US20050182523A1 - Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms - Google Patents

Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms Download PDF

Info

Publication number
US20050182523A1
US20050182523A1 US11/109,766 US10976605A US2005182523A1 US 20050182523 A1 US20050182523 A1 US 20050182523A1 US 10976605 A US10976605 A US 10976605A US 2005182523 A1 US2005182523 A1 US 2005182523A1
Authority
US
United States
Prior art keywords
room
fan assisted
tiles
airflow
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/109,766
Inventor
Rajesh Nair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Degree Controls Inc
Original Assignee
Degree C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degree C. filed Critical Degree C.
Priority to US11/109,766 priority Critical patent/US20050182523A1/en
Publication of US20050182523A1 publication Critical patent/US20050182523A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/40HVAC with raised floors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates generally to thermal management of thermally sensitive rooms, and more particularly to thermal management of a computer data center.
  • the computer data centers typically, consist thousands of racks each with multiple computing units.
  • the computing units can include multiple microprocessors, each dissipating approximately 250 W of power.
  • the heat dissipation from a rack containing such computing units can exceed 10 KW.
  • Today's computer data center, with about 1000 racks and occupying over 30,000 square feet can require about 10 MW of power for the computing infrastructure.
  • a 100,000 square foot computer data center of tomorrow can require 50 MW of power for the computing infrastructure. Energy required to dissipate this heat can be an additional 20 MW.
  • a hundred thousand square foot planetary scale computer data center, with five thousand 10 KW racks, can cost about 44 million dollars per year (at $100/MWh) just to power the servers and about 18 million dollars per year to power the cooling infrastructure for the computer data center.
  • Cooling design consideration by virtue of proper layout of racks and fans can yield substantial savings in energy.
  • cooling design in a high power density computer data center is quite complex.
  • Today's intuitive distribution of air does not suffice in providing a well-balanced airflow in a computer data center such that every location in the computer data center receives a uniform airflow to improve operating efficiency and cooling performance.
  • the present invention provides a technique for providing a well-balanced airflow in a room having many heat generating elements, such as a computer data center.
  • the technique provides dynamic airflow balancing and thermal management for the computer data center. This is accomplished by disposing multiple fan tiles at various locations in a raised floor and ceiling of a computer data center that are connected to a host computer through a data network. Each of the disposed networked fan tiles in the raised floor and the ceiling is controlled by the host computer based on sensing incoming airflow and outgoing air temperature, respectively, to achieve well-balanced airflow in the computer data center.
  • FIG. 1 is a schematic diagram of a side elevational view of one example embodiment of a computer data center including multiple fan assisted tiles according to the present subject matter.
  • FIG. 2 is a block diagram of a fan assisted tile shown in FIG. 1 according to the present subject matter.
  • FIG. 3 is a flowchart illustrating a method of providing adaptive airflow balancing in a room, in accordance with one embodiment of the present subject matter.
  • the present subject matter provides a technique for providing a well-balanced airflow in a room.
  • the technique further provides a dynamic airflow balancing and thermal management for a computer data center.
  • thermo server “host computer”, “remote server”, and “remote computer” are used interchangeably throughout the document.
  • power controller and “micro-controller” are also used interchangeably throughout the document and refer to a means used to vary the speed of the one or more fans in the fan tile assembly.
  • the thermal management system 100 includes a first array 110 of fan assisted tiles 130 , disposed in the raised floor 140 of a room 105 , and a second array 120 of fan assisted tiles 130 , disposed in the ceiling 150 of the room 105 .
  • the room 105 can be a computer data center including heat generating components 195 .
  • each fan assisted tile 130 includes a plurality of passageways 162 for the air to enter and exhaust from the room 105 . Further as shown in FIG. 1 , each fan assisted tile 130 can be attached to a fan tile 135 that is adaptable to be disposed on the ceiling 150 and/or the raised floor 140 of the room 105 .
  • the fan tile 135 is made of sheet metal tile.
  • the sheet metal tile has a front side 165 and a back side 178 .
  • One or more fans 172 are attached to the back side 178 of the sheet metal tile.
  • the front side 165 of the sheet metal tile is adapted to be disposed on the raised floor 140 and/or ceiling 150 in the room 105 .
  • the thermal management system 100 includes a power source 175 , a data network 180 , and a remote thermal server 190 .
  • the thermal server 190 can be a host computer, a remote server, a remote computer, a remote server, a processor, and other such processors that can facilitate in the thermal management of the room 105 .
  • the thermal server 190 can be a remote program capable of communicating over a data network 180 .
  • each of the fan assisted tiles 130 includes the one or more fans 172 , a power controller 186 , and an interface 170 .
  • each of the power controllers 186 is connected to the power source 175 through the interface 170 .
  • each of the fan assisted tiles 130 is connected to the thermal server 190 through the interface 170 and via the data network 180 .
  • the interface 170 can be a network interface, such as a serial communication interface.
  • the first array 110 of fan assisted tiles 130 is disposed on the raised floor 140 such that the air is directed into the room 105 as indicated by directional arrows 152 .
  • the second array 120 of fan assisted tiles 130 is disposed in the ceiling 150 such that the air is directed out of the room 105 as indicated by directional arrows 157 .
  • the thermal management system 100 moves the air in the room 105 through the passageways 162 as indicated by directional arrows 152 , 155 , and 157 to provide adaptive airflow balancing in the room 105 .
  • an airflow sensor 184 is coupled to each of the power controllers 186 in the first array 110 of fan assisted tiles 130 . Further, FIG. 1 shows a temperature sensor 182 coupled to each of the power controllers 186 in the second array 120 of fan assisted tiles 130 .
  • FIG. 1 illustrates an example centralized control system for the adaptive control of the environment, such as the room 105 .
  • the centralized control in this example embodiment is achieved through the thermal server 190 , which communicates with the fan assisted tiles 130 via the network 180 .
  • the thermal server 190 receives the sensor information, such as airflow and temperature and computes necessary operating parameters, such as fan speed and other commands necessary to operate the fan assisted tiles 130 .
  • the computed operating parameters are then sent over the network 180 to each of the fan assisted tiles 130 to provide an adaptive control in the room 105 .
  • the fan assisted tile 130 includes a fan controller 210 coupled to one or more fans 172 .
  • the one or more fans 172 can be one or more axial and/or radial fans.
  • the fan controller 210 includes a processor 220 , the power controller 186 , DIP switch 230 , sensor 240 , and in and out interfaces 270 and 280 for daisy chaining with other fan assisted tiles 130 .
  • the sensor 240 can be the temperature sensor 182 , the airflow sensor 184 or any other sensor that is suitable for sensing environmental characteristics and can facilitate in adaptive airflow balancing and thermal management of the room 105 .
  • sensor 240 can be a humidity sensor to sense humidity of air coming into and out of the room 105 .
  • the DIP switch 230 facilitates in setting a Network address, such as an IP address that is unique to each of the fan assisted tiles 130 .
  • the DIP switch 230 can be an 8 bit or higher DIP switch.
  • the DIP switch 230 can also be a programmable switch or the like that is suitable for setting a Network address or a unique identifier.
  • the fan assisted tile 130 is coupled with other fan assisted tiles by daisy chaining the power and network connections using the interfaces 270 and 280 .
  • power line 250 and network line 260 are shown isolated.
  • the network line 260 can be an RS485 8 bit addressable connection or a serial communication interface.
  • each of the temperature sensors 182 and the airflow sensors 184 sense the outgoing air temperature and the incoming airflow, respectively, and the processor 220 outputs a first control signal along with an associated Network address based on the sensed temperature and airflow.
  • the first control signal can be temperature data, airflow data, and/or any other data that facilitates in adaptive airflow balancing or thermal management of the room 105 .
  • each of the temperature sensors 182 senses the outgoing temperature in the room 105 and the processor 220 outputs a first control signal
  • each of the airflow sensors 184 senses the incoming airflow and outputs a second control signal.
  • the thermal server 190 outputs third and fourth control signals based on the outputted first and second control signals, respectively.
  • each of the fan controllers 210 varies the fan speed of one or more fans 172 , in each of the associated fan assisted tiles 130 in the first and second arrays 110 and 120 , based on the third and fourth control signals received from the thermal server 190 through the data network 180 .
  • the thermal server 190 receives the outputted first control signal along with the associated Network address from each of the temperature and airflow sensors 182 and 184 through the data network 180 , and outputs a second control signal along with the associated Network address based on the received first control signal and the associated Network address from each of the temperature and airflow sensors 182 and 184 .
  • the thermal server 190 sends each of the outputted second control signals along with associated Network addresses through the data network 180 to an associated fan controller 210 of a fan assisted tile 130 based on the received Network address.
  • the fan controller 210 of each fan assisted tile 130 controls the one or more fans 172 based on the received control signal from the thermal server 190 through the data network 180 .
  • the second control signal is revolutions-per-minute (rpm) data or other such data that can aid in controlling the speed of one or more fans 172 .
  • the microcontroller 210 controls the fan speed of the one or more fans 172 in each fan assisted tile 130 in the first array 110 , based on the received associated first control signal, which can be based on the airflow data received from the associated airflow sensor 184 .
  • the fan controller 210 controls the fan speed of the one or more fans 172 in each fan assisted tile 130 in the second array 120 , based on the received associated second control signal, which can be the temperature data received from the associated temperature sensor 182 , to provide adaptive airflow balancing and/or thermal management in the room 105 .
  • FIG. 1 shows an indicator 192 disposed in the room 105 , in the ceiling 150 and/or the raised floor 140 , to indicate a failed condition of each of the fan assisted tiles 130 should the fan assisted tiles fail during operation.
  • the indicator 192 can be a light and/or an alarm. The light comes on and/or the alarm goes on when any of the associated fan assisted tiles 130 fails during operation.
  • the indicator 192 can be coupled to the fan controller 210 , which in turn can be coupled to the thermal server 190 through the data network 180 .
  • the fan controller 210 can also include a sensor (not shown) to monitor the status of each of the fan assisted tiles 130 disposed in the first and second arrays 110 and 120 . In operation, the sensor can send a fifth control signal to the thermal server 190 .
  • the thermal server 190 can monitor the sent fifth control signal and output a sixth control signal to the fan controller 210 .
  • the fan controller 210 indicates the failed condition of a fan assisted tile 130 in the first and second arrays 110 and 120 , respectively, based on the received sixth control signal.
  • the above-described techniques can also be used in a decentralized control environment, where the controller, such as the thermal server 190 leaves most of the operating decisions to the remote devices, such as the fan assisted tiles 130 and other devices coupled through the data network 130 .
  • the thermal server 190 sends commands to each fan assisted tile 130 to operate at a level to achieve a given airflow or temperature.
  • the decision regarding operating parameters, such as fan speed and other commands are made locally by each of the fan assisted tiles 130 .
  • part of the control functions performed by the thermal server 190 is switched to each of the fan assisted tiles 130 to achieve an adaptive control in the room 105 .
  • each of the fan assisted tiles 130 or any other device can communicate with other fan assisted tiles 130 or devices coupled through the data network 180 .
  • each of the fan assisted tiles 130 can compute their own operating parameters to control their fan speeds to achieve an adaptive control in the room 105 .
  • the thermal server 190 would be basically used to monitor, the fan assisted tiles and other such devices connected through the network 180 , for proper functioning and to report the status of each of these devices to a facilitator and/or an operator.
  • the method 300 in this example embodiment senses incoming airflow into a room.
  • the method 300 further senses outgoing air temperature.
  • the incoming airflow from a first array of fan assisted tiles and the outgoing air temperature from a second array of fan assisted tiles is sensed.
  • a first control signal is outputted based on the sensed airflow and temperature. In some embodiments, at 330 a Network address associated with each fan assisted tile along with the first control signal is outputted at 330 . At 340 a second control signal is outputted based on the first control signal. In some embodiments, at 340 the second control signal is outputted along with the Network address associated with the fan assisted tile to be controlled.
  • the method 300 can include sensing the condition of each fan assisted tile and indicating a failed condition based on sensing the condition of each fan assisted tile.
  • the failed condition of a fan assisted tile can be indicated by sending an alarm or by lighting an indicator associated with the failed fan assisted tile.
  • the above method repeats itself to maintain adaptive airflow balancing and provide thermal management in the room by varying the speed of fans to accommodate changes in traffic patterns, component changes and additions, blocked filters, failed fans and so on in the room.
  • the room can be a computer data center including heat generating components.
  • the method 300 includes blocks 310 - 350 that are arranged serially in the exemplary embodiments, other embodiments of the subject matter may execute two or more blocks in parallel, using multiple processors or a single processor organized two or more virtual machines or sub-processors. Moreover, still other embodiments may implement the blocks as two or more specific interconnected hardware modules with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the exemplary process flow diagrams are applicable to software, firmware, and/or hardware implementations.
  • the various embodiments of the fan assemblies, systems, and methods described herein are applicable generically to achieve adaptive airflow balancing and thermal management in a computer data center.
  • the above-described technique provides uniform airflow in every location in a computer data center, thus helping to improve operating efficiency and cooling performance of the computer data center.
  • the above-described technique provides adaptive air flow balancing in a computer data center under varying thermal load distributions.
  • the above-described technique after achieving an operational thermal balance, continues to monitor the steady state situation and compensates for thermal variability due to time dependent variations in traffic patterns, blocked filters, failed fans, and other such variations to provide a well-balanced airflow.

Abstract

A technique to provide well-balanced airflow in a computer data center that uses fan assisted tiles coupled to a host computer through a network. In an example embodiment, this is accomplished by disposing the fan tiles, including temperature and airflow sensors and a programmable switch to provide a Network address, in multiple locations in raised floor and ceiling of the computer data center. Further, the example embodiment includes coupling the fan tiles to the host computer through the network to control the fan tiles based on the feedback received from the temperature and airflow sensors to provide adaptive airflow balancing and thermal management in the computer data center.

Description

    RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 10/660,943, filed Sep. 12, 2003, which issued as U.S. Pat. No. 6,881,142, issue date Apr. 19, 2005, which claims priority from U.S. Provisional Patent Application Ser. No. 60/461,253, filed Apr. 7, 2003, which applications are incorporated herein by reference.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to thermal management of thermally sensitive rooms, and more particularly to thermal management of a computer data center.
  • BACKGROUND OF THE INVENTION
  • The computer data centers typically, consist thousands of racks each with multiple computing units. The computing units can include multiple microprocessors, each dissipating approximately 250 W of power. The heat dissipation from a rack containing such computing units can exceed 10 KW. Today's computer data center, with about 1000 racks and occupying over 30,000 square feet can require about 10 MW of power for the computing infrastructure. A 100,000 square foot computer data center of tomorrow can require 50 MW of power for the computing infrastructure. Energy required to dissipate this heat can be an additional 20 MW. A hundred thousand square foot planetary scale computer data center, with five thousand 10 KW racks, can cost about 44 million dollars per year (at $100/MWh) just to power the servers and about 18 million dollars per year to power the cooling infrastructure for the computer data center.
  • Cooling design consideration by virtue of proper layout of racks and fans can yield substantial savings in energy. Generally, cooling design in a high power density computer data center is quite complex. Today's intuitive distribution of air does not suffice in providing a well-balanced airflow in a computer data center such that every location in the computer data center receives a uniform airflow to improve operating efficiency and cooling performance.
  • In addition, many of the computer data centers are hastily planned and implemented as the needed equipment must be quickly installed on a rush schedule. The typical result is a somewhat haphazard layout on the raised floor that can have disastrous consequences due to environmental temperature disparities. Unfortunately, the dangers of this lack of planning are, is not apparent until after serious reliability problems have already occurred. Further, any changes in a computer data center due to traffic patterns, equipment changes and additions, blocked filters, failed fans, and so on can affect thermal load distribution, which in turn can affect the well-balanced airflow in a computer data center.
  • SUMMARY OF THE INVENTION
  • The present invention provides a technique for providing a well-balanced airflow in a room having many heat generating elements, such as a computer data center. In one example embodiment, the technique provides dynamic airflow balancing and thermal management for the computer data center. This is accomplished by disposing multiple fan tiles at various locations in a raised floor and ceiling of a computer data center that are connected to a host computer through a data network. Each of the disposed networked fan tiles in the raised floor and the ceiling is controlled by the host computer based on sensing incoming airflow and outgoing air temperature, respectively, to achieve well-balanced airflow in the computer data center.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a side elevational view of one example embodiment of a computer data center including multiple fan assisted tiles according to the present subject matter.
  • FIG. 2 is a block diagram of a fan assisted tile shown in FIG. 1 according to the present subject matter.
  • FIG. 3 is a flowchart illustrating a method of providing adaptive airflow balancing in a room, in accordance with one embodiment of the present subject matter.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present subject matter provides a technique for providing a well-balanced airflow in a room. The technique further provides a dynamic airflow balancing and thermal management for a computer data center.
  • In the following detailed description of the embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims. The terms “thermal server”, “host computer”, “remote server”, and “remote computer” are used interchangeably throughout the document. In addition, the terms “power controller” and “micro-controller” are also used interchangeably throughout the document and refer to a means used to vary the speed of the one or more fans in the fan tile assembly.
  • Referring now to FIG. 1, there is illustrated an example embodiment of a thermal management system 100 according to the present subject matter. The thermal management system 100 includes a first array 110 of fan assisted tiles 130, disposed in the raised floor 140 of a room 105, and a second array 120 of fan assisted tiles 130, disposed in the ceiling 150 of the room 105. The room 105 can be a computer data center including heat generating components 195.
  • As shown in FIG. 1, each fan assisted tile 130 includes a plurality of passageways 162 for the air to enter and exhaust from the room 105. Further as shown in FIG. 1, each fan assisted tile 130 can be attached to a fan tile 135 that is adaptable to be disposed on the ceiling 150 and/or the raised floor 140 of the room 105. In some embodiments, the fan tile 135 is made of sheet metal tile. In these embodiments, the sheet metal tile has a front side 165 and a back side 178. One or more fans 172 are attached to the back side 178 of the sheet metal tile. The front side 165 of the sheet metal tile is adapted to be disposed on the raised floor 140 and/or ceiling 150 in the room 105.
  • Also shown in FIG. 1, the thermal management system 100 includes a power source 175, a data network 180, and a remote thermal server 190. The thermal server 190 can be a host computer, a remote server, a remote computer, a remote server, a processor, and other such processors that can facilitate in the thermal management of the room 105. The thermal server 190 can be a remote program capable of communicating over a data network 180. As shown in FIG. 1, each of the fan assisted tiles 130 includes the one or more fans 172, a power controller 186, and an interface 170. In the example embodiment shown in FIG. 1, each of the power controllers 186 is connected to the power source 175 through the interface 170. In addition, as shown in FIG. 1, each of the fan assisted tiles 130 is connected to the thermal server 190 through the interface 170 and via the data network 180. The interface 170 can be a network interface, such as a serial communication interface.
  • In these embodiments, the first array 110 of fan assisted tiles 130 is disposed on the raised floor 140 such that the air is directed into the room 105 as indicated by directional arrows 152. The second array 120 of fan assisted tiles 130 is disposed in the ceiling 150 such that the air is directed out of the room 105 as indicated by directional arrows 157. In operation, the thermal management system 100 moves the air in the room 105 through the passageways 162 as indicated by directional arrows 152, 155, and 157 to provide adaptive airflow balancing in the room 105.
  • Also shown in FIG. 1, an airflow sensor 184 is coupled to each of the power controllers 186 in the first array 110 of fan assisted tiles 130. Further, FIG. 1 shows a temperature sensor 182 coupled to each of the power controllers 186 in the second array 120 of fan assisted tiles 130.
  • FIG. 1 illustrates an example centralized control system for the adaptive control of the environment, such as the room 105. The centralized control in this example embodiment is achieved through the thermal server 190, which communicates with the fan assisted tiles 130 via the network 180. In this example embodiment, the thermal server 190 receives the sensor information, such as airflow and temperature and computes necessary operating parameters, such as fan speed and other commands necessary to operate the fan assisted tiles 130. The computed operating parameters are then sent over the network 180 to each of the fan assisted tiles 130 to provide an adaptive control in the room 105.
  • Referring now to FIG. 2, there is illustrated an example embodiment of a fan assisted tile 130 shown in FIG. 1. For example, as shown in FIG. 2, the fan assisted tile 130 includes a fan controller 210 coupled to one or more fans 172. The one or more fans 172 can be one or more axial and/or radial fans.
  • As shown in FIG. 2, the fan controller 210 includes a processor 220, the power controller 186, DIP switch 230, sensor 240, and in and out interfaces 270 and 280 for daisy chaining with other fan assisted tiles 130. Further, as shown in FIG. 1, the sensor 240 can be the temperature sensor 182, the airflow sensor 184 or any other sensor that is suitable for sensing environmental characteristics and can facilitate in adaptive airflow balancing and thermal management of the room 105. In some embodiments, sensor 240 can be a humidity sensor to sense humidity of air coming into and out of the room 105.
  • The DIP switch 230 facilitates in setting a Network address, such as an IP address that is unique to each of the fan assisted tiles 130. The DIP switch 230 can be an 8 bit or higher DIP switch. The DIP switch 230 can also be a programmable switch or the like that is suitable for setting a Network address or a unique identifier. As shown in FIG. 2, the fan assisted tile 130 is coupled with other fan assisted tiles by daisy chaining the power and network connections using the interfaces 270 and 280. For example, in FIG. 2, power line 250 and network line 260 are shown isolated. The network line 260 can be an RS485 8 bit addressable connection or a serial communication interface.
  • In operation, in one example embodiment, each of the temperature sensors 182 and the airflow sensors 184 sense the outgoing air temperature and the incoming airflow, respectively, and the processor 220 outputs a first control signal along with an associated Network address based on the sensed temperature and airflow. The first control signal can be temperature data, airflow data, and/or any other data that facilitates in adaptive airflow balancing or thermal management of the room 105.
  • In some embodiments, each of the temperature sensors 182 senses the outgoing temperature in the room 105 and the processor 220 outputs a first control signal, and each of the airflow sensors 184 senses the incoming airflow and outputs a second control signal. In these embodiments, the thermal server 190 outputs third and fourth control signals based on the outputted first and second control signals, respectively. Also in these embodiments, each of the fan controllers 210 varies the fan speed of one or more fans 172, in each of the associated fan assisted tiles 130 in the first and second arrays 110 and 120, based on the third and fourth control signals received from the thermal server 190 through the data network 180.
  • The thermal server 190 receives the outputted first control signal along with the associated Network address from each of the temperature and airflow sensors 182 and 184 through the data network 180, and outputs a second control signal along with the associated Network address based on the received first control signal and the associated Network address from each of the temperature and airflow sensors 182 and 184.
  • The thermal server 190 sends each of the outputted second control signals along with associated Network addresses through the data network 180 to an associated fan controller 210 of a fan assisted tile 130 based on the received Network address. The fan controller 210 of each fan assisted tile 130 controls the one or more fans 172 based on the received control signal from the thermal server 190 through the data network 180.
  • In some embodiments, the second control signal is revolutions-per-minute (rpm) data or other such data that can aid in controlling the speed of one or more fans 172. In some embodiments, the microcontroller 210 controls the fan speed of the one or more fans 172 in each fan assisted tile 130 in the first array 110, based on the received associated first control signal, which can be based on the airflow data received from the associated airflow sensor 184. Also in these embodiments, the fan controller 210 controls the fan speed of the one or more fans 172 in each fan assisted tile 130 in the second array 120, based on the received associated second control signal, which can be the temperature data received from the associated temperature sensor 182, to provide adaptive airflow balancing and/or thermal management in the room 105.
  • Further, FIG. 1 shows an indicator 192 disposed in the room 105, in the ceiling 150 and/or the raised floor 140, to indicate a failed condition of each of the fan assisted tiles 130 should the fan assisted tiles fail during operation. The indicator 192 can be a light and/or an alarm. The light comes on and/or the alarm goes on when any of the associated fan assisted tiles 130 fails during operation. The indicator 192 can be coupled to the fan controller 210, which in turn can be coupled to the thermal server 190 through the data network 180. The fan controller 210 can also include a sensor (not shown) to monitor the status of each of the fan assisted tiles 130 disposed in the first and second arrays 110 and 120. In operation, the sensor can send a fifth control signal to the thermal server 190. The thermal server 190 can monitor the sent fifth control signal and output a sixth control signal to the fan controller 210. The fan controller 210 indicates the failed condition of a fan assisted tile 130 in the first and second arrays 110 and 120, respectively, based on the received sixth control signal.
  • It can be envisioned that the above-described techniques can also be used in a decentralized control environment, where the controller, such as the thermal server 190 leaves most of the operating decisions to the remote devices, such as the fan assisted tiles 130 and other devices coupled through the data network 130. In these embodiments, the thermal server 190 sends commands to each fan assisted tile 130 to operate at a level to achieve a given airflow or temperature. The decision regarding operating parameters, such as fan speed and other commands are made locally by each of the fan assisted tiles 130. In these embodiments, part of the control functions performed by the thermal server 190 is switched to each of the fan assisted tiles 130 to achieve an adaptive control in the room 105.
  • In addition, it can also be envisioned that the above-described techniques can be run in a distributed control environment, where each of the fan assisted tiles 130 or any other device can communicate with other fan assisted tiles 130 or devices coupled through the data network 180. Also in these embodiments, each of the fan assisted tiles 130 can compute their own operating parameters to control their fan speeds to achieve an adaptive control in the room 105. In these embodiments, the thermal server 190 would be basically used to monitor, the fan assisted tiles and other such devices connected through the network 180, for proper functioning and to report the status of each of these devices to a facilitator and/or an operator. The advantage of either of the above described architectures, i.e., the decentralized control system and the distributed control system, is that they can considerably reduce the communication traffic sent over the data network 180 to enhance system performance.
  • Referring now to FIG. 3, there is illustrated an embodiment of a method 300 according to the present invention. At 310, the method 300 in this example embodiment senses incoming airflow into a room. At 320, the method 300 further senses outgoing air temperature. In this embodiment, the incoming airflow from a first array of fan assisted tiles and the outgoing air temperature from a second array of fan assisted tiles is sensed.
  • At 330 a first control signal is outputted based on the sensed airflow and temperature. In some embodiments, at 330 a Network address associated with each fan assisted tile along with the first control signal is outputted at 330. At 340 a second control signal is outputted based on the first control signal. In some embodiments, at 340 the second control signal is outputted along with the Network address associated with the fan assisted tile to be controlled.
  • At 350 fan speed of the one or more fans 172 in each fan assisted tile in the first and second arrays is controlled based on the second control signal to provide adaptive airflow balancing in the room. In some embodiments, the method 300 can include sensing the condition of each fan assisted tile and indicating a failed condition based on sensing the condition of each fan assisted tile. In these embodiments, the failed condition of a fan assisted tile can be indicated by sending an alarm or by lighting an indicator associated with the failed fan assisted tile.
  • The above method, blocks 310-350, repeats itself to maintain adaptive airflow balancing and provide thermal management in the room by varying the speed of fans to accommodate changes in traffic patterns, component changes and additions, blocked filters, failed fans and so on in the room. The room can be a computer data center including heat generating components.
  • Although the method 300 includes blocks 310-350 that are arranged serially in the exemplary embodiments, other embodiments of the subject matter may execute two or more blocks in parallel, using multiple processors or a single processor organized two or more virtual machines or sub-processors. Moreover, still other embodiments may implement the blocks as two or more specific interconnected hardware modules with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the exemplary process flow diagrams are applicable to software, firmware, and/or hardware implementations.
  • The various embodiments of the fan assemblies, systems, and methods described herein are applicable generically to achieve adaptive airflow balancing and thermal management in a computer data center. In addition, the above-described technique provides uniform airflow in every location in a computer data center, thus helping to improve operating efficiency and cooling performance of the computer data center. Further, the above-described technique provides adaptive air flow balancing in a computer data center under varying thermal load distributions. Furthermore, the above-described technique, after achieving an operational thermal balance, continues to monitor the steady state situation and compensates for thermal variability due to time dependent variations in traffic patterns, blocked filters, failed fans, and other such variations to provide a well-balanced airflow.
  • The above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those skilled in the art. The scope of the invention should therefore be determined by the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (21)

1. A system for providing adaptive airflow balancing in a room having heat generating components, the system comprising:
means for moving air into the room;
means for moving air out of the room; and
means for controlling the means for moving air into and out of the room to provide adaptive airflow in the room.
2. The system of claim 1, wherein the room comprises a computer data center.
3. The system of claim 1, wherein the means for moving air into and out of the room comprises fan assisted tiles.
4. The system of claim 3 wherein the fan assisted tiles comprise a first array of fan assisted tiles disposed in a floor of the room to bring cool air into the room.
5. The system of claim 4 wherein the first array of tiles includes air flow sensors for sensing the amount of air flowing in through different fan assisted tiles in the first array.
6. The system of claim 3 wherein the fan assisted tiles comprise a second array of fan assisted tiles disposed in a ceiling of the room to remove air from the room.
7. The system of claim 6 wherein the second array of tiles includes temperature sensors for sensing the temperature of air flowing in through different fan assisted tiles in the second array.
8. The system of claim 3 wherein the fan assisted tiles comprise:
a first array of fan assisted tiles disposed in a floor of the room to bring cool air into the room, the first array of tiles including air flow sensors for sensing the amount of air flowing in through different fan assisted tiles in the first array; and
a second array of fan assisted tiles disposed in a ceiling of the room to remove air from the room, the second array of tiles including temperature sensors for sensing the temperature of air flowing in through different fan assisted tiles in the second array.
9. The system of claim 1, further comprising:
a means to indicate a failed fan assisted tile assembly.
10. A method for providing adaptive thermal management of a room having heat generating components, comprising:
providing an adaptive airflow balancing in the room by using an array of fan assisted tiles that are controlled by a remote server based on sensed environmental characteristics in the room.
11. The method of claim 10, wherein the sensed environmental characteristics comprises:
sensing environmental characteristics of air coming into and out of the room.
12. The method of claim 11, wherein the sensing environmental characteristics comprises:
sensing environmental characteristics selected from the group consisting of airflow, temperature, humidity, and particle density.
13. A system for controlling airflow in a room having heat generating components, the system comprising:
a plurality of fan assisted tiles disposed in a floor of the room;
a plurality of fan assisted tiles disposed in a ceiling of the room;
a plurality of airflow sensors for sensing airflow through the fan assisted tiles disposed in the floor of the room; and
a plurality of temperature sensors for sensing temperature of air flowing through the fan assisted tiles disposed in the ceiling of the room.
14. The system of claim 13 and further comprising a controller for controlling airflow through the plurality of fan assisted tiles disposed in the floor of the room, and a network coupling the controller to the fan assisted tiles.
15. The system of claim 14 wherein the controller comprises a distributed controller.
16. The system of claim 14 wherein the controller comprises a central controller.
17. The system of claim 14 wherein the controller varies the speed of a fan in the fan assisted tiles as a function of sensed temperature and flow rates.
18. The system of claim 17 wherein the controller adaptively controls airflow in response to varying thermal load distributions within the room.
19. The system of claim 17 wherein the controller adaptively controls airflow to accommodate heat generating component modifications, blocked air passages and failed fans.
20. The system of claim 14 wherein the network is a hardwired network.
21. The system of claim 13 wherein each fan assisted tile comprises a plurality of passage ways for airflow.
US11/109,766 2003-04-07 2005-04-19 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms Abandoned US20050182523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/109,766 US20050182523A1 (en) 2003-04-07 2005-04-19 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US46125303P 2003-04-07 2003-04-07
US10/660,943 US6881142B1 (en) 2003-09-12 2003-09-12 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms
US11/109,766 US20050182523A1 (en) 2003-04-07 2005-04-19 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/660,943 Division US6881142B1 (en) 2003-04-07 2003-09-12 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms

Publications (1)

Publication Number Publication Date
US20050182523A1 true US20050182523A1 (en) 2005-08-18

Family

ID=34393327

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/660,943 Expired - Lifetime US6881142B1 (en) 2003-04-07 2003-09-12 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms
US11/109,766 Abandoned US20050182523A1 (en) 2003-04-07 2005-04-19 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/660,943 Expired - Lifetime US6881142B1 (en) 2003-04-07 2003-09-12 Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms

Country Status (1)

Country Link
US (2) US6881142B1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075764A1 (en) * 2004-10-08 2006-04-13 Bash Cullen E Correlation of vent tiles and racks
US20060080001A1 (en) * 2004-10-08 2006-04-13 Bash Cullen E Correlation of vent tile settings and rack temperatures
US20060214014A1 (en) * 2005-03-25 2006-09-28 Bash Cullen E Temperature control using a sensor network
US20070032908A1 (en) * 2005-08-04 2007-02-08 International Business Machines Corporation Method, apparatus and computer program product for monitoring and real-time heat load control based upon server and environmental parameters
US20080155441A1 (en) * 2006-12-22 2008-06-26 Long Bruce T Method for performing a data center hardware upgrade readiness assessment
US20090259343A1 (en) * 2006-01-19 2009-10-15 American Power Conversion Corporation Cooling system and method
US7676280B1 (en) 2007-01-29 2010-03-09 Hewlett-Packard Development Company, L.P. Dynamic environmental management
US20100058685A1 (en) * 2008-09-05 2010-03-11 International Business Machines Corporation Floor tile and air handling system using tile
US20100311317A1 (en) * 2009-06-08 2010-12-09 Mcreynolds Alan A Vent tile with an integrated thermal imaging sensor and controller
US20110106314A1 (en) * 2009-10-30 2011-05-05 Abdlmonem Beitelmal Manipulating environmental conditions in an infrastructure
US20110218773A1 (en) * 2010-03-03 2011-09-08 International Business Machines Corporation System and method for positioning and controlling air conditioning tiles for optimal cooling using voronoi diagrams
US20120012278A1 (en) * 2009-04-21 2012-01-19 Yahoo! Inc., A Delaware Corporation Cold row encapsulation for server farm cooling system
US20120073783A1 (en) * 2010-09-27 2012-03-29 Degree Controls, Inc. Heat exchanger for data center
EP2570744A1 (en) * 2011-09-15 2013-03-20 TROX GmbH Method for altering the parts of components of an air conditioning and ventilation assembly system
WO2014022593A1 (en) * 2012-08-03 2014-02-06 Synapsense Corporation Apparatus and method for controlling computer room air conditioning units (cracs) in data centers
US8744631B2 (en) 2011-01-28 2014-06-03 Hewlett-Packard Development Company, L.P. Manipulating environmental conditions in an infrastructure
US20140185219A1 (en) * 2008-08-29 2014-07-03 Apple Inc. Cooling electronic devices using flow sensors
US20150025690A1 (en) * 2013-07-16 2015-01-22 International Business Machines Corporation Hive of smart data center tiles
US9115916B2 (en) 2006-08-15 2015-08-25 Schneider Electric It Corporation Method of operating a cooling system having one or more cooling units
US9363929B2 (en) 2007-06-04 2016-06-07 Yahoo! Inc. Cold row encapsulation for server farm cooling system
US9494985B2 (en) 2008-11-25 2016-11-15 Schneider Electric It Corporation System and method for assessing and managing data center airflow and energy usage
US9541299B2 (en) 2012-12-14 2017-01-10 Microsoft Technology Licensing, Llc Setting-independent climate regulator control
US9568206B2 (en) 2006-08-15 2017-02-14 Schneider Electric It Corporation Method and apparatus for cooling
US9658661B2 (en) 2012-06-22 2017-05-23 Microsoft Technology Licensing, Llc Climate regulator control for device enclosures
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
CN108224675A (en) * 2017-12-29 2018-06-29 北京世纪互联宽带数据中心有限公司 A kind of method and apparatus for reducing power consumption
US10025330B2 (en) 2012-09-21 2018-07-17 Schneider Electric It Corporation Method and apparatus for characterizing thermal transient performance
US10037061B1 (en) * 2013-04-30 2018-07-31 Amazon Technologies, Inc. Multiple-stage cooling system for rack
US10212858B2 (en) 2009-04-21 2019-02-19 Excalibur Ip, Llc Cold row encapsulation for server farm cooling system
US10653042B2 (en) 2016-11-11 2020-05-12 Stulz Air Technology Systems, Inc. Dual mass cooling precision system
US11076507B2 (en) 2007-05-15 2021-07-27 Schneider Electric It Corporation Methods and systems for managing facility power and cooling

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904968B2 (en) * 2001-09-14 2005-06-14 Hewlett-Packard Development Company, L.P. Method and apparatus for individually cooling components of electronic systems
US20060168975A1 (en) * 2005-01-28 2006-08-03 Hewlett-Packard Development Company, L.P. Thermal and power management apparatus
WO2006111789A1 (en) * 2005-04-22 2006-10-26 Degree Controls, Inc. Intelligent fan assisted tiles for adaptive environmental management
US7885795B2 (en) 2005-05-02 2011-02-08 American Power Conversion Corporation Methods and systems for managing facility power and cooling
ITPD20050196A1 (en) * 2005-06-30 2007-01-01 Emerson Network Power Holding VENTILATION DEVICE FOR AIR CONDITIONING SYSTEMS
US20070171086A1 (en) * 2005-10-26 2007-07-26 Belady Christian L Environmental monitor
LU91207B1 (en) * 2005-11-11 2007-05-14 Uniflair Ind S P A Cooling system for a room containing electronic data processing equipment
US8672732B2 (en) 2006-01-19 2014-03-18 Schneider Electric It Corporation Cooling system and method
US8327656B2 (en) 2006-08-15 2012-12-11 American Power Conversion Corporation Method and apparatus for cooling
US7681404B2 (en) 2006-12-18 2010-03-23 American Power Conversion Corporation Modular ice storage for uninterruptible chilled water
US8425287B2 (en) 2007-01-23 2013-04-23 Schneider Electric It Corporation In-row air containment and cooling system and method
AU2008224832B2 (en) * 2007-03-14 2013-05-09 Zonit Structured Solutions, Llc Air-based cooling for data center rack
US7463950B1 (en) * 2007-05-31 2008-12-09 International Business Machines Corporation Identification and characterization of recirculation in electronic systems
US7792943B2 (en) * 2007-07-11 2010-09-07 International Business Machines Corporation Identification of equipment location in data center
US7856495B2 (en) * 2007-07-11 2010-12-21 International Business Machines Corporation Identification of equipment location in data center
US9480186B2 (en) * 2007-12-18 2016-10-25 International Business Machines Corporation Apparatus and method for facilitating air cooling of an electronics rack
CN101464713A (en) * 2007-12-21 2009-06-24 联想(北京)有限公司 Computer and windage change monitoring method
US8382565B2 (en) * 2008-06-09 2013-02-26 International Business Machines Corporation System and method to redirect and/or reduce airflow using actuators
US9426903B1 (en) 2008-06-27 2016-08-23 Amazon Technologies, Inc. Cooling air stack for computer equipment
TWM346803U (en) * 2008-08-06 2008-12-11 Kun-Ta Lee Environmental test apparatus
JP4735690B2 (en) * 2008-09-16 2011-07-27 日立電線株式会社 Data center
US7826216B2 (en) * 2008-10-08 2010-11-02 Dell Products L.P. Information handling center cooling system
GB2466178B (en) * 2008-12-05 2012-10-10 Hewlett Packard Development Co Data centre and apparatus and method for data centre cooling
US8219362B2 (en) 2009-05-08 2012-07-10 American Power Conversion Corporation System and method for arranging equipment in a data center
US8249825B2 (en) 2009-05-08 2012-08-21 American Power Conversion Corporation System and method for predicting cooling performance of arrangements of equipment in a data center
US20110036540A1 (en) * 2009-08-13 2011-02-17 International Business Machines Corporation Environmental conditioning system for a computer room
US8271639B2 (en) * 2010-02-02 2012-09-18 International Business Machines Corporation Discovering physical server location by correlating external and internal server information
JP2011196657A (en) * 2010-03-23 2011-10-06 Kanden Energy Solution Co Inc Air conditioning system
JP5533155B2 (en) * 2010-04-02 2014-06-25 富士通株式会社 Air conditioning system and air conditioning control method
US8727843B2 (en) * 2010-07-02 2014-05-20 Hewlett-Packard Development Company, L.P. Self-powered fluid control apparatus
US8494370B2 (en) 2010-08-16 2013-07-23 International Business Machines Corporation Locating components in data center
US8996180B2 (en) 2010-09-17 2015-03-31 Schneider Electric It Corporation System and method for predicting perforated tile airflow in a data center
EP2653797B1 (en) * 2010-12-15 2017-11-29 Fujitsu Limited Air-conditioning control system with airflow adjustment device
US8825451B2 (en) 2010-12-16 2014-09-02 Schneider Electric It Corporation System and methods for rack cooling analysis
US8688413B2 (en) 2010-12-30 2014-04-01 Christopher M. Healey System and method for sequential placement of cooling resources within data center layouts
US9175872B2 (en) 2011-10-06 2015-11-03 Lennox Industries Inc. ERV global pressure demand control ventilation mode
CN103907408A (en) * 2011-10-21 2014-07-02 利塔尔两合公司 Cooling circuit system, especially for use in a computing center and corresponding control method
US9830410B2 (en) 2011-12-22 2017-11-28 Schneider Electric It Corporation System and method for prediction of temperature values in an electronics system
US9188355B1 (en) * 2012-01-03 2015-11-17 Digital Control Systems, Inc. Fan array control system
CN103292426B (en) * 2012-02-27 2016-01-13 华为技术有限公司 The device of cooling machine room and cooling air-supply control method
TW201401993A (en) * 2012-06-28 2014-01-01 Hon Hai Prec Ind Co Ltd Container data center
US9456521B2 (en) * 2012-08-15 2016-09-27 Intel Corporation Ceiling or floor space mountable heat control system using network computing devices
IN2015DN03895A (en) * 2012-12-03 2015-10-02 Nec Corp
CN103853644A (en) * 2012-12-07 2014-06-11 鸿富锦精密工业(深圳)有限公司 Fan module testing system
DE102013111053A1 (en) 2013-01-18 2014-07-24 Rittal Gmbh & Co. Kg Method for conditioning an IT environment or environment that contains heat generators
US9568209B2 (en) * 2013-04-30 2017-02-14 Eaton Corporation System and method for controlling output flow of parallel connected blowers
US9923766B2 (en) 2014-03-06 2018-03-20 Dell Products, Lp System and method for providing a data center management controller
US10028362B2 (en) 2014-11-07 2018-07-17 Steven G. Mlodzik Locator lights
US10102313B2 (en) 2014-12-30 2018-10-16 Schneider Electric It Corporation Raised floor plenum tool
US10001761B2 (en) 2014-12-30 2018-06-19 Schneider Electric It Corporation Power consumption model for cooling equipment
CN105824372B (en) * 2015-01-06 2019-03-15 营邦企业股份有限公司 Cabinet and its wind speed compensation method with wind speed compensation function
US20160309621A1 (en) * 2015-04-16 2016-10-20 Aic Inc. Rack having fan speed compensating function and compensating method for the server rack
TW201714042A (en) * 2015-10-13 2017-04-16 鴻海精密工業股份有限公司 Container data center
US9888615B1 (en) 2016-12-22 2018-02-06 Amazon Technologies, Inc. Tape library rack module with environmentally isolated interior
DK179524B1 (en) * 2017-03-09 2019-02-06 Inventilate Holding Aps A mobile leisure accommodation vehicle and a method for ventilating a mobile leisure accommodation vehicle
US10612980B2 (en) * 2017-06-21 2020-04-07 Intel Corporation Temperature sensing based flow monitoring and fault detection
US11369039B2 (en) 2019-11-15 2022-06-21 Phoseon Technology, Inc. Methods and systems for operating a lighting device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874127A (en) * 1987-11-12 1989-10-17 Collier William R Climate control apparatus
US5345779A (en) * 1993-04-23 1994-09-13 Liebert Corporation Modular floor sub-structure for the operational support of computer systems
US5718628A (en) * 1995-05-02 1998-02-17 Nit Power And Building Facilities, Inc. Air conditioning method in machine room having forced air-cooling equipment housed therein
US5910045A (en) * 1995-09-07 1999-06-08 Daikin Industries, Ltd. Air discharge unit for underfloor air conditioning and underfloor air conditioning system using same
US6238699B1 (en) * 1997-04-08 2001-05-29 Alan A. Rubin Pharmaceutical formulations containing a combination of carbidopa and levidopa
US6283380B1 (en) * 1999-03-25 2001-09-04 International Business Machines Corporation Air conditioning system and air conditioning method
US6319114B1 (en) * 1999-11-11 2001-11-20 Degree Controls, Inc. Thermal management system
US6350470B1 (en) * 1998-04-29 2002-02-26 Cima Labs Inc. Effervescent drug delivery system for oral administration
US6557624B1 (en) * 2000-08-09 2003-05-06 Liebert Corporation Configurable system and method for cooling a room
US20030118648A1 (en) * 2001-11-30 2003-06-26 Jane Hirsh Pharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration
US6627223B2 (en) * 2000-02-11 2003-09-30 Eurand Pharmaceuticals Ltd. Timed pulsatile drug delivery systems
US6832489B2 (en) * 2002-10-03 2004-12-21 Hewlett-Packard Development Company, Lp Cooling of data centers
US6834811B1 (en) * 2003-04-01 2004-12-28 Hewlett-Packard Development Company, L.P. Market-based temperature control system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748016B2 (en) * 1990-05-24 1995-05-24 松下精工株式会社 Underfloor air conditioning system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874127A (en) * 1987-11-12 1989-10-17 Collier William R Climate control apparatus
US5345779A (en) * 1993-04-23 1994-09-13 Liebert Corporation Modular floor sub-structure for the operational support of computer systems
US5718628A (en) * 1995-05-02 1998-02-17 Nit Power And Building Facilities, Inc. Air conditioning method in machine room having forced air-cooling equipment housed therein
US5910045A (en) * 1995-09-07 1999-06-08 Daikin Industries, Ltd. Air discharge unit for underfloor air conditioning and underfloor air conditioning system using same
US6238699B1 (en) * 1997-04-08 2001-05-29 Alan A. Rubin Pharmaceutical formulations containing a combination of carbidopa and levidopa
US6350470B1 (en) * 1998-04-29 2002-02-26 Cima Labs Inc. Effervescent drug delivery system for oral administration
US6283380B1 (en) * 1999-03-25 2001-09-04 International Business Machines Corporation Air conditioning system and air conditioning method
US6319114B1 (en) * 1999-11-11 2001-11-20 Degree Controls, Inc. Thermal management system
US6627223B2 (en) * 2000-02-11 2003-09-30 Eurand Pharmaceuticals Ltd. Timed pulsatile drug delivery systems
US6557624B1 (en) * 2000-08-09 2003-05-06 Liebert Corporation Configurable system and method for cooling a room
US20030118648A1 (en) * 2001-11-30 2003-06-26 Jane Hirsh Pharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration
US6832489B2 (en) * 2002-10-03 2004-12-21 Hewlett-Packard Development Company, Lp Cooling of data centers
US6834512B2 (en) * 2002-10-03 2004-12-28 Hewlett-Packard Development Company, L.P. Cooling of data centers
US6834811B1 (en) * 2003-04-01 2004-12-28 Hewlett-Packard Development Company, L.P. Market-based temperature control system and method

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075764A1 (en) * 2004-10-08 2006-04-13 Bash Cullen E Correlation of vent tiles and racks
US20060080001A1 (en) * 2004-10-08 2006-04-13 Bash Cullen E Correlation of vent tile settings and rack temperatures
US7251547B2 (en) * 2004-10-08 2007-07-31 Hewlett-Packard Development Company, L.P. Correlation of vent tile settings and rack temperatures
US7313924B2 (en) * 2004-10-08 2008-01-01 Hewlett-Packard Development Company, L.P. Correlation of vent tiles and racks
US20060214014A1 (en) * 2005-03-25 2006-09-28 Bash Cullen E Temperature control using a sensor network
US7640760B2 (en) * 2005-03-25 2010-01-05 Hewlett-Packard Development Company, L.P. Temperature control using a sensor network
US20070032908A1 (en) * 2005-08-04 2007-02-08 International Business Machines Corporation Method, apparatus and computer program product for monitoring and real-time heat load control based upon server and environmental parameters
US7493193B2 (en) * 2005-08-04 2009-02-17 International Business Machines Corporation Monitoring and real-time heat load control based upon server and environmental parameters
US9451731B2 (en) * 2006-01-19 2016-09-20 Schneider Electric It Corporation Cooling system and method
US20090259343A1 (en) * 2006-01-19 2009-10-15 American Power Conversion Corporation Cooling system and method
US9568206B2 (en) 2006-08-15 2017-02-14 Schneider Electric It Corporation Method and apparatus for cooling
US9115916B2 (en) 2006-08-15 2015-08-25 Schneider Electric It Corporation Method of operating a cooling system having one or more cooling units
US20080155441A1 (en) * 2006-12-22 2008-06-26 Long Bruce T Method for performing a data center hardware upgrade readiness assessment
US7676280B1 (en) 2007-01-29 2010-03-09 Hewlett-Packard Development Company, L.P. Dynamic environmental management
US11503744B2 (en) 2007-05-15 2022-11-15 Schneider Electric It Corporation Methods and systems for managing facility power and cooling
US11076507B2 (en) 2007-05-15 2021-07-27 Schneider Electric It Corporation Methods and systems for managing facility power and cooling
US9363929B2 (en) 2007-06-04 2016-06-07 Yahoo! Inc. Cold row encapsulation for server farm cooling system
US9904334B2 (en) * 2008-08-29 2018-02-27 Apple Inc. Cooling electronic devices using flow sensors
US20140185219A1 (en) * 2008-08-29 2014-07-03 Apple Inc. Cooling electronic devices using flow sensors
US20100058685A1 (en) * 2008-09-05 2010-03-11 International Business Machines Corporation Floor tile and air handling system using tile
US9494985B2 (en) 2008-11-25 2016-11-15 Schneider Electric It Corporation System and method for assessing and managing data center airflow and energy usage
US8755182B2 (en) * 2009-04-21 2014-06-17 Yahoo! Inc. Cold row encapsulation for server farm cooling system
US11212944B2 (en) 2009-04-21 2021-12-28 R2 Solutions, Llc Cold row encapsulation for server farm cooling system
US10212858B2 (en) 2009-04-21 2019-02-19 Excalibur Ip, Llc Cold row encapsulation for server farm cooling system
US20120012278A1 (en) * 2009-04-21 2012-01-19 Yahoo! Inc., A Delaware Corporation Cold row encapsulation for server farm cooling system
US20100311317A1 (en) * 2009-06-08 2010-12-09 Mcreynolds Alan A Vent tile with an integrated thermal imaging sensor and controller
US8882572B2 (en) * 2009-06-08 2014-11-11 Hewlett-Packard Development Company, L.P. Vent tile with an integrated thermal imaging sensor and controller
US8639651B2 (en) 2009-10-30 2014-01-28 Hewlett-Packard Development Company, L. P. Manipulating environmental conditions in an infrastructure
US20110106314A1 (en) * 2009-10-30 2011-05-05 Abdlmonem Beitelmal Manipulating environmental conditions in an infrastructure
US20110218773A1 (en) * 2010-03-03 2011-09-08 International Business Machines Corporation System and method for positioning and controlling air conditioning tiles for optimal cooling using voronoi diagrams
US8321182B2 (en) 2010-03-03 2012-11-27 International Business Machines Corporation System and method for positioning and controlling air conditioning tiles for optimal cooling using Voronoi diagrams
US20120073783A1 (en) * 2010-09-27 2012-03-29 Degree Controls, Inc. Heat exchanger for data center
US8744631B2 (en) 2011-01-28 2014-06-03 Hewlett-Packard Development Company, L.P. Manipulating environmental conditions in an infrastructure
EP2570744A1 (en) * 2011-09-15 2013-03-20 TROX GmbH Method for altering the parts of components of an air conditioning and ventilation assembly system
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
US9658661B2 (en) 2012-06-22 2017-05-23 Microsoft Technology Licensing, Llc Climate regulator control for device enclosures
WO2014022593A1 (en) * 2012-08-03 2014-02-06 Synapsense Corporation Apparatus and method for controlling computer room air conditioning units (cracs) in data centers
US10025330B2 (en) 2012-09-21 2018-07-17 Schneider Electric It Corporation Method and apparatus for characterizing thermal transient performance
US9541299B2 (en) 2012-12-14 2017-01-10 Microsoft Technology Licensing, Llc Setting-independent climate regulator control
US10037061B1 (en) * 2013-04-30 2018-07-31 Amazon Technologies, Inc. Multiple-stage cooling system for rack
US9370125B2 (en) * 2013-07-16 2016-06-14 Globalfoundries Inc. Hive of smart data center tiles
US20150025690A1 (en) * 2013-07-16 2015-01-22 International Business Machines Corporation Hive of smart data center tiles
US10653042B2 (en) 2016-11-11 2020-05-12 Stulz Air Technology Systems, Inc. Dual mass cooling precision system
CN108224675A (en) * 2017-12-29 2018-06-29 北京世纪互联宽带数据中心有限公司 A kind of method and apparatus for reducing power consumption

Also Published As

Publication number Publication date
US20050075065A1 (en) 2005-04-07
US6881142B1 (en) 2005-04-19

Similar Documents

Publication Publication Date Title
US6881142B1 (en) Intelligent networked fan assisted tiles for adaptive thermal management of thermally sensitive rooms
EP1875139B1 (en) Intelligent fan assisted tiles for adaptive environmental management
US7669431B2 (en) Cooling provisioning for heat generating devices
EP2169328A2 (en) Air-conditioning control system and air-conditioning control method
EP2421349B1 (en) System and method for climate control
EP1627559B1 (en) Air re-circulation index
US7640760B2 (en) Temperature control using a sensor network
US7214131B2 (en) Airflow distribution control system for usage in a raised-floor data center
EP3585139B1 (en) A chassis intelligent airflow control and cooling regulation mechanism
US20130098599A1 (en) Independent computer system zone cooling responsive to zone power consumption
JP2005069217A (en) Fan system
EP1804007B1 (en) Air conditioner integrated management system and control method of the same
WO2010018635A1 (en) Cooling method and computer
SG192105A1 (en) Air-conditioning control system and air-conditioning control method
CN104238691B (en) Server system and its heat dissipating method
US20140187137A1 (en) Air-flowing apparatus
CN109982546B (en) Micro-module data center, control method and device
US7006949B2 (en) Method and system for collecting temperature data
US20190310836A1 (en) Systems and methods for automated controller provisioning
US20130029578A1 (en) Managing system for dissipating heat from server group
CN101975433B (en) Intelligent fan-assisted tilings for self-adaptive environmental management
TWI630325B (en) Rack fan control method and control module thereof
CN103376860A (en) Fan control method
TW201242500A (en) Data center and heat dissipating system of the same
JP2016167213A (en) Blade apparatus and blade apparatus management method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION