US20060257254A1 - Heat dissipation apparatus and fan frame thereof - Google Patents

Heat dissipation apparatus and fan frame thereof Download PDF

Info

Publication number
US20060257254A1
US20060257254A1 US11/230,450 US23045005A US2006257254A1 US 20060257254 A1 US20060257254 A1 US 20060257254A1 US 23045005 A US23045005 A US 23045005A US 2006257254 A1 US2006257254 A1 US 2006257254A1
Authority
US
United States
Prior art keywords
passage
heat dissipation
expansion portion
fan frame
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/230,450
Inventor
Shih-Hua Ho
Hao-Ming Chen
Tsung-Yu Lei
Wen-Shi Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Assigned to DELTA ELECTRONICS, INC. reassignment DELTA ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, WEN-SHI, CHEN, HAO-MING, LEI, TSUNG-YU, HO, SHIH-HUA
Publication of US20060257254A1 publication Critical patent/US20060257254A1/en
Priority to US11/699,009 priority Critical patent/US7416386B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the invention relates to a heat dissipation apparatus and a fan frame thereof, and in particular to a fan and a fan frame providing reduced noise.
  • heat dissipation apparatuses or systems are indispensable and thus used in the electronic devices. If heat generated by an electronic device is not efficiently dissipated, performance of the electronic device may deteriorate or the electronic device may be damaged.
  • FIG. 1A is a schematic view of a conventional fan 1
  • FIG. 1B is a schematic cross section taken along A-A′ of FIG. 1A
  • the conventional fan 1 is composed of a fan frame 11 and an impeller 12 .
  • the impeller 12 is activated by a motor 13 , providing airflow to a heat source (such as a heat-generating electronic device, not shown) and thus dissipating heat therefrom.
  • the fan frame 11 has a through hole forming an air inlet 112 and an air outlet 114 on two ends of the fan frame 11 , respectively.
  • the air inlet 112 is connected to the air outlet 114 by way of a central passage 116 , such that the airflow provided by the impeller 12 can freely pass the air inlet 112 and air outlet 114 .
  • four threaded holes 14 are formed on the corners of the fan frame 11 , by means of which the fan 1 can be fixed to the shell of a system having electronic devices, such as a computer.
  • FIGS. 1C, 1E , and 1 F are schematic cross sections of conventional fans and fan frames.
  • a bevel angle C (as shown in FIG. 1C ) or a tapered angle D (as shown in FIG. 1E ) is formed near the air inlet 112 or air outlet 114 of the fan frame 11 in order to increase the area through which the airflow passes.
  • FIG. 1D although the bevel angle C increases the area of the air outlet 114 , output airflow cannot be concentrated, thus reducing the airflow pressure provided by the fan frame 11 .
  • a recessed opening E (as shown in FIG. 1F ) is formed near the air outlet 114 of the fan frame 11 by cutting parts of entirety of the fan frame, which is in order to increase the area through which the airflow passes.
  • the airflow is easily dispersed from the recessed opening E.
  • the invention provides a heat dissipation apparatus (a fan) and a frame thereof.
  • the fan and fan frame has a smooth curved expansion portion capable of reducing noise generated by friction between airflow and the inner peripheral wall of the passage, stabilizing and concentrating the airflow, and enhancing performance of the fan.
  • the inner peripheral wall of the fan frame outwardly extends, increasing areas of air flow intake or discharge, concentrating the airflow, and enhancing performance of the fan.
  • the fan is easily applied to a heat dissipation system or any other electronic devices which generate heat by assembling without modifying arrangement of the system.
  • An embodiment of the invention provides a fan frame for a heat dissipation apparatus.
  • the fan frame comprises a casing having a passage for guiding airflow from one opening to another opening.
  • An inner peripheral wall of the passage radially and outwardly extends a smooth curved expansion portion at either one or both openings.
  • the curved expansion portion further comprises a recess in which the airflow forms an airflow layer, stopping subsequent airflow from directly contacting the inner peripheral wall of the passage.
  • the curved expansion portion is radially and outwardly extended out of the casing and is symmetrical with respect to an axis of the passage. Further, the curved expansion portion at either one or both openings has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle.
  • the heat dissipation apparatus comprises an axial flow fan.
  • the length of blades of the impeller is increased corresponding to the radially and outwardly extended curved expansion portion.
  • the heat dissipation apparatus further comprises a motor base disposed in the fan frame.
  • the impeller is disposed on the motor base.
  • the motor base comprises a slope inclined radially, thereby increasing areas of air flow intake or discharge, and the slope is flat or curved.
  • the fan frame is substantially rectangular, circular, elliptical, or rhomboid.
  • Still another embodiment of the invention provides a heat dissipation system comprising a system housing, at least one electronic device, and a heat dissipation apparatus.
  • the electronic device is disposed in the system housing.
  • the heat dissipation apparatus is applied to the system housing for dissipating heat generated by the electronic device during operation.
  • the heat dissipation apparatus comprises an impeller and a fan frame accommodating the impeller.
  • the fan frame comprises a passage for guiding airflow from one opening to another opening.
  • An inner peripheral wall of the passage radially and outwardly extends a smooth curved expansion portion at either one or both openings.
  • FIG. 1A is a schematic view of a conventional fan
  • FIGS. 1C, 1E , and 1 F are schematic cross sections of conventional fan frames
  • FIG. 1D is a schematic view showing the direction of air flow in the fan frame of FIG. 1C ;
  • FIG. 2A is a schematic view of the fan of an embodiment of the invention.
  • FIG. 3A is a schematic view showing the curved expansion portion F of FIG. 2B and the direction of air flow near the curved expansion portion F;
  • FIG. 3B is a schematic cross section of another fan frame of the invention.
  • FIG. 5A and FIG. 5B are diagrams showing audio comparison of the conventional and present fans
  • FIG. 7 is a diagram showing characteristic comparison of the conventional and present fans.
  • the heat dissipation apparatus 2 can be, for example, an axial flow fan and has a fan frame 21 , an impeller 22 , and a motor base 26 .
  • the fan frame 21 may be a substantially rectangular, circular, elliptical, or rhomboid casing.
  • the fan frame 21 has a through hole so as to form a passage 216 therein, an air inlet 212 , and an air outlet 214 .
  • the air inlet 212 is connected to the air outlet 214 by way of the passage 216 .
  • the passage 216 can guide airflow from one opening (air inlet 212 ) to the other opening (air outlet 214 ). Airflow generated by the impeller 22 can thus enter and leave the fan frame 21 .
  • multiple threaded holes 24 are formed on corners of the fan frame 21 so that the fan 2 can be fixed to a housing of an electronic system, such as a computer.
  • the fan frame 21 accommodates the impeller 22 therein, and the motor base 26 is disposed in the fan frame 21 .
  • the impeller 22 is disposed on the motor base 26 .
  • a motor 23 disposed on the motor base 26 activates the impeller 22 so as to provide airflow to an electronic device (not shown) and dissipating the heat generated by the electronic device.
  • an inner peripheral wall of the passage 216 radially and outwardly extends a smooth curved expansion portion F at the air outlet 214 .
  • the curved expansion portion F includes a recess 218 in which the airflow forms an airflow layer so as to stop subsequent airflow from directly contacting the inner peripheral wall of the passage 216 .
  • the airflow in the recess 218 provides an air cushion, thereby stopping subsequent airflow from directly contacting the frame wall of the fan frame 21 . Accordingly, friction between air and solid is changed to friction between air to air, and noise is thus reduced.
  • the recess 218 of the curved expansion portion F provides sufficient space for airflow, whereby stabilizing the airflow. Additionally, when the airflow passes through the air outlet 214 , the curved expansion portion F can sufficiently concentrate the airflow and enhance air pressure compared to the conventional fan frame 11 ( FIG. 1D ).
  • the curved expansion portion F is symmetrical with respect to the axis of the passage 216 . Also, another curved expansion portion is radially and outwardly extended from the inner peripheral wall of the passage 216 at the air inlet 212 . Moreover, the length of blades of the impeller 22 matches the fan frame 21 and is increased corresponding to the radially and outwardly extended curved expansion portion F so as to increase air volume.
  • the curved expansion portion F at the air outlet 214 may be formed with a tapered angle 219 a ( FIG. 3A ), a bevel angle, a tapered bevel angle, or a large R angle, so as to allow the airflow more smoothly passing through the fan frame 21 .
  • the inner peripheral wall of the fan frame 21 at the air inlet 212 may be formed with a bevel angle 219 b ( FIG. 2B ), a tapered angle, a tapered bevel angle, or a large R angle, increasing the area of the air inlet 212 .
  • the inner peripheral wall of the passage 216 at the air inlet 212 is radially and outwardly extended out of the fan frame 21 in a circular or elliptical shape and is symmetrical with respect to the axis of the passage 216 .
  • FIG. 3B shows another fan frame of an embodiment of the invention.
  • the present invention discloses the curved expansion portion F with a tapered angle at the air inlet 212 and/or air outlet 214
  • the motor base 26 may additionally include a slope 262 inclined radially to increase areas of air flow intake or discharge.
  • the slope 262 is flat or curved.
  • FIG. 5A is a diagram showing results of audio testing of a conventional fan.
  • FIG. 5B is a diagram showing results of audio testing of the present fan. Both the conventional and present fans have a diameter of approximate 8 cm and were tested at speed of 5700 rpm. Comparing the results shown in FIG. 5A and FIG. 5B , the conventional fan incurs obvious noise at frequency of 665 Hz during operation while the present fan did not.
  • FIG. 6A is a diagram showing results of volume testing of a conventional fan.
  • FIG. 6B is a diagram showing results of volume testing of the present fan.
  • Both the conventional and present fans have a diameter of approximate 8 cm and were tested at speed of 5700 rpm.
  • the noise value of the conventional fan at speed of 5700 rpm was 49.6 dB.
  • the noise value of the present fan at the same speed was 46.7 dB. Accordingly, the present fan can effectively reduce noise compared to the conventional fan.
  • the fans (heat dissipation apparatus) and fan frame of the present invention provide curved expansion portions capable of reducing noise from friction between airflow and the frame wall, thereby stabilizing the airflow, and thus enhancing performance of the fans.
  • the inner peripheral walls of the fan frames outwardly extend to increase the area through which the airflow passes, thereby enhancing heat dissipation of the fans.
  • the fan is easily applied to a heat dissipation system or any other electronic devices which generate heat by assembling without modifying arrangement of the system.

Abstract

A heat dissipation apparatus. A fan frame accommodates an impeller therein and includes an air inlet, an air outlet, and a passage for guiding airflow from the air inlet to the air outlet. An inner peripheral wall of the passage radially and outwardly extends a smooth curved expansion portion at the air outlet. The curved expansion portion includes a recess in which the airflow forms an airflow layer, stopping subsequent airflow from directly contacting the inner peripheral wall of the passage.

Description

    BACKGROUND
  • The invention relates to a heat dissipation apparatus and a fan frame thereof, and in particular to a fan and a fan frame providing reduced noise.
  • As performance of electronic devices is promoted, heat dissipation apparatuses or systems are indispensable and thus used in the electronic devices. If heat generated by an electronic device is not efficiently dissipated, performance of the electronic device may deteriorate or the electronic device may be damaged.
  • Fans serve widely as heat dissipation apparatuses. FIG. 1A is a schematic view of a conventional fan 1, and FIG. 1B is a schematic cross section taken along A-A′ of FIG. 1A. The conventional fan 1 is composed of a fan frame 11 and an impeller 12. When the fan 1 operates, the impeller 12 is activated by a motor 13, providing airflow to a heat source (such as a heat-generating electronic device, not shown) and thus dissipating heat therefrom. The fan frame 11 has a through hole forming an air inlet 112 and an air outlet 114 on two ends of the fan frame 11, respectively. The air inlet 112 is connected to the air outlet 114 by way of a central passage 116, such that the airflow provided by the impeller 12 can freely pass the air inlet 112 and air outlet 114. Additionally, four threaded holes 14 are formed on the corners of the fan frame 11, by means of which the fan 1 can be fixed to the shell of a system having electronic devices, such as a computer.
  • FIGS. 1C, 1E, and 1F are schematic cross sections of conventional fans and fan frames. A bevel angle C (as shown in FIG. 1C) or a tapered angle D (as shown in FIG. 1E) is formed near the air inlet 112 or air outlet 114 of the fan frame 11 in order to increase the area through which the airflow passes. As shown in FIG. 1D, although the bevel angle C increases the area of the air outlet 114, output airflow cannot be concentrated, thus reducing the airflow pressure provided by the fan frame 11. Alternatively, a recessed opening E (as shown in FIG. 1F) is formed near the air outlet 114 of the fan frame 11 by cutting parts of entirety of the fan frame, which is in order to increase the area through which the airflow passes. However, the airflow is easily dispersed from the recessed opening E.
  • Conventionally, when airflow passes through the air outlet 114, the airflow directly contacts the periphery of the inner wall of the central passage 116 (as shown in FIG. 1B), bevel angle C, tapered angle D, or wall of the recessed opening E. Accordingly, the airflow can not pass through the air outlet 114 smoothly and is slowed. Also, noise is generated by friction between airflow and the inner peripheral wall of the central passage 116. Specifically, the higher the rotational speed of the fan, the more the noise generated thereby.
  • SUMMARY
  • Hence, the invention provides a heat dissipation apparatus (a fan) and a frame thereof. The fan and fan frame has a smooth curved expansion portion capable of reducing noise generated by friction between airflow and the inner peripheral wall of the passage, stabilizing and concentrating the airflow, and enhancing performance of the fan. Moreover, the inner peripheral wall of the fan frame outwardly extends, increasing areas of air flow intake or discharge, concentrating the airflow, and enhancing performance of the fan. Further, the fan is easily applied to a heat dissipation system or any other electronic devices which generate heat by assembling without modifying arrangement of the system.
  • An embodiment of the invention provides a fan frame for a heat dissipation apparatus. The fan frame comprises a casing having a passage for guiding airflow from one opening to another opening. An inner peripheral wall of the passage radially and outwardly extends a smooth curved expansion portion at either one or both openings. The curved expansion portion further comprises a recess in which the airflow forms an airflow layer, stopping subsequent airflow from directly contacting the inner peripheral wall of the passage. The curved expansion portion is radially and outwardly extended out of the casing and is symmetrical with respect to an axis of the passage. Further, the curved expansion portion at either one or both openings has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle.
  • An inner peripheral wall of the passage radially and outwardly extends at the air inlet and is symmetrical with respect to the axis of the passage. Alternatively, an inner peripheral wall of the passage at the air inlet is radially and outwardly extended out of the casing and is symmetrical with respect to the axis of the passage. Alternatively, the inner peripheral wall of the passage at the air inlet radially and outwardly extends out of the casing in a circular or elliptical shape and is symmetrical with respect to the axis of the passage. The inner peripheral wall of the passage at the air inlet has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle with respect to the axis of the passage.
  • Another embodiment of the invention provides a heat dissipation apparatus comprising an impeller and a fan frame. The fan frame accommodates the impeller therein and comprises a passage for guiding airflow from one opening to another opening. An inner peripheral wall of the passage radially and outwardly extends a smooth curved expansion portion at either one or both openings. The curved expansion portion further comprises a recess in which the airflow forms an airflow layer so as to stop subsequent airflow from directly contacting the inner peripheral wall of the passage. The curved expansion portion is symmetrical with respect to the axis of the passage. Alternatively, the curved expansion portion is radially and outwardly extended out of the fan frame and is symmetrical with respect to the axis of the passage. The curved expansion portion at least one of the openings has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle.
  • The heat dissipation apparatus comprises an axial flow fan. The length of blades of the impeller is increased corresponding to the radially and outwardly extended curved expansion portion. The heat dissipation apparatus further comprises a motor base disposed in the fan frame. The impeller is disposed on the motor base. The motor base comprises a slope inclined radially, thereby increasing areas of air flow intake or discharge, and the slope is flat or curved. The fan frame is substantially rectangular, circular, elliptical, or rhomboid.
  • Still another embodiment of the invention provides a heat dissipation system comprising a system housing, at least one electronic device, and a heat dissipation apparatus. The electronic device is disposed in the system housing. The heat dissipation apparatus is applied to the system housing for dissipating heat generated by the electronic device during operation. The heat dissipation apparatus comprises an impeller and a fan frame accommodating the impeller. The fan frame comprises a passage for guiding airflow from one opening to another opening. An inner peripheral wall of the passage radially and outwardly extends a smooth curved expansion portion at either one or both openings.
  • DESCRIPTION OF THE DRAWINGS
  • The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
  • FIG. 1A is a schematic view of a conventional fan;
  • FIG. 1B is a schematic cross section taken along A-A′ of FIG. 1A;
  • FIGS. 1C, 1E, and 1F are schematic cross sections of conventional fan frames;
  • FIG. 1D is a schematic view showing the direction of air flow in the fan frame of FIG. 1C;
  • FIG. 2A is a schematic view of the fan of an embodiment of the invention;
  • FIG. 2B is a schematic cross section taken along B-B′ of FIG. 2A;
  • FIG. 3A is a schematic view showing the curved expansion portion F of FIG. 2B and the direction of air flow near the curved expansion portion F;
  • FIG. 3B is a schematic cross section of another fan frame of the invention;
  • FIG. 4 is a schematic view showing that the heat dissipation apparatus of the invention is applied to a system having electronic devices;
  • FIG. 5A and FIG. 5B are diagrams showing audio comparison of the conventional and present fans;
  • FIG. 6A and FIG. 6B are diagrams showing volume comparison of the conventional and present fans; and
  • FIG. 7 is a diagram showing characteristic comparison of the conventional and present fans.
  • DETAILED DESCRIPTION
  • Referring both to FIG. 2A and FIG. 2B, the heat dissipation apparatus 2 can be, for example, an axial flow fan and has a fan frame 21, an impeller 22, and a motor base 26. The fan frame 21 may be a substantially rectangular, circular, elliptical, or rhomboid casing. The fan frame 21 has a through hole so as to form a passage 216 therein, an air inlet 212, and an air outlet 214. The air inlet 212 is connected to the air outlet 214 by way of the passage 216. The passage 216 can guide airflow from one opening (air inlet 212) to the other opening (air outlet 214). Airflow generated by the impeller 22 can thus enter and leave the fan frame 21. Additionally, multiple threaded holes 24 are formed on corners of the fan frame 21 so that the fan 2 can be fixed to a housing of an electronic system, such as a computer.
  • The fan frame 21 accommodates the impeller 22 therein, and the motor base 26 is disposed in the fan frame 21. The impeller 22 is disposed on the motor base 26. When the fan 2 operates, a motor 23 disposed on the motor base 26 activates the impeller 22 so as to provide airflow to an electronic device (not shown) and dissipating the heat generated by the electronic device.
  • Referring to FIG. 2B and FIG. 3A, an inner peripheral wall of the passage 216 radially and outwardly extends a smooth curved expansion portion F at the air outlet 214. The curved expansion portion F includes a recess 218 in which the airflow forms an airflow layer so as to stop subsequent airflow from directly contacting the inner peripheral wall of the passage 216. Specifically, the airflow in the recess 218 provides an air cushion, thereby stopping subsequent airflow from directly contacting the frame wall of the fan frame 21. Accordingly, friction between air and solid is changed to friction between air to air, and noise is thus reduced. Moreover, the recess 218 of the curved expansion portion F provides sufficient space for airflow, whereby stabilizing the airflow. Additionally, when the airflow passes through the air outlet 214, the curved expansion portion F can sufficiently concentrate the airflow and enhance air pressure compared to the conventional fan frame 11 (FIG. 1D).
  • The curved expansion portion F is symmetrical with respect to the axis of the passage 216. Also, another curved expansion portion is radially and outwardly extended from the inner peripheral wall of the passage 216 at the air inlet 212. Moreover, the length of blades of the impeller 22 matches the fan frame 21 and is increased corresponding to the radially and outwardly extended curved expansion portion F so as to increase air volume. Preferably, the curved expansion portion F at the air outlet 214 may be formed with a tapered angle 219 a (FIG. 3A), a bevel angle, a tapered bevel angle, or a large R angle, so as to allow the airflow more smoothly passing through the fan frame 21.
  • Additionally, the inner peripheral wall of the fan frame 21 at the air inlet 212 may be formed with a bevel angle 219 b (FIG. 2B), a tapered angle, a tapered bevel angle, or a large R angle, increasing the area of the air inlet 212. Alternatively, the inner peripheral wall of the passage 216 at the air inlet 212 is radially and outwardly extended out of the fan frame 21 in a circular or elliptical shape and is symmetrical with respect to the axis of the passage 216.
  • Moreover, the curved expansion portion F may be radially and outwardly extended out of the fan frame 21 with respect to the axis of the passage 216 so as to increase the area through which the airflow passes.
  • FIG. 3B shows another fan frame of an embodiment of the invention. As the above mentioned, the present invention discloses the curved expansion portion F with a tapered angle at the air inlet 212 and/or air outlet 214, the motor base 26 may additionally include a slope 262 inclined radially to increase areas of air flow intake or discharge. The slope 262 is flat or curved.
  • In practical application, the heat dissipation apparatus 2 can be applied to a heat dissipation system 5 which includes a system housing 3 and multiple electronic devices, as shown in FIG. 4. Inside of the system housing 3, the electronic devices or heat sources are mostly on a circuit board 4, and the heat dissipation apparatus 2 is disposed within a suitable position of the system housing 3, such that cold airflow generated by the heat dissipation apparatus 2 is provided during operation to the electronic devices or heat sources. Accordingly, heat generated by the electronic devices is efficiently dissipated, and the electronic devices are thus prevented from damaging due to high temperature.
  • FIG. 5A is a diagram showing results of audio testing of a conventional fan. FIG. 5B is a diagram showing results of audio testing of the present fan. Both the conventional and present fans have a diameter of approximate 8 cm and were tested at speed of 5700 rpm. Comparing the results shown in FIG. 5A and FIG. 5B, the conventional fan incurs obvious noise at frequency of 665 Hz during operation while the present fan did not.
  • FIG. 6A is a diagram showing results of volume testing of a conventional fan. FIG. 6B is a diagram showing results of volume testing of the present fan. Both the conventional and present fans have a diameter of approximate 8 cm and were tested at speed of 5700 rpm. As shown in FIG. 6A, the noise value of the conventional fan at speed of 5700 rpm was 49.6 dB. As shown in FIG. 6B, the noise value of the present fan at the same speed was 46.7 dB. Accordingly, the present fan can effectively reduce noise compared to the conventional fan.
  • FIG. 7 is a diagram showing characteristic comparison of the conventional and present fans. Both the conventional and present fans have a diameter of approximate 8 cm and were tested at speed of 5700 rpm. As shown in FIG. 7, the present fan provides larger airflow pressure and volume compared to the conventional fan. Specifically, at an airflow volume of 40 CFM, the conventional fan provides an air pressure of 7.9 mmH2O while the present fan provides an air pressure of 12.9 mmH2O. As the results, the pressure provided by the present fan is increased by 63% compared to the conventional fan. Alternatively, at an air pressure of 10 mmH2O, the conventional fan provides an airflow volume of 28.8 CFM while the present fan provides an airflow volume of 45 CFM. As the results, the airflow volume provided by the present fan is increased by 56% compared to the conventional fan. Accordingly, the present fan effectively enhances the air pressure and volume and thus rectifies the airflow.
  • In conclusion, the fans (heat dissipation apparatus) and fan frame of the present invention provide curved expansion portions capable of reducing noise from friction between airflow and the frame wall, thereby stabilizing the airflow, and thus enhancing performance of the fans. Moreover, without interfering with other heat dissipation devices originally disposed in the fans, the inner peripheral walls of the fan frames outwardly extend to increase the area through which the airflow passes, thereby enhancing heat dissipation of the fans. Further, the fan is easily applied to a heat dissipation system or any other electronic devices which generate heat by assembling without modifying arrangement of the system.
  • While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (20)

1. A fan frame for a heat dissipation apparatus, comprising:
a casing comprising a passage for guiding airflow from one opening to another opening, wherein the casing further comprises a smooth curved expansion portion being radially and outwardly extended from an inner peripheral wall of the passage at either one or both openings.
2. The fan frame as claimed in claim 1, wherein the curved expansion portion further comprises a recess in which the airflow forms an airflow layer, stopping subsequent airflow from directly contacting the inner peripheral wall of the passage.
3. The fan frame as claimed in claim 1, wherein the openings are an air inlet and an air outlet, and the smooth curved expansion portion is radially and outwardly extended from the inner peripheral wall of the passage at the air outlet.
4. The fan frame as claimed in claim 3, wherein the curved expansion portion at the air outlet is radially and outwardly extended out of the casing and is symmetrical with respect to an axis of the passage.
5. The fan frame as claimed in claim 3, wherein the curved expansion portion at the air outlet has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle.
6. The fan frame as claimed in claim 3, wherein the casing further comprises another smooth curved expansion portion, being radially and outwardly extended from the inner peripheral wall of the passage at the air inlet, which is symmetrical with respect to an axis of the passage.
7. The fan frame as claimed in claim 3, wherein the smooth curved expansion portion is radially and outwardly extended out of the casing from the inner peripheral wall of the passage at the air inlet and is symmetrical with respect to an axis of the passage.
8. The fan frame as claimed in claim 3, wherein the smooth curved expansion portion is radially and outwardly extended from the inner peripheral wall of the passage at the air inlet in a circular or elliptical shape with respect to an axis of the passage.
9. The fan frame as claimed in claim 3, wherein the inner peripheral wall of the passage at the air inlet has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle and is symmetrical with respect to an axis of the passage.
10. A heat dissipation apparatus, comprising:
an impeller; and
a fan frame for accommodating the impeller therein and comprising a passage for guiding airflow from one opening to another opening, wherein the fan frame further comprises a smooth curved expansion portion being radially and outwardly extended from an inner peripheral wall of the passage at either one or both openings.
11. The heat dissipation apparatus as claimed in claim 10, wherein the curved expansion portion further comprises a recess in which the airflow forms an airflow layer, stopping subsequent airflow from directly contacting the inner peripheral wall of the passage.
12. The heat dissipation apparatus as claimed in claim 10, wherein the openings are an air inlet and an air outlet, and the smooth curved expansion portion is radially and outwardly extended from the inner peripheral wall of the passage at the air outlet.
13. The heat dissipation apparatus as claimed in claim 10, wherein the length of blades of the impeller is increased corresponding to the radially and outwardly extended curved expansion portion.
14. The heat dissipation apparatus as claimed in claim 10, wherein the heat dissipation apparatus is an axial flow fan.
15. The heat dissipation apparatus as claimed in claim 10, further comprising a motor base disposed in the fan frame, wherein the impeller is disposed on the motor base, and the motor base comprises a slope inclined radially, thereby increasing areas of air flow intake or discharge.
16. The heat dissipation apparatus as claimed in claim 15, wherein the slope is flat or curved.
17. A heat dissipation system, comprising:
a system housing;
at least one electronic device, disposed in the system housing; and
a heat dissipation apparatus applied to the system housing for dissipating heat generated by the electronic device, wherein the heat dissipation apparatus comprises an impeller and a fan frame for accommodating the impeller therein, the fan frame comprises a passage for guiding airflow from one opening to another opening, and the fan frame further comprises a smooth curved expansion portion being radially and outwardly extended from an inner peripheral wall of the passage at either one or both openings.
18. The heat dissipation system as claimed in claim 17, wherein the curved expansion portion further comprises a recess in which the airflow forms an airflow layer, stopping subsequent airflow from directly contacting the inner peripheral wall of the passage.
19. The heat dissipation system as claimed in claim 17, wherein the openings are an air inlet and an air outlet, and the casing further comprises a smooth curved expansion portion being radially and outwardly extended from the inner peripheral wall of the passage at the air outlet.
20. The heat dissipation system as claimed in claim 19, wherein the curved expansion portion at the air outlet has a tapered angle, a bevel angle, a tapered bevel angle, or a large R angle.
US11/230,450 2005-05-13 2005-09-21 Heat dissipation apparatus and fan frame thereof Abandoned US20060257254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/699,009 US7416386B2 (en) 2005-09-21 2007-01-29 Heat dissipation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW094115554A TW200639327A (en) 2005-05-13 2005-05-13 Heat-dissipating device and frame thereof
TW94115554 2005-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/699,009 Continuation-In-Part US7416386B2 (en) 2005-09-21 2007-01-29 Heat dissipation apparatus

Publications (1)

Publication Number Publication Date
US20060257254A1 true US20060257254A1 (en) 2006-11-16

Family

ID=37311224

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/230,450 Abandoned US20060257254A1 (en) 2005-05-13 2005-09-21 Heat dissipation apparatus and fan frame thereof

Country Status (4)

Country Link
US (1) US20060257254A1 (en)
JP (1) JP4244388B2 (en)
DE (1) DE102005047861B4 (en)
TW (1) TW200639327A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336569A1 (en) * 2009-12-18 2011-06-22 Yen Sun Technology Corp. Fan device
EP2336570A1 (en) * 2009-12-18 2011-06-22 Yen Sun Technology Corp. Fan device
US20150028118A1 (en) * 2013-07-23 2015-01-29 Eberspacher Climate Control Systems GmbH & Co. KG Inflow element, especially for a combustion air flow path in a vehicle heater
US20150038069A1 (en) * 2008-06-09 2015-02-05 International Business Machines Corporation System and method to redirect and/or reduce airflow using actuators
CN109654043A (en) * 2017-10-11 2019-04-19 台达电子工业股份有限公司 Fan
US10662973B2 (en) 2016-09-29 2020-05-26 Sanyo Denki Co., Ltd. Reversible flow fan
US10837345B2 (en) 2016-09-29 2020-11-17 Sanyo Denki Co., Ltd. Blast fan
WO2024021612A1 (en) * 2022-07-29 2024-02-01 中兴通讯股份有限公司 Fan set, heat dissipation apparatus, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109535B4 (en) * 2011-08-05 2013-08-08 Sew-Eurodrive Gmbh & Co. Kg Fan arrangement and engine
JP6529613B2 (en) * 2016-02-12 2019-06-12 三菱電機株式会社 Fan and refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334807A (en) * 1966-03-28 1967-08-08 Rotron Mfg Co Fan
US4061188A (en) * 1975-01-24 1977-12-06 International Harvester Company Fan shroud structure
US4225285A (en) * 1977-09-22 1980-09-30 Ebm Elektrobau Mulfingen Gmbh & Co. Axial-flow fan
US4482302A (en) * 1981-01-09 1984-11-13 Etudes Techniques Et Representations Industrielles E.T.R.I. Axial electric fan of the flat type
US5788566A (en) * 1996-10-29 1998-08-04 Dell U.S.A., L.P. Integrated cooling fan and finger guard assembly
US6132171A (en) * 1997-06-10 2000-10-17 Matsushita Electric Industrial Co., Ltd. Blower and method for molding housing thereof
US6707669B2 (en) * 2002-07-05 2004-03-16 Quanta Computer, Inc. Heat dissipation apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT2541U1 (en) * 1997-12-22 1998-12-28 Avl List Gmbh INTERNAL COMBUSTION ENGINE WITH SEVERAL CYLINDERS
JP4190683B2 (en) * 1999-11-22 2008-12-03 株式会社小松製作所 Fan device
DE10108815B4 (en) * 2001-02-16 2006-03-16 Berlin Heart Ag Device for axial delivery of body fluids
TW566073B (en) * 2003-04-11 2003-12-11 Delta Electronics Inc Heat-dissipating device and a housing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334807A (en) * 1966-03-28 1967-08-08 Rotron Mfg Co Fan
US4061188A (en) * 1975-01-24 1977-12-06 International Harvester Company Fan shroud structure
US4225285A (en) * 1977-09-22 1980-09-30 Ebm Elektrobau Mulfingen Gmbh & Co. Axial-flow fan
US4482302A (en) * 1981-01-09 1984-11-13 Etudes Techniques Et Representations Industrielles E.T.R.I. Axial electric fan of the flat type
US5788566A (en) * 1996-10-29 1998-08-04 Dell U.S.A., L.P. Integrated cooling fan and finger guard assembly
US6132171A (en) * 1997-06-10 2000-10-17 Matsushita Electric Industrial Co., Ltd. Blower and method for molding housing thereof
US6707669B2 (en) * 2002-07-05 2004-03-16 Quanta Computer, Inc. Heat dissipation apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150038069A1 (en) * 2008-06-09 2015-02-05 International Business Machines Corporation System and method to redirect and/or reduce airflow using actuators
US10359210B2 (en) * 2008-06-09 2019-07-23 International Business Machines Corporation Apparatus to redirect and/or reduce airflow using actuators
US11092355B2 (en) 2008-06-09 2021-08-17 International Business Machines Corporation System and method to redirect and/or reduce airflow using actuators
EP2336569A1 (en) * 2009-12-18 2011-06-22 Yen Sun Technology Corp. Fan device
EP2336570A1 (en) * 2009-12-18 2011-06-22 Yen Sun Technology Corp. Fan device
US20150028118A1 (en) * 2013-07-23 2015-01-29 Eberspacher Climate Control Systems GmbH & Co. KG Inflow element, especially for a combustion air flow path in a vehicle heater
US10259289B2 (en) * 2013-07-23 2019-04-16 Eberspächer Climate Control Systems GmbH & Co. KG Inflow element, especially for a combustion air flow path in a vehicle heater
US10662973B2 (en) 2016-09-29 2020-05-26 Sanyo Denki Co., Ltd. Reversible flow fan
US10837345B2 (en) 2016-09-29 2020-11-17 Sanyo Denki Co., Ltd. Blast fan
CN109654043A (en) * 2017-10-11 2019-04-19 台达电子工业股份有限公司 Fan
WO2024021612A1 (en) * 2022-07-29 2024-02-01 中兴通讯股份有限公司 Fan set, heat dissipation apparatus, and electronic device

Also Published As

Publication number Publication date
JP4244388B2 (en) 2009-03-25
TW200639327A (en) 2006-11-16
DE102005047861B4 (en) 2014-10-30
JP2006316787A (en) 2006-11-24
DE102005047861A1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
US7416386B2 (en) Heat dissipation apparatus
US20060257254A1 (en) Heat dissipation apparatus and fan frame thereof
US7391611B2 (en) Heat-dissipating device and a housing thereof
US8366417B2 (en) Fan and fan housing capable of anti-backflow
US7429162B2 (en) Fan
US8408884B2 (en) Fan and airflow guiding structure thereof
US20040004817A1 (en) Cooling system for electronic devices
US8403651B2 (en) Fan and airflow guiding structure thereof
US20060045774A1 (en) Fans and fan frames
US20050122682A1 (en) Electronics arrangement
US10816011B2 (en) Fan housing with metal foam and fan having the fan housing
US20050030711A1 (en) Heat dissipating device of power supply
US6995979B2 (en) Heat-dissipating fan module of electronic apparatus
US8087887B2 (en) Fan and fan frame thereof
US6744631B1 (en) Heat dissipating device
US20060146493A1 (en) Heat dissipation module
US10954956B2 (en) Fan
US20050274497A1 (en) Heat dissipation module with noise reduction functionality
US20080055853A1 (en) Heat dissipating module and assembly of the heat dissipating module and a computer housing
US20020114697A1 (en) Heat-dissipating fan unit
US20070128019A1 (en) Blower
EP1659843A1 (en) Fans and fan frames
US20060237453A1 (en) Fan module and fan duct thereof
US10975888B2 (en) Fan
US20060045744A1 (en) Fan frame and fan utilizing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELTA ELECTRONICS, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HO, SHIH-HUA;CHEN, HAO-MING;LEI, TSUNG-YU;AND OTHERS;REEL/FRAME:017022/0764;SIGNING DATES FROM 20050715 TO 20050804

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION