US20050064649A1 - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
US20050064649A1
US20050064649A1 US10/983,239 US98323904A US2005064649A1 US 20050064649 A1 US20050064649 A1 US 20050064649A1 US 98323904 A US98323904 A US 98323904A US 2005064649 A1 US2005064649 A1 US 2005064649A1
Authority
US
United States
Prior art keywords
well
breakdown voltage
conductivity type
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/983,239
Inventor
Masahiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/983,239 priority Critical patent/US20050064649A1/en
Publication of US20050064649A1 publication Critical patent/US20050064649A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]

Definitions

  • the present invention relates to a semiconductor device having a high breakdown voltage transistor and a low breakdown voltage transistor in a common semiconductor substrate and a method for manufacturing the same.
  • a liquid crystal panel driver LSI and a CCD driver LSI are operated at a power supply voltage of 10V or higher, and therefore high breakdown voltage transistors having a breakdown voltage of 20V or higher are normally required.
  • low breakdown voltage transistors are used in internal control logic sections that need to be small in size and operated at high speeds.
  • Wells where high breakdown voltage transistors are formed tend to be made deeper and their surface impurity concentrations tend to be made lower in order to secure the well breakdown voltage.
  • wells where low breakdown voltage transistors are formed tend to be made shallower and their surface impurity concentrations tend to be made higher in order to reduce the element size and to achieve higher speeds. For this reason, high breakdown voltage transistors are formed in a chip that is different from a chip for low breakdown voltage transistors, and are conventionally formed as an externally mounted circuit.
  • one object of the present invention is to provide a semiconductor device having a high breakdown voltage transistor and a low breakdown voltage transistor with different driving voltages provided in a common substrate and a method for manufacturing the same.
  • a semiconductor device in accordance with the present invention comprises:
  • the second well and the third well where low breakdown voltage transistors are located are formed within the first well where high breakdown voltage transistors are formed. Therefore, the second well and the third well can be designed independently of the first well. As a result, even when a semiconductor device has high breakdown voltage transistors, the second well and the third well can be formed with their surface impurity concentrations being high to accommodate size-reduction and increased speeds of low breakdown voltage transistors.
  • the third well has the same conductivity type as that of the first well, its impurity concentration can be well defined from that of the first well, and its lateral well expansion can be controlled. Accordingly, the area of the second and third wells can be reduced, and therefore the degree of integration of these wells can be improved to higher levels.
  • the impurity concentrations of the second well and the third well are set higher than the impurity concentration of the first well.
  • the impurity concentration of each well can be appropriately set according to the driving voltage and breakdown voltage of each transistor.
  • a semiconductor device in accordance with the present invention can be provided with high breakdown voltage transistors driven by a power supply voltage of, for example, 10V or higher, and more particularly 20-60V, and low breakdown voltage transistors driven by a power supply voltage of, for example, 1.8-5V.
  • low breakdown voltage transistors that are formed in the second and third wells are not restricted by the substrate potential, and can be driven by any desired power supply voltages.
  • the semiconductor device in accordance with the present invention may further include a fourth well of the first conductivity type formed in the semiconductor substrate, and a high breakdown voltage transistor of the second conductivity type formed at the fourth well.
  • a ratio of the breakdown voltages of the low breakdown voltage transistor and the high breakdown voltage transistor may be 3 to 60.
  • the high breakdown voltage transistor may have an offset gate structure.
  • a method for manufacturing a semiconductor device in accordance with the present invention comprises:
  • the second well and third well can be designed independently of the first well.
  • the method in accordance with the present invention by diffusing impurities in the first impurity layer and the second impurity layer by a heat treatment, the second well of the first conductivity type and the third well of the second conductivity type can be simultaneously formed.
  • an impurity concentration of the second well and the third well can be made higher than an impurity concentration of the first well.
  • a low breakdown voltage transistor of the second conductivity type may be formed at the second well
  • a low breakdown voltage transistor of the first conductivity type may be formed at the third well
  • a high breakdown voltage transistor of the first conductivity type may be formed at the first well.
  • a fourth well of the first conductivity type can be formed in the semiconductor substrate. Also. a high breakdown voltage transistor of the second conductivity type may be formed at the fourth well.
  • FIG. 1 schematically shows a cross-sectional view of the main parts of a semiconductor device in accordance with an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view indicating a method for manufacturing a semiconductor device in the process order in accordance with an embodiment of the present invention.
  • FIG. 3 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 4 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 5 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 6 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 7 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 8 shows a cross-sectional view of an exemplary structure of a high breakdown voltage transistor of a semiconductor device in accordance with an embodiment of the present invention.
  • FIG. 9 shows a plan view of the main portions of the high breakdown voltage transistor shown in FIG. 8 .
  • FIG. 10 shows the relations between driving voltages among the transistors in the semiconductor device in shown in FIG. 1 .
  • FIG. 1 schematically shows a cross-sectional view of a semiconductor device in accordance with the present embodiment.
  • the semiconductor device shown in FIG. 1 includes a semiconductor substrate 10 (e.g., of silicon) of a first conductivity type (P-type in this example) in which a first well 20 of a second conductivity type (N-type in this example) and a P-type fourth well 50 are formed.
  • the first well 20 and the fourth well 50 compose a so-called twin well.
  • a P-type second well 20 and an N-type third well 40 are formed within the first well 20 .
  • Low breakdown voltage transistors are formed in the second well 30 and the third well 40 that are shallower than the first well 20
  • high breakdown voltage transistors are formed in the first well 20 and the fourth well 50 .
  • the low breakdown voltage transistor 100 NL includes source/drain layers 32 a and 32 b composed of N-type impurity layers, a gate dielectric layer 34 and a gate electrode 36 .
  • a P-channel type low breakdown voltage transistor 200 PL is formed in the third well 40 .
  • the low breakdown voltage transistor 200 PL includes source/drain layers 42 a and 42 b composed of P-type impurity layers, a gate dielectric layer 44 and a gate electrode 46 .
  • the high breakdown voltage transistor 300 NH includes source/drain layers 52 a and 52 b composed of N-type impurity layers, a gate dielectric layer 54 and a gate electrode 56 .
  • a P-channel type high breakdown voltage transistor 400 PH is formed in the first well 20 .
  • the high breakdown voltage transistor 400 PH includes source/drain layers 22 a and 22 b composed of P-type impurity layers, a gate dielectric layer 24 and a gate electrode 26 .
  • the low breakdown voltage transistors 100 NL and 200 PL are driven by a driving voltage of, for example, 1.8-5V.
  • the high breakdown voltage transistors 300 NH and 400 PH are driven by a substantially higher driving voltage compared to those of the low breakdown voltage transistors 100 NL and 200 PL, for example, by a driving voltage of 20-60V.
  • a ratio of the breakdown voltages between the low breakdown voltage transistor 100 NL, 200 PL and the high breakdown voltage transistor 300 NH, 400 PH, i.e., (a breakdown voltage of a high breakdown voltage transistor)/(a breakdown voltage of a low breakdown voltage transistor) is, for example, 3-60.
  • the “breakdown voltage” typically means a drain breakdown voltage.
  • each of the wells is determined based on breakdown voltage and threshold value of transistors provided in each well and junction breakdown voltage and punch-through breakdown voltage between the wells.
  • the impurity concentration of the second well 30 and third well 40 where low breakdown voltage transistors are formed is set higher than the impurity concentration of the first well 20 and the fourth well 50 where high breakdown voltage transistors are formed.
  • the impurity concentration of the second well 30 and third well 40 is, for example, 4.0 ⁇ 10 16 -7.0 ⁇ 10 17 atoms/cm 3 in their surface concentration.
  • the impurity concentration of the first well 20 and the fourth well 50 is, for example, 8.0 ⁇ 10 15 -4.0 ⁇ 10 16 atoms/cm 3 in their surface concentration.
  • the second well 30 and the third well 40 where low breakdown voltage transistors are located are formed shallower than the first well 20 and the fourth well 50 where high breakdown voltage transistors are formed.
  • the first well 20 has a depth of 10-20 ⁇ m
  • the second well 30 and the third well 40 have a depth of 3-10 ⁇ m.
  • a depth ratio of the two is for example 2-5, respectively.
  • each of the high breakdown voltage transistors 300 NH and 400 PH may have a so-called offset gate structure in which the gate electrode does not overlap the source/drain layers.
  • each high breakdown voltage transistor has a LOCOS offset structure. More specifically, in each of the high breakdown voltage transistors, an offset region is provided between a gate electrode and the source/drain layers. The offset region is composed of a low concentration impurity layer below the offset LOCOS layer that is provided in a specified region on the semiconductor substrate.
  • the P-channel type high breakdown voltage transistor 400 PH includes a gate dielectric layer 24 provided over the N-type first well 20 , a gate electrode 26 formed over the gate dielectric layer 24 , an offset LOCOS layer 65 a provided around the gate dielectric layer 24 , an offset impurity layer 57 a composed of a P-type low concentration impurity layer that is formed below the offset LOCOS layer 65 a , and source/drain layers 22 a and 22 b provided on the outside of the offset LOCOS layer 65 a.
  • the high breakdown -strength transistor 400 PH and its adjacent transistor are electrically isolated from each other by an element isolation LOCOS layer 65 b (element isolation dielectric layer). Further, a channel stopper layer 63 c composed of an N-type low concentration impurity layer is formed below the element isolation LOCOS layer 65 b within the N-type first well 20 as shown in the drawing. A well contact layer 27 is isolated from the source/drain layer 22 b by the LOCOS layer 65 c . A channel stopper layer (not shown) can be formed below the LOCOS layer 65 c.
  • each of the high breakdown voltage transistors has a LOCOS offset structure and therefore has a high drain breakdown voltage, such that a high breakdown voltage MOSFET can be composed.
  • the offset impurity layer 57 a composed of a low concentration impurity layer below the offset LOCOS layer 65 a
  • the offset impurity layer 57 a can be made relatively deep against the channel region, compared to a case without the offset LOCOS layer.
  • a drain breakdown voltage can be increased as the electric field adjacent to the drain electrode is alleviated.
  • the second well 30 and the third well 40 where the low breakdown voltage transistors 100 NL and 200 PL are located are formed within the first well 20 where the high breakdown voltage transistor 400 PH is formed. Therefore, as described below, the first well 20 , the second well 30 and the third well 40 are formed by a drive-in technique with different heat treatments. For this reason, the second well 30 and the third well 40 , and their well depths in particular, can be designed independently of the first well 20 . As a result, the amount of well expansion of the second well 30 and the third well 40 in a lateral direction can be reduced to accommodate size-reduction and increased speeds of low breakdown voltage transistors. Accordingly, the area of the wells can be reduced, and therefore the degree of integration of the second and third wells 30 and 40 can be improved to higher levels.
  • the impurity concentration in the second well 30 and the third well 40 is set higher than the impurity concentration in the first well 20 .
  • the impurity concentration of each well can be appropriately set according to the driving voltage and breakdown voltage of each transistor.
  • the second well 30 and the third well 40 are formed within the first well 20 , they are electrically isolated from the semiconductor substrate 10 .
  • bias conditions can be independently set for the second well 30 and the third well 40 .
  • driving voltages can be set for the second well 30 and the third well 40 independently of the substrate potential Vsub of the semiconductor substrate 10 . Therefore, for example, as shown in FIG. 10 , by setting driving voltages V 1 and V 2 for the low breakdown voltage transistors 100 NL and 200 PL intermediate between driving voltages V 3 and V 4 for the transistors 300 NH and 400 PH, a level shift circuit that converts a driving voltage level for a low breakdown voltage transistor to a driving voltage level for a high breakdown voltage transistor can be effectively and readily designed.
  • FIGS. 2-7 schematically show cross-sectional views concerning a method for manufacturing a semiconductor device shown in FIG. 1 .
  • a P-type semiconductor substrate 10 e.g., of silicon
  • a silicon oxide layer 12 having a thickness of about 40 nm on a surface of the semiconductor substrate 10 .
  • a silicon nitride layer 14 having a thickness of 140-160 nm as an anti-oxidation layer is formed on the silicon oxide layer 12 .
  • a resist layer R 100 is formed on the silicon nitride layer 14 .
  • the resist layer R 100 is patterned such that an opening section is formed therein at a position corresponding to an N-type first well 20 (see FIG. 1 ).
  • the silicon nitride layer 14 is etched using the resist layer R 100 as a mask.
  • phosphorus ions are implanted in the semiconductor substrate 10 using the resist layer R 100 and the silicon nitride layer 14 as a mask to form an N-type impurity layer 20 a .
  • the phosphorus ions can be implanted with an acceleration voltage of 120 KeV, for example.
  • the semiconductor substrate 10 is thermally oxidized using the silicon nitride layer 14 as an anti-oxidation mask to form a LOCOS layer 16 having a thickness of about 500 nm on the N-type impurity layer 20 a .
  • boron ions are implanted in the semiconductor substrate 10 using the LOCOS layer 16 as a mask to form a P-type impurity layer 50 a .
  • the boron ions may be implanted with an acceleration voltage of 60 KeV, for example.
  • the impurities in the N-type impurity layer 20 a and the P-type impurity layer 50 a are diffused (driven in) by a heat treatment to form an N-type first well 20 and a P-type fourth well 50 in a self-alignment manner. Then, after removing the silicon oxide layer 12 and the LOCOS layer 16 , a silicon oxide layer 18 is formed by a thermal oxidation over the semiconductor substrate 10 .
  • a resist layer R 200 having an opening section provided at a position corresponding to a third well 40 (see FIG. 1 ) is formed over the silicon oxide layer 18 .
  • Phosphorus ions are implanted in a specified region of the N-type first well 20 using the resist layer R 200 as a mask to form an N-type impurity layer (second impurity layer) 40 a .
  • the phosphorus ions can be implanted with an acceleration voltage of 120 KeV, for example.
  • a resist layer R 300 having an opening section provided at a position corresponding to a second well 30 is formed over the silicon oxide layer 18 .
  • Boron ions are implanted in a specified region of the first well 20 using the resist layer R 300 as a mask to form a P-type impurity layer (first impurity layer) 30 a .
  • the boron ions can be implanted with an acceleration voltage of 60 KeV, for example. Then, the resist layer R 300 is removed.
  • step (D) and step (E) can be reversed if desired.
  • element isolation dielectric layers, gate dielectric layers, gate electrodes, source/drain layers and the like are formed by known methods to form specified transistors. More specifically, as shown in FIG. 1 , an N-channel type low breakdown voltage transistor 100 NL is formed in the second well 30 , and a P-channel type low breakdown voltage transistor 200 PL is formed in the third well 40 . Also, a P-channel type high breakdown voltage transistor 400 PH is formed in the first well 20 , and an N-channel type high breakdown voltage transistor 300 NH is formed in the fourth well 50 .
  • the first well 20 where the high breakdown voltage transistor 400 PH is formed, and the second well 30 and the third well 40 where the low breakdown voltage transistors 100 NL and 200 PL are located are formed in different steps.
  • the second well 30 and the third well 40 can be designed independently of the first well 20 .
  • the P-type second well 30 and the N-type third well 40 can be simultaneously formed by diffusing the impurities in the impurity layer 30 a and the impurity layer 40 a .
  • the heat treatment in step (C) the N-type second well 20 and the P-type fourth well 50 can be simultaneously formed by diffusing the impurities in the impurity layer 20 a and the impurity layer 50 a.
  • the present invention is not limited to the embodiment described above, and many modifications can be made within the scope of the subject matter of the present invention.
  • the embodiment described above shows an example in which the first conductivity type is P-type and the second conductivity type is N-type.
  • these conductivity types may be reversed if desired.
  • the layer structure or plan structure of the semiconductor device can be different from those of the embodiment described above depending on the design of devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

A semiconductor device and a method for manufacturing the same are provided having a high breakdown voltage transistor and a low breakdown voltage transistor with different driving voltages in a common substrate. The semiconductor device includes: a semiconductor substrate of a first conductivity type; a first well of a second conductivity type formed in the semiconductor substrate; a second well of the first conductivity type formed within the first well; a third well of the second conductivity type formed within the first well; a low breakdown voltage transistor of the second conductivity type formed at the second well; a low breakdown voltage transistor of the first conductivity type formed at the third well; and a high breakdown voltage transistor of the first conductivity type formed at the first well. The second well and the third well have an impurity concentration higher than an impurity concentration of the first well.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional patent application of U.S. Ser. No. 10/383,167 filed Mar. 6, 2003, claiming priority to Japanese Application No. 2002-063537 filed Mar. 8, 2002, all of which are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to a semiconductor device having a high breakdown voltage transistor and a low breakdown voltage transistor in a common semiconductor substrate and a method for manufacturing the same.
  • BACKGROUND
  • A liquid crystal panel driver LSI and a CCD driver LSI, for example, are operated at a power supply voltage of 10V or higher, and therefore high breakdown voltage transistors having a breakdown voltage of 20V or higher are normally required. On the other hand, low breakdown voltage transistors are used in internal control logic sections that need to be small in size and operated at high speeds. Wells where high breakdown voltage transistors are formed tend to be made deeper and their surface impurity concentrations tend to be made lower in order to secure the well breakdown voltage. In contrast, wells where low breakdown voltage transistors are formed tend to be made shallower and their surface impurity concentrations tend to be made higher in order to reduce the element size and to achieve higher speeds. For this reason, high breakdown voltage transistors are formed in a chip that is different from a chip for low breakdown voltage transistors, and are conventionally formed as an externally mounted circuit.
  • In view of the foregoing, one object of the present invention is to provide a semiconductor device having a high breakdown voltage transistor and a low breakdown voltage transistor with different driving voltages provided in a common substrate and a method for manufacturing the same.
  • SUMMARY
  • A semiconductor device in accordance with the present invention comprises:
      • a semiconductor substrate of a first conductivity type;
      • a first well of a second conductivity type formed in the semiconductor substrate;
      • a second well of the first conductivity type formed within the first well;
      • a third well of the second conductivity type formed within the first well;
      • a low breakdown voltage transistor of the second conductivity type formed at the second well;
      • a low breakdown voltage transistor of the first conductivity type formed at the third well; and
      • a high breakdown voltage transistor of the first conductivity type formed at the first well,
      • wherein the second well and the third well have an impurity concentration higher than an impurity concentration of the first well.
  • In the semiconductor device in accordance with the present invention, the second well and the third well where low breakdown voltage transistors are located are formed within the first well where high breakdown voltage transistors are formed. Therefore, the second well and the third well can be designed independently of the first well. As a result, even when a semiconductor device has high breakdown voltage transistors, the second well and the third well can be formed with their surface impurity concentrations being high to accommodate size-reduction and increased speeds of low breakdown voltage transistors. In particular, although the third well has the same conductivity type as that of the first well, its impurity concentration can be well defined from that of the first well, and its lateral well expansion can be controlled. Accordingly, the area of the second and third wells can be reduced, and therefore the degree of integration of these wells can be improved to higher levels.
  • Further, the impurity concentrations of the second well and the third well are set higher than the impurity concentration of the first well. By this, the impurity concentration of each well can be appropriately set according to the driving voltage and breakdown voltage of each transistor. A semiconductor device in accordance with the present invention can be provided with high breakdown voltage transistors driven by a power supply voltage of, for example, 10V or higher, and more particularly 20-60V, and low breakdown voltage transistors driven by a power supply voltage of, for example, 1.8-5V.
  • Also, since the second well and the third well are formed within the first well, low breakdown voltage transistors that are formed in the second and third wells are not restricted by the substrate potential, and can be driven by any desired power supply voltages.
  • The semiconductor device in accordance with the present invention may further include a fourth well of the first conductivity type formed in the semiconductor substrate, and a high breakdown voltage transistor of the second conductivity type formed at the fourth well.
  • In the semiconductor device in accordance with the present invention, a ratio of the breakdown voltages of the low breakdown voltage transistor and the high breakdown voltage transistor may be 3 to 60. Also, the high breakdown voltage transistor may have an offset gate structure.
  • A method for manufacturing a semiconductor device in accordance with the present invention comprises:
      • (a) forming a first well of a second conductivity type in a semiconductor substrate of a first conductivity type;
      • (b) introducing impurities of the first and second conductivity types by implanting ions in specified regions of the first well to form a first impurity layer and a second impurity layer; and
      • (c) diffusing the impurities in the first impurity layer and the second impurity layer by a heat treatment to form a second well of the first conductivity type and a third well of the second conductivity type.
  • By the method in accordance with the present invention, since the first well where high breakdown voltage transistors are formed and the second well and third well where low breakdown voltage transistors are located are formed in different steps, the second well and third well can be designed independently of the first well.
  • Also, by the method in accordance with the present invention, by diffusing impurities in the first impurity layer and the second impurity layer by a heat treatment, the second well of the first conductivity type and the third well of the second conductivity type can be simultaneously formed.
  • In the method in accordance with the present invention, an impurity concentration of the second well and the third well can be made higher than an impurity concentration of the first well.
  • In the method in accordance with the present invention, a low breakdown voltage transistor of the second conductivity type may be formed at the second well, a low breakdown voltage transistor of the first conductivity type may be formed at the third well, and a high breakdown voltage transistor of the first conductivity type may be formed at the first well.
  • In the method in accordance with the present invention, a fourth well of the first conductivity type can be formed in the semiconductor substrate. Also. a high breakdown voltage transistor of the second conductivity type may be formed at the fourth well.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically shows a cross-sectional view of the main parts of a semiconductor device in accordance with an embodiment of the present invention.
  • FIG. 2 shows a cross-sectional view indicating a method for manufacturing a semiconductor device in the process order in accordance with an embodiment of the present invention.
  • FIG. 3 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 4 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 5 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 6 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 7 shows a cross-sectional view indicating the method for manufacturing a semiconductor device in the process order in accordance with the embodiment of the present invention.
  • FIG. 8 shows a cross-sectional view of an exemplary structure of a high breakdown voltage transistor of a semiconductor device in accordance with an embodiment of the present invention.
  • FIG. 9 shows a plan view of the main portions of the high breakdown voltage transistor shown in FIG. 8.
  • FIG. 10 shows the relations between driving voltages among the transistors in the semiconductor device in shown in FIG. 1.
  • DETAILED DESCRIPTION
  • An embodiment of the present invention will be described below with reference to the accompanying drawings.
  • 1. Semiconductor Device
  • FIG. 1 schematically shows a cross-sectional view of a semiconductor device in accordance with the present embodiment.
  • The semiconductor device shown in FIG. 1 includes a semiconductor substrate 10 (e.g., of silicon) of a first conductivity type (P-type in this example) in which a first well 20 of a second conductivity type (N-type in this example) and a P-type fourth well 50 are formed. The first well 20 and the fourth well 50 compose a so-called twin well.
  • A P-type second well 20 and an N-type third well 40 are formed within the first well 20. Low breakdown voltage transistors are formed in the second well 30 and the third well 40 that are shallower than the first well 20, and high breakdown voltage transistors are formed in the first well 20 and the fourth well 50.
  • More specifically, an N-channel type low breakdown voltage transistor 100NL is formed in the second well 30. The low breakdown voltage transistor 100NL includes source/drain layers 32 a and 32 b composed of N-type impurity layers, a gate dielectric layer 34 and a gate electrode 36.
  • A P-channel type low breakdown voltage transistor 200PL is formed in the third well 40. The low breakdown voltage transistor 200PL includes source/drain layers 42 a and 42 b composed of P-type impurity layers, a gate dielectric layer 44 and a gate electrode 46.
  • An N-channel type high breakdown voltage transistor 300NH is formed in the fourth well 50. The high breakdown voltage transistor 300NH includes source/drain layers 52 a and 52 b composed of N-type impurity layers, a gate dielectric layer 54 and a gate electrode 56.
  • A P-channel type high breakdown voltage transistor 400PH is formed in the first well 20. The high breakdown voltage transistor 400PH includes source/drain layers 22 a and 22 b composed of P-type impurity layers, a gate dielectric layer 24 and a gate electrode 26.
  • In accordance with the present embodiment, the low breakdown voltage transistors 100NL and 200PL are driven by a driving voltage of, for example, 1.8-5V. The high breakdown voltage transistors 300NH and 400PH are driven by a substantially higher driving voltage compared to those of the low breakdown voltage transistors 100NL and 200PL, for example, by a driving voltage of 20-60V. A ratio of the breakdown voltages between the low breakdown voltage transistor 100NL, 200PL and the high breakdown voltage transistor 300NH, 400PH, i.e., (a breakdown voltage of a high breakdown voltage transistor)/(a breakdown voltage of a low breakdown voltage transistor) is, for example, 3-60. The “breakdown voltage” typically means a drain breakdown voltage.
  • The structure of each of the wells is determined based on breakdown voltage and threshold value of transistors provided in each well and junction breakdown voltage and punch-through breakdown voltage between the wells.
  • Impurity concentrations of the wells will now be described. The impurity concentration of the second well 30 and third well 40 where low breakdown voltage transistors are formed is set higher than the impurity concentration of the first well 20 and the fourth well 50 where high breakdown voltage transistors are formed. The impurity concentration of the second well 30 and third well 40 is, for example, 4.0×1016-7.0×1017 atoms/cm3 in their surface concentration. The impurity concentration of the first well 20 and the fourth well 50 is, for example, 8.0×1015-4.0×1016 atoms/cm3 in their surface concentration.
  • With respect to the well depth, in view of the well breakdown voltage, the second well 30 and the third well 40 where low breakdown voltage transistors are located are formed shallower than the first well 20 and the fourth well 50 where high breakdown voltage transistors are formed. For example, the first well 20 has a depth of 10-20 μm, and the second well 30 and the third well 40 have a depth of 3-10 μm. As the depth of the first well 20 and the depth of the second well 30 and the third well 40 are compared, a depth ratio of the two is for example 2-5, respectively.
  • The transistors shown in FIG. 1 are isolated from one another by element isolation dielectric layers (not shown). Also, each of the high breakdown voltage transistors 300NH and 400PH may have a so-called offset gate structure in which the gate electrode does not overlap the source/drain layers. In an example described below, each high breakdown voltage transistor has a LOCOS offset structure. More specifically, in each of the high breakdown voltage transistors, an offset region is provided between a gate electrode and the source/drain layers. The offset region is composed of a low concentration impurity layer below the offset LOCOS layer that is provided in a specified region on the semiconductor substrate.
  • FIG. 8 shows, as an example of the offset gate structure, a cross-sectional view of the structure of the high breakdown voltage transistor 400PH. FIG. 9 shows a plan view of the main sections of the high breakdown voltage transistors 400PH.
  • The P-channel type high breakdown voltage transistor 400PH includes a gate dielectric layer 24 provided over the N-type first well 20, a gate electrode 26 formed over the gate dielectric layer 24, an offset LOCOS layer 65 a provided around the gate dielectric layer 24, an offset impurity layer 57 a composed of a P-type low concentration impurity layer that is formed below the offset LOCOS layer 65 a, and source/drain layers 22 a and 22 b provided on the outside of the offset LOCOS layer 65 a.
  • The high breakdown -strength transistor 400PH and its adjacent transistor are electrically isolated from each other by an element isolation LOCOS layer 65 b (element isolation dielectric layer). Further, a channel stopper layer 63 c composed of an N-type low concentration impurity layer is formed below the element isolation LOCOS layer 65 b within the N-type first well 20 as shown in the drawing. A well contact layer 27 is isolated from the source/drain layer 22 b by the LOCOS layer 65 c. A channel stopper layer (not shown) can be formed below the LOCOS layer 65 c.
  • In accordance with the present embodiment, each of the high breakdown voltage transistors has a LOCOS offset structure and therefore has a high drain breakdown voltage, such that a high breakdown voltage MOSFET can be composed. In other words, by providing the offset impurity layer 57 a composed of a low concentration impurity layer below the offset LOCOS layer 65 a, the offset impurity layer 57 a can be made relatively deep against the channel region, compared to a case without the offset LOCOS layer. As a result, when the transistor is in an OFF state, a deep depletion layer can be formed because of the offset impurity layer 57 a, and a drain breakdown voltage can be increased as the electric field adjacent to the drain electrode is alleviated.
  • In the semiconductor device in accordance with the present invention, the second well 30 and the third well 40 where the low breakdown voltage transistors 100NL and 200PL are located are formed within the first well 20 where the high breakdown voltage transistor 400PH is formed. Therefore, as described below, the first well 20, the second well 30 and the third well 40 are formed by a drive-in technique with different heat treatments. For this reason, the second well 30 and the third well 40, and their well depths in particular, can be designed independently of the first well 20. As a result, the amount of well expansion of the second well 30 and the third well 40 in a lateral direction can be reduced to accommodate size-reduction and increased speeds of low breakdown voltage transistors. Accordingly, the area of the wells can be reduced, and therefore the degree of integration of the second and third wells 30 and 40 can be improved to higher levels.
  • Also, the impurity concentration in the second well 30 and the third well 40 is set higher than the impurity concentration in the first well 20. As such, the impurity concentration of each well can be appropriately set according to the driving voltage and breakdown voltage of each transistor.
  • Also, since the second well 30 and the third well 40 are formed within the first well 20, they are electrically isolated from the semiconductor substrate 10. As a result, bias conditions can be independently set for the second well 30 and the third well 40. In other words, driving voltages can be set for the second well 30 and the third well 40 independently of the substrate potential Vsub of the semiconductor substrate 10. Therefore, for example, as shown in FIG. 10, by setting driving voltages V1 and V2 for the low breakdown voltage transistors 100NL and 200PL intermediate between driving voltages V3 and V4 for the transistors 300NH and 400PH, a level shift circuit that converts a driving voltage level for a low breakdown voltage transistor to a driving voltage level for a high breakdown voltage transistor can be effectively and readily designed.
  • Manufacturing Process
  • Next, a method for manufacturing a semiconductor device in one example of the present invention will be described. FIGS. 2-7 schematically show cross-sectional views concerning a method for manufacturing a semiconductor device shown in FIG. 1.
  • (A) As shown in FIG. 2, a P-type semiconductor substrate 10 (e.g., of silicon) is thermally oxidized to form a silicon oxide layer 12 having a thickness of about 40 nm on a surface of the semiconductor substrate 10. Then, a silicon nitride layer 14 having a thickness of 140-160 nm as an anti-oxidation layer is formed on the silicon oxide layer 12. Then, a resist layer R100 is formed on the silicon nitride layer 14. The resist layer R100 is patterned such that an opening section is formed therein at a position corresponding to an N-type first well 20 (see FIG. 1). Then, the silicon nitride layer 14 is etched using the resist layer R100 as a mask. Then, for example, phosphorus ions are implanted in the semiconductor substrate 10 using the resist layer R100 and the silicon nitride layer 14 as a mask to form an N-type impurity layer 20 a. In this instance, the phosphorus ions can be implanted with an acceleration voltage of 120 KeV, for example.
  • (B) As shown in FIGS. 2 and 3, after removing the resist layer R100, the semiconductor substrate 10 is thermally oxidized using the silicon nitride layer 14 as an anti-oxidation mask to form a LOCOS layer 16 having a thickness of about 500 nm on the N-type impurity layer 20 a. Then, after removing the silicon nitride layer 14, boron ions are implanted in the semiconductor substrate 10 using the LOCOS layer 16 as a mask to form a P-type impurity layer 50 a. The boron ions may be implanted with an acceleration voltage of 60 KeV, for example.
  • (C) As shown in FIG. 3 and FIG. 4, the impurities in the N-type impurity layer 20 a and the P-type impurity layer 50 a are diffused (driven in) by a heat treatment to form an N-type first well 20 and a P-type fourth well 50 in a self-alignment manner. Then, after removing the silicon oxide layer 12 and the LOCOS layer 16, a silicon oxide layer 18 is formed by a thermal oxidation over the semiconductor substrate 10.
  • (D) As shown in FIG. 5, a resist layer R200 having an opening section provided at a position corresponding to a third well 40 (see FIG. 1) is formed over the silicon oxide layer 18. Phosphorus ions are implanted in a specified region of the N-type first well 20 using the resist layer R200 as a mask to form an N-type impurity layer (second impurity layer) 40 a. In this instance, the phosphorus ions can be implanted with an acceleration voltage of 120 KeV, for example.
  • (E) As shown in FIG. 6, after removing the resist layer R200, a resist layer R300 having an opening section provided at a position corresponding to a second well 30 (see FIG. 1) is formed over the silicon oxide layer 18. Boron ions are implanted in a specified region of the first well 20 using the resist layer R300 as a mask to form a P-type impurity layer (first impurity layer) 30 a. In this instance, the boron ions can be implanted with an acceleration voltage of 60 KeV, for example. Then, the resist layer R300 is removed.
  • (F) As shown in FIG. 6 and FIG. 7, the impurities in the P-type impurity layer 30 a and the N-type impurity layer 40 a are simultaneously diffused (driven in) by a heat treatment to form a P-type second well 30 and an N-type third well 40. In this instance, the impurities in the first well 20 and the fourth well 50 are also simultaneously diffused.
  • In this manner, the N-type first well 20 and the P-type second well 30 and the N-type third well 40 formed within the first well 20 are formed in the P-type semiconductor substrate 10. Further, the P-type fourth well 50 adjacent to the first well 20 is also formed. It is noted that the order of step (D) and step (E) can be reversed if desired.
  • Then, element isolation dielectric layers, gate dielectric layers, gate electrodes, source/drain layers and the like are formed by known methods to form specified transistors. More specifically, as shown in FIG. 1, an N-channel type low breakdown voltage transistor 100NL is formed in the second well 30, and a P-channel type low breakdown voltage transistor 200PL is formed in the third well 40. Also, a P-channel type high breakdown voltage transistor 400PH is formed in the first well 20, and an N-channel type high breakdown voltage transistor 300NH is formed in the fourth well 50.
  • By the manufacturing method in accordance with the present embodiment, the first well 20 where the high breakdown voltage transistor 400PH is formed, and the second well 30 and the third well 40 where the low breakdown voltage transistors 100NL and 200PL are located are formed in different steps. As a result, the second well 30 and the third well 40 can be designed independently of the first well 20.
  • By the manufacturing method in accordance with the present embodiment, by the heat treatment in step (F), the P-type second well 30 and the N-type third well 40 can be simultaneously formed by diffusing the impurities in the impurity layer 30 a and the impurity layer 40 a. Also, by the manufacturing method in accordance with the present embodiment, by the heat treatment in step (C), the N-type second well 20 and the P-type fourth well 50 can be simultaneously formed by diffusing the impurities in the impurity layer 20 a and the impurity layer 50 a.
  • The present invention is not limited to the embodiment described above, and many modifications can be made within the scope of the subject matter of the present invention. For example, the embodiment described above shows an example in which the first conductivity type is P-type and the second conductivity type is N-type. However, these conductivity types may be reversed if desired. Also, the layer structure or plan structure of the semiconductor device can be different from those of the embodiment described above depending on the design of devices.

Claims (20)

1. A method for manufacturing a semiconductor device, the method comprising:
(a) forming a first well of a second conductivity type in a semiconductor substrate of a first conductivity type;
(b) introducing impurities of the first and second conductivity types by implanting ions in specified regions of the first well to form a first impurity layer and a second impurity layer; and
(c) diffusing the impurities in the first impurity layer and the second impurity layer by heat treating to form a second well of the first conductivity type and a third well of the second conductivity type in the first well.
2. The method for manufacturing a semiconductor device according to claim 1, wherein an impurity concentration of the second well and the third well is higher than an impurity concentration of the first well.
3. The method for manufacturing a semiconductor device according to claim 1, wherein a low breakdown voltage transistor of the second conductivity type is formed at the second well, a low breakdown voltage transistor of the first conductivity type is formed at the third well, and a higher breakdown voltage transistor of the first conductivity type is formed at the first well.
4. The method for manufacturing a semiconductor device according to claim 1, wherein a fourth well of the first conductivity type is formed in the semiconductor substrate.
5. The method for manufacturing a semiconductor device according to claim 4, wherein a high breakdown voltage transistor of the second conductivity type is formed at the fourth well.
6. The method for manufacturing a semiconductor device according to claim 1, wherein a ratio of the depths of the second well and the third well with respect to the first well is about 2 to 5, respectively.
7. A method for manufacturing a semiconductor device, the method comprising:
(a) forming a first well in a semiconductor substrate;
(b) introducing impurities in specified regions of the first well to form a first impurity layer and a second impurity layer of opposite conductivity types; and
(c) diffusing the impurities in the first impurity layer and the second impurity layer to form a second well and a third well.
8. The method for manufacturing a semiconductor device according to claim 7, wherein the second well and the third well are formed within the first well.
9. The method for manufacturing a semiconductor device according to claim 7, wherein the first well and third well are a second conductivity type and the second well is a first conductivity type.
10. The method for manufacturing a semiconductor device according to claim 9, wherein a fourth well of the first conductivity type is formed adjacent to the first well in the semiconductor substrate.
11. The method for manufacturing a semiconductor device according to claim 7, wherein an impurity concentration of the second well and the third well is higher than an impurity concentration of the first well.
12. The method for manufacturing a semiconductor device according to claim 7, wherein a low breakdown voltage transistor of the second conductivity type is formed at the second well, a low breakdown voltage transistor of the first conductivity type is formed at the third well, and a high breakdown voltage transistor of the first conductivity type is formed at the first well.
13. The method for manufacturing a semiconductor device according to claim 12, wherein the high breakdown voltage transistor has an offset gate structure.
14. The method for manufacturing a semiconductor device according to claim 10, wherein a high breakdown voltage transistor of the second conductivity type is formed at the fourth well.
15. The method for manufacturing a semiconductor device according to claim 14, wherein the high breakdown voltage transistor has an offset gate structure.
16. The method for manufacturing a semiconductor device according to claim 7, wherein a ratio of the depths of the second well and the third well with respect to the first well is about 2 to 5, respectively.
17. The method according to claim 7 wherein step (a) is different from and precedes steps (b) and (c).
18. The method of claim 7 wherein the depth of the first well is 10-20 μm and the depth of the second and third wells is 3-10 μm.
19. The method of claim 12 wherein the breakdown voltage of the low breakdown transistors is 1.8-5 volts and the breakdown voltage of the higher breakdown transistor is 20-60 volts.
20. The method of claim 13 which further comprises:
forming a gate electrode over a gate dielectric layer;
forming an offset impurity layer laterally adjacent the gate dielectric layer in the first well;
forming an element isolation layer to isolate the high breakdown transistor; and
forming channel stoppers under the element isolation layer.
US10/983,239 2002-03-08 2004-11-05 Semiconductor device and method for manufacturing the same Abandoned US20050064649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/983,239 US20050064649A1 (en) 2002-03-08 2004-11-05 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002063537A JP2003264244A (en) 2002-03-08 2002-03-08 Semiconductor device and its manufacturing method
JP2002-063537 2002-03-08
US10/383,167 US6853038B2 (en) 2002-03-08 2003-03-06 Semiconductor device and method for manufacturing the same
US10/983,239 US20050064649A1 (en) 2002-03-08 2004-11-05 Semiconductor device and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/383,167 Division US6853038B2 (en) 2002-03-08 2003-03-06 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
US20050064649A1 true US20050064649A1 (en) 2005-03-24

Family

ID=28034856

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/383,167 Expired - Fee Related US6853038B2 (en) 2002-03-08 2003-03-06 Semiconductor device and method for manufacturing the same
US10/983,239 Abandoned US20050064649A1 (en) 2002-03-08 2004-11-05 Semiconductor device and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/383,167 Expired - Fee Related US6853038B2 (en) 2002-03-08 2003-03-06 Semiconductor device and method for manufacturing the same

Country Status (3)

Country Link
US (2) US6853038B2 (en)
JP (1) JP2003264244A (en)
CN (1) CN1287454C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401294B (en) * 2006-03-17 2013-04-17 英捷电力技术有限公司 Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US20080128762A1 (en) * 2006-10-31 2008-06-05 Vora Madhukar B Junction isolated poly-silicon gate JFET
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
JP2009302194A (en) * 2008-06-11 2009-12-24 Sony Corp Semiconductor device with power supply interception transistor
DE102008047850B4 (en) * 2008-09-18 2015-08-20 Austriamicrosystems Ag Semiconductor body having a protective structure and method for manufacturing the same
JP5375402B2 (en) * 2009-07-22 2013-12-25 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
US8587071B2 (en) * 2012-04-23 2013-11-19 Taiwan Semiconductor Manufacturing Co., Ltd. Electrostatic discharge (ESD) guard ring protective structure
CN104157570B (en) * 2013-05-15 2017-07-21 中芯国际集成电路制造(上海)有限公司 A kind of high voltage transistor and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072287A (en) * 1988-02-08 1991-12-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5473183A (en) * 1992-02-21 1995-12-05 Sony Corporation Semiconductor device of a first conductivity type which has a first well of a second conductivity type formed therein and a second well of the first conductivity type formed in the first well and a pair of MOSFET formed in the first and second wells
US5475335A (en) * 1994-04-01 1995-12-12 National Semiconductor Corporation High voltage cascaded charge pump
US6133077A (en) * 1998-01-13 2000-10-17 Lsi Logic Corporation Formation of high-voltage and low-voltage devices on a semiconductor substrate
US20020050619A1 (en) * 2000-09-28 2002-05-02 Yusuke Kawaguchi MOS transistor having an offset region
US6569742B1 (en) * 1998-12-25 2003-05-27 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having silicide layers
US6750527B1 (en) * 1996-05-30 2004-06-15 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device having a plurality of wells, test method of testing the semiconductor integrated circuit device, and test device which executes the test method
US6780717B2 (en) * 2000-11-30 2004-08-24 Renesas Technology Corp. Semiconductor integrated circuit device and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770717B2 (en) 1988-04-20 1995-07-31 三菱電機株式会社 Semiconductor device
JPH0778881A (en) 1993-09-08 1995-03-20 Fuji Electric Co Ltd Semiconductor device
JPH08274268A (en) 1995-03-31 1996-10-18 Sanyo Electric Co Ltd Manufacture of cmos semiconductor device
JP2000286346A (en) 1999-01-27 2000-10-13 Seiko Epson Corp Semiconductor device and manufacture thereof
JP2000294742A (en) 1999-04-06 2000-10-20 Seiko Epson Corp Manufacture of semiconductor device
JP2001291786A (en) 2000-04-06 2001-10-19 Seiko Epson Corp Semiconductor device and method for manufacturing the same
JP2001291678A (en) 2000-04-06 2001-10-19 Seiko Epson Corp Method for manufacturing semiconductor device
JP2001291679A (en) 2000-04-06 2001-10-19 Seiko Epson Corp Method for manufacturing semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072287A (en) * 1988-02-08 1991-12-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5473183A (en) * 1992-02-21 1995-12-05 Sony Corporation Semiconductor device of a first conductivity type which has a first well of a second conductivity type formed therein and a second well of the first conductivity type formed in the first well and a pair of MOSFET formed in the first and second wells
US5475335A (en) * 1994-04-01 1995-12-12 National Semiconductor Corporation High voltage cascaded charge pump
US6750527B1 (en) * 1996-05-30 2004-06-15 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device having a plurality of wells, test method of testing the semiconductor integrated circuit device, and test device which executes the test method
US6133077A (en) * 1998-01-13 2000-10-17 Lsi Logic Corporation Formation of high-voltage and low-voltage devices on a semiconductor substrate
US6569742B1 (en) * 1998-12-25 2003-05-27 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having silicide layers
US20020050619A1 (en) * 2000-09-28 2002-05-02 Yusuke Kawaguchi MOS transistor having an offset region
US6780717B2 (en) * 2000-11-30 2004-08-24 Renesas Technology Corp. Semiconductor integrated circuit device and method of manufacturing the same

Also Published As

Publication number Publication date
CN1444280A (en) 2003-09-24
US20030209742A1 (en) 2003-11-13
JP2003264244A (en) 2003-09-19
CN1287454C (en) 2006-11-29
US6853038B2 (en) 2005-02-08

Similar Documents

Publication Publication Date Title
US5585294A (en) Method of fabricating lateral double diffused MOS (LDMOS) transistors
KR100584711B1 (en) Semiconductor device, method for manufacturing the semiconductor device
US6531356B1 (en) Semiconductor devices and methods of manufacturing the same
EP0524030B1 (en) Semiconductor device equipped with a high-voltage misfet
US6924535B2 (en) Semiconductor device with high and low breakdown voltage transistors
US6768178B2 (en) Semiconductor device
US6853038B2 (en) Semiconductor device and method for manufacturing the same
KR100390614B1 (en) Semiconductor device and method of manufacturing the same
US7166901B2 (en) Semiconductor device
KR0159141B1 (en) Semiconductor device having a plurality of impurity layers and manufacturing method thereof
US20170317208A1 (en) High-voltage semiconductor device and method for manufacturing the same
US6953718B2 (en) Method for manufacturing semiconductor device
US6929994B2 (en) Method for manufacturing semiconductor device that includes well formation
KR0139773B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100374280B1 (en) Semiconductor device and method of manufacturing the same
US6887750B2 (en) Method for manufacturing semiconductor device including implanting a first impurity through an anti-oxidation mask
US10128331B1 (en) High-voltage semiconductor device and method for manufacturing the same
KR100342804B1 (en) Semiconductor device and method of manufacturing the same
US7335549B2 (en) Semiconductor device and method for fabricating the same
US6905948B2 (en) Method for manufacturing semiconductor device
JP4943763B2 (en) Semiconductor device and manufacturing method thereof
US6933575B2 (en) Semiconductor device and its manufacturing method
KR100969527B1 (en) Semiconductor device comprising high-withstand voltage mosfet and its manufacturing method
JP2002343884A (en) Semiconductor device and its manufacturing method
KR100223330B1 (en) Manufacturing method of semiconductor devices

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION