US20070137550A1 - Marine Drive with Integrated Trim Tab - Google Patents

Marine Drive with Integrated Trim Tab Download PDF

Info

Publication number
US20070137550A1
US20070137550A1 US11/677,720 US67772007A US2007137550A1 US 20070137550 A1 US20070137550 A1 US 20070137550A1 US 67772007 A US67772007 A US 67772007A US 2007137550 A1 US2007137550 A1 US 2007137550A1
Authority
US
United States
Prior art keywords
vessel
drive
marine
hull
trim tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/677,720
Inventor
Richard Davis
David Gruenwald
John Groeschel
Todd Gruenstern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Priority to US11/677,720 priority Critical patent/US20070137550A1/en
Publication of US20070137550A1 publication Critical patent/US20070137550A1/en
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: ATTWOOD CORPORATION, BOSTON WHALER, INC., BRUNSWICK BOWLING & BILLIARDS CORPORATION, BRUNSWICK COMMERCIAL & GOVERNMENT PRODUCTS, INC., BRUNSWICK CORPORATION, BRUNSWICK FAMILY BOAT CO. INC., BRUNSWICK LEISURE BOAT COMPANY, LLC, LAND 'N' SEA DISTRIBUTING, INC., LUND BOAT COMPANY, TRITON BOAT COMPANY, L.P.
Assigned to BRUNSWICK CORPORATION, BRUNSWICK LEISURE BOAT COMPANY, LLC, TRITON BOAT COMPANY, L.P., LUND BOAT COMPANY, BRUNSWICK BOWLING & BILLIARDS CORPORATION, BOSTON WHALER, INC., BRUNSWICK FAMILY BOAT CO. INC., BRUNSWICK COMMERICAL & GOVERNMENT PRODUCTS, INC., ATTWOOD CORPORATION, LAND 'N' SEA DISTRIBUTING, INC. reassignment BRUNSWICK CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B39/061Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water by using trimflaps, i.e. flaps mounted on the rear of a boat, e.g. speed boat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1256Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with mechanical power transmission to propellers

Definitions

  • the invention relates to marine drives and to marine vessel and drive combinations.
  • Marine drives as well as marine vessel and drive combinations are known in the prior art.
  • Marine vessels may include a trim tab for contact by the water for adjusting vessel attitude and/or altering thrust vectors, or otherwise affecting hydrodynamic operation of the vessel.
  • the present invention arose during continuing development efforts directed toward marine drives and toward marine vessel and drive combinations.
  • FIG. 1 is a perspective view of a marine vessel and drive combination in accordance with the invention.
  • FIG. 2 is a bottom elevation view of the combination of FIG. 1 .
  • FIG. 3 is a side elevation view of the combination of FIG. 1 .
  • FIG. 4 is a rear or aft elevation view of the combination of FIG. 1 .
  • FIG. 5 is an enlarged view of a portion of FIG. 3 .
  • FIG. 5A is like a portion of FIG. 5 and shows an alternate embodiment.
  • FIG. 5B is an enlarged rear elevation view of a portion of FIG. 5 .
  • FIG. 6 is an enlarged view of a portion of FIG. 2 .
  • FIG. 7 is like FIG. 6 and shows a different steering orientation.
  • FIG. 8 is like FIG. 6 and shows another different steering orientation.
  • FIG. 9 is an enlarged view of a portion of FIG. 1 .
  • FIG. 10 is like FIG. 9 and shows a further operational embodiment.
  • FIG. 11 is a side view showing the arrangement of an engine and marine propulsion device used in conjunction with the present invention.
  • FIGS. 1-4 show a marine vessel and drive combination.
  • Marine vessel 22 includes a hull 24 having a longitudinally extending keel 26 having a lower reach 28 .
  • the hull has port and starboard lower hull surfaces 30 and 32 , respectively, extending upwardly and laterally distally oppositely from keel 26 in V-shaped relation, FIG. 4 .
  • Hull 24 extends forwardly from a stern 34 to a bow 36 .
  • a port tunnel 38 is formed in port lower hull surface 30 .
  • Port tunnel 38 has a top 40 , FIG. 4 , spaced above an open bottom 42 at port lower hull surface 30 .
  • Port tunnel 38 opens aft at stem 34 and extends forwardly therefrom and has a closed forward end 44 aft of bow 36 .
  • a starboard tunnel 46 is formed in starboard lower hull surface 32 .
  • Starboard tunnel 46 has a top 48 spaced above an open bottom 50 at starboard lower hull surface 32 .
  • Starboard tunnel 46 opens aft at stern 34 and extends forwardly therefrom and has a closed forward end 52 aft of bow 36 .
  • a port marine propulsion device 54 includes a port driveshaft housing 56 extending downwardly in port tunnel 38 to a port lower gear case 58 , e.g. including a torpedo-shaped housing as is known, supporting at least one port propeller shaft 60 driving at least one water-engaging propulsor such as port propeller 62 , and preferably a pair of propeller shafts driving counter-rotating propellers 62 , 63 , as is known, for example U.S. Pat. Nos. 5,108,325, 5,230,644, 5,366,398, 5,415,576, 5,425,663, all incorporated herein by reference.
  • Starboard marine propulsion device 64 is comparable and includes a starboard driveshaft housing 66 extending downwardly in starboard tunnel 46 to starboard lower gear case 68 , e.g. provided by the noted torpedo-shaped housing, supporting at least one starboard propeller shaft 70 driving at least one starboard propeller 72 , and preferably a pair of counter-rotating starboard propellers 72 , 73 , as above.
  • the port and starboard marine propulsion devices 54 and 64 are steerable about respective port and starboard vertical steering axes 74 and 76 , comparably as shown in commonly owned co-pending U.S. patent application Ser. No. 11/248,482, filed Oct. 12, 2005, and application Ser. No. 11/248,483, filed Oct. 12, 2005, incorporated herein by reference.
  • Port steering axis 74 extends through the top 40 of port tunnel 38 .
  • Starboard steering axis 76 extends through the top 48 of starboard tunnel 46 .
  • Tops 40 and 48 of port and starboard tunnels 38 and 46 are at a given vertical elevation, FIG. 4 , spaced vertically above lower reach 28 of keel 26 to provide port and starboard tunnels 38 and 46 with a given vertical height receiving port and starboard marine propulsion devices 54 and 64 and raising same relative to keel 26 , such that keel 26 at least partially protects port and starboard marine propulsion devices 54 and 64 from striking underwater objects, including grounding, during forward propulsion of the vessel.
  • At least a portion of port driveshaft housing 56 is in port tunnel 38 and above open bottom 42 of port tunnel 38 at port lower hull surface 30 .
  • At least a portion of port lower gear case 58 is outside of port tunnel 38 and below open bottom 42 of port tunnel 38 at port lower hull surface 30 .
  • At least a portion of starboard driveshaft housing 66 is in starboard tunnel 46 and above open bottom 50 of starboard tunnel 46 at starboard lower hull surface 32 .
  • At least a portion of starboard lower gear case 68 is outside of starboard tunnel 46 and below open bottom 50 of starboard tunnel 46 at starboard lower hull surface 32 .
  • port and starboard lower gear cases 58 and 68 are horizontally aligned along a horizontal projection line at or above and transversely crossing lower reach 28 of keel 26 .
  • Port lower gear case 58 includes the noted port torpedo-shaped housing having a front nose 78 with a curved surface 80 extending downwardly and aft therefrom.
  • front nose 78 is horizontally aligned with lower reach 28 of keel 26 , such that underwater objects struck by port lower gear case 58 slide along curved surface 80 downwardly and aft from nose 78 of the noted port torpedo-shaped housing.
  • Starboard lower gear case 68 includes the noted starboard torpedo-shaped housing having a front nose 82 , FIG. 5 , with a curved surface 84 extending downwardly and aft therefrom.
  • front nose 82 is horizontally aligned with lower reach 28 of keel 26 , such that underwater objects struck by starboard lower gear case 68 slide along curved surface 84 extending downwardly and aft from nose 82 of the noted starboard torpedo-shaped housing.
  • port and starboard marine propulsion devices 54 and 64 have respective port and starboard lower skegs 86 and 88 extending downwardly from respective port and starboard lower gear cases 58 and 68 to a lower reach at a vertical level below lower reach 28 of keel 26 .
  • Each of port and starboard lower skegs 86 and 88 is a breakaway skeg, e.g.
  • FIG. 5B is an enlarged rear elevation view of a portion of skeg 88 and gear case 68 of FIG. 5 , with propellers 72 and 73 removed, and showing the mounting of skeg 88 to lower gear case 68 by a breakaway channel or tongue and groove arrangement, for example tongue 89 at the top of skeg 88 , and groove or channel 91 at the bottom of lower gear case 68 receiving tongue 89 in breakaway manner upon shearing of frangible pins such as 90 .
  • a breakaway channel or tongue and groove arrangement for example tongue 89 at the top of skeg 88 , and groove or channel 91 at the bottom of lower gear case 68 receiving tongue 89 in breakaway manner upon shearing of frangible pins such as 90 .
  • Port marine propulsion device 54 provides propulsion thrust along a port thrust direction 102 , FIG. 6 , along the noted at least one port propeller shaft 60 .
  • Port marine propulsion device 54 has a port reference position 104 with port thrust direction 102 pointing forwardly parallel to keel 26 .
  • Port marine propulsion device 54 is steerable about port steering axis 74 along a first angular range 106 , FIG. 7 , from port reference position 104 away from keel 26 , e.g. clockwise in FIG. 7 .
  • Port marine propulsion device 54 is steerable about steering axis 72 along a second angular range 108 , FIG. 8 , from port reference position 104 towards keel 26 , e.g. counterclockwise in FIG.
  • Starboard propulsion device 64 provides propulsion thrust along a starboard thrust direction 110 along the noted at least one starboard propeller shaft 70 .
  • Starboard marine propulsion device 64 has a starboard reference position 112 , FIG. 6 , with starboard thrust direction 110 pointing forwardly parallel to keel 26 .
  • Starboard marine propulsion device 64 is steerable about starboard steering axis 76 along a third angular range 114 , FIG. 7 , from starboard reference position 112 towards keel 26 , e.g. clockwise in FIG. 7 .
  • Starboard marine propulsion device 64 is steerable about starboard steering axis 76 along a fourth angular range 116 , FIG. 8 , away from keel 26 , e.g. counterclockwise in FIG. 8 .
  • Third and fourth angular ranges 114 and 116 are unequal, and starboard tunnel 46 is asymmetric, to be described.
  • second angular range 108 is at least twice as great as first angular range 106 , and in a further preferred embodiment, first angular range 106 is at least 15 degrees, and second angular range 108 is at least 45 degrees.
  • third angular range 114 is at least twice as great as fourth angular range 116 , and in the noted further preferred embodiment, third angular range 114 is at least 45 degrees, and fourth angular range 116 is at least 15 degrees.
  • Marine propulsion devices 54 and 64 may be rotated and steered in unison with equal angular ranges, or may be independently controlled for various steering, docking, and position or station maintaining virtual anchoring functions, and for which further reference is made to the above-noted commonly owned co-pending '482 and '483 applications.
  • Port tunnel 38 has left and right port tunnel sidewalls 120 and 122 extending vertically between top 40 of port tunnel 38 and open bottom 42 of port tunnel 38 and port lower hull surface 30 .
  • Left and right port tunnel sidewalls 120 and 122 are laterally spaced by port driveshaft housing 56 therebetween.
  • Right port tunnel sidewall 122 has a greater vertical height and a lower vertical reach than left port tunnel sidewall 120 and limits the span of first angular range 106 to be less than the span of second angular range 108 .
  • Starboard tunnel 46 has left and right starboard tunnel sidewalls 124 and 126 extending vertically between top 48 of starboard tunnel 46 and open bottom 50 of starboard tunnel 46 at starboard lower hull surface 32 .
  • Left and right starboard tunnel sidewalls 124 and 126 are laterally spaced by starboard driveshaft housing 66 therebetween.
  • Left starboard tunnel sidewall 124 has a greater vertical height and a lower vertical reach than right starboard tunnel sidewall 126 and limits the span of fourth angular range 116 to be less than the span of third angular range 114 .
  • Port marine propulsion device 54 has a port trim tab 130 pivotally mounted thereto for contact by the water for adjusting vessel attitude and/or altering thrust vectors or otherwise affecting hydrodynamic operation of the vessel.
  • Starboard marine propulsion device 64 has a starboard trim tab 132 pivotally mounted thereto.
  • Port trim tab 130 is preferably pivotally mounted to port marine propulsion device 54 at a pivot axis 134 , FIG. 6 , aft of port driveshaft housing 56 and aft of port steering axis 74 .
  • starboard trim tab 132 is preferably pivotally mounted to starboard marine propulsion device 64 at a pivot axis 136 aft of starboard driveshaft housing 66 and aft of starboard steering axis 76 .
  • Port trim tab 130 has an upwardly pivoted retracted position, FIGS. 1, 4 , 9 , and solid line in FIG. 5 , and a downwardly pivoted extended position, FIG. 10 , and dashed line in FIG. 5 .
  • the top 40 , FIG. 4 , of port tunnel 38 has a notch 140 receiving port trim tab 130 in the noted retracted position to enhance hydrodynamic profile by providing a smoother transition providing less restriction to water flow therepast.
  • Starboard trim tab 132 likewise has an upwardly pivoted retracted position, and a downwardly pivoted extended position.
  • the top 48 of starboard tunnel 46 has a notch 142 receiving starboard trim tab 132 in the noted retracted position to enhance hydrodynamic profile.
  • Each trim tab may be actuated in conventional manner, e.g. hydraulically, e.g. by a hydraulic cylinder 144 having an extensible and retractable plunger or piston 146 engaging pivot pin 148 journaled to stanchions 150 of the respective trim tab.
  • external hydraulic cylinder 144 a has its piston 146 a connected to the aft end of the trim tab, for a longer moment arm from the pivot axis of the trim tab if desired.
  • the trim tabs may be actuated electrically, e.g. by electrical reduction motors.
  • the forward end of the trim tab is pivotally mounted at hinges such as 152 to mounting plate 154 of the marine propulsion device which is then mounted to the vessel hull and sealed thereto for example at sealing gasket 156 .
  • the forward end of the trim tab is pivotally mounted to the marine propulsion device and not to the vessel, and the aft end of the trim tab is movable in a vertical arc.
  • FIG. 11 is a side view taken from the above-noted commonly owned co-pending '482 and '483 applications and showing the arrangement of a marine propulsion device, such as 54 or 64 , associated with a mechanism that is able to rotate the marine propulsion device about its respective steering axis 74 or 76 .
  • the driveshaft of the marine propulsion device extends vertically and parallel to the steering axis and is connected in torque transmitting relation with a generally horizontal propeller shaft that is able to rotate about a propeller axis 61 .
  • the embodiment shown in FIG. 11 comprises two propellers 62 and 63 , as above noted, that are attached to the propeller shaft 60 .
  • the motive force to drive the propellers 62 and 63 is provided by an internal combustion engine 160 that is located within the bilge of the marine vessel 22 .
  • the engine is configured with its crankshaft aligned for rotation about a horizontal axis.
  • engine 160 is a diesel engine.
  • Each of the two marine propulsion devices 54 and 64 is driven by a separate engine 160 .
  • each of the marine propulsion devices 54 and 64 are independently steerable about their respective steering axes 74 and 76 .
  • the steering axes are generally vertical and parallel to each other. They are intentionally not configured to be perpendicular to the bottom respective surface 30 and 32 of the hull.
  • Driveshaft housings 56 and 66 and gear case torpedo housings 58 and 68 contain rotatable shafts, gears, and bearings which support the shafts and connect the driveshaft to the propeller shaft for rotation of the propellers.
  • No source of motive power is located below the hull surface. The power necessary to rotate the propellers is solely provided by the internal combustion engine.
  • the marine vessel maneuvering system in one preferred embodiment is that provided in the noted commonly owned co-pending '482 and '483 applications, allowing the operator of the marine vessel to provide maneuvering commands to a microprocessor which controls the steering movements and thrust magnitudes of two marine propulsion devices 54 , 64 to implement those maneuvering commands, e.g. steering, docking, and position or station maintaining virtual anchoring functions, and the like, as above noted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Toys (AREA)
  • Ship Loading And Unloading (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

A marine drive and a marine vessel and drive combination have a trim tab with a forward end pivotally mounted to a marine propulsion device.

Description

    BACKGROUND AND SUMMARY
  • The invention relates to marine drives and to marine vessel and drive combinations.
  • Marine drives as well as marine vessel and drive combinations are known in the prior art. Marine vessels may include a trim tab for contact by the water for adjusting vessel attitude and/or altering thrust vectors, or otherwise affecting hydrodynamic operation of the vessel.
  • The present invention arose during continuing development efforts directed toward marine drives and toward marine vessel and drive combinations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a marine vessel and drive combination in accordance with the invention.
  • FIG. 2 is a bottom elevation view of the combination of FIG. 1.
  • FIG. 3 is a side elevation view of the combination of FIG. 1.
  • FIG. 4 is a rear or aft elevation view of the combination of FIG. 1.
  • FIG. 5 is an enlarged view of a portion of FIG. 3.
  • FIG. 5A is like a portion of FIG. 5 and shows an alternate embodiment.
  • FIG. 5B is an enlarged rear elevation view of a portion of FIG. 5.
  • FIG. 6 is an enlarged view of a portion of FIG. 2.
  • FIG. 7 is like FIG. 6 and shows a different steering orientation.
  • FIG. 8 is like FIG. 6 and shows another different steering orientation.
  • FIG. 9 is an enlarged view of a portion of FIG. 1.
  • FIG. 10 is like FIG. 9 and shows a further operational embodiment.
  • FIG. 11 is a side view showing the arrangement of an engine and marine propulsion device used in conjunction with the present invention.
  • DETAILED DESCRIPTION
  • FIGS. 1-4 show a marine vessel and drive combination. Marine vessel 22 includes a hull 24 having a longitudinally extending keel 26 having a lower reach 28. The hull has port and starboard lower hull surfaces 30 and 32, respectively, extending upwardly and laterally distally oppositely from keel 26 in V-shaped relation, FIG. 4. Hull 24 extends forwardly from a stern 34 to a bow 36.
  • A port tunnel 38, FIG. 2, is formed in port lower hull surface 30. Port tunnel 38 has a top 40, FIG. 4, spaced above an open bottom 42 at port lower hull surface 30. Port tunnel 38 opens aft at stem 34 and extends forwardly therefrom and has a closed forward end 44 aft of bow 36. A starboard tunnel 46 is formed in starboard lower hull surface 32. Starboard tunnel 46 has a top 48 spaced above an open bottom 50 at starboard lower hull surface 32. Starboard tunnel 46 opens aft at stern 34 and extends forwardly therefrom and has a closed forward end 52 aft of bow 36.
  • A port marine propulsion device 54 includes a port driveshaft housing 56 extending downwardly in port tunnel 38 to a port lower gear case 58, e.g. including a torpedo-shaped housing as is known, supporting at least one port propeller shaft 60 driving at least one water-engaging propulsor such as port propeller 62, and preferably a pair of propeller shafts driving counter-rotating propellers 62, 63, as is known, for example U.S. Pat. Nos. 5,108,325, 5,230,644, 5,366,398, 5,415,576, 5,425,663, all incorporated herein by reference. Starboard marine propulsion device 64 is comparable and includes a starboard driveshaft housing 66 extending downwardly in starboard tunnel 46 to starboard lower gear case 68, e.g. provided by the noted torpedo-shaped housing, supporting at least one starboard propeller shaft 70 driving at least one starboard propeller 72, and preferably a pair of counter-rotating starboard propellers 72, 73, as above. The port and starboard marine propulsion devices 54 and 64 are steerable about respective port and starboard vertical steering axes 74 and 76, comparably as shown in commonly owned co-pending U.S. patent application Ser. No. 11/248,482, filed Oct. 12, 2005, and application Ser. No. 11/248,483, filed Oct. 12, 2005, incorporated herein by reference. Port steering axis 74 extends through the top 40 of port tunnel 38. Starboard steering axis 76 extends through the top 48 of starboard tunnel 46.
  • Tops 40 and 48 of port and starboard tunnels 38 and 46 are at a given vertical elevation, FIG. 4, spaced vertically above lower reach 28 of keel 26 to provide port and starboard tunnels 38 and 46 with a given vertical height receiving port and starboard marine propulsion devices 54 and 64 and raising same relative to keel 26, such that keel 26 at least partially protects port and starboard marine propulsion devices 54 and 64 from striking underwater objects, including grounding, during forward propulsion of the vessel. At least a portion of port driveshaft housing 56 is in port tunnel 38 and above open bottom 42 of port tunnel 38 at port lower hull surface 30. At least a portion of port lower gear case 58 is outside of port tunnel 38 and below open bottom 42 of port tunnel 38 at port lower hull surface 30. At least a portion of starboard driveshaft housing 66 is in starboard tunnel 46 and above open bottom 50 of starboard tunnel 46 at starboard lower hull surface 32. At least a portion of starboard lower gear case 68 is outside of starboard tunnel 46 and below open bottom 50 of starboard tunnel 46 at starboard lower hull surface 32. In one preferred embodiment, port and starboard lower gear cases 58 and 68 are horizontally aligned along a horizontal projection line at or above and transversely crossing lower reach 28 of keel 26. Port lower gear case 58 includes the noted port torpedo-shaped housing having a front nose 78 with a curved surface 80 extending downwardly and aft therefrom. In one preferred embodiment, front nose 78 is horizontally aligned with lower reach 28 of keel 26, such that underwater objects struck by port lower gear case 58 slide along curved surface 80 downwardly and aft from nose 78 of the noted port torpedo-shaped housing. Starboard lower gear case 68 includes the noted starboard torpedo-shaped housing having a front nose 82, FIG. 5, with a curved surface 84 extending downwardly and aft therefrom. In the noted one preferred embodiment, front nose 82 is horizontally aligned with lower reach 28 of keel 26, such that underwater objects struck by starboard lower gear case 68 slide along curved surface 84 extending downwardly and aft from nose 82 of the noted starboard torpedo-shaped housing. Further in the noted preferred embodiment, port and starboard marine propulsion devices 54 and 64 have respective port and starboard lower skegs 86 and 88 extending downwardly from respective port and starboard lower gear cases 58 and 68 to a lower reach at a vertical level below lower reach 28 of keel 26. Each of port and starboard lower skegs 86 and 88 is a breakaway skeg, e.g. mounted by frangible shear pins such as 90, FIG. 5, to its respective lower gear case, and breaking away from its respective lower gear case upon striking an underwater object, to protect the respective marine propulsion device. FIG. 5B is an enlarged rear elevation view of a portion of skeg 88 and gear case 68 of FIG. 5, with propellers 72 and 73 removed, and showing the mounting of skeg 88 to lower gear case 68 by a breakaway channel or tongue and groove arrangement, for example tongue 89 at the top of skeg 88, and groove or channel 91 at the bottom of lower gear case 68 receiving tongue 89 in breakaway manner upon shearing of frangible pins such as 90.
  • Port marine propulsion device 54 provides propulsion thrust along a port thrust direction 102, FIG. 6, along the noted at least one port propeller shaft 60. Port marine propulsion device 54 has a port reference position 104 with port thrust direction 102 pointing forwardly parallel to keel 26. Port marine propulsion device 54 is steerable about port steering axis 74 along a first angular range 106, FIG. 7, from port reference position 104 away from keel 26, e.g. clockwise in FIG. 7. Port marine propulsion device 54 is steerable about steering axis 72 along a second angular range 108, FIG. 8, from port reference position 104 towards keel 26, e.g. counterclockwise in FIG. 8. Angular ranges 106 and 108 are unequal, and port tunnel 38 is asymmetric, to be described. Starboard propulsion device 64 provides propulsion thrust along a starboard thrust direction 110 along the noted at least one starboard propeller shaft 70. Starboard marine propulsion device 64 has a starboard reference position 112, FIG. 6, with starboard thrust direction 110 pointing forwardly parallel to keel 26. Starboard marine propulsion device 64 is steerable about starboard steering axis 76 along a third angular range 114, FIG. 7, from starboard reference position 112 towards keel 26, e.g. clockwise in FIG. 7. Starboard marine propulsion device 64 is steerable about starboard steering axis 76 along a fourth angular range 116, FIG. 8, away from keel 26, e.g. counterclockwise in FIG. 8. Third and fourth angular ranges 114 and 116 are unequal, and starboard tunnel 46 is asymmetric, to be described. In one preferred embodiment, second angular range 108 is at least twice as great as first angular range 106, and in a further preferred embodiment, first angular range 106 is at least 15 degrees, and second angular range 108 is at least 45 degrees. In the noted preferred embodiment, third angular range 114 is at least twice as great as fourth angular range 116, and in the noted further preferred embodiment, third angular range 114 is at least 45 degrees, and fourth angular range 116 is at least 15 degrees. Marine propulsion devices 54 and 64 may be rotated and steered in unison with equal angular ranges, or may be independently controlled for various steering, docking, and position or station maintaining virtual anchoring functions, and for which further reference is made to the above-noted commonly owned co-pending '482 and '483 applications.
  • Port tunnel 38 has left and right port tunnel sidewalls 120 and 122 extending vertically between top 40 of port tunnel 38 and open bottom 42 of port tunnel 38 and port lower hull surface 30. Left and right port tunnel sidewalls 120 and 122 are laterally spaced by port driveshaft housing 56 therebetween. Right port tunnel sidewall 122 has a greater vertical height and a lower vertical reach than left port tunnel sidewall 120 and limits the span of first angular range 106 to be less than the span of second angular range 108. Starboard tunnel 46 has left and right starboard tunnel sidewalls 124 and 126 extending vertically between top 48 of starboard tunnel 46 and open bottom 50 of starboard tunnel 46 at starboard lower hull surface 32. Left and right starboard tunnel sidewalls 124 and 126 are laterally spaced by starboard driveshaft housing 66 therebetween. Left starboard tunnel sidewall 124 has a greater vertical height and a lower vertical reach than right starboard tunnel sidewall 126 and limits the span of fourth angular range 116 to be less than the span of third angular range 114.
  • Port marine propulsion device 54 has a port trim tab 130 pivotally mounted thereto for contact by the water for adjusting vessel attitude and/or altering thrust vectors or otherwise affecting hydrodynamic operation of the vessel. Starboard marine propulsion device 64 has a starboard trim tab 132 pivotally mounted thereto. Port trim tab 130 is preferably pivotally mounted to port marine propulsion device 54 at a pivot axis 134, FIG. 6, aft of port driveshaft housing 56 and aft of port steering axis 74. Likewise, starboard trim tab 132 is preferably pivotally mounted to starboard marine propulsion device 64 at a pivot axis 136 aft of starboard driveshaft housing 66 and aft of starboard steering axis 76. Port trim tab 130 has an upwardly pivoted retracted position, FIGS. 1, 4, 9, and solid line in FIG. 5, and a downwardly pivoted extended position, FIG. 10, and dashed line in FIG. 5. The top 40, FIG. 4, of port tunnel 38 has a notch 140 receiving port trim tab 130 in the noted retracted position to enhance hydrodynamic profile by providing a smoother transition providing less restriction to water flow therepast. Starboard trim tab 132 likewise has an upwardly pivoted retracted position, and a downwardly pivoted extended position. The top 48 of starboard tunnel 46 has a notch 142 receiving starboard trim tab 132 in the noted retracted position to enhance hydrodynamic profile. Each trim tab may be actuated in conventional manner, e.g. hydraulically, e.g. by a hydraulic cylinder 144 having an extensible and retractable plunger or piston 146 engaging pivot pin 148 journaled to stanchions 150 of the respective trim tab. In an alternate embodiment, FIG. 5A, external hydraulic cylinder 144 a has its piston 146 a connected to the aft end of the trim tab, for a longer moment arm from the pivot axis of the trim tab if desired. In further embodiments, the trim tabs may be actuated electrically, e.g. by electrical reduction motors. The forward end of the trim tab is pivotally mounted at hinges such as 152 to mounting plate 154 of the marine propulsion device which is then mounted to the vessel hull and sealed thereto for example at sealing gasket 156. In the preferred embodiment, the forward end of the trim tab is pivotally mounted to the marine propulsion device and not to the vessel, and the aft end of the trim tab is movable in a vertical arc.
  • FIG. 11 is a side view taken from the above-noted commonly owned co-pending '482 and '483 applications and showing the arrangement of a marine propulsion device, such as 54 or 64, associated with a mechanism that is able to rotate the marine propulsion device about its respective steering axis 74 or 76. Although not visible in FIG. 11, the driveshaft of the marine propulsion device extends vertically and parallel to the steering axis and is connected in torque transmitting relation with a generally horizontal propeller shaft that is able to rotate about a propeller axis 61. The embodiment shown in FIG. 11 comprises two propellers 62 and 63, as above noted, that are attached to the propeller shaft 60. The motive force to drive the propellers 62 and 63 is provided by an internal combustion engine 160 that is located within the bilge of the marine vessel 22. The engine is configured with its crankshaft aligned for rotation about a horizontal axis. In one preferred embodiment, engine 160 is a diesel engine. Each of the two marine propulsion devices 54 and 64 is driven by a separate engine 160. In addition, each of the marine propulsion devices 54 and 64 are independently steerable about their respective steering axes 74 and 76. The steering axes are generally vertical and parallel to each other. They are intentionally not configured to be perpendicular to the bottom respective surface 30 and 32 of the hull. Instead, they are generally vertical and intersect the respective bottom surface 30 and 32 of the hull at an angle that is not equal to 90 degrees when the bottom surface of the hull is a V-type hull or any other shape which does not include a flat bottom. Driveshaft housings 56 and 66 and gear case torpedo housings 58 and 68 contain rotatable shafts, gears, and bearings which support the shafts and connect the driveshaft to the propeller shaft for rotation of the propellers. No source of motive power is located below the hull surface. The power necessary to rotate the propellers is solely provided by the internal combustion engine. The marine vessel maneuvering system in one preferred embodiment is that provided in the noted commonly owned co-pending '482 and '483 applications, allowing the operator of the marine vessel to provide maneuvering commands to a microprocessor which controls the steering movements and thrust magnitudes of two marine propulsion devices 54, 64 to implement those maneuvering commands, e.g. steering, docking, and position or station maintaining virtual anchoring functions, and the like, as above noted.
  • It is recognized that various equivalents, alternatives and modifications are possible within the scope of the appended claims.

Claims (13)

1-8. (canceled)
9. A marine vessel and drive combination comprising a marine vessel having a marine drive extending therefrom and having a water-engaging propulsor for propelling said vessel through a body of water, and a trim tab positioned directly above said propulsor.
10. The marine vessel and drive combination according to claim 9 wherein said vessel has a hull, and at least a portion of said trim tab is positioned directly below said hull.
11. The marine vessel and drive combination according to claim 10 wherein said trim tab comprises:
a forward portion directly below said hull and having a top surface substantially flush against said hull; and
an aft section extending aft from said forward section and aft beyond said hull.
12. The marine vessel and drive combination according to claim 9 wherein said drive comprises a driveshaft housing extending downwardly from said vessel and steerable about a steering axis, and said trim tab is pivoted at a pivot axis aft of said steering axis.
13. The marine vessel and drive combination according to claim 12 wherein said vessel has a hull, and said trim tab is pivotally mounted to said drive and not to said hull.
14. The marine vessel and drive combination according to claim 9 wherein said drive comprises a driveshaft housing extending downwardly from said vessel to a lower gearcase supporting said propulsor, and said trim tab is positioned along an arc intersecting said propulsor and having a center at the junction of said driveshaft housing and said vessel.
15. The marine vessel and drive combination according to claim 14 wherein said driveshaft housing extends vertically downwardly from said vessel, and said arc lies in a vertical plane.
16. A marine vessel and drive combination comprising a marine vessel having a marine drive extending therefrom and having a water-engaging propulsor for propelling said vessel through a body of water, said drive comprising a driveshaft housing extending downwardly from said vessel to a lower gearcase supporting said propulsor, and a trim tab positioned along an arc intersecting said gearcase and having a center at the junction of said driveshaft housing and said vessel.
17. The marine vessel and drive combination according to claim 16 wherein said driveshaft housing is steerable about a steering axis, and said trim tab is pivoted at a pivot axis aft of said steering axis.
18. A marine vessel and drive combination comprising a marine vessel having a marine drive extending therefrom and having a water-engaging propulsor for propelling said vessel through a body of water, said drive comprising a driveshaft housing extending downwardly from said vessel to a lower gearcase supporting said propulsor, and a plate member having at least a portion extending along and directly below said vessel and positioned along an arc intersecting said gearcase and having a center at the junction of said driveshaft housing and said vessel.
19. The marine vessel and drive combination according to claim 18 wherein said vessel has a hull, and said plate member has a top surface substantially flush against said hull.
20. The marine vessel and drive combination according to claim 18 wherein said driveshaft housing is steerable about a steering axis, and said plate member is a trim tab pivoted at a pivot axis aft of said steering axis.
US11/677,720 2005-10-21 2007-02-22 Marine Drive with Integrated Trim Tab Abandoned US20070137550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/677,720 US20070137550A1 (en) 2005-10-21 2007-02-22 Marine Drive with Integrated Trim Tab

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/255,510 US7188581B1 (en) 2005-10-21 2005-10-21 Marine drive with integrated trim tab
US11/677,720 US20070137550A1 (en) 2005-10-21 2007-02-22 Marine Drive with Integrated Trim Tab

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/255,510 Continuation US7188581B1 (en) 2005-10-21 2005-10-21 Marine drive with integrated trim tab

Publications (1)

Publication Number Publication Date
US20070137550A1 true US20070137550A1 (en) 2007-06-21

Family

ID=37716321

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/255,510 Active US7188581B1 (en) 2005-10-21 2005-10-21 Marine drive with integrated trim tab
US11/677,720 Abandoned US20070137550A1 (en) 2005-10-21 2007-02-22 Marine Drive with Integrated Trim Tab

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/255,510 Active US7188581B1 (en) 2005-10-21 2005-10-21 Marine drive with integrated trim tab

Country Status (4)

Country Link
US (2) US7188581B1 (en)
EP (1) EP1777153B1 (en)
AT (1) ATE415339T1 (en)
DE (1) DE602006003835D1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277369A1 (en) * 2008-05-06 2009-11-12 Ultraflex Spa Hinge joint for cylinder actuators of watercraft trim tabs, trim tab and trim tab control system
JP2012126163A (en) * 2010-12-13 2012-07-05 Fujita Yasohito Hull
WO2013010287A2 (en) 2011-07-16 2013-01-24 Mueller Peter A Manoeuvring system for watercraft
US9174703B2 (en) 2013-10-11 2015-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9260161B2 (en) 2011-11-12 2016-02-16 Malibu Boats, Llc Surf wake system for a watercraft
US9580147B2 (en) 2011-09-16 2017-02-28 Malibu Boats, Llc Surf wake system for a watercraft
US9669903B2 (en) 2014-02-04 2017-06-06 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US9802684B2 (en) 2013-10-11 2017-10-31 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9891620B2 (en) 2015-07-15 2018-02-13 Malibu Boats, Llc Control systems for water-sports watercraft
US10358189B2 (en) 2013-10-11 2019-07-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11370508B1 (en) 2019-04-05 2022-06-28 Malibu Boats, Llc Control system for water sports boat with foil displacement system
US11932356B1 (en) 2020-08-24 2024-03-19 Malibu Boats, Llc Powered swim platform

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188581B1 (en) * 2005-10-21 2007-03-13 Brunswick Corporation Marine drive with integrated trim tab
US7666040B2 (en) * 2006-10-23 2010-02-23 Ab Volvo Penta Watercraft swivel drives
US7435147B1 (en) 2007-06-08 2008-10-14 Brunswick Corporation Breakaway skeg for a marine propulsion device
US7584934B1 (en) 2007-08-13 2009-09-08 Brunswick Corporation Clamp member for a marine propulsion device
US8011983B1 (en) 2008-01-07 2011-09-06 Brunswick Corporation Marine drive with break-away mount
US7867046B1 (en) 2008-01-07 2011-01-11 Brunswick Corporation Torsion-bearing break-away mount for a marine drive
US7850496B1 (en) 2008-01-11 2010-12-14 Brunswick Corporation Lubrication system of a marine propulsion device
EP2293975B1 (en) * 2008-05-22 2018-04-18 AB Volvo Penta Gear housing for an aquatic vessel
IT1400217B1 (en) * 2009-01-26 2013-05-24 Fb Design Srl HIGH-PERFORMANCE PLANANT HULL EQUIPPED WITH A TRIM CORRECTOR SYSTEM
JP5243978B2 (en) * 2009-01-27 2013-07-24 ヤマハ発動機株式会社 Marine propulsion system and ship maneuvering method
US8113892B1 (en) 2009-04-06 2012-02-14 Brunswick Corporation Steering control system for a watercraft with three or more actuators
WO2010151659A1 (en) 2009-06-24 2010-12-29 Zf Friedrichshafen Ag Pod drive installation and hull configuration for a marine vessel
CA2825918C (en) 2011-02-15 2018-08-07 Rotation Medical, Inc. Methods and apparatus for delivering and positioning sheet-like materials
US9266593B2 (en) * 2013-08-15 2016-02-23 Blue Sky Marine, LLC Hull mounted, steerable marine drive with trim actuation
US9809289B2 (en) 2013-08-15 2017-11-07 Blue Sky Marine, LLC Hull mounted, steerable marine drive with trim actuation
EP3139859B1 (en) 2014-05-09 2021-06-23 Rotation Medical, Inc. Medical implant delivery system for sheet-like implant
US9278740B1 (en) 2014-08-29 2016-03-08 Brunswick Corporation System and method for controlling attitude of a marine vessel having trim tabs
US9643698B1 (en) 2014-12-17 2017-05-09 Brunswick Corporation Systems and methods for providing notification regarding trim angle of a marine propulsion device
US9695764B1 (en) 2015-02-10 2017-07-04 Brunswick Corporation Multi-fuel marine engine control system
US9919781B1 (en) 2015-06-23 2018-03-20 Brunswick Corporation Systems and methods for automatically controlling attitude of a marine vessel with trim devices
US9745036B2 (en) 2015-06-23 2017-08-29 Brunswick Corporation Systems and methods for automatically controlling attitude of a marine vessel with trim devices
US10518856B2 (en) 2015-06-23 2019-12-31 Brunswick Corporation Systems and methods for automatically controlling attitude of a marine vessel with trim devices
US9598160B2 (en) 2015-06-23 2017-03-21 Brunswick Corporation Systems and methods for automatically controlling attitude of a marine vessel with trim devices
US9764810B1 (en) 2015-06-23 2017-09-19 Bruswick Corporation Methods for positioning multiple trimmable marine propulsion devices on a marine vessel
US9751605B1 (en) 2015-12-29 2017-09-05 Brunswick Corporation System and method for trimming a trimmable marine device with respect to a marine vessel
US9694892B1 (en) 2015-12-29 2017-07-04 Brunswick Corporation System and method for trimming trimmable marine devices with respect to a marine vessel
US10005527B2 (en) * 2016-01-15 2018-06-26 Joseph R. Langlois Method for optimizing surface area and use of adjustable trim-tabs for increasing fuel efficiency of a watercraft
US10035571B1 (en) * 2016-01-15 2018-07-31 Joseph R. Langlois System for attitude control and stabilization of a marine craft
US10315737B2 (en) * 2016-01-15 2019-06-11 Joseph R Langlois Fluid hinges for trim tab connections
US10994807B2 (en) * 2016-01-15 2021-05-04 Joseph R. Langlois Transom mounted bracket for a fluid hinge trim tab system
US10513312B2 (en) * 2016-01-15 2019-12-24 Joseph R. Langlois System for attitude control and stabilization of a watercraft
US9896172B1 (en) 2016-01-21 2018-02-20 Brunswick Corporation Apparatuses and methods for servicing lubrication in a marine drive
US10118682B2 (en) 2016-08-22 2018-11-06 Brunswick Corporation Method and system for controlling trim position of a propulsion device on a marine vessel
US10011339B2 (en) 2016-08-22 2018-07-03 Brunswick Corporation System and method for controlling trim position of propulsion devices on a marine vessel
US9896174B1 (en) 2016-08-22 2018-02-20 Brunswick Corporation System and method for controlling trim position of propulsion device on a marine vessel
US10000267B1 (en) 2017-08-14 2018-06-19 Brunswick Corporation Methods for trimming trimmable marine devices with respect to a marine vessel
US10351221B1 (en) 2017-09-01 2019-07-16 Brunswick Corporation Methods for automatically controlling attitude of a marine vessel during launch
US10518855B2 (en) * 2018-02-14 2019-12-31 Caterpillar Inc. Marine vessel hull having profiled propulsor pod mounting surface
US10829190B1 (en) 2018-05-29 2020-11-10 Brunswick Corporation Trim control system and method
WO2020069615A1 (en) 2018-10-01 2020-04-09 Marine Canada Acquisition Inc. A watertight electric actuator for a trim tab assembly or wake gate assembly
US11372411B1 (en) 2019-08-08 2022-06-28 Brunswick Corporation Marine steering system and method
US11827319B1 (en) 2020-08-04 2023-11-28 Brunswick Corporation Methods for a marine vessel with primary and auxiliary propulsion devices
US20240025528A1 (en) 2022-07-20 2024-01-25 Brunswick Corporation Marine propulsion system and joystick control method

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912955A (en) * 1958-06-03 1959-11-17 Leipert Edward Combined cavitation plate and trim tab assembly
US3628485A (en) * 1969-09-24 1971-12-21 John D Gill Planing boat with stepped hull
US3980035A (en) * 1974-12-23 1976-09-14 Johansson Sten E Attitude control devices for stern drive power boats
US4908766A (en) * 1986-07-28 1990-03-13 Sanshin Kogyo Kabushiki Kaisha Trim tab actuator for marine propulsion device
US5108325A (en) * 1987-06-15 1992-04-28 Brunswick Corporation Boat propulsion device
US5230644A (en) * 1992-05-27 1993-07-27 Brunswick Corporation Counter-rotating surfacing marine drive
US5301624A (en) * 1993-02-24 1994-04-12 Swath Ocean Systems, Inc. Stern planes for swath vessel
US5366398A (en) * 1992-05-27 1994-11-22 Brunswick Corporation Marine dual propeller lower bore drive assembly
US5386368A (en) * 1993-12-13 1995-01-31 Johnson Fishing, Inc. Apparatus for maintaining a boat in a fixed position
US5403216A (en) * 1992-09-28 1995-04-04 Kvaerner Masa-Yards Oy Ship propulsion arrangement
US5415576A (en) * 1992-05-27 1995-05-16 Brunswick Corporation Counter-rotating surfacing marine drive with defined X-dimension
US5425663A (en) * 1992-05-27 1995-06-20 Brunswick Corporation Counter-rotating surfacing marine drive with planing plate
US5685253A (en) * 1992-05-27 1997-11-11 Brunswick Corporation Reduced drag stable Vee bottom planing boat
US5735718A (en) * 1993-12-03 1998-04-07 Ab Volvo Penta Drive unit for boats
US5755605A (en) * 1994-06-28 1998-05-26 Ab Volvo Penta Propeller drive unit
US5832860A (en) * 1998-05-04 1998-11-10 Lexau; James R. Trim enhancing device for a power boat
US5943990A (en) * 1996-11-19 1999-08-31 Fuji Oozx, Inc. Tappet in an internal combustion engine and a method of manufacturing the same
US6038995A (en) * 1997-10-10 2000-03-21 The United States Of America As Represented By The Secretary Of The Navy Combined wedge-flap for improved ship powering
US6138601A (en) * 1999-02-26 2000-10-31 Brunswick Corporation Boat hull with configurable planing surface
US6142841A (en) * 1998-05-14 2000-11-07 Brunswick Corporation Waterjet docking control system for a marine vessel
US6230642B1 (en) * 1999-08-19 2001-05-15 The Talaria Company, Llc Autopilot-based steering and maneuvering system for boats
US6234853B1 (en) * 2000-02-11 2001-05-22 Brunswick Corporation Simplified docking method and apparatus for a multiple engine marine vessel
US6354235B1 (en) * 1999-07-30 2002-03-12 Robert C. Davies Convoy of towed ocean going cargo vessels and method for shipping across an ocean
US6357375B1 (en) * 2000-11-27 2002-03-19 Donald Ray Ellis Boat thruster control apparatus
US6386930B2 (en) * 2000-04-07 2002-05-14 The Talaria Company, Llc Differential bucket control system for waterjet boats
US6431928B1 (en) * 1998-09-14 2002-08-13 Abb Azipod Oy Arrangement and method for turning a propulsion unit
US6439937B1 (en) * 1998-12-16 2002-08-27 Ab Volvo Penta Boat propeller transmission
US6447349B1 (en) * 1998-09-03 2002-09-10 The Talaria Company, Llc Stick control system for waterjet boats
US6511354B1 (en) * 2001-06-04 2003-01-28 Brunswick Corporation Multipurpose control mechanism for a marine vessel
US6544081B1 (en) * 2001-10-10 2003-04-08 Douglas G. Paulo Boat hull with tunnel structure
US6582259B1 (en) * 1998-12-16 2003-06-24 Ab Volvo Penta Boat propeller transmission
US20030161730A1 (en) * 2002-02-27 2003-08-28 Ab Volvo Penta Method and apparatus for adapting a propeller and shaft system
US20030168362A1 (en) * 2002-03-06 2003-09-11 Satoshi Yoshida Golf bag and frame for the same
US6623320B1 (en) * 1999-03-16 2003-09-23 Ab Volvo Penta Drive means in a boat
US6638124B2 (en) * 2001-07-21 2003-10-28 Ab Volvo Penta Arrangement in a marine exhaust system
US20030230636A1 (en) * 2002-06-18 2003-12-18 Itw Limited Pressure gauge
US20040014380A1 (en) * 2000-09-25 2004-01-22 Jukka Varis Ship's propulsion arrangement as well as a method and means related thereto
US6705907B1 (en) * 1999-03-16 2004-03-16 Ab Volvo Penta Drive means in a boat
US6712654B1 (en) * 1999-01-26 2004-03-30 Abb Oy Turning of a propulsion unit
US20040149003A1 (en) * 2003-01-31 2004-08-05 Ab Volvo Penta Method and arrangement for indirectly determining fill characteristics of a fluid tank on a marine vessel
US6783410B2 (en) * 2000-02-02 2004-08-31 Volvo Penta Ab Drive means in a boat
US20040214484A1 (en) * 2001-06-14 2004-10-28 Jari Ylitalo Ship's propulsion arrangement and method
US6853013B2 (en) * 2002-02-28 2005-02-08 Fuji Photo Film Co., Ltd. Light-emitting element and method of producing the same
US6942531B1 (en) * 2003-10-29 2005-09-13 William P. Fell Joy stick control system for a modified steering system for small boat outboard motors
US6952180B2 (en) * 2000-08-14 2005-10-04 Volvo Technology Corporation Method and apparatus for determination of position
US7188581B1 (en) * 2005-10-21 2007-03-13 Brunswick Corporation Marine drive with integrated trim tab

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE369697B (en) * 1968-04-18 1974-09-16 Penn Yan Boats Inc
US5493990A (en) * 1995-05-08 1996-02-27 Dyer; William B. Hydrofoil with trolling plate
FI115041B (en) 2000-01-28 2005-02-28 Abb Oy Ship engine unit
WO2002030740A1 (en) * 2000-10-12 2002-04-18 Noyes Evan L Jr Boat propulsion system
SE521051C2 (en) 2001-11-16 2003-09-23 Volvo Penta Ab Remote control system for a vehicle.
SE521522C2 (en) 2002-03-07 2003-11-11 Volvo Penta Ab Propeller assembly for marine power units
SE522187C2 (en) 2002-05-03 2004-01-20 Volvo Penta Ab Ways to steer a boat with dual outboard drives as well as boats with dual outboard drives
SE522215C2 (en) 2002-05-03 2004-01-20 Volvo Penta Ab Propeller shaft and propeller fitted to the shaft
SE524504C2 (en) 2002-05-03 2004-08-17 Volvo Penta Ab Boat hull with outboard drive and outboard drive for boats
SE522188C2 (en) 2002-05-03 2004-01-20 Volvo Penta Ab Outboard drive for boats
SE524813C2 (en) 2003-02-20 2004-10-05 Volvo Penta Ab Propeller combination for a boat propeller drive with dual propellers
SE525349C2 (en) 2003-06-23 2005-02-08 Volvo Penta Ab Outboard drive for boats

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912955A (en) * 1958-06-03 1959-11-17 Leipert Edward Combined cavitation plate and trim tab assembly
US3628485A (en) * 1969-09-24 1971-12-21 John D Gill Planing boat with stepped hull
US3980035A (en) * 1974-12-23 1976-09-14 Johansson Sten E Attitude control devices for stern drive power boats
US4908766A (en) * 1986-07-28 1990-03-13 Sanshin Kogyo Kabushiki Kaisha Trim tab actuator for marine propulsion device
US5108325A (en) * 1987-06-15 1992-04-28 Brunswick Corporation Boat propulsion device
US5415576A (en) * 1992-05-27 1995-05-16 Brunswick Corporation Counter-rotating surfacing marine drive with defined X-dimension
US5230644A (en) * 1992-05-27 1993-07-27 Brunswick Corporation Counter-rotating surfacing marine drive
US5685253A (en) * 1992-05-27 1997-11-11 Brunswick Corporation Reduced drag stable Vee bottom planing boat
US5366398A (en) * 1992-05-27 1994-11-22 Brunswick Corporation Marine dual propeller lower bore drive assembly
US5425663A (en) * 1992-05-27 1995-06-20 Brunswick Corporation Counter-rotating surfacing marine drive with planing plate
US5403216A (en) * 1992-09-28 1995-04-04 Kvaerner Masa-Yards Oy Ship propulsion arrangement
US5301624A (en) * 1993-02-24 1994-04-12 Swath Ocean Systems, Inc. Stern planes for swath vessel
US5735718A (en) * 1993-12-03 1998-04-07 Ab Volvo Penta Drive unit for boats
US5386368A (en) * 1993-12-13 1995-01-31 Johnson Fishing, Inc. Apparatus for maintaining a boat in a fixed position
US5755605A (en) * 1994-06-28 1998-05-26 Ab Volvo Penta Propeller drive unit
US5943990A (en) * 1996-11-19 1999-08-31 Fuji Oozx, Inc. Tappet in an internal combustion engine and a method of manufacturing the same
US6038995A (en) * 1997-10-10 2000-03-21 The United States Of America As Represented By The Secretary Of The Navy Combined wedge-flap for improved ship powering
US5832860A (en) * 1998-05-04 1998-11-10 Lexau; James R. Trim enhancing device for a power boat
US6142841A (en) * 1998-05-14 2000-11-07 Brunswick Corporation Waterjet docking control system for a marine vessel
US6447349B1 (en) * 1998-09-03 2002-09-10 The Talaria Company, Llc Stick control system for waterjet boats
US6688927B2 (en) * 1998-09-14 2004-02-10 Abb Oy Arrangement and method for turning a propulsion unit
US20020197918A1 (en) * 1998-09-14 2002-12-26 Abb Azipod Oy Arrangement and method for turning a propulsion unit
US6431928B1 (en) * 1998-09-14 2002-08-13 Abb Azipod Oy Arrangement and method for turning a propulsion unit
US6439937B1 (en) * 1998-12-16 2002-08-27 Ab Volvo Penta Boat propeller transmission
US6582259B1 (en) * 1998-12-16 2003-06-24 Ab Volvo Penta Boat propeller transmission
US6712654B1 (en) * 1999-01-26 2004-03-30 Abb Oy Turning of a propulsion unit
US6138601A (en) * 1999-02-26 2000-10-31 Brunswick Corporation Boat hull with configurable planing surface
US6623320B1 (en) * 1999-03-16 2003-09-23 Ab Volvo Penta Drive means in a boat
US6705907B1 (en) * 1999-03-16 2004-03-16 Ab Volvo Penta Drive means in a boat
US6354235B1 (en) * 1999-07-30 2002-03-12 Robert C. Davies Convoy of towed ocean going cargo vessels and method for shipping across an ocean
US6230642B1 (en) * 1999-08-19 2001-05-15 The Talaria Company, Llc Autopilot-based steering and maneuvering system for boats
US6783410B2 (en) * 2000-02-02 2004-08-31 Volvo Penta Ab Drive means in a boat
US6234853B1 (en) * 2000-02-11 2001-05-22 Brunswick Corporation Simplified docking method and apparatus for a multiple engine marine vessel
US6386930B2 (en) * 2000-04-07 2002-05-14 The Talaria Company, Llc Differential bucket control system for waterjet boats
US6952180B2 (en) * 2000-08-14 2005-10-04 Volvo Technology Corporation Method and apparatus for determination of position
US20040014380A1 (en) * 2000-09-25 2004-01-22 Jukka Varis Ship's propulsion arrangement as well as a method and means related thereto
US6357375B1 (en) * 2000-11-27 2002-03-19 Donald Ray Ellis Boat thruster control apparatus
US6511354B1 (en) * 2001-06-04 2003-01-28 Brunswick Corporation Multipurpose control mechanism for a marine vessel
US20040214484A1 (en) * 2001-06-14 2004-10-28 Jari Ylitalo Ship's propulsion arrangement and method
US6638124B2 (en) * 2001-07-21 2003-10-28 Ab Volvo Penta Arrangement in a marine exhaust system
US6544081B1 (en) * 2001-10-10 2003-04-08 Douglas G. Paulo Boat hull with tunnel structure
US20030161730A1 (en) * 2002-02-27 2003-08-28 Ab Volvo Penta Method and apparatus for adapting a propeller and shaft system
US6853013B2 (en) * 2002-02-28 2005-02-08 Fuji Photo Film Co., Ltd. Light-emitting element and method of producing the same
US20030168362A1 (en) * 2002-03-06 2003-09-11 Satoshi Yoshida Golf bag and frame for the same
US20030230636A1 (en) * 2002-06-18 2003-12-18 Itw Limited Pressure gauge
US20040149003A1 (en) * 2003-01-31 2004-08-05 Ab Volvo Penta Method and arrangement for indirectly determining fill characteristics of a fluid tank on a marine vessel
US6942531B1 (en) * 2003-10-29 2005-09-13 William P. Fell Joy stick control system for a modified steering system for small boat outboard motors
US7188581B1 (en) * 2005-10-21 2007-03-13 Brunswick Corporation Marine drive with integrated trim tab

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047152B2 (en) * 2008-05-06 2011-11-01 Ultraflex S.P.A. Hinge joint for cylinder actuators of watercraft trim tabs, trim tab and trim tab control system
US20090277369A1 (en) * 2008-05-06 2009-11-12 Ultraflex Spa Hinge joint for cylinder actuators of watercraft trim tabs, trim tab and trim tab control system
JP2012126163A (en) * 2010-12-13 2012-07-05 Fujita Yasohito Hull
WO2013010287A2 (en) 2011-07-16 2013-01-24 Mueller Peter A Manoeuvring system for watercraft
US9694873B2 (en) 2011-09-16 2017-07-04 Malibu Boats, Llc Surf wake system for a watercraft
US11572136B2 (en) 2011-09-16 2023-02-07 Malibu Boats, Llc Surf wake system for a watercraft
US10683061B2 (en) 2011-09-16 2020-06-16 Malibu Boats, Llc Surf wake system for a watercraft
US9580147B2 (en) 2011-09-16 2017-02-28 Malibu Boats, Llc Surf wake system for a watercraft
US9914504B2 (en) 2011-09-16 2018-03-13 Malibu Boats, Llc Surf wake system for a watercraft
US9260161B2 (en) 2011-11-12 2016-02-16 Malibu Boats, Llc Surf wake system for a watercraft
US9334022B2 (en) 2011-11-12 2016-05-10 Malibu Boats, Llc Surf wake system for a watercraft
US10259534B2 (en) 2013-10-11 2019-04-16 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9446823B2 (en) 2013-10-11 2016-09-20 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11708136B2 (en) 2013-10-11 2023-07-25 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9174703B2 (en) 2013-10-11 2015-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11214335B2 (en) 2013-10-11 2022-01-04 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9643697B2 (en) 2013-10-11 2017-05-09 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10266241B2 (en) 2013-10-11 2019-04-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10358189B2 (en) 2013-10-11 2019-07-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10377453B2 (en) 2013-10-11 2019-08-13 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11046393B2 (en) 2013-10-11 2021-06-29 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10501156B1 (en) 2013-10-11 2019-12-10 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9802684B2 (en) 2013-10-11 2017-10-31 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10822055B2 (en) 2013-10-11 2020-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10899416B1 (en) 2013-10-11 2021-01-26 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10179628B2 (en) 2014-02-04 2019-01-15 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US9669903B2 (en) 2014-02-04 2017-06-06 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US10386834B2 (en) 2015-07-15 2019-08-20 Malibu Boats, Llc Control systems for water-sports watercraft
US11067979B2 (en) 2015-07-15 2021-07-20 Malibu Boats, Llc Control systems for water-sports watercraft
US9891620B2 (en) 2015-07-15 2018-02-13 Malibu Boats, Llc Control systems for water-sports watercraft
US11370508B1 (en) 2019-04-05 2022-06-28 Malibu Boats, Llc Control system for water sports boat with foil displacement system
US11518482B1 (en) 2019-04-05 2022-12-06 Malibu Boats, Llc Water sports boat with foil displacement system
US11851136B2 (en) 2019-04-05 2023-12-26 Malibu Boats, Llc Water sports boat with foil displacement system
US11932356B1 (en) 2020-08-24 2024-03-19 Malibu Boats, Llc Powered swim platform

Also Published As

Publication number Publication date
US7188581B1 (en) 2007-03-13
EP1777153B1 (en) 2008-11-26
EP1777153A2 (en) 2007-04-25
DE602006003835D1 (en) 2009-01-08
EP1777153A3 (en) 2007-12-12
ATE415339T1 (en) 2008-12-15

Similar Documents

Publication Publication Date Title
US7188581B1 (en) Marine drive with integrated trim tab
US7371140B2 (en) Protective marine vessel and drive
US7294031B1 (en) Marine drive grommet seal
US8011983B1 (en) Marine drive with break-away mount
US7867046B1 (en) Torsion-bearing break-away mount for a marine drive
US8939104B2 (en) Lateral thruster for a vessel
US9809289B2 (en) Hull mounted, steerable marine drive with trim actuation
US20060057910A1 (en) Dual propeller surface drive propulsion system for boats
US9776700B2 (en) Outboard motor
CA1312504C (en) L-drive
CA2920625C (en) A hull mounted, steerable marine drive with trim actuation
US20100030411A1 (en) Marine vessel control system
US9630692B2 (en) Steerable tractor-type drive for boats
US7225748B2 (en) Stealthy powered catamaran
US4810218A (en) Marine propulsion device
CA2527147A1 (en) Marine vessel propulsion and tubular rudder system
US20060079140A1 (en) Watercraft
CA2851699C (en) Mounting assembly for positioning stern-mounted propulsion units with a forward convergence
EP0513295B1 (en) A device for setting the propulsion means of watercraft in various angular positions
US4940436A (en) Marine drive system with inboard mounted engine and depending drive unit
EP4035988A1 (en) Drive arrangement for a marine vessel
GB2060533A (en) Steering Arrangement for Watercraft
JPH02136392A (en) Laterally moving method for ship
SE9304190L (en) Device for propeller drives for marine vehicles

Legal Events

Date Code Title Description
AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:BRUNSWICK CORPORATION;TRITON BOAT COMPANY, L.P.;ATTWOOD CORPORATION;AND OTHERS;REEL/FRAME:022092/0365

Effective date: 20081219

Owner name: JPMORGAN CHASE BANK, N.A.,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:BRUNSWICK CORPORATION;TRITON BOAT COMPANY, L.P.;ATTWOOD CORPORATION;AND OTHERS;REEL/FRAME:022092/0365

Effective date: 20081219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: LAND 'N' SEA DISTRIBUTING, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: BRUNSWICK BOWLING & BILLIARDS CORPORATION, ILLINOI

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: ATTWOOD CORPORATION, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: BOSTON WHALER, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: BRUNSWICK COMMERICAL & GOVERNMENT PRODUCTS, INC.,

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: BRUNSWICK FAMILY BOAT CO. INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: LUND BOAT COMPANY, MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: TRITON BOAT COMPANY, L.P., TENNESSEE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: BRUNSWICK CORPORATION, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321

Owner name: BRUNSWICK LEISURE BOAT COMPANY, LLC, INDIANA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026026/0001

Effective date: 20110321