US20050276250A1 - Method and apparatus for uplink synchronization in wireless communications - Google Patents

Method and apparatus for uplink synchronization in wireless communications Download PDF

Info

Publication number
US20050276250A1
US20050276250A1 US11/202,586 US20258605A US2005276250A1 US 20050276250 A1 US20050276250 A1 US 20050276250A1 US 20258605 A US20258605 A US 20258605A US 2005276250 A1 US2005276250 A1 US 2005276250A1
Authority
US
United States
Prior art keywords
sync
sequence
transmission
wtru
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/202,586
Inventor
Donald Grieco
Aykut Bultan
Charles Dennean
Jung-Lin Pan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to US11/202,586 priority Critical patent/US20050276250A1/en
Publication of US20050276250A1 publication Critical patent/US20050276250A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70757Synchronisation aspects with code phase acquisition with increased resolution, i.e. higher than half a chip
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2668Arrangements for Wireless Code-Division Multiple Access [CDMA] System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception

Definitions

  • the present invention is related to wireless communications. More particularly, the present invention is a method and system for uplink (UL) synchronization in wireless communications.
  • UL uplink
  • UL synchronization is a procedure that controls the transmit time of a wireless transmit/receive unit (WTRU) in a cell such that UL transmissions from a plurality of WTRUs arrive at a Node-B at the same time.
  • WTRU wireless transmit/receive unit
  • each WTRU has a different propagation delay in a cell covered by a Node-B. Therefore, if there is no synchronization mechanism involved, UL transmissions from WTRUs arrive at different times at the Node-B, which increases intra-cell interference.
  • the intra-cell interference is reduced significantly.
  • the WTRU When a WTRU is powered on, the WTRU first establishes downlink (DL) synchronization with a cell using a DL synchronization (SYNC_DL) sequence transmitted in a DL pilot channel (DwPCH). Only after the WTRU has established DL synchronization, can the WTRU start the UL synchronization procedure.
  • DL synchronization is achieved during a random access procedure and therefore involves a UL pilot channel (UpPCH) and a physical random access channel (PRACH).
  • UpPCH UL pilot channel
  • PRACH physical random access channel
  • the distance between the WTRU and the Node-B is still uncertain. This leads to unsynchronized UL transmissions. Therefore, the first UL transmission from the WTRU is limited to a special time-slot, an uplink pilot time slot (UpPTS), in order to reduce interference in traffic time slots.
  • UpPTS uplink pilot time slot
  • a WTRU In order to initiate a call, a WTRU first transmits a UL synchronization (SYNC_UL) sequence to a Node-B through a UpPCH.
  • SYNC_UL UL synchronization
  • the available SYNC-UL sequences are broadcast through DwPCH.
  • 3GPP third generation partnership project
  • eight (8) SYNC-UL sequences are available to a Node-B.
  • open loop UL synchronization control is used for the UpPCH.
  • the WTRU estimates the propagation delay ⁇ t p based upon the path loss measured on the received primary common control physical channel (P-CCPCH) and/or DwPCH. However, this estimation of the propagation delay is not accurate or reliable.
  • the Node-B After the detection of the SYNC-UL sequence in a searching window, the Node-B evaluates the timing of UL transmissions of SYNC_UL sequences, and replies by sending adjustment information to the WTRU to modify its UL transmission timing for the next transmission. This is done with a fast physical access channel (FPACH) within the following four (4) sub-frames. After sending the FPACH, the UL synchronization is established. The UL synchronization procedure is also used for the re-establishment of the UL synchronization when the UL is out of synchronization.
  • FPACH fast physical access channel
  • the present invention is a method and system for UL synchronization of UL wireless transmissions from a plurality of WTRUs to a Node-B.
  • a Node-B receives a transmission including a SYNC_UL sequence from a WTRU.
  • a sampler samples the transmission at a sampling rate which is higher than a chip rate. The samples are down-sampled and the SYNC_UL sequence is detected at a lower rate.
  • a first significant path location of the detected SYNC_UL sequence is determined and, based on the first significant path location, a final significant path location is determined.
  • the final significant path location is quantized and UL timing information (UpPCH POS ) is transmitted to the WTRU to adjust a UL transmission timing of the WTRU.
  • UpPCH POS UL timing information
  • FIG. 1 is a block diagram of an apparatus for uplink synchronization in accordance with the present invention.
  • FIG. 2 is a flow diagram of a process for uplink synchronization in accordance with the present invention.
  • wireless transmit/receive unit includes but is not limited to a user equipment, a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment.
  • Node-B includes but is not limited to a base station, a site controller, an access point or any other type of interfacing device in a wireless environment.
  • the features of the present invention may be incorporated into an integrated circuit (IC) or be configured in a circuit comprising a multitude of interconnecting components.
  • IC integrated circuit
  • FIG. 1 is a block diagram of an apparatus 100 for UL synchronization in accordance with the present invention.
  • the apparatus 100 comprises a receiver 102 , a sampler 104 , a down-sampler 106 , a first correlator 108 , a processing unit 110 , a second correlator 112 , and a quantizer 114 .
  • a WTRU transmits a SYNC_UL sequence to a Node-B through the UpPCH before transmitting messages via a random access channel (RACH).
  • the Node-B monitors the UpPCH for detecting SYNC_UL sequences transmitted from WTRUs. Once the Node-B detects a SYNC_UL sequence, the Node-B transmits a response to the detected SYNC_UL sequence via an FPACH.
  • the response includes UL synchronization information, UpPCH POS , (which is a timing difference of receipt of the SYNC_UL sequence from the WTRU with respect to a reference time at the Node-B).
  • UpPCH POS which is a timing difference of receipt of the SYNC_UL sequence from the WTRU with respect to a reference time at the Node-B.
  • the receiver 102 receives transmissions via the UpPCH from the WTRU and forwards it to the sampler 104 .
  • the sampler 104 samples the transmission at a rate which is substantially higher than a chip rate, 1/Tc. Under the current 3GPP standard, UL synchronization is controlled at a resolution of Tc/8. Therefore, it is preferred for the sampler 104 to sample the transmission eight (8) times the chip rate, 8/Tc.
  • the sampler 104 outputs the sampled data to both the down-sampler 106 and the second correlator 112 .
  • the down-sampler 106 down-samples the sampled data at a lower rate, preferably at the chip rate, 1/Tc. In accordance with the preferred embodiment, the down-sampler 106 selects one out of eight (8) samples. The down-sampled samples are forwarded to the first correlator 108 .
  • the first correlator 108 performs correlation of the down-sampled samples with each of a plurality of SYNC_UL sequences. Under the current 3GPP standards, eight (8) SYNC_UL sequences are assigned to each Node-B. Therefore, preferably, the first correlator 108 generates correlation results with each of eight (8) SYNC_UL sequences, although the specific number of sequences is not required.
  • the WTRU determines UL transmission timing of a SYNC_UL sequence based on a measured propagation delay of the DwPCH and/or P-CCPCH.
  • the initial delay measurement is used to restrict the search size of the first correlator 108 .
  • the first correlator 108 needs to cover the whole cell size. For example, a cell radius of 11.5 km corresponds to approximately 49 chips for a chip rate of 1.28 Mcps. Since the Node-B observes a two-way propagation delay, the search window size for the first correlator 108 should be greater than 98 chips for the worst case.
  • the output of the first correlator 108 consists of lag positions and corresponding complex valued correlation results. This output can be used as an initial channel estimate.
  • the correlation results are output to the processing unit 110 .
  • the processing unit 110 determines whether any SYNC_UL sequences have been detected. In detecting a SYNC_UL sequence, the processing unit 110 calculates the average signal power of each SYNC_UL sequence and compares it to a noise threshold. If the average signal power of each SYNC_UL sequence is above the noise threshold, the processing unit 110 outputs to the second correlator 112 that the SYNC_UL sequence has been detected. If the average signal power of each SYNC_UL sequence is not above the noise threshold, the processing unit 110 performs no further actions, and the receiver continues to monitor the UpPCH. The processing unit 110 also determines an initial first significant path location (IFSPL) of the detected SYNC_UL sequence. The first significant path (FSP) is the first path (in time) in the channel impulse response above the noise threshold. The IFSPL is determined at a chip rate resolution.
  • IFSPL initial first significant path location
  • the Node-B is required to determine UL timing information, (UpPCH POS ), preferably at a resolution of Tc/8.
  • the second correlator 112 receives samples sampled at eight (8) times the chip rate from the sampler 104 , and performs correlation of the samples with the detected SYNC_UL sequence around the IFSPL. Since the second correlator 112 performs correlation only around the detected IFSPL instead of the whole cell size, the correlation in the second correlator 112 is performed much more quickly.
  • the second correlator 112 determines a final first significant path location (FFSPL) at a resolution of Tc/8.
  • FFSPL final first significant path location
  • the apparatus 100 may further, and optionally, comprise a quantizer 114 to quantize the FFSPL.
  • the UpPCH POS is coded with 11 bits with a step size of Tc/8.
  • the quantizer 114 quantizes the FFSPL to the closest multiple of Tc/8. This quantized value is converted to the UpPCH POS for the detected SYNC_UL sequence, and transmitted to the WTRU for UL synchronization of the next UL transmissions.
  • FIG. 2 is a flow diagram of a process 200 for uplink synchronization in accordance with the present invention.
  • the process 200 comprises two primary steps: first, to determine an IFSPL of a SYNC_UL sequence (step 210 ), and then to zoom in around the IFSPL and perform a higher resolution search for an FFSPL (step 212 ).
  • the process 200 commences when UL transmissions are received via an UpPCH (step 202 ).
  • the transmissions are sampled by a sampler at preferably eight (8) times the chip rate (step 204 ).
  • the sampled data is down-sampled preferably to a chip rate (step 206 ).
  • the down-sampled data is correlated with SYNC_UL sequences, and it is determined whether any SYNC_UL sequence has been detected (step 208 ).
  • an average signal power of each SYNC_UL sequence is calculated and compared to a noise threshold. If the average signal power of each SYNC_UL sequence is above the noise threshold, a detection of the SYNC_UL sequence is declared, and if the average signal power of an SYNC_UL sequence is not above the noise threshold, the process returns to step 202 to continue to monitor the UpPCH. If a SYNC_UL sequence is detected, the process 200 proceeds to determine an IFSPL of the detected SYNC_UL sequence, preferably at the chip rate (step 210 ).
  • the FFSPL is determined using the sampled data sampled at eight (8) times the chip rate and the IFSPL (step 212 ).
  • the FFSPL is quantized and converted to the UpPCH POS .
  • the Node-B transmits the UpPCH POS to a WTRU to be used in adjustment of UL transmission timing for the next transmission (step 214 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A method and system for uplink (UL) synchronization of an uplink transmission from a plurality of wireless transmit/receive units (WTRUs) to a Node-B in a code division multiple access (CDMA) system. A Node-B receives a transmission including a UL synchronization (SYNC_UL) sequence from a WTRU. A sampler samples the transmission at a sampling rate which is higher than a chip rate. The samples are down-sampled and the SYNC_UL sequence is detected at a lower rate. A first significant path location of the detected SYNC_UL sequence is determined, and based on the first significant path location, a final significant path location is determined. The final significant path location is quantized and UpPCHPOS is transmitted to the WTRU to adjust a UL transmission timing.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. patent application Ser. No. 10/973,134 filed on Oct. 26, 2004, which claims priority from U.S. Provisional patent application Ser. No. 60/518,141, filed Nov. 7, 2003, both of which are incorporated by reference as if fully set forth herein.
  • FIELD OF INVENTION
  • The present invention is related to wireless communications. More particularly, the present invention is a method and system for uplink (UL) synchronization in wireless communications.
  • BACKGROUND
  • UL synchronization is a procedure that controls the transmit time of a wireless transmit/receive unit (WTRU) in a cell such that UL transmissions from a plurality of WTRUs arrive at a Node-B at the same time. In general, each WTRU has a different propagation delay in a cell covered by a Node-B. Therefore, if there is no synchronization mechanism involved, UL transmissions from WTRUs arrive at different times at the Node-B, which increases intra-cell interference. When UL transmissions are aligned with each other, due to the orthogonality of spreading codes, the intra-cell interference is reduced significantly.
  • When a WTRU is powered on, the WTRU first establishes downlink (DL) synchronization with a cell using a DL synchronization (SYNC_DL) sequence transmitted in a DL pilot channel (DwPCH). Only after the WTRU has established DL synchronization, can the WTRU start the UL synchronization procedure. UL synchronization is achieved during a random access procedure and therefore involves a UL pilot channel (UpPCH) and a physical random access channel (PRACH).
  • Although a WTRU establishes DL synchronization and can receive downlink signals from the Node-B, the distance between the WTRU and the Node-B is still uncertain. This leads to unsynchronized UL transmissions. Therefore, the first UL transmission from the WTRU is limited to a special time-slot, an uplink pilot time slot (UpPTS), in order to reduce interference in traffic time slots.
  • In order to initiate a call, a WTRU first transmits a UL synchronization (SYNC_UL) sequence to a Node-B through a UpPCH. The available SYNC-UL sequences are broadcast through DwPCH. Under the current third generation partnership project (3GPP) standards, eight (8) SYNC-UL sequences are available to a Node-B. For initial transmission of the SYNC_UL sequence, open loop UL synchronization control is used for the UpPCH. The WTRU estimates the propagation delay Δtp based upon the path loss measured on the received primary common control physical channel (P-CCPCH) and/or DwPCH. However, this estimation of the propagation delay is not accurate or reliable.
  • After the detection of the SYNC-UL sequence in a searching window, the Node-B evaluates the timing of UL transmissions of SYNC_UL sequences, and replies by sending adjustment information to the WTRU to modify its UL transmission timing for the next transmission. This is done with a fast physical access channel (FPACH) within the following four (4) sub-frames. After sending the FPACH, the UL synchronization is established. The UL synchronization procedure is also used for the re-establishment of the UL synchronization when the UL is out of synchronization.
  • SUMMARY
  • The present invention is a method and system for UL synchronization of UL wireless transmissions from a plurality of WTRUs to a Node-B. A Node-B receives a transmission including a SYNC_UL sequence from a WTRU. A sampler samples the transmission at a sampling rate which is higher than a chip rate. The samples are down-sampled and the SYNC_UL sequence is detected at a lower rate. A first significant path location of the detected SYNC_UL sequence is determined and, based on the first significant path location, a final significant path location is determined. The final significant path location is quantized and UL timing information (UpPCHPOS) is transmitted to the WTRU to adjust a UL transmission timing of the WTRU.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an apparatus for uplink synchronization in accordance with the present invention.
  • FIG. 2 is a flow diagram of a process for uplink synchronization in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • The present invention will be described with reference to the drawing figures wherein like numerals represent like elements throughout.
  • Hereafter, the terminology “wireless transmit/receive unit” (WTRU) includes but is not limited to a user equipment, a mobile station, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment. When referred to hereafter, the terminology “Node-B” includes but is not limited to a base station, a site controller, an access point or any other type of interfacing device in a wireless environment.
  • The features of the present invention may be incorporated into an integrated circuit (IC) or be configured in a circuit comprising a multitude of interconnecting components.
  • The preferred embodiment of the present invention will be described with reference to the current 3GPP standards. However, it should be understood that a specific sampling rate, processing rate, or any numerical quantification which are set forth hereinafter are provided only as an illustration, not as a limitation, of the preferred embodiment of the present invention, and any other sampling rate, processing rate or numerical quantification may be adopted in implementing the teachings of the present invention.
  • FIG. 1 is a block diagram of an apparatus 100 for UL synchronization in accordance with the present invention. The apparatus 100 comprises a receiver 102, a sampler 104, a down-sampler 106, a first correlator 108, a processing unit 110, a second correlator 112, and a quantizer 114.
  • A WTRU transmits a SYNC_UL sequence to a Node-B through the UpPCH before transmitting messages via a random access channel (RACH). The Node-B monitors the UpPCH for detecting SYNC_UL sequences transmitted from WTRUs. Once the Node-B detects a SYNC_UL sequence, the Node-B transmits a response to the detected SYNC_UL sequence via an FPACH. The response includes UL synchronization information, UpPCHPOS, (which is a timing difference of receipt of the SYNC_UL sequence from the WTRU with respect to a reference time at the Node-B). After the WTRU receives the response, the WTRU synchronizes UL transmissions in accordance with the UpPCHPOS included in the response message.
  • The receiver 102 receives transmissions via the UpPCH from the WTRU and forwards it to the sampler 104. The sampler 104 samples the transmission at a rate which is substantially higher than a chip rate, 1/Tc. Under the current 3GPP standard, UL synchronization is controlled at a resolution of Tc/8. Therefore, it is preferred for the sampler 104 to sample the transmission eight (8) times the chip rate, 8/Tc. The sampler 104 outputs the sampled data to both the down-sampler 106 and the second correlator 112.
  • The down-sampler 106 down-samples the sampled data at a lower rate, preferably at the chip rate, 1/Tc. In accordance with the preferred embodiment, the down-sampler 106 selects one out of eight (8) samples. The down-sampled samples are forwarded to the first correlator 108.
  • The first correlator 108 performs correlation of the down-sampled samples with each of a plurality of SYNC_UL sequences. Under the current 3GPP standards, eight (8) SYNC_UL sequences are assigned to each Node-B. Therefore, preferably, the first correlator 108 generates correlation results with each of eight (8) SYNC_UL sequences, although the specific number of sequences is not required.
  • Initially, the WTRU determines UL transmission timing of a SYNC_UL sequence based on a measured propagation delay of the DwPCH and/or P-CCPCH. The initial delay measurement is used to restrict the search size of the first correlator 108. However, it is not very reliable. Therefore, the first correlator 108 needs to cover the whole cell size. For example, a cell radius of 11.5 km corresponds to approximately 49 chips for a chip rate of 1.28 Mcps. Since the Node-B observes a two-way propagation delay, the search window size for the first correlator 108 should be greater than 98 chips for the worst case. The output of the first correlator 108 consists of lag positions and corresponding complex valued correlation results. This output can be used as an initial channel estimate.
  • The correlation results are output to the processing unit 110. The processing unit 110 determines whether any SYNC_UL sequences have been detected. In detecting a SYNC_UL sequence, the processing unit 110 calculates the average signal power of each SYNC_UL sequence and compares it to a noise threshold. If the average signal power of each SYNC_UL sequence is above the noise threshold, the processing unit 110 outputs to the second correlator 112 that the SYNC_UL sequence has been detected. If the average signal power of each SYNC_UL sequence is not above the noise threshold, the processing unit 110 performs no further actions, and the receiver continues to monitor the UpPCH. The processing unit 110 also determines an initial first significant path location (IFSPL) of the detected SYNC_UL sequence. The first significant path (FSP) is the first path (in time) in the channel impulse response above the noise threshold. The IFSPL is determined at a chip rate resolution.
  • Under the current 3GPP standard, the minimum step size required for UL synchronization is Tc/8. Therefore, the Node-B is required to determine UL timing information, (UpPCHPOS), preferably at a resolution of Tc/8. The second correlator 112 receives samples sampled at eight (8) times the chip rate from the sampler 104, and performs correlation of the samples with the detected SYNC_UL sequence around the IFSPL. Since the second correlator 112 performs correlation only around the detected IFSPL instead of the whole cell size, the correlation in the second correlator 112 is performed much more quickly. The second correlator 112 determines a final first significant path location (FFSPL) at a resolution of Tc/8.
  • The apparatus 100 may further, and optionally, comprise a quantizer 114 to quantize the FFSPL. Under the current 3GPP standards, the UpPCHPOS is coded with 11 bits with a step size of Tc/8. The quantizer 114 quantizes the FFSPL to the closest multiple of Tc/8. This quantized value is converted to the UpPCHPOS for the detected SYNC_UL sequence, and transmitted to the WTRU for UL synchronization of the next UL transmissions.
  • FIG. 2 is a flow diagram of a process 200 for uplink synchronization in accordance with the present invention. The process 200 comprises two primary steps: first, to determine an IFSPL of a SYNC_UL sequence (step 210), and then to zoom in around the IFSPL and perform a higher resolution search for an FFSPL (step 212). The process 200 commences when UL transmissions are received via an UpPCH (step 202). The transmissions are sampled by a sampler at preferably eight (8) times the chip rate (step 204). The sampled data is down-sampled preferably to a chip rate (step 206). The down-sampled data is correlated with SYNC_UL sequences, and it is determined whether any SYNC_UL sequence has been detected (step 208). In detecting a SYNC_UL sequence, an average signal power of each SYNC_UL sequence is calculated and compared to a noise threshold. If the average signal power of each SYNC_UL sequence is above the noise threshold, a detection of the SYNC_UL sequence is declared, and if the average signal power of an SYNC_UL sequence is not above the noise threshold, the process returns to step 202 to continue to monitor the UpPCH. If a SYNC_UL sequence is detected, the process 200 proceeds to determine an IFSPL of the detected SYNC_UL sequence, preferably at the chip rate (step 210). Once the IFSPL is determined, the FFSPL is determined using the sampled data sampled at eight (8) times the chip rate and the IFSPL (step 212). The FFSPL is quantized and converted to the UpPCHPOS. The Node-B transmits the UpPCHPOS to a WTRU to be used in adjustment of UL transmission timing for the next transmission (step 214).
  • While this invention has been particularly shown and described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention described hereinabove.

Claims (18)

1. A Node-B for synchronizing uplink (UL) transmission of a wireless transmit/receive unit (WTRU) in a code division multiple access (CDMA) wireless communication system, the Node-B comprising:
a receiver for receiving a transmission including a UL synchronization (SYNC_UL) sequence from a WTRU;
a sampler for generating samples of the transmission at a sampling rate;
a down-sampler for down-sampling the samples at a down-sampling rate;
a first processing unit for detecting a SYNC_UL sequence in the transmission by processing down-sampled samples at the down-sampling rate, and determining an initial first significant path location of the detected SYNC_UL sequence;
a second processing unit for determining a final first significant path location of the SYNC_UL sequence in the transmission at the sampling rate using the detected initial first significant path location; and
a transmitter for transmitting a UL synchronization adjustment message generated based on the final first significant path location to the WTRU to adjust a UL transmission timing of the WTRU.
2. The Node-B of claim 1 wherein the sampling rate is eight (8) times the chip rate of the WTRU transmission.
3. The Node-B of claim 1 wherein the down-sampling rate is equal to the chip rate of the WTRU transmission.
4. The Node-B of claim 1 wherein the sampling rate is inversely proportional to the resolution of the UL synchronization sequence that is defined by the standards by which the WTRU is operating.
5. The Node-B of claim 1 wherein detecting the presence of a SYNC_UL sequence comprises generating correlation results for each SYNC_UL sequence assigned to a Node-B.
6. The Node-B of claim 1 wherein a SYNC_UL sequence is detected when the average signal power of a SYNC_UL sequence exceeds a predetermined noise threshold.
7. The Node-B of claim 1 wherein the final first significant path location is determined with a resolution of one eighth of the chip rate of the WTRU transmission.
8. The Node-B of claim 1 wherein the first final significant path location is quantized for transmission.
9. The Node-B of claim 1 wherein the first final significant path location is quantized to the closest multiple of one eighth of the chip rate of the WTRU transmission.
10. A code division multiple access (CDMA) wireless communication system wherein at least one Node-B synchronizes the uplink (UL) transmissions of at least one wireless transmit/receive unit (WTRU), the system comprising:
a. at least one WTRU comprising:
i. a transmitter for transmitting an uplink synchronization (SYNC_UL) sequence through an UL pilot channel (UpPCH);
ii. a receiver for receiving an UL synchronization adjustment message; and
iii. means for adjusting UL transmission timing in response to said UL synchronization adjustment message; and
b. at least one Node-B comprising:
i. a receiver for receiving a transmission including a SYNC_UL sequence from at least one of said WTRUs;
ii. a sampler for generating samples of the transmission at a sampling rate;
iii. a down-sampler for down-sampling the samples at a down-sampling rate;
iv. a first processing unit for detecting a SYNC_UL sequence in the transmission by processing down-sampled samples at the down-sampling rate, and determining an initial first significant path location of the detected SYNC_UL sequence;
v. a second processing unit for determining a final first significant path location of the SYNC_UL sequence in the transmission at the sampling rate using the detected initial first significant path location; and
vi. a transmitter for transmitting a UL synchronization adjustment message generated based on the final first significant path location to the at least one of said WTRUs to adjust a UL transmission timing of the at least one of said WTRUs.
11. The system of claim 10 wherein the sampling rate is eight (8) times the chip rate of the WTRU transmission.
12. The system of claim 10 wherein the down-sampling rate is equal to the chip rate of the WTRU transmission.
13. The system of claim 10 wherein the sampling rate is inversely proportional to the resolution of the UL synchronization sequence that is defined by the standards by which the WTRU is operating.
14. The system of claim 10 wherein detecting the presence of a SYNC_UL sequence comprises generating correlation results for each SYNC_UL sequence assigned to a Node-B.
15. The system of claim 10 wherein a SYNC_UL sequence is detected when the average signal power of a SYNC_UL sequence exceeds a predetermined noise threshold.
16. The system of claim 10 wherein the final first significant path location is determined with a resolution of one eighth of the chip rate of the WTRU transmission.
17. The system of claim 10 wherein the final first significant path location is quantized for transmission.
18. The system of claim 10 wherein the final first significant path location is quantized to the closest multiple of one eighth of the chip rate of the WTRU transmission.
US11/202,586 2003-11-07 2005-08-12 Method and apparatus for uplink synchronization in wireless communications Abandoned US20050276250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/202,586 US20050276250A1 (en) 2003-11-07 2005-08-12 Method and apparatus for uplink synchronization in wireless communications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US51814103P 2003-11-07 2003-11-07
US10/973,134 US6954447B2 (en) 2003-11-07 2004-10-26 Method and apparatus for uplink synchronization in wireless communications
US11/202,586 US20050276250A1 (en) 2003-11-07 2005-08-12 Method and apparatus for uplink synchronization in wireless communications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/973,134 Continuation US6954447B2 (en) 2003-11-07 2004-10-26 Method and apparatus for uplink synchronization in wireless communications

Publications (1)

Publication Number Publication Date
US20050276250A1 true US20050276250A1 (en) 2005-12-15

Family

ID=34590226

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/973,134 Expired - Fee Related US6954447B2 (en) 2003-11-07 2004-10-26 Method and apparatus for uplink synchronization in wireless communications
US11/202,586 Abandoned US20050276250A1 (en) 2003-11-07 2005-08-12 Method and apparatus for uplink synchronization in wireless communications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/973,134 Expired - Fee Related US6954447B2 (en) 2003-11-07 2004-10-26 Method and apparatus for uplink synchronization in wireless communications

Country Status (14)

Country Link
US (2) US6954447B2 (en)
EP (1) EP1687915B1 (en)
JP (1) JP2007513542A (en)
KR (2) KR100754819B1 (en)
CN (1) CN1879319A (en)
AR (1) AR046371A1 (en)
AT (1) ATE391364T1 (en)
CA (1) CA2544960A1 (en)
DE (1) DE602004012885T2 (en)
ES (1) ES2300870T3 (en)
MX (1) MXPA06005005A (en)
NO (1) NO20062621L (en)
TW (2) TWI252643B (en)
WO (1) WO2005048506A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175832A1 (en) * 2002-04-30 2008-07-24 Mohapatra Shyam S Materials and Methods for Prevention and Treatment of RNA Viral Diseases
US20090213804A1 (en) * 2008-02-25 2009-08-27 Lg Electronics Inc. Method for supporting coexistence in a mobile station
US20110116446A1 (en) * 2008-02-25 2011-05-19 Lg Electronics Inc. Method for supporting coexistence with wireless local area network
US8867551B2 (en) 2008-02-25 2014-10-21 Lg Electronics Inc. Method for supporting coexistence considering while subchannel allocation in a broadband wireless access system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070064665A1 (en) 2005-08-23 2007-03-22 Interdigital Technology Corporation Method and apparatus for accessing an uplink random access channel in a single carrier frequency division multiple access system
CN101185270B (en) * 2005-11-16 2010-10-13 中兴通讯股份有限公司 Uplink synchronization method in mobile communication system
CN101438511A (en) 2006-03-24 2009-05-20 交互数字技术公司 Method and apparatus for maintaining uplink synchronization and reducing battery power consumption
US9247515B2 (en) 2006-04-25 2016-01-26 Qualcomm Incorporated Enhanced mobility support for wireless communication
EP1909409A1 (en) * 2006-10-04 2008-04-09 Nokia Siemens Networks Gmbh & Co. Kg Method for controlling the timing of uplink signal transmission in a radiocommunication system
KR101506171B1 (en) 2009-01-09 2015-03-27 삼성전자주식회사 Device and method for controlling random access process of ue in wireless communication system
US9204410B2 (en) * 2009-10-08 2015-12-01 Qualcomm Incorporated Method and apparatus for repeating uplink synchronization in time division synchronous code division multiple access (TD-SCDMA) networks
CN102100101B (en) * 2009-10-14 2014-03-19 高通股份有限公司 Transmission failure detection in the random access procedure in time division synchronous code division multiple access (td-scdma) networks
US8594072B2 (en) * 2010-03-31 2013-11-26 Qualcomm Incorporated User equipment based method to improve synchronization shift command convergence in TD-SCDMA uplink synchronization
US8874111B2 (en) * 2010-08-12 2014-10-28 Qualcomm Incorporated Uplink synchronization of TD-SCDMA multiple USIM mobile terminal during handover

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134286A (en) * 1997-10-14 2000-10-17 Ericsson Inc. Synchronization techniques and systems for radiocommunication
US6516007B1 (en) * 1998-07-23 2003-02-04 Sk Telecom Co., Ltd. Method for synchronizing reverse link and transmission method using synchronous reverse link
US6570918B1 (en) * 1998-08-19 2003-05-27 Siemens Aktiengesellschaft Receiver and method for recovering data from spread spectrum radio signals
US6597676B1 (en) * 1996-07-09 2003-07-22 Hitachi, Ltd. CDMA communication system and method
US6654432B1 (en) * 1998-06-08 2003-11-25 Wireless Facilities, Inc. Joint maximum likelihood frame and timing estimation for a digital receiver
US6829253B1 (en) * 2000-11-28 2004-12-07 Ericsson Inc. Methods and systems for efficiently using synchronization information in transitioning between channels in TDMA and CDMA communications systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205193B1 (en) 1998-10-15 2001-03-20 Ericsson Inc. Systems and methods for fast terminal synchronization in a wireless communication system
AU758861B2 (en) * 2000-11-17 2003-04-03 Samsung Electronics Co., Ltd. Apparatus and method for measuring propagation delay in an NB-TDD CDMA mobile communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597676B1 (en) * 1996-07-09 2003-07-22 Hitachi, Ltd. CDMA communication system and method
US6134286A (en) * 1997-10-14 2000-10-17 Ericsson Inc. Synchronization techniques and systems for radiocommunication
US6654432B1 (en) * 1998-06-08 2003-11-25 Wireless Facilities, Inc. Joint maximum likelihood frame and timing estimation for a digital receiver
US6516007B1 (en) * 1998-07-23 2003-02-04 Sk Telecom Co., Ltd. Method for synchronizing reverse link and transmission method using synchronous reverse link
US6570918B1 (en) * 1998-08-19 2003-05-27 Siemens Aktiengesellschaft Receiver and method for recovering data from spread spectrum radio signals
US6829253B1 (en) * 2000-11-28 2004-12-07 Ericsson Inc. Methods and systems for efficiently using synchronization information in transitioning between channels in TDMA and CDMA communications systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175832A1 (en) * 2002-04-30 2008-07-24 Mohapatra Shyam S Materials and Methods for Prevention and Treatment of RNA Viral Diseases
US20090213804A1 (en) * 2008-02-25 2009-08-27 Lg Electronics Inc. Method for supporting coexistence in a mobile station
US20110116446A1 (en) * 2008-02-25 2011-05-19 Lg Electronics Inc. Method for supporting coexistence with wireless local area network
US8363601B2 (en) * 2008-02-25 2013-01-29 Lg Electronics Inc. Method for supporting coexistence with wireless local area network
US8514823B2 (en) 2008-02-25 2013-08-20 Lg Electronics Inc. Method for supporting coexistence in a mobile station
US8867551B2 (en) 2008-02-25 2014-10-21 Lg Electronics Inc. Method for supporting coexistence considering while subchannel allocation in a broadband wireless access system

Also Published As

Publication number Publication date
DE602004012885T2 (en) 2009-04-09
KR100754819B1 (en) 2007-09-04
US6954447B2 (en) 2005-10-11
TWI252643B (en) 2006-04-01
US20050099986A1 (en) 2005-05-12
TW200518502A (en) 2005-06-01
ES2300870T3 (en) 2008-06-16
EP1687915A2 (en) 2006-08-09
DE602004012885D1 (en) 2008-05-15
WO2005048506A3 (en) 2005-09-15
KR20060097756A (en) 2006-09-15
ATE391364T1 (en) 2008-04-15
TW200612685A (en) 2006-04-16
EP1687915A4 (en) 2006-12-27
NO20062621L (en) 2006-08-03
CN1879319A (en) 2006-12-13
KR20060103346A (en) 2006-09-28
JP2007513542A (en) 2007-05-24
MXPA06005005A (en) 2006-07-06
AR046371A1 (en) 2005-12-07
EP1687915B1 (en) 2008-04-02
CA2544960A1 (en) 2005-05-26
WO2005048506A2 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US20050276250A1 (en) Method and apparatus for uplink synchronization in wireless communications
US6141337A (en) Spread spectrum communication system
AU769109B2 (en) Method and apparatus for providing wireless communication system synchronization
US6657988B2 (en) Method and apparatus for timing adjustment for uplink synchronous transmission in wide code division multiple access
US7286847B2 (en) Method and apparatus for performing an access procedure
US6954644B2 (en) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
JP4291357B2 (en) Acquisition circuit applicable to low chip rate option for mobile communication system
AU756164B2 (en) Method and apparatus to communicate auxiliary and location information between cellular telephone network and global positioning system
US20020009129A1 (en) Apparatus and method for synchronization of uplink synchronous transmission scheme in a CDMA communication system
KR100407355B1 (en) Apparatus and method for aligning time of reverse link in mobile communication system
US6516007B1 (en) Method for synchronizing reverse link and transmission method using synchronous reverse link
EP1814237B1 (en) Device and method for communication between base station and subscriber unit in CDMA communication system
US6577615B1 (en) Method, mobile station and base station for frequency synchronization of a mobile station in a radio communications system
GB2358992A (en) Cell search using information from a previous communication
EP1170881B1 (en) Mobile communication system and method and mobile stations and base stations in the system
EP1340396B1 (en) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
KR100478329B1 (en) A method of controlling initial power ramp-up in cdma systems by using short codes
JP2002077102A (en) Base-station equipment and method for radio communication
WO2001015353A1 (en) A method of measuring a characteristic of a radio signal and apparatus therefor
GB2382958A (en) Phased synchronisation for Time Division Duplex
JPH1141139A (en) Synchronization timing detector for rake receiver

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION