because it does not contain an azole-based fuel as described herein. Accordingly, typical fuels include at least one of amides and imides such as dihydrazides, hydrazides, succinic dihydrazide, hydrazodicarbonamide, dicyandiamide, urea, carbohydrazide, oxamide, oxamic hydrazide, Bi-(carbonamide)amine, azodicarbonamide, derivatives thereof, d- or l-tartaric acid amide derivatives, and mixtures thereof, for example; metal amine-based fuels such as copper diamine di-nitrate; and mixtures thereof. Exemplary methods of stabilizing the phase stabilized ammonium nitrate include co-crystallization of the ammonium nitrate with potassium salts (e.g. KNO3 at about 10-15% by weight of the total weight of the PSAN), or by the solid-state melting of ammonium nitrate with transition metal oxides.
  • Ammonium nitrate or phase stabilized ammonium nitrate (PSAN) is provided at about 60-80%, and more preferably at about 65-75% by weight of the total composition. A metal oxide is provided at about 2-10%, and more preferably at about 3-7%, by weight of the total composition. The fuel is provided at about 18-38% by weight of the total composition. It will be appreciated that the various percentages may be varied based on design requirements such as autoignition temperature and burn rate.
  • One embodiment includes 68.27% PSAN, 3.25% copper oxide, and 27.50% azodicarbonamide. The resulting gas generation is 94.9% of the total combustion products. It will further be appreciated that a typical dry blend ratio of PSAN to the metal oxide is about 10 to 1 respectively, but may be modified as per the weight percents described above. Differential Scanning Calorimeter (DSC) laboratory results indicate a composition containing ammonium nitrate melt phase stabilized with copper oxide, combined with azodicarbonamide, exhibits an autoignition onset temperature of 150.20C, with a peak autoignition temperature of 155.48C. In contrast, nitrocellulose (smokeless powder) indicates an onset of 189.35C with a peak temperature of 214.19C. Accordingly, auto-ignition occurs relatively lower with compositions of the present invention.
  • In yet another aspect of the invention, the present compositions may be employed within a gas generating system. For example, a vehicle occupant protection system made in a known way contains crash sensors in electrical or operable communication with an airbag inflator in a steering wheel or otherwise within the vehicle, and also within a seatbelt assembly. The gas generating compositions of the present invention may be employed in both subassemblies within the broader vehicle occupant protection system or gas generating system. More specifically, each gas generator employed in the automotive gas generating system may contain a gas generating composition as described herein.
  • It should be noted that all percents given herein are weight percents based on the total weight of the gas generant composition. The chemicals described herein may be supplied by companies such as Aldrich Chemical Company and Polysciences, Inc. for example.
  • As shown in FIG. 1, an exemplary inflator incorporates a dual chamber design to tailor the force of deployment an associated airbag. In general, an inflator, containing a primary autoigniting gas generating composition 12 formed as described herein, may be manufactured as known in the art. U.S. Pat. Nos. 6,422,601, 6,805,377, 6,659,500, 6,749,219, and 6,752,421 exemplify typical airbag inflator designs and are each incorporated herein by reference in their entirety. It should also be appreciated that with regard to thermal stability and USCAR requirements, it has been found that the use of desiccant, such as zeolite, provided at about 1:1 weight ratios with regard to the gas generant 12, improves the thermal stability of the present compositions. Co-owned and co-pending U.S. application Ser. No. 11/604,628 filed on Nov. 27, 2006, incorporated herein by reference, further explains how the use of a desiccant may provide thermal stability advantage.
  • Referring now to FIG. 2, the exemplary inflator 10 described above may also be incorporated into a gas generating system such as an airbag or vehicle occupant protection system 200. Airbag system 200 includes at least one airbag 202 and an inflator 10 containing a gas generant composition 12 in accordance with the present invention, coupled to airbag 202 so as to enable fluid communication with an interior of the airbag. Airbag system 200 may also include (or be in communication with) a crash event sensor 210. Crash event sensor 210 includes a known crash sensor algorithm that signals actuation of airbag system 200 via, for example, activation of airbag inflator 10 in the event of a collision.
  • Referring again to FIG. 2, airbag system 200 may also be incorporated into a broader, more comprehensive vehicle occupant restraint system 180 including additional elements such as a safety belt assembly 150.
  • FIG. 2 shows a schematic diagram of one exemplary embodiment of such a restraint system. Safety belt assembly 150 includes a safety belt housing 152 and a safety belt 100 extending from housing 152. A safety belt retractor mechanism 154 (for example, a spring-loaded mechanism) may be coupled to an end portion of the belt. In addition, a safety belt pretensioner 156 containing propellant 12 and autoignition 14 may be coupled to belt retractor mechanism 154 to actuate the retractor mechanism in the event of a collision. Typical seat belt retractor mechanisms which may be used in conjunction with the safety belt embodiments of the present invention are described in U.S. Pat. Nos. 5,743,480, 5,553,803, 5,667,161, 5,451,008, 4,558,832 and 4,597,546, incorporated herein by reference. Illustrative examples of typical pretensioners with which the safety belt embodiments of the present invention may be combined are described in U.S. Pat. Nos. 6,505,790 and 6,419,177, incorporated herein by reference.
  • Safety belt assembly 150 may also include (or be in operable communication with) a crash event sensor 158 (for example, an inertia sensor or an accelerometer) including a known crash sensor algorithm that signals actuation of belt pretensioner 156 via, for example, activation of a pyrotechnic igniter (not shown) incorporated into the pretensioner. U.S. Pat. Nos. 6,505,790 and 6,419,177, previously incorporated herein by reference, provide illustrative examples of pretensioners actuated in such a manner.
  • It should be appreciated that safety belt assembly. 150, airbag system 200, and more broadly, vehicle occupant protection system 180 exemplify but do not limit gas generating systems contemplated in accordance with the present invention.
  • The compositions may be dry or wet mixed using methods known in the art. The various constituents are generally provided in particulate form and mixed to form a uniform mixture with the other gas generant constituents. The mixture is then pelletized or formed into other useful shapes in a safe manner known in the art.
  • In one aspect of the invention, it has been found that forming a complex between ammonium nitrate and the metal oxide, copper oxide for example, may best be accomplished by melting the two compounds and then homogeneously mixing the melt. A heating/mixing vessel may be employed wherein ammonium nitrate, or phase stabilized ammonium nitrate, is heated to its melting point. It has been found that heating ammonium nitrate or phase stabilized ammonium nitrate (co-precipitated with 10-15 wt % potassium nitrate for example) at about 150-175C provides a sufficient melt. Copper oxide, or any other metal oxide such as a transitional metal oxide, is then mixed in and melted as well. The contents of the vessel may be stirred and heated to complex the copper or copper oxide with the ammonium nitrate or phase stabilized ammonium nitrate. After stirring to provide a substantially homogeneous mixture, about 15-20 minutes for example, the heat is removed and the melt is preferably slowly cooled to room temperature. After the melt solidifies into the copper complex, the solid may be ground by mortar and pestle, or other known grinding techniques. Powdered fuel and powdered complex may then be homogeneously mixed in a planetary mixer for example, and then compacted and pelletized in a known manner. The melt constituents are of course provided in the weight percents characterized herein.
  • It should be noted that all percents given herein are weight percents based on the total weight of the gas generant composition. The chemicals described herein may be supplied by companies such as Aldrich Chemical Company and Polysciences, Inc., or Toyo Kasie Kogyo Co. of Takasago City, Japan, for example. Or, the various constituents may be made as known in the art. For example, d- or l-tartaric acid amide derivatives may be formed as described in U.S. Pat. No. 5,306,844, herein incorporated by reference in its entirety.
  • In sum, the present invention provides simplification of the inflator design by only requiring a gas generating composition (auto-igniting below 200C), rather than an auto-ignition composition and a separate gas generating composition. Furthermore, in many gas generators or inflators, a booster composition must also be employed to provide the energy needed to combust the primary gas generant in the event of a fire. By eliminating the need for an auto-igniting composition, the need for a booster composition may also be eliminated if desired. Furthermore, decomposition products typically associated with the decomposition of the auto-ignition composition in typical inflators is avoided. As such, the integrity of the propellant and the performance reliability of the inflator are favorably enhanced.
  • The present description is for illustrative purposes only, and should not be construed to limit the breadth of the present invention in any way. Thus, those skilled in the art will appreciate that various modifications could be made to the presently disclosed embodiments without departing from the scope of the present invention as defined in the appended claims.

Claims (1)

1. A gas generant composition comprising:
a fuel selected from the group of amides, imides, metal amine-based fuels, and mixtures thereof;
ammonium nitrate; and
a metal oxide,
wherein said gas generant composition has a non-azole character.
US11/656,319 2006-01-19 2007-01-19 Autoignition main gas generant Abandoned US20070169863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/656,319 US20070169863A1 (en) 2006-01-19 2007-01-19 Autoignition main gas generant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76101706P 2006-01-19 2006-01-19
US11/656,319 US20070169863A1 (en) 2006-01-19 2007-01-19 Autoignition main gas generant

Publications (1)

Publication Number Publication Date
US20070169863A1 true US20070169863A1 (en) 2007-07-26

Family

ID=38284370

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/656,319 Abandoned US20070169863A1 (en) 2006-01-19 2007-01-19 Autoignition main gas generant

Country Status (1)

Country Link
US (1) US20070169863A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070175553A1 (en) * 2006-01-31 2007-08-02 Burns Sean P Gas Generating composition
US20100326575A1 (en) * 2006-01-27 2010-12-30 Miller Cory G Synthesis of 2-nitroimino-5-nitrohexahydro-1,3,5-triazine

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785149A (en) * 1972-06-08 1974-01-15 Specialty Prod Dev Corp Method for filling a bag with water vapor and carbon dioxide gas
US3880595A (en) * 1972-06-08 1975-04-29 Hubert G Timmerman Gas generating compositions and apparatus
US3923884A (en) * 1973-04-17 1975-12-02 Mitsubishi Gas Chemical Co Process for producing DL-tartaric acid
US5035757A (en) * 1990-10-25 1991-07-30 Automotive Systems Laboratory, Inc. Azide-free gas generant composition with easily filterable combustion products
US5084118A (en) * 1990-10-23 1992-01-28 Automotive Systems Laboratory, Inc. Ignition composition for inflator gas generators
US5139588A (en) * 1990-10-23 1992-08-18 Automotive Systems Laboratory, Inc. Composition for controlling oxides of nitrogen
US5380380A (en) * 1994-02-09 1995-01-10 Automotive Systems Laboratory, Inc. Ignition compositions for inflator gas generators
US5386775A (en) * 1993-06-22 1995-02-07 Automotive Systems Laboratory, Inc. Azide-free gas generant compositions and processes
US5460671A (en) * 1994-04-04 1995-10-24 Automotive Systems Laboratory, Inc. Ignition compositions for inflator gas generators
US5460668A (en) * 1994-07-11 1995-10-24 Automotive Systems Laboratory, Inc. Nonazide gas generating compositions with reduced toxicity upon combustion
US5514230A (en) * 1995-04-14 1996-05-07 Automotive Systems Laboratory, Inc. Nonazide gas generating compositions with a built-in catalyst
US5531941A (en) * 1993-08-04 1996-07-02 Automotive Systems Laboratory, Inc Process for preparing azide-free gas generant composition
US5538567A (en) * 1994-03-18 1996-07-23 Olin Corporation Gas generating propellant
US5545272A (en) * 1995-03-03 1996-08-13 Olin Corporation Thermally stable gas generating composition
US5567905A (en) * 1996-01-30 1996-10-22 Morton International, Inc. Gas generant compositions containing D 1-tartaric acid
US5756929A (en) * 1996-02-14 1998-05-26 Automotive Systems Laboratory Inc. Nonazide gas generating compositions
US5783773A (en) * 1992-04-13 1998-07-21 Automotive Systems Laboratory Inc. Low-residue azide-free gas generant composition
US5872329A (en) * 1996-11-08 1999-02-16 Automotive Systems Laboratory, Inc. Nonazide gas generant compositions
US5962808A (en) * 1997-03-05 1999-10-05 Automotive Systems Laboratory, Inc. Gas generant complex oxidizers
US6007647A (en) * 1996-08-16 1999-12-28 Automotive Systems Laboratory, Inc. Autoignition compositions for inflator gas generators
US6074502A (en) * 1996-11-08 2000-06-13 Automotive Systems Laboratory, Inc. Smokeless gas generant compositions
US6077371A (en) * 1997-02-10 2000-06-20 Automotive Systems Laboratory, Inc. Gas generants comprising transition metal nitrite complexes
US6287400B1 (en) * 1999-03-01 2001-09-11 Automotive Systems Laboratory, Inc. Gas generant composition
US6306232B1 (en) * 1996-07-29 2001-10-23 Automotive Systems Laboratory, Inc. Thermally stable nonazide automotive airbag propellants
US20020148542A1 (en) * 1999-05-06 2002-10-17 Taylor Robert D. Gas generant compositions containing copper ethylenediamine dinitrate and associated methods
US6475312B1 (en) * 1999-04-07 2002-11-05 Automotive Systems Laboratory, Inc. Method of formulating a gas generant composition
US6620266B1 (en) * 1999-07-02 2003-09-16 Automotive Systems Laboratory, Inc. Gas generant compositions containing a silicone coating
US20040084884A1 (en) * 2002-02-18 2004-05-06 Masayuki Yamazaki Hybrid inflator
US6789485B2 (en) * 2000-11-28 2004-09-14 Automotive Systems Laboratory, Inc. Gas generator and method of assembly
US6887326B2 (en) * 2002-04-04 2005-05-03 Automotive Systems Laboratory, Inc. Nonazide gas generant compositions
US20050111135A1 (en) * 2003-11-20 2005-05-26 Sae Magnetics (H.K.) Ltd. Magnetic disk drive apparatus
US20050230017A1 (en) * 2003-10-09 2005-10-20 Williams Graylon K Gas generant compositions
US20050235863A1 (en) * 2004-01-28 2005-10-27 Stevens Bruce A Auto igniting pyrotechnic booster
US20050257866A1 (en) * 2004-03-29 2005-11-24 Williams Graylon K Gas generant and manufacturing method thereof
US20050263223A1 (en) * 2004-03-30 2005-12-01 Halpin Jeffrey W Gas generating system
US20050272873A1 (en) * 2004-06-02 2005-12-08 Miller Cory G Gas generant and synthesis
US20060021340A1 (en) * 2003-04-15 2006-02-02 Volvo Construction Equipment Holding Sweden Ab System and method for controlling viscosity of a fluid and a working vehicle containing such a system
US20060022443A1 (en) * 2004-07-27 2006-02-02 Stevens Bruce A Gas generator containing a flash suppressant
US20060043716A1 (en) * 2004-08-31 2006-03-02 Quioc Eduardo L Gas generating system
US20060118218A1 (en) * 2000-03-01 2006-06-08 Burns Sean P Gas generant composition
US7094296B1 (en) * 1999-09-16 2006-08-22 Automotive Systems Laboratory, Inc. Gas generants containing silicone fuels
US20070034307A1 (en) * 2005-07-29 2007-02-15 Hordos Deborah L Autoignition/booster composition
US20070040167A1 (en) * 2005-06-01 2007-02-22 Miller Cory G Water-based synthesis of poly(tetrazoles) and articles formed therefrom
US20070044675A1 (en) * 2005-08-31 2007-03-01 Burns Sean P Autoignition compositions
US20070084531A1 (en) * 2005-09-29 2007-04-19 Halpin Jeffrey W Gas generant
US20070084532A1 (en) * 2005-09-30 2007-04-19 Burns Sean P Gas generant
US20070175553A1 (en) * 2006-01-31 2007-08-02 Burns Sean P Gas Generating composition
US20080271825A1 (en) * 2006-09-29 2008-11-06 Halpin Jeffrey W Gas generant

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880595A (en) * 1972-06-08 1975-04-29 Hubert G Timmerman Gas generating compositions and apparatus
US3785149A (en) * 1972-06-08 1974-01-15 Specialty Prod Dev Corp Method for filling a bag with water vapor and carbon dioxide gas
US3923884A (en) * 1973-04-17 1975-12-02 Mitsubishi Gas Chemical Co Process for producing DL-tartaric acid
US5084118A (en) * 1990-10-23 1992-01-28 Automotive Systems Laboratory, Inc. Ignition composition for inflator gas generators
US5139588A (en) * 1990-10-23 1992-08-18 Automotive Systems Laboratory, Inc. Composition for controlling oxides of nitrogen
US5035757A (en) * 1990-10-25 1991-07-30 Automotive Systems Laboratory, Inc. Azide-free gas generant composition with easily filterable combustion products
US5783773A (en) * 1992-04-13 1998-07-21 Automotive Systems Laboratory Inc. Low-residue azide-free gas generant composition
US5386775A (en) * 1993-06-22 1995-02-07 Automotive Systems Laboratory, Inc. Azide-free gas generant compositions and processes
US5531941A (en) * 1993-08-04 1996-07-02 Automotive Systems Laboratory, Inc Process for preparing azide-free gas generant composition
US5380380A (en) * 1994-02-09 1995-01-10 Automotive Systems Laboratory, Inc. Ignition compositions for inflator gas generators
US5538567A (en) * 1994-03-18 1996-07-23 Olin Corporation Gas generating propellant
US5460671A (en) * 1994-04-04 1995-10-24 Automotive Systems Laboratory, Inc. Ignition compositions for inflator gas generators
US5460668A (en) * 1994-07-11 1995-10-24 Automotive Systems Laboratory, Inc. Nonazide gas generating compositions with reduced toxicity upon combustion
US5545272A (en) * 1995-03-03 1996-08-13 Olin Corporation Thermally stable gas generating composition
US5514230A (en) * 1995-04-14 1996-05-07 Automotive Systems Laboratory, Inc. Nonazide gas generating compositions with a built-in catalyst
US5567905A (en) * 1996-01-30 1996-10-22 Morton International, Inc. Gas generant compositions containing D 1-tartaric acid
US5756929A (en) * 1996-02-14 1998-05-26 Automotive Systems Laboratory Inc. Nonazide gas generating compositions
US6306232B1 (en) * 1996-07-29 2001-10-23 Automotive Systems Laboratory, Inc. Thermally stable nonazide automotive airbag propellants
US6007647A (en) * 1996-08-16 1999-12-28 Automotive Systems Laboratory, Inc. Autoignition compositions for inflator gas generators
US6074502A (en) * 1996-11-08 2000-06-13 Automotive Systems Laboratory, Inc. Smokeless gas generant compositions
US6210505B1 (en) * 1996-11-08 2001-04-03 Automotive Systems Laboratory Inc High gas yield non-azide gas generants
US5872329A (en) * 1996-11-08 1999-02-16 Automotive Systems Laboratory, Inc. Nonazide gas generant compositions
US6077371A (en) * 1997-02-10 2000-06-20 Automotive Systems Laboratory, Inc. Gas generants comprising transition metal nitrite complexes
US5962808A (en) * 1997-03-05 1999-10-05 Automotive Systems Laboratory, Inc. Gas generant complex oxidizers
US6287400B1 (en) * 1999-03-01 2001-09-11 Automotive Systems Laboratory, Inc. Gas generant composition
US6475312B1 (en) * 1999-04-07 2002-11-05 Automotive Systems Laboratory, Inc. Method of formulating a gas generant composition
US20020148542A1 (en) * 1999-05-06 2002-10-17 Taylor Robert D. Gas generant compositions containing copper ethylenediamine dinitrate and associated methods
US6620266B1 (en) * 1999-07-02 2003-09-16 Automotive Systems Laboratory, Inc. Gas generant compositions containing a silicone coating
US7094296B1 (en) * 1999-09-16 2006-08-22 Automotive Systems Laboratory, Inc. Gas generants containing silicone fuels
US20060118218A1 (en) * 2000-03-01 2006-06-08 Burns Sean P Gas generant composition
US6789485B2 (en) * 2000-11-28 2004-09-14 Automotive Systems Laboratory, Inc. Gas generator and method of assembly
US20040084884A1 (en) * 2002-02-18 2004-05-06 Masayuki Yamazaki Hybrid inflator
US6887326B2 (en) * 2002-04-04 2005-05-03 Automotive Systems Laboratory, Inc. Nonazide gas generant compositions
US20060021340A1 (en) * 2003-04-15 2006-02-02 Volvo Construction Equipment Holding Sweden Ab System and method for controlling viscosity of a fluid and a working vehicle containing such a system
US20050230017A1 (en) * 2003-10-09 2005-10-20 Williams Graylon K Gas generant compositions
US20050111135A1 (en) * 2003-11-20 2005-05-26 Sae Magnetics (H.K.) Ltd. Magnetic disk drive apparatus
US20050235863A1 (en) * 2004-01-28 2005-10-27 Stevens Bruce A Auto igniting pyrotechnic booster
US20050257866A1 (en) * 2004-03-29 2005-11-24 Williams Graylon K Gas generant and manufacturing method thereof
US20050263223A1 (en) * 2004-03-30 2005-12-01 Halpin Jeffrey W Gas generating system
US20050272873A1 (en) * 2004-06-02 2005-12-08 Miller Cory G Gas generant and synthesis
US20060022443A1 (en) * 2004-07-27 2006-02-02 Stevens Bruce A Gas generator containing a flash suppressant
US20060043716A1 (en) * 2004-08-31 2006-03-02 Quioc Eduardo L Gas generating system
US20070040167A1 (en) * 2005-06-01 2007-02-22 Miller Cory G Water-based synthesis of poly(tetrazoles) and articles formed therefrom
US20070034307A1 (en) * 2005-07-29 2007-02-15 Hordos Deborah L Autoignition/booster composition
US20070044675A1 (en) * 2005-08-31 2007-03-01 Burns Sean P Autoignition compositions
US20070084531A1 (en) * 2005-09-29 2007-04-19 Halpin Jeffrey W Gas generant
US20070084532A1 (en) * 2005-09-30 2007-04-19 Burns Sean P Gas generant
US20070175553A1 (en) * 2006-01-31 2007-08-02 Burns Sean P Gas Generating composition
US20080271825A1 (en) * 2006-09-29 2008-11-06 Halpin Jeffrey W Gas generant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326575A1 (en) * 2006-01-27 2010-12-30 Miller Cory G Synthesis of 2-nitroimino-5-nitrohexahydro-1,3,5-triazine
US20070175553A1 (en) * 2006-01-31 2007-08-02 Burns Sean P Gas Generating composition
US7959749B2 (en) 2006-01-31 2011-06-14 Tk Holdings, Inc. Gas generating composition

Similar Documents

Publication Publication Date Title
US6287400B1 (en) Gas generant composition
US5861571A (en) Gas-generative composition consisting essentially of ammonium perchlorate plus a chlorine scavenger and an organic fuel
JP2551738B2 (en) Gas generant composition
US5197758A (en) Non-azide gas generant formulation, method, and apparatus
US6132480A (en) Gas forming igniter composition for a gas generant
US20060219340A1 (en) Gas generating system
JPH09503194A (en) Gas generating composition free of low residual azide compounds
EP1165463A2 (en) Nonazide ammonium nitrate based gas generant compositions that burn at ambient pressure
JP2000511866A (en) Ignition type gas generation method that generates non-toxic, odorless and colorless gas without generating fine particles
US20080217894A1 (en) Micro-gas generation
WO2005094366A2 (en) Gas generating system
JP5156627B2 (en) Self-ignition / booster composition
US5854442A (en) Gas generator compositions
US6475312B1 (en) Method of formulating a gas generant composition
US20060118218A1 (en) Gas generant composition
JP2000517282A (en) Gas generating composition
US20080149232A1 (en) Gas generant compositions
JP2002172998A (en) Ignition device for gas generating material
US20070169863A1 (en) Autoignition main gas generant
JP3920773B2 (en) Gas evolution by metal complexes of guanylurea nitrate.
US6277221B1 (en) Propellant compositions with salts and complexes of lanthanide and rare earth elements
US10919818B1 (en) Auto-ignition composition
JP2001507325A (en) Autoignition composition for gas generator of inflator
US8241444B1 (en) Gas generant composition
JP2002541049A (en) Method of formulating a gas generating composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: TK HOLDINGS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORDOS, DEBORAH L.;BURNS, SEAN P.;REEL/FRAME:018927/0402;SIGNING DATES FROM 20070109 TO 20070110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION