US20050089018A1 - Telecommunication system - Google Patents

Telecommunication system Download PDF

Info

Publication number
US20050089018A1
US20050089018A1 US10/172,434 US17243402A US2005089018A1 US 20050089018 A1 US20050089018 A1 US 20050089018A1 US 17243402 A US17243402 A US 17243402A US 2005089018 A1 US2005089018 A1 US 2005089018A1
Authority
US
United States
Prior art keywords
network
central office
subscriber
calling
protocol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/172,434
Other versions
US7184430B2 (en
Inventor
Larry Schessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Solutions and Networks GmbH and Co KG
Siemens Communications Inc
Original Assignee
Siemens Telecom Networks LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Telecom Networks LLC filed Critical Siemens Telecom Networks LLC
Priority to US10/172,434 priority Critical patent/US7184430B2/en
Publication of US20050089018A1 publication Critical patent/US20050089018A1/en
Assigned to SIEMENS TELECOM NETWORKS LLC reassignment SIEMENS TELECOM NETWORKS LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS TELECOM NETWORKS
Assigned to SIEMENS INFORMATION AND COMMUNICATIONS NETWORKS, INC. reassignment SIEMENS INFORMATION AND COMMUNICATIONS NETWORKS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS TELECOM NETWORKS LLC
Assigned to SIEMENS COMMUNICATIONS, INC. reassignment SIEMENS COMMUNICATIONS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS INFORMATION AND COMMUNICATION NETWORKS, INC.
Application granted granted Critical
Publication of US7184430B2 publication Critical patent/US7184430B2/en
Assigned to NOKIA SIEMENS NETWORKS GMBH & CO. KG reassignment NOKIA SIEMENS NETWORKS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS COMMUNICATIONS, INC.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/287Remote access server, e.g. BRAS
    • H04L12/2874Processing of data for distribution to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5691Access to open networks; Ingress point selection, e.g. ISP selection
    • H04L12/5692Selection among different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/4228Systems providing special services or facilities to subscribers in networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/12Arrangements for interconnection between switching centres for working between exchanges having different types of switching equipment, e.g. power-driven and step by step or decimal and non-decimal
    • H04M7/1205Arrangements for interconnection between switching centres for working between exchanges having different types of switching equipment, e.g. power-driven and step by step or decimal and non-decimal where the types of switching equipement comprises PSTN/ISDN equipment and switching equipment of networks other than PSTN/ISDN, e.g. Internet Protocol networks
    • H04M7/128Details of addressing, directories or routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6472Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6475N-ISDN, Public Switched Telephone Network [PSTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42136Administration or customisation of services
    • H04M3/42153Administration or customisation of services by subscriber
    • H04M3/42161Administration or customisation of services by subscriber via computer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/12Arrangements for interconnection between switching centres for working between exchanges having different types of switching equipment, e.g. power-driven and step by step or decimal and non-decimal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/72Finding out and indicating number of calling subscriber

Definitions

  • This invention relates generally to telecommunication systems and more particularly to telecommunication systems adapted for used with Internet, Intranet, Extranet TCP/IP network protocol.
  • IP networks have supplemented public service telephone networks (PSTNs) in providing telephony services.
  • PSTNs public service telephone networks
  • client software is available for enabling an Internet subscriber to place calls to a called party through the Internet.
  • ISP Internet Service Provider
  • LAN local area network
  • TCP Transmission Control Protocol
  • IP Internet Protocol
  • TCP/IP protocol is also used for Intranets/Extranets serving a specific closed group of subscribers/users.
  • IP network will be used to include any network using the TCP/IP network protocol.
  • the routing of information through an IP network is based on TCP/IP addressing.
  • a TCP/IP address is 32 bits long and is commonly expressed as four decimal numbers ranging from 0 to 256, with each number separated by a dot.
  • a router server is coupled to the IP network to convert between an E.164 telephone number (i.e., using a central office addressing protocol) and TCP/IP address (i.e., the IP TCP/IP network addressing protocol).
  • E.164 telephone number i.e., using a central office addressing protocol
  • TCP/IP address i.e., the IP TCP/IP network addressing protocol.
  • the router server converts the dialed number to an TCP/IP number
  • the call is routed through the cable-based IP network to the TCP/IP address of an ISP gateway which then converts the TCP/IP address to the called party's E.164 directory telephone number and directs the call through the central office on one of the lines (i.e., a trunk line) into the central office.
  • POTS Plain Old Telephone Service
  • custom calling features such as, call waiting, call forwarding, three-way calling, and speed calling, for example
  • advanced calling features such as, called ID
  • ADSI Advanced Services for Display-Based Telephone Sets
  • ISDN Digital Voice and Data on One Line
  • ACD Automatic Call Distribution
  • Frame Relay Data Transmission Videoconferencing
  • Dialable Wideband Services/Bandwidth on Demand are available to subscribers of the PSTNs.
  • POTS Plain Old Telephone Service
  • custom calling features such as, call waiting, call forwarding, three-way calling, and speed calling, for example
  • advanced calling features such as, called ID
  • ADSI Advanced Services for Display-Based Telephone Sets
  • ISDN Digital Voice and Data on One Line
  • ISDN Voice-Activated Services
  • Operator Services Operator Services
  • Voice Mail Voice Mail
  • BBI ISDN Line-Level Interface
  • PRI ISDN High-Bandwidth Trunk Interface
  • ACD Automatic Call Distribution
  • Frame Relay Data Transmission Videoconferencing
  • Dialable Wideband Services/Bandwidth on Demand
  • a list of the features subscribed to are stored in a “features” database at the central office connected to the PSTN subscriber (i.e., the subscriber's central office, end office, or local switch).
  • the central office returns a dial-tone and then the calling party enters a called party's digits.
  • a processor at the central office addresses the “features” database (and an administration database, for billing, etc.) using the calling party's telephone number, known as the calling party's E.164.
  • the central office processor reads the called digits and provides switching signals to a central office switching network to route the call to the called party with the calling party having available the subscribed features stored in the “features” database.
  • the central office communicates internally and with other central offices in the PSTN with protocols (i.e., protocols adapted for use with analog (POTS), ISDN, and PBX, for example) which are different from the TCP/IP network protocol.
  • a method for enabling a subscriber to calling features available by a central office to have access to such calling features when such subscriber is accessing the central office through either a line connected to the central office or an IP network.
  • the method includes the steps of: processing signals received by the central office from the subscriber through either the IP network or the line connected to the central office to determine whether the subscriber is placing a call to the central office through either the line to the central or through the IP network; and making such calling features available to the subscriber independent of whether the subscriber is connected to the central office through the line to the central office or through the IP network.
  • calling feature provided at a central office are available to a subscriber to such calling features anywhere in the world via an IP network.
  • the central office includes a database for storing a relationship between each one of the subscribers served by the central office and calling features subscribed to such one of the served subscribers.
  • a processor in the central office detects when a calling one of the subscribers served by the central office is accessing the central office from either the subscriber line unit or an IP network interface.
  • the processor addresses the database using the central office protocol and provides the calling subscriber with the subscribed calling features when routed to a called party.
  • a telecommunication system adapted for use with an IP network.
  • the system includes a public service telephone network comprising a plurality of connected central offices each one being connected to a plurality of subscribers serviced by the central office.
  • At least one of the central offices comprises a processor coupled to: a subscribe line unit servicing the subscribers served by the central office; trunk units coupled to other ones of the central offices; and an IP network interface.
  • the IP network interface converts between a central office protocol and an IP protocol.
  • the processor is coupled to the IP network through the IP network interface.
  • a switching network is provided having ports fed by the subscriber line unit, the trunk units, and the IP network interface. The switching network routes calls between the ports selectively in accordance with switching signals provided by the processor using the central office protocol.
  • a database is provided for storing a relationship between each one of the subscribers served by the central office and features subscribed to by such one of the served subscribers.
  • the processor detects when a calling one of the subscribers served by the central office is accessing the central office from either the subscriber line unit or the IP network interface and addresses the database with the central office protocol to provide such calling subscriber with calling subscribed features when the calling subscriber is routed to a called party through the switching network.
  • FIG. 1 is a block diagram of a telecommunication system according to the invention.
  • FIG. 2 is a flow diagram showing steps used by the telecommunication system of FIG. 1 in enabling a subscriber to calling features available by a central office of the system to have access to such calling features when such subscriber is accessing the central office through either a line connected to the central office or an IP network;
  • FIG. 3 is a block diagram of a telecommunication system according to the invention wherein a cable-based IP network is provided;
  • FIG. 4 is a flow diagram showing steps used by the telecommunication system of FIG. 3 in enabling a subscriber to calling features available by a cable company's central office of the system to have access to such calling features when such subscriber is accessing the central office through a cable based IP network;
  • FIG. 5 is a block diagram of a telecommunication system according to an alternative embodiment of the invention.
  • FIG. 6 is a flow diagram showing steps used by the telecommunication system of FIG. 5 .
  • the ISP 13 When accessing the ISP 13 with a modem, the ISP 13 makes available a modem in a modem pool using a “point-to-point” protocol.
  • a direct leased line as from a LAN 19 or cable company (CATV) 21 , data packets transfer between the LAN 19 , or cable company 21 , and the IP network 14 directly as IP packets of information.
  • the routing through the IP network 14 is with the TCP/IP network protocol with each point on the IP network 14 having a TCP/IP address.
  • a router server 30 is coupled to the IP network 14 to convert between an E.164 telephone number and TCP/IP address.
  • the calling party dials the called party's E.164 directory number
  • the router server 30 converts the dialled number to an TCP/IP number
  • the call is routed through the IP network 14 to the TCP/IP address of a gateway 32 , which then converts the TCP/IP address to the called party's E.164 directory telephone number.
  • the output of the gateway 32 is connected to the PSTN 12 .
  • the PSTN 12 includes a plurality of connected central offices (C.O.s) 16 a , 16 b , . . . 16 n .
  • Each one of the central offices 16 a - 16 n is similar, an exemplary one thereof, here central office 16 a being shown in detail.
  • central office 16 a is connected to a plurality of the PSTN subscribers 18 through subscriber/central office telephone lines 20 (i.e. a twisted-pair typically within two miles of the central office 16 a ).
  • the PTSN subscribers 18 include business and residential subscribers to the PSTN 12 .
  • a business subscriber 18 may be connected to the central office 16 a through POTS, PBX, or ISDN service, for example.
  • the central offices 16 a - 16 n are shown interconnected by trunks lines (i.e., units) 23 .
  • One of the trunk lines 23 is connected to a gateway 32 .
  • Some of the central offices, such as office 16 b are connected directly to central office 16 a by a trunk and other, more remote central offices, such as central office 16 n , are connected indirectly to central office 18 a through tandem switches 25 , as shown.
  • such office 16 a includes: a processor 22 coupled to a plurality of subscribers 18 through a concentrator 27 and a subscribe line unit 24 ; trunk units 23 coupled to other ones of the central offices 16 b - 16 n , as shown; an IP network interface 27 for converting between a central office protocol and an TCP/IP network protocol; a switching network 28 ; an administration database 30 ; and a features database 32 , as shown.
  • the processor 22 is coupled to the IP network 14 through a trunk unit 29 and the IP network interface 27 , as shown.
  • the features database is addressed using the central office protocol which uses an E.164 number to identify the calling party's telephone number.
  • the PTSN subscriber 18 calling from telephone number NXX-XXX1 has, in this example, subscribed to call waiting, 3-way calling, call forwarding, call hold and is a member of a centrex group.
  • the processor 22 includes a subscriber port ID unit 40 for identifying the calling subscriber's directory number (i.e., an E.164 number protocol).
  • the processor 22 also includes a trunk ID unit 42 fed by the trunk units 23 for identifying a calling party's or a called party's E.164 directory number.
  • the processor 22 is also fed the E.164 number produced by the IP network interface 27 when a call is received by a subscriber to the central office 16 a through the IP network 14 . This may be where the PTSN subscriber 18 is on a trip and logged into an ISP 13 serving central office 16 n , for example.
  • the processor 22 includes an IP network “Flag” 31 which is set when the calling PTSN subscriber 18 is accessing the central office 16 a through the IP network 14 (i.e, through the IP network interface 27 ).
  • the processor 22 detects when a calling one of the subscribers 18 served by the central office 12 is accessing the central office 12 from either the subscriber line unit 40 or the IP network interface 27 .
  • the processor 22 addresses the features database 32 and the administrative database 30 using the central office protocol (e.g. analog, ISDN, or PBX) to provide such calling PTSN subscriber 18 with his/her subscribed calling features.
  • the central office protocol e.g. analog, ISDN, or PBX
  • the one on the left is when a calling party is accessing the central office 16 a through the IP network via the IP network interface 27 ; and the one on the left depicts the scenario when a calling party is accessing the central office 16 a through the subscriber line unit 24 or the trunk lines 23 (i.e., through the PSTN 12 ).
  • the calling party goes “off-hook” (Step 202 ).
  • the central office 16 a returns “dial-tone” and identifies subscriber's E.164 via subscriber port ID unit 40 (Step 204 ).
  • the calling party enters the called party digits (Step 206 ).
  • the central office processor 22 addresses “features” and “administration” databases 30 , 32 , respectively, with calling subscriber's E. 164 and provides processor 22 with calling features subscribed to by the calling party (Step 208 ).
  • the central office 16 a reads the called party digits to generate routing control signals for central office switching network 28 (Step 210 ).
  • the processor 22 addresses the “features” and “administration” databases 30 , 32 with the called party's E. 164 and provides the processor 22 with the features subscribed to by the called party (Step 211 ).
  • the processor 22 checks the called party's IP network flag. (i.e., Has the IP network “flag” 31 been set ?) (Step 211 ).
  • the IP network interface 27 at the central office 16 a converts central office protocol into TCP/IP network protocol for switching network 22 and routes call to called party via the IP network 14 using called party's TCP/IP IP network address protocol (Step 216 ). If, on the other hand, the called party has not logged onto the ip network (i.e. the IP network “flag” 31 has not been set), the switching network 28 routes call to called party through PSTN 12 using called party's E. 164 (Step 214 ).
  • the calling party logs onto the IP network 14 using the local IP network Service Provider (ISP) 13 (Step 218 ).
  • the client software is called up in the calling party's PC (Step 220 ).
  • the client software includes: the central office's IP network TCP/IP address; the subscriber's E. 164; and the subscriber's personal identification number (PIN) (Step 220 ).
  • the calling party enters called party digits on his/her PC (Step 222 ).
  • the client software sends, via the PC, the subscriber's E. 164 to central office via the ISP 13 using central office TCP/IP IP network protocol (Step 224 ).
  • the IP network interface 27 at the called central office 16 a converts the TCP/IP IP network protocol into central office protocol and sets “IP network flag” 31 to indicate to calling party has logged onto IP network 14 (Step 226 ).
  • the central office 16 a processes calls placed to it from the PSTN 12 or the IP network 14 in the same manner.
  • the central office processor 22 addresses “features” and “administration” databases 30 , 32 , respectively, with calling subscriber's E. 164 and provides processor 22 with calling features subscribed to by the calling party (Step 208 ).
  • the central office 16 a reads the called party digits to generate routing control signals for central office switching network 28 .
  • the processor 22 addresses the “features” and “administration” databases 30 , 32 with the called party's E. 164 and provides the processor 22 with the features subscribed to by the called party (Step 211 ).
  • the processor 22 checks the called party's IP network flag. (i.e., Has the IP network “flag” 31 been set ?) (Step 212 ). If the called party has logged onto the IP network, the IP network interface 27 at the central office 16 a converts central office protocol into TCP/IP IP network protocol for switching network 22 and routes call to called party via the IP network 14 using called party's TCP/IP IP network address protocol (Step 216 ). If, on the other hand, the called party has not logged onto the IP network (i.e. the IP network “flag” 31 has not been set), the switching network 28 routes call to called party through PSTN 12 using called party's E. 164 (Step 214 ).
  • central office 16 a with its switching network 28 , processor 22 and databases 30 , 32 are, because of the IP network interface 27 , available as an accessible adjunct to the all users of the IP network 14 .
  • a central office with the IP network interface can be configured as a worldwide Centrex, a cable-based IP provider can access the central office and route telephone calls or other data to subscribers of the PSTN or to others connected to the cable-based IP network.
  • a telecommunication system 10 ′ is shown where a cable-based IP network 14 ′ is coupled to cable modems 400 and cable company central offices 16 a ′- 16 n ′.
  • the cable modems 400 are coupled to Subscriber personal computers (PCs) 402 and telephones 404 , as indicated.
  • the cable-based central offices 16 a ′- 16 n ′ are similar to the central offices 16 a - 16 n described in connection with FIG. 1 and like elements are designated with the same numerical designation.
  • the central offices 16 a ′- 16 n ′ are connected to the PSTN 12 by the trunk units 23 , as indicated.
  • the central offices 16 a ′- 16 n ′ each includes a call processor 22 ′, trunk ID 40 , administration database 30 , features database 32 , IP network 27 interface coupled to the cable-based IP network 14 , trunk unit 25 and switching network 28 ′.
  • FIG. 4 a flow diagram shows the steps used by the telecommunication system of FIG. 3 in enabling a subscriber to calling features available by a cable company's central office of the system to have access to such calling features when such subscriber is accessing the central office through a cable based IP network. It is noted that the method does not use Steps 202 , 204 , or 206 described above in connection with FIG. 2 , and here the “Internet Flag” 31 is always in a “set” condition.
  • FIG. 5 a telecommunication system 10 ′′ is shown.
  • the IP network 14 is connected to the PSTN 12 through gateways 32 , subscriber PCs through ISPs 13 , and a router 30 , as shown.
  • Each central office 16 a ′′- 16 n ′′ includes a processor 22 ′ like that described in connection with FIG. 3 .
  • FIG. 6 is a flow diagram showing steps used by the telecommunication system of FIG. 5 .
  • the “Internet Flag” 31 is always in a “set” condition.
  • Steps 202 - 206 and Steps 212 and 214 FIG. 1 ) are not used.
  • each central office 16 a ′′- 16 n ′′ may be a owned by a global network carrier and used to deliver ubiquitous telephony feature services to worldwide subscribers of the IP network 14 , for example, to all subscribers within a worldwide corporation.
  • the system 10 ′′ enabling members of a common group (i.e., a company) to have access to a common set of calling features in the features database available from the central office 16 a ′′.
  • the system 10 ′′ processes signals received by the central office 16 a ′′, for example, from the members of the common group through the IP network 14 and makes such calling features available to the members.

Abstract

A telecommunication system for enabling a subscriber to calling features available by a central office to have access to such calling features when such subscriber is accessing the central office through either a line connected to the central office or an Internet, Intranet, Extranet (i.e., IP) network which uses the TCP/IP network protocol. The method includes the steps of: processing signals received by the central office from the subscriber through either the IP network or the line connected to the central office to determine whether the subscriber is placing a call to the central office through either the line to the central or through the IP network; and making such calling features available to the subscriber independent of whether the subscriber is connected to the central office through the line to the central office or through the IP network. With such a system, calling feature provided at a central office are available to a subscriber to such calling features anywhere ion the world via the IP network.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to telecommunication systems and more particularly to telecommunication systems adapted for used with Internet, Intranet, Extranet TCP/IP network protocol.
  • As is known in the art, Internet, Intranet, Extranet networks (referred to herein as IP networks) have supplemented public service telephone networks (PSTNs) in providing telephony services. For example, client software is available for enabling an Internet subscriber to place calls to a called party through the Internet. Typically, the calling party accesses the Internet via an Internet Service Provider (ISP) through either a modem or a local area network (LAN) router. Data is transmitted from the calling party's ISP through the Internet using an Internet protocol, typically the Transmission Control Protocol (TCP) and the Internet Protocol (IP) commonly referred to collectively as TCP/IP. This TCP/IP protocol is also used for Intranets/Extranets serving a specific closed group of subscribers/users. Thus, the term IP network will be used to include any network using the TCP/IP network protocol. The routing of information through an IP network is based on TCP/IP addressing. A TCP/IP address is 32 bits long and is commonly expressed as four decimal numbers ranging from 0 to 256, with each number separated by a dot.
  • As is also known in the art, when accessing the ISP with a modem, the ISP makes available a modem in a modem pool in what is sometimes referred to as a “point-to-point” protocol. When accessing the ISP with a direct leased line, as from a LAN or cable company (CATV), data packets transfer between the LAN or cable and the IP network directly as IP packets of information. The routing through the IP network is, as noted above, using the TCP/IP network protocol with each point on the IP network having a TCP/IP address. A router server is coupled to the IP network to convert between an E.164 telephone number (i.e., using a central office addressing protocol) and TCP/IP address (i.e., the IP TCP/IP network addressing protocol). Thus, for example, if a cable-based IP user wishes to call a called party on the PSTN network, the calling party dials the called party's E.164 directory number, the router server converts the dialed number to an TCP/IP number, the call is routed through the cable-based IP network to the TCP/IP address of an ISP gateway which then converts the TCP/IP address to the called party's E.164 directory telephone number and directs the call through the central office on one of the lines (i.e., a trunk line) into the central office.
  • As is also known in the art, a variety of services, or features, are available to subscribers of the PSTNs. For residential PSTN subscribers, these features include: Plain Old Telephone Service (POTS); custom calling features (such as, call waiting, call forwarding, three-way calling, and speed calling, for example); advanced calling features (such as, called ID); Advanced Services for Display-Based Telephone Sets (ADSI); Digital Voice and Data on One Line (ISDN); Voice-Activated Services; Operator Services; and Voice Mail. For business PSTN subscribers, these feature include: ISDN Line-Level Interface (BRI); ISDN High-Bandwidth Trunk Interface (PRI); Centrex Business Telephone Groups; Automatic Call Distribution (ACD); Frame Relay Data Transmission; Videoconferencing; and Dialable Wideband Services/Bandwidth on Demand. A list of the features subscribed to are stored in a “features” database at the central office connected to the PSTN subscriber (i.e., the subscriber's central office, end office, or local switch). Thus, when a calling party goes “off-hook”, the central office returns a dial-tone and then the calling party enters a called party's digits. A processor at the central office addresses the “features” database (and an administration database, for billing, etc.) using the calling party's telephone number, known as the calling party's E.164. The central office processor reads the called digits and provides switching signals to a central office switching network to route the call to the called party with the calling party having available the subscribed features stored in the “features” database. It is noted that the central office communicates internally and with other central offices in the PSTN with protocols (i.e., protocols adapted for use with analog (POTS), ISDN, and PBX, for example) which are different from the TCP/IP network protocol.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, a method is provided for enabling a subscriber to calling features available by a central office to have access to such calling features when such subscriber is accessing the central office through either a line connected to the central office or an IP network. The method includes the steps of: processing signals received by the central office from the subscriber through either the IP network or the line connected to the central office to determine whether the subscriber is placing a call to the central office through either the line to the central or through the IP network; and making such calling features available to the subscriber independent of whether the subscriber is connected to the central office through the line to the central office or through the IP network.
  • With such an arrangement, calling feature provided at a central office are available to a subscriber to such calling features anywhere in the world via an IP network.
  • In accordance with another feature of the invention, the central office includes a database for storing a relationship between each one of the subscribers served by the central office and calling features subscribed to such one of the served subscribers. A processor in the central office detects when a calling one of the subscribers served by the central office is accessing the central office from either the subscriber line unit or an IP network interface. The processor addresses the database using the central office protocol and provides the calling subscriber with the subscribed calling features when routed to a called party.
  • In accordance with still another feature of the invention, the central office includes an IP network interface for converting between a central office protocol and an IP protocol. A processor at the central office is coupled to the IP network through the IP network interface. A switching network in the central office has ports fed by a subscriber line unit, trunk units, and the IP network interface. The switching network routes calls between the ports selectively in accordance with switching signals provided by the processor using the central office protocol with the calling party having available calling features subscribed to by the calling subscriber.
  • In accordance with another feature of the invention, a telecommunication system adapted for use with an IP network is provided. The system includes a public service telephone network comprising a plurality of connected central offices each one being connected to a plurality of subscribers serviced by the central office. At least one of the central offices comprises a processor coupled to: a subscribe line unit servicing the subscribers served by the central office; trunk units coupled to other ones of the central offices; and an IP network interface. The IP network interface converts between a central office protocol and an IP protocol. The processor is coupled to the IP network through the IP network interface. A switching network is provided having ports fed by the subscriber line unit, the trunk units, and the IP network interface. The switching network routes calls between the ports selectively in accordance with switching signals provided by the processor using the central office protocol. A database is provided for storing a relationship between each one of the subscribers served by the central office and features subscribed to by such one of the served subscribers. The processor detects when a calling one of the subscribers served by the central office is accessing the central office from either the subscriber line unit or the IP network interface and addresses the database with the central office protocol to provide such calling subscriber with calling subscribed features when the calling subscriber is routed to a called party through the switching network.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the invention, reference is made to the following description of an exemplary embodiment thereof, and to the accompanying drawings, wherein:
  • FIG. 1 is a block diagram of a telecommunication system according to the invention;
  • FIG. 2 is a flow diagram showing steps used by the telecommunication system of FIG. 1 in enabling a subscriber to calling features available by a central office of the system to have access to such calling features when such subscriber is accessing the central office through either a line connected to the central office or an IP network;
  • FIG. 3 is a block diagram of a telecommunication system according to the invention wherein a cable-based IP network is provided;
  • FIG. 4 is a flow diagram showing steps used by the telecommunication system of FIG. 3 in enabling a subscriber to calling features available by a cable company's central office of the system to have access to such calling features when such subscriber is accessing the central office through a cable based IP network;
  • FIG. 5 is a block diagram of a telecommunication system according to an alternative embodiment of the invention; and
  • FIG. 6 is a flow diagram showing steps used by the telecommunication system of FIG. 5.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 1, a telecommunication system 10 is shown to include a public service telephone network (PSTN) 12 and an IP network 14. The services of the IP network 14 are provided by IP network Service Providers (ISPs) 13. These ISPs 13 are accessed by personal computer (PC) connected modems, not shown, at PSTN subscriber's business, home, hotel room, airport, for example, or by dedicated leased lines from LANs 19. It should also be noted that the ISPs 13 are also connected to cable companies (CATV) 21 to enable direct, non-modem, connections into the IP network 14 from a PC or digital telephone. Each of the ISPs 13 has a unique TCP/IP address to enable their interconnection through the IP network 14. When accessing the ISP 13 with a modem, the ISP 13 makes available a modem in a modem pool using a “point-to-point” protocol. When accessing the ISP 13 with a direct leased line, as from a LAN 19 or cable company (CATV) 21, data packets transfer between the LAN 19, or cable company 21, and the IP network 14 directly as IP packets of information. In each case, the routing through the IP network 14 is with the TCP/IP network protocol with each point on the IP network 14 having a TCP/IP address. It is noted that a router server 30 is coupled to the IP network 14 to convert between an E.164 telephone number and TCP/IP address. Thus, for example, if a cable user wishes to call a called party on the cable system, the calling party dials the called party's E.164 directory number, the router server 30 converts the dialled number to an TCP/IP number, the call is routed through the IP network 14 to the TCP/IP address of a gateway 32, which then converts the TCP/IP address to the called party's E.164 directory telephone number. The output of the gateway 32 is connected to the PSTN 12.
  • The PSTN 12 includes a plurality of connected central offices (C.O.s) 16 a, 16 b, . . . 16 n. Each one of the central offices 16 a-16 n is similar, an exemplary one thereof, here central office 16 a being shown in detail. Thus, central office 16 a is connected to a plurality of the PSTN subscribers 18 through subscriber/central office telephone lines 20 (i.e. a twisted-pair typically within two miles of the central office 16 a). The PTSN subscribers 18 include business and residential subscribers to the PSTN 12. Thus, for example, if one of the residential subscriber 18 may have in addition to a telephone, a personnel computer (PC) connected to the subscribers telephone line 20 through a modem, not shown. A business subscriber 18 may be connected to the central office 16 a through POTS, PBX, or ISDN service, for example. The central offices 16 a-16 n are shown interconnected by trunks lines (i.e., units) 23. One of the trunk lines 23 is connected to a gateway 32. Some of the central offices, such as office 16 b, are connected directly to central office 16 a by a trunk and other, more remote central offices, such as central office 16 n, are connected indirectly to central office 18 a through tandem switches 25, as shown. It should be understood that the PSTN 12 is here a worldwide network and interconnections among the central offices 16 a-16 n include satellite links or optical fiber cable (SONET), for example. Further, the interconnection may be through virtual circuits, as when links in the network 12 use packet switches, such as ATM switches.
  • Referring to exemplary central office 16 a, such office 16 a includes: a processor 22 coupled to a plurality of subscribers 18 through a concentrator 27 and a subscribe line unit 24; trunk units 23 coupled to other ones of the central offices 16 b-16 n, as shown; an IP network interface 27 for converting between a central office protocol and an TCP/IP network protocol; a switching network 28; an administration database 30; and a features database 32, as shown. The processor 22 is coupled to the IP network 14 through a trunk unit 29 and the IP network interface 27, as shown.
  • The switching network 28 has ports fed by the subscriber line unit 24, the trunk units 23, the trunk unit 29, and the IP network interface 27. The switching network 28 routes calls between the ports of the switching network 28 selectively in accordance with switching signals provided by the processor 22 in accordance with the central office protocol. The administrative database 30 is addressable by a calling party E.164 address and stores billing information and other statistical information. The features database 32 stores a relationship between each one of the PTSN subscribers 18 served by the central office 16 a and features subscribed to by such one of the served PTSN subscribers 18. These features, herein collectively referred to as calling features, include, for example: call waiting, call forwarding, three-way calling, speed calling, caller ID, voice mail, and Centrex Business Telephone Groups.
  • As noted in FIG. 1, the features database is addressed using the central office protocol which uses an E.164 number to identify the calling party's telephone number. Thus, for example, the PTSN subscriber 18 calling from telephone number NXX-XXX1 has, in this example, subscribed to call waiting, 3-way calling, call forwarding, call hold and is a member of a centrex group.
  • The processor 22 includes a subscriber port ID unit 40 for identifying the calling subscriber's directory number (i.e., an E.164 number protocol). The processor 22 also includes a trunk ID unit 42 fed by the trunk units 23 for identifying a calling party's or a called party's E.164 directory number. The processor 22 is also fed the E.164 number produced by the IP network interface 27 when a call is received by a subscriber to the central office 16 a through the IP network 14. This may be where the PTSN subscriber 18 is on a trip and logged into an ISP 13 serving central office 16 n, for example. The processor 22 includes an IP network “Flag” 31 which is set when the calling PTSN subscriber 18 is accessing the central office 16 a through the IP network 14 (i.e, through the IP network interface 27).
  • The processor 22 detects when a calling one of the subscribers 18 served by the central office 12 is accessing the central office 12 from either the subscriber line unit 40 or the IP network interface 27. The processor 22 addresses the features database 32 and the administrative database 30 using the central office protocol (e.g. analog, ISDN, or PBX) to provide such calling PTSN subscriber 18 with his/her subscribed calling features.
  • Referring now to FIG. 2, two scenarios are depicted: the one on the left is when a calling party is accessing the central office 16 a through the IP network via the IP network interface 27; and the one on the left depicts the scenario when a calling party is accessing the central office 16 a through the subscriber line unit 24 or the trunk lines 23 (i.e., through the PSTN 12). Thus, when a call is placed to the central office 16 a through the PSTN 12, the calling party goes “off-hook” (Step 202). The central office 16 a returns “dial-tone” and identifies subscriber's E.164 via subscriber port ID unit 40 (Step 204). The calling party enters the called party digits (Step 206). The central office processor 22 addresses “features” and “administration” databases 30, 32, respectively, with calling subscriber's E. 164 and provides processor 22 with calling features subscribed to by the calling party (Step 208). The central office 16 a reads the called party digits to generate routing control signals for central office switching network 28 (Step 210). The processor 22 addresses the “features” and “administration” databases 30,32 with the called party's E. 164 and provides the processor 22 with the features subscribed to by the called party (Step 211). The processor 22 checks the called party's IP network flag. (i.e., Has the IP network “flag” 31 been set ?) (Step 211). If the called party has logged onto the IP network, the IP network interface 27 at the central office 16 a converts central office protocol into TCP/IP network protocol for switching network 22 and routes call to called party via the IP network 14 using called party's TCP/IP IP network address protocol (Step 216). If, on the other hand, the called party has not logged onto the ip network (i.e. the IP network “flag” 31 has not been set), the switching network 28 routes call to called party through PSTN 12 using called party's E. 164 (Step 214).
  • Considering now the case where the central office 16 a has been accessed through the IP network 14. Here, the calling party logs onto the IP network 14 using the local IP network Service Provider (ISP) 13 (Step 218). The client software is called up in the calling party's PC (Step 220). The client software includes: the central office's IP network TCP/IP address; the subscriber's E. 164; and the subscriber's personal identification number (PIN) (Step 220). The calling party enters called party digits on his/her PC (Step 222). The client software sends, via the PC, the subscriber's E. 164 to central office via the ISP 13 using central office TCP/IP IP network protocol (Step 224). The IP network interface 27 at the called central office 16 a converts the TCP/IP IP network protocol into central office protocol and sets “IP network flag” 31 to indicate to calling party has logged onto IP network 14 (Step 226). At this point, the central office 16 a processes calls placed to it from the PSTN 12 or the IP network 14 in the same manner. Thus, the central office processor 22 addresses “features” and “administration” databases 30, 32, respectively, with calling subscriber's E. 164 and provides processor 22 with calling features subscribed to by the calling party (Step 208). The central office 16 a reads the called party digits to generate routing control signals for central office switching network 28. The processor 22 addresses the “features” and “administration” databases 30,32 with the called party's E. 164 and provides the processor 22 with the features subscribed to by the called party (Step 211). The processor 22 checks the called party's IP network flag. (i.e., Has the IP network “flag” 31 been set ?) (Step 212). If the called party has logged onto the IP network, the IP network interface 27 at the central office 16 a converts central office protocol into TCP/IP IP network protocol for switching network 22 and routes call to called party via the IP network 14 using called party's TCP/IP IP network address protocol (Step 216). If, on the other hand, the called party has not logged onto the IP network (i.e. the IP network “flag” 31 has not been set), the switching network 28 routes call to called party through PSTN 12 using called party's E. 164 (Step 214).
  • It is noted that the central office 16 a, with its switching network 28, processor 22 and databases 30, 32 are, because of the IP network interface 27, available as an accessible adjunct to the all users of the IP network 14. Thus, a central office with the IP network interface can be configured as a worldwide Centrex, a cable-based IP provider can access the central office and route telephone calls or other data to subscribers of the PSTN or to others connected to the cable-based IP network.
  • More particularly, referring to FIG. 3 a telecommunication system 10′ is shown where a cable-based IP network 14′ is coupled to cable modems 400 and cable company central offices 16 a′-16 n′. The cable modems 400 are coupled to Subscriber personal computers (PCs) 402 and telephones 404, as indicated. The cable-based central offices 16 a′-16 n′ are similar to the central offices 16 a-16 n described in connection with FIG. 1 and like elements are designated with the same numerical designation. Thus, the central offices 16 a′-16 n′ are connected to the PSTN 12 by the trunk units 23, as indicated. The central offices 16 a′-16 n′ each includes a call processor 22′, trunk ID 40, administration database 30, features database 32, IP network 27 interface coupled to the cable-based IP network 14, trunk unit 25 and switching network 28′.
  • With the system 10′, Subscribers connected to the cable-based IP network 14′ by the modems 400 are able to subscribe to the same telephone features available to subscribers of the central offices 16 (FIG. 1). Thus, referring to FIG. 4, a flow diagram shows the steps used by the telecommunication system of FIG. 3 in enabling a subscriber to calling features available by a cable company's central office of the system to have access to such calling features when such subscriber is accessing the central office through a cable based IP network. It is noted that the method does not use Steps 202, 204, or 206 described above in connection with FIG. 2, and here the “Internet Flag” 31 is always in a “set” condition.
  • Referring now to FIG. 5, a telecommunication system 10″ is shown. Here, the IP network 14 is connected to the PSTN 12 through gateways 32, subscriber PCs through ISPs 13, and a router 30, as shown. Each central office 16 a″-16 n″ includes a processor 22′ like that described in connection with FIG. 3. FIG. 6 is a flow diagram showing steps used by the telecommunication system of FIG. 5. Here, again, as with the system 10′ described in connection with FIGS. 3 and 4, the “Internet Flag” 31 is always in a “set” condition. Here, because all calls originate and terminate for the central offices 16 a′-16 n′ on the IP network 14, Steps 202-206 and Steps 212 and 214 (FIG. 1) are not used.
  • Here, each central office 16 a″-16 n″ may be a owned by a global network carrier and used to deliver ubiquitous telephony feature services to worldwide subscribers of the IP network 14, for example, to all subscribers within a worldwide corporation.
  • Thus, the system 10″ enabling members of a common group (i.e., a company) to have access to a common set of calling features in the features database available from the central office 16 a″. The system 10″ processes signals received by the central office 16 a″, for example, from the members of the common group through the IP network 14 and makes such calling features available to the members.
  • Other embodiments are within the spirit and scope of the appended claims.

Claims (2)

1. A telecommunication system, comprising:
(a) a central office, comprising:
(i) IP network interface for converting between the central office protocol and a IP network, TCP/IP, protocol, the processor being coupled to the IP network through the IP network interface;
(ii) a database for storing a relationship between each one of the subscribers served by the central office and calling features subscribed to by such one of the served subscribers; and
(iii) wherein the processor addresses the database using the central office protocol to provide such calling subscriber with subscribed calling features when the calling subscriber is routed to a called party; and
(b) a public service telephone network coupled to the IP network.
2. A method for enabling members of a common group to have access to a common set of calling features available from a central office, comprising the steps of:
processing signals received by the central office from the members of the common group through an IP network; and
making such calling features available to the members.
US10/172,434 1997-06-30 2002-06-14 Telecommunication system Expired - Fee Related US7184430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/172,434 US7184430B2 (en) 1997-06-30 2002-06-14 Telecommunication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88531697A 1997-06-30 1997-06-30
US93425097A 1997-09-19 1997-09-19
US10/172,434 US7184430B2 (en) 1997-06-30 2002-06-14 Telecommunication system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US88531697A Continuation 1997-06-30 1997-06-30
US93425097A Continuation 1997-06-30 1997-09-19

Publications (2)

Publication Number Publication Date
US20050089018A1 true US20050089018A1 (en) 2005-04-28
US7184430B2 US7184430B2 (en) 2007-02-27

Family

ID=34527210

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/172,434 Expired - Fee Related US7184430B2 (en) 1997-06-30 2002-06-14 Telecommunication system

Country Status (1)

Country Link
US (1) US7184430B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169322A1 (en) * 2001-07-18 2005-08-04 Sbc Technology Resources Inc. Service aware switched SDH/SONET/TDM network
US20060187904A1 (en) * 2005-02-21 2006-08-24 Makoto Oouchi VoIP gateway apparatus
US20070274347A1 (en) * 2004-09-30 2007-11-29 Alfons Fartmann Method and Terminal for Controlling Multimedia Connections
US20080298348A1 (en) * 2007-05-31 2008-12-04 Andrew Frame System and method for providing audio cues in operation of a VoIP service
US20090086718A1 (en) * 2007-09-28 2009-04-02 Embarq Holdings Company, Llc Method and apparatus for facilitating telecommunication network selection
US20090268725A1 (en) * 2008-04-29 2009-10-29 Embarq Holdings Company, Llc Method for selection and routing of an outbound voice call to an appropriate network for completion
US20090268897A1 (en) * 2008-04-29 2009-10-29 Embarq Holdings Company, Llc Method for selection and routing of an inbound voice call to an appropriate network for completion
US8340079B2 (en) 2007-09-28 2012-12-25 Centurylink Intellectual Property Llc Method and apparatus for selecting a network for telecommunication
US20130201280A1 (en) * 2012-01-31 2013-08-08 Aastra Technologies Limited Video calls for external networks
WO2013142531A1 (en) * 2012-03-20 2013-09-26 Genesys Telecommunications Laboratories, Inc. Method for converging telephone number and ip address
US9225626B2 (en) 2007-06-20 2015-12-29 Ooma, Inc. System and method for providing virtual multiple lines in a communications system
US9386148B2 (en) 2013-09-23 2016-07-05 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US9521069B2 (en) 2015-05-08 2016-12-13 Ooma, Inc. Managing alternative networks for high quality of service communications
US9560198B2 (en) 2013-09-23 2017-01-31 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US9633547B2 (en) 2014-05-20 2017-04-25 Ooma, Inc. Security monitoring and control
US10009286B2 (en) 2015-05-08 2018-06-26 Ooma, Inc. Communications hub
US10116796B2 (en) 2015-10-09 2018-10-30 Ooma, Inc. Real-time communications-based internet advertising
US10553098B2 (en) 2014-05-20 2020-02-04 Ooma, Inc. Appliance device integration with alarm systems
US10769931B2 (en) 2014-05-20 2020-09-08 Ooma, Inc. Network jamming detection and remediation
US10771396B2 (en) 2015-05-08 2020-09-08 Ooma, Inc. Communications network failure detection and remediation
US10911368B2 (en) 2015-05-08 2021-02-02 Ooma, Inc. Gateway address spoofing for alternate network utilization
US11171875B2 (en) 2015-05-08 2021-11-09 Ooma, Inc. Systems and methods of communications network failure detection and remediation utilizing link probes
US11316974B2 (en) 2014-07-09 2022-04-26 Ooma, Inc. Cloud-based assistive services for use in telecommunications and on premise devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001238153A1 (en) * 2000-02-11 2001-08-20 Convergent Networks, Inc. Service level executable environment for integrated pstn and ip networks and call processing language therefor
FI20001382A (en) * 2000-06-09 2001-12-10 Nokia Networks Oy Channel allocation in the network element
EP1655940A4 (en) * 2003-07-29 2009-08-26 Softbank Bb Corp Gateway device, audio communication system, and audio communication method
US10110748B2 (en) 2016-02-11 2018-10-23 Kirusa, Inc. Routing incoming calls made to one or more unreachable numbers into a data client

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125113A (en) * 1996-04-18 2000-09-26 Bell Atlantic Network Services, Inc. Internet telephone service
US6236653B1 (en) * 1996-12-23 2001-05-22 Lucent Technologies Inc. Local telephone service over a cable network using packet voice

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125113A (en) * 1996-04-18 2000-09-26 Bell Atlantic Network Services, Inc. Internet telephone service
US6236653B1 (en) * 1996-12-23 2001-05-22 Lucent Technologies Inc. Local telephone service over a cable network using packet voice

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169322A1 (en) * 2001-07-18 2005-08-04 Sbc Technology Resources Inc. Service aware switched SDH/SONET/TDM network
US7813349B2 (en) * 2001-07-18 2010-10-12 At&T Labs, Inc. Service aware switched SDH/SONET/TDM network
US8325709B2 (en) * 2004-09-30 2012-12-04 Siemens Enterprise Communications Gmbh & Co. Kg Method and terminal for controlling multimedia connections
US20070274347A1 (en) * 2004-09-30 2007-11-29 Alfons Fartmann Method and Terminal for Controlling Multimedia Connections
US20060187904A1 (en) * 2005-02-21 2006-08-24 Makoto Oouchi VoIP gateway apparatus
US20080298348A1 (en) * 2007-05-31 2008-12-04 Andrew Frame System and method for providing audio cues in operation of a VoIP service
US10469556B2 (en) * 2007-05-31 2019-11-05 Ooma, Inc. System and method for providing audio cues in operation of a VoIP service
US9225626B2 (en) 2007-06-20 2015-12-29 Ooma, Inc. System and method for providing virtual multiple lines in a communications system
US8340079B2 (en) 2007-09-28 2012-12-25 Centurylink Intellectual Property Llc Method and apparatus for selecting a network for telecommunication
US20090086718A1 (en) * 2007-09-28 2009-04-02 Embarq Holdings Company, Llc Method and apparatus for facilitating telecommunication network selection
US8559415B2 (en) 2007-09-28 2013-10-15 Centurylink Intellectual Property Llc Method and apparatus for facilitating telecommunication network selection
US8218745B2 (en) * 2008-04-29 2012-07-10 Embarq Holdings Company, Llc Method for selection and routing of an outbound voice call to an appropriate network for completion
US20120230480A1 (en) * 2008-04-29 2012-09-13 Embarq Holdings Company, Llc Method for selection and routing of an outbound voice call to an appropriate network for completion
US8180045B2 (en) 2008-04-29 2012-05-15 Embarq Holdings Company, Llc Method for selection and routing of an inbound voice call to an appropriate network for completion
US20090268897A1 (en) * 2008-04-29 2009-10-29 Embarq Holdings Company, Llc Method for selection and routing of an inbound voice call to an appropriate network for completion
US8467513B2 (en) * 2008-04-29 2013-06-18 Centurylink Intellectual Property Llc Method for selection and routing of an outbound voice call to an appropriate network for completion
US20090268725A1 (en) * 2008-04-29 2009-10-29 Embarq Holdings Company, Llc Method for selection and routing of an outbound voice call to an appropriate network for completion
US9241129B2 (en) * 2012-01-31 2016-01-19 Mitel Networks Corporation Video calls for external networks
US20130201280A1 (en) * 2012-01-31 2013-08-08 Aastra Technologies Limited Video calls for external networks
WO2013142531A1 (en) * 2012-03-20 2013-09-26 Genesys Telecommunications Laboratories, Inc. Method for converging telephone number and ip address
US9386148B2 (en) 2013-09-23 2016-07-05 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US9426288B2 (en) 2013-09-23 2016-08-23 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US10728386B2 (en) 2013-09-23 2020-07-28 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US9560198B2 (en) 2013-09-23 2017-01-31 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US9667782B2 (en) 2013-09-23 2017-05-30 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US10135976B2 (en) 2013-09-23 2018-11-20 Ooma, Inc. Identifying and filtering incoming telephone calls to enhance privacy
US11151862B2 (en) 2014-05-20 2021-10-19 Ooma, Inc. Security monitoring and control utilizing DECT devices
US11495117B2 (en) 2014-05-20 2022-11-08 Ooma, Inc. Security monitoring and control
US10255792B2 (en) 2014-05-20 2019-04-09 Ooma, Inc. Security monitoring and control
US11250687B2 (en) 2014-05-20 2022-02-15 Ooma, Inc. Network jamming detection and remediation
US10818158B2 (en) 2014-05-20 2020-10-27 Ooma, Inc. Security monitoring and control
US9633547B2 (en) 2014-05-20 2017-04-25 Ooma, Inc. Security monitoring and control
US10553098B2 (en) 2014-05-20 2020-02-04 Ooma, Inc. Appliance device integration with alarm systems
US11763663B2 (en) 2014-05-20 2023-09-19 Ooma, Inc. Community security monitoring and control
US10769931B2 (en) 2014-05-20 2020-09-08 Ooma, Inc. Network jamming detection and remediation
US11094185B2 (en) 2014-05-20 2021-08-17 Ooma, Inc. Community security monitoring and control
US11330100B2 (en) 2014-07-09 2022-05-10 Ooma, Inc. Server based intelligent personal assistant services
US11315405B2 (en) 2014-07-09 2022-04-26 Ooma, Inc. Systems and methods for provisioning appliance devices
US11316974B2 (en) 2014-07-09 2022-04-26 Ooma, Inc. Cloud-based assistive services for use in telecommunications and on premise devices
US9929981B2 (en) 2015-05-08 2018-03-27 Ooma, Inc. Address space mapping for managing alternative networks for high quality of service communications
US10911368B2 (en) 2015-05-08 2021-02-02 Ooma, Inc. Gateway address spoofing for alternate network utilization
US11032211B2 (en) 2015-05-08 2021-06-08 Ooma, Inc. Communications hub
US10771396B2 (en) 2015-05-08 2020-09-08 Ooma, Inc. Communications network failure detection and remediation
US11171875B2 (en) 2015-05-08 2021-11-09 Ooma, Inc. Systems and methods of communications network failure detection and remediation utilizing link probes
US10263918B2 (en) 2015-05-08 2019-04-16 Ooma, Inc. Local fault tolerance for managing alternative networks for high quality of service communications
US10158584B2 (en) 2015-05-08 2018-12-18 Ooma, Inc. Remote fault tolerance for managing alternative networks for high quality of service communications
US10009286B2 (en) 2015-05-08 2018-06-26 Ooma, Inc. Communications hub
US9787611B2 (en) 2015-05-08 2017-10-10 Ooma, Inc. Establishing and managing alternative networks for high quality of service communications
US11646974B2 (en) 2015-05-08 2023-05-09 Ooma, Inc. Systems and methods for end point data communications anonymization for a communications hub
US9521069B2 (en) 2015-05-08 2016-12-13 Ooma, Inc. Managing alternative networks for high quality of service communications
US10341490B2 (en) 2015-10-09 2019-07-02 Ooma, Inc. Real-time communications-based internet advertising
US10116796B2 (en) 2015-10-09 2018-10-30 Ooma, Inc. Real-time communications-based internet advertising

Also Published As

Publication number Publication date
US7184430B2 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
US6304566B1 (en) Telecommunication system
US7184430B2 (en) Telecommunication system
AU754219B2 (en) Private IP telephony backbone linking widely-distributed enterprise sites
US6463051B1 (en) Internet calling system
US6292479B1 (en) Transport of caller identification information through diverse communication networks
US6201804B1 (en) Network telephony interface systems between data network telephony and plain old telephone service including CTI enhancement
US7336650B2 (en) Arrangement for the provision of messages and dialogues in packet networks
US6285680B1 (en) Central site call routing apparatus and method
USRE42042E1 (en) System for controlling processing of data passing through network gateway between two disparate communications networks
US8031698B2 (en) Telephony intelligence in a data packet network
CA2467482A1 (en) Method for making available features for alternative connections of primary connections
US20100091766A1 (en) Abbreviated dialing using a voip platform
EP0966816B1 (en) A method and system for telephony and high speed data access on a broadband access network
WO1999000954A1 (en) Telecommunication system
WO1999000952A1 (en) Telecommunication system
CN1213622C (en) Arrangement for connecting telecommunications device to packet-switching communications network
Cisco Glossary
MXPA99011647A (en) Telecommunication system
US7386117B2 (en) Efficient handling of ISDN connections by a packet-oriented exchange

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS TELECOM NETWORKS LLC, FLORIDA

Free format text: MERGER;ASSIGNOR:SIEMENS TELECOM NETWORKS;REEL/FRAME:018337/0240

Effective date: 19980930

Owner name: SIEMENS INFORMATION AND COMMUNICATIONS NETWORKS, I

Free format text: MERGER;ASSIGNOR:SIEMENS TELECOM NETWORKS LLC;REEL/FRAME:018337/0304

Effective date: 19980930

Owner name: SIEMENS COMMUNICATIONS, INC., FLORIDA

Free format text: MERGER;ASSIGNOR:SIEMENS INFORMATION AND COMMUNICATION NETWORKS, INC.;REEL/FRAME:018337/0516

Effective date: 20041001

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS COMMUNICATIONS, INC.;REEL/FRAME:020773/0310

Effective date: 20080313

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110227