US20050055966A1 - Integrated framing system - Google Patents

Integrated framing system Download PDF

Info

Publication number
US20050055966A1
US20050055966A1 US10/664,773 US66477303A US2005055966A1 US 20050055966 A1 US20050055966 A1 US 20050055966A1 US 66477303 A US66477303 A US 66477303A US 2005055966 A1 US2005055966 A1 US 2005055966A1
Authority
US
United States
Prior art keywords
construction
joist
composite stud
composite
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/664,773
Inventor
Lawrence Conroy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/664,773 priority Critical patent/US20050055966A1/en
Publication of US20050055966A1 publication Critical patent/US20050055966A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/2672Connections specially adapted therefor for members formed from a number of parallel sections

Definitions

  • This invention relates to frame construction of buildings, specifically to the integration of the primary structural components.
  • Wooden frame construction has evolved from outer walls of closely placed construction materials through three phases:
  • Platform construction prevents most movement of the elements but only provides minimal strength where the construction elements abut each other. Sufficient rigidity to prevent flexion is not achieved in this form of construction until all elements are joined together, lending each other a measure of support that is not inherent.
  • the structure does not provide for stability and resistance to physical forces such as deflection until the entire structure is essentially complete.
  • Patent 1,421,299 granted to Palen (1922) has two vertical pieces straddling either side of a joist with the upper portion of these two vertical pieces attached to the roof rafter and apparently the ceiling joist but this latter attachment is not clear from the drawings.
  • the joists rest on a plate which rests on the edge of two pieces of lumber ( FIG. 2 ).
  • FIG. 3 shows notched studs resting on the outer side of the outer most joist but the drawing in FIG. 3 also shows an additional two-part beam running at right angles to the joist but this beam is not identified.
  • Patent 1,421,299 shows similar characteristics to our claim but there is no joined composite stud such as ours which has the middle piece to provide the strength and stability.
  • the Palen invention only has studs fastened to every other joist. The construction appears to be lightweight and is done up in “frames” assembled on the ground and then raised. The inventor alludes to his embodiment as superior to “balloon frame construction.”
  • resistance to the various physical forces which work against all structures is provided by the multiple and direct connection of the vertical and horizontal elements at the most basic level—by joining each element to the other. This provides resistance to deflection and bending as well as direct support against the forces of compression.
  • the invention is simple to comprehend and to use. It does not require specialized equipment or products supplied by a third party vendor.
  • the integration of the components maximizes the strength and durability of the framing.
  • All vertical elements of this construction are composed of the composite stud which contains two outer pieces of lumber connected to an inner piece which is of different lengths depending upon the depth of the joist below and the depth of the joist above which may receive the vertical element of the floor above.
  • the outer walls of the structure are comprised of the composite stud at opposing ends of the horizontal member with composite studs supporting the outer horizontal member which rests upon a plate.
  • Interior walls may or may not be comprised of the composite stud depending on the design and other technical requirements.
  • the composite stud is of varying lengths depending on the height of the floors above each other as well as the distance from the inclined rafter to the ceiling joist below.
  • FIG. 1 A first figure.
  • FIG. 2 is a perspective of embodied invention in two walls of construction
  • FIG. 3 is a perspective view of the lower portion of the composite stud as joined to the floor joist and the plate supported by the foundation.
  • FIG. 4 is a perspective view of the upper end of the composite stud as joined to the second floor joist.
  • the mid section of the composite stud is not shown in a number of these figures so that one can view the primary aspects of the construction.
  • FIG. 5 is a perspective view of the composite stud where it joins the roof rafter 10 Composite stud 10a and 10c Outer elements of composite stud 10b Inner element of composite stud 12 Foundation 13 Foundation plate 14 1 st floor joist 15 2 nd floor joist 16 Ceiling joist 17 Upper floor composite stud 18 Roof rafter composite stud 19 Roof rafters
  • the essence of this invention is the physical joining of the supports for the horizontal and vertical planes of wooden frame construction.
  • the primary instrument used to affect this joining is the composite stud 10 as shown in FIG. 1 which is engineered to straddle upper and lower floor joists as well as ceiling rafters.
  • the composite stud is composed of three pieces of varying sized 10 a and 10 c lumber which are fastened to one another with the inner piece 10 b —shorter then either 10 a or 10 c .
  • the length of 10 b is determined by design factors and placement within the structure. If the composite 10 is used to provide for the first floor of the structure with the lower portion of 10 a or 10 c would reach the plate 13 which is attached to the foundation 12 . The upper portion of the composite stud 10 will occupy a sufficient portion of the upper floor joist 12 as to provide for fastening.
  • Upper floor composite stud 17 will be fastened to the upper floor joist 15 as well as the ceiling joist 16 .
  • Roof rafters 19 are supported by and fastened to roof composite studs 18 .
  • the middle portion 10 b is to provide support for the compression forces obtained by the positioning of the joist 14 between elements 10 a and 10 c of the composite stud 10 .
  • the middle portion 10 b will vary depending on framing of doors or windows.
  • the construction framing follows conventional construction techniques with sheathing providing for coverage of the horizontal and vertical planes the outermost joist 14 a provides support for the placement of the composite stud 10 which then will form the exterior wall of the structure.
  • FIG. 3 shows the detail of the foundation 12 and plate 13 .
  • the composite stud 10 as fastened to the joist 14 .
  • FIG. 4 shows the detail of the second floor joist 15 as secured and fastened by the composite stud 10 .
  • FIG. 5 shows the ceiling joist 16 the upper floor composite stud 17 all of which is integrated with and fastened to the roof rafter 19.
  • the roof rafter may extend beyond the composite stud to provide for an eave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

All the basic structural components of frame construction are directly connected with one another including foundation plate, studs, floor and ceiling joists as well as rafters. The significant element of this integrated construction is a three-part composite stud easily constructed from commonly used construction lumber to form a totally unified framework which provides a much stronger, stable and desirable structure than that achieved by present construction methods.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • Not applicable
  • FEDERALLY SPONSORED RESEARCH
  • Not applicable
  • SEQUENCE LISTING OR PROGRAM
  • Not applicable
  • BACKGROUND OF THE INVENTION—FIELD OF INVENTION
  • This invention relates to frame construction of buildings, specifically to the integration of the primary structural components.
  • BACKGROUND OF THE INVENTION
  • Wooden frame construction has evolved from outer walls of closely placed construction materials through three phases:
      • 1. The use of post and beams to provide the vertical, horizontal and inclined planes necessary to support the outer construction elements which define a finished structure
      • 2. The use of vertical members sufficient to reach the intended vertical height of the structure to which were fastened the horizontal construction elements (commonly known as balloon construction)
      • 3. The current method of frame construction known as platform construction. Herein the joists are held in parallel by a substrata membrane upon which various wall units composed of upper and lower plates are joined to vertical studs, typically by toe nailing.
  • Platform construction prevents most movement of the elements but only provides minimal strength where the construction elements abut each other. Sufficient rigidity to prevent flexion is not achieved in this form of construction until all elements are joined together, lending each other a measure of support that is not inherent. The structure does not provide for stability and resistance to physical forces such as deflection until the entire structure is essentially complete.
  • In support of this contention that the present form of fame construction does not provide desirable levels of stability we point to the continued development work as evidenced by the patent activity. In the area of joist anchors (52/72) there are noted 248 patents which have been granted with 44 of the last 139 patents granted specifically identified as joist hangers (32%), clearly indicating the lack of acceptance of the present technology.
  • The same activity level is noted with the studs (52/732.2) which field has 177 patents with much current activity. Lastly in the area of joints and connections (Class 403) the stirrup connector (403/232.1) most closely identified with frame construction has 220 patents with 403/230 (rod end to traverse connection) having 580 patents. Some of the patents in these areas have metal connectors with as many as 24 spikes in one connection (5,410,854 granted to Kimmell et al, 1995). Most all of the connectors are stamped sheet metal of light weight (5,524,397 granted to Byers et al, 1996) which are not widely available to contractors and which are time-consuming to use (5,295,754 granted to Kato, 1994). Many such as 5,403,110 granted to Sammann (1995) provide only partial support with quite narrow tabs located at 90° from the main body of the bracket.
  • There are two patents which possess some of the desired elements of the present invention. 6,209,282 granted to LaFrance (2001) is described as a composite wood stud with two vertical outside pieces straddling a plate with grooves cut in the plate for the third vertical piece which is sandwiched in the two outside pieces. The lower portion of the composite stud straddles what is called a composite “joist” but really appears to be the lower plate of the assembly. There are many interlocking pieces in the claimed invention which is a complex, confusing assembly which does not appear to provide for fastening to a conventional floor joist, ceiling joist or rafters. The corner assembly alone (FIG. 25) has what appears to be 24 separate pieces nailed together. FIG. 20 shows a double “H” load bearing composite which does not appear to offer a very stable configuration.
  • Patent 1,421,299 granted to Palen (1922) has two vertical pieces straddling either side of a joist with the upper portion of these two vertical pieces attached to the roof rafter and apparently the ceiling joist but this latter attachment is not clear from the drawings. The joists rest on a plate which rests on the edge of two pieces of lumber (FIG. 2). FIG. 3 shows notched studs resting on the outer side of the outer most joist but the drawing in FIG. 3 also shows an additional two-part beam running at right angles to the joist but this beam is not identified. Patent 1,421,299 shows similar characteristics to our claim but there is no joined composite stud such as ours which has the middle piece to provide the strength and stability. In addition, the Palen invention only has studs fastened to every other joist. The construction appears to be lightweight and is done up in “frames” assembled on the ground and then raised. The inventor alludes to his embodiment as superior to “balloon frame construction.”
  • BACKGROUND OF INVENTION—OBJECTS AND ADVANTAGES
  • In the embodiment of this invention, resistance to the various physical forces which work against all structures is provided by the multiple and direct connection of the vertical and horizontal elements at the most basic level—by joining each element to the other. This provides resistance to deflection and bending as well as direct support against the forces of compression.
  • The invention is simple to comprehend and to use. It does not require specialized equipment or products supplied by a third party vendor.
  • The integration of the components maximizes the strength and durability of the framing.
  • SUMMARY
  • All vertical elements of this construction are composed of the composite stud which contains two outer pieces of lumber connected to an inner piece which is of different lengths depending upon the depth of the joist below and the depth of the joist above which may receive the vertical element of the floor above.
  • The outer walls of the structure are comprised of the composite stud at opposing ends of the horizontal member with composite studs supporting the outer horizontal member which rests upon a plate. Interior walls may or may not be comprised of the composite stud depending on the design and other technical requirements. In the present invention the composite stud is of varying lengths depending on the height of the floors above each other as well as the distance from the inclined rafter to the ceiling joist below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1
      • A: is a front view of the composite stud
      • B: is a perspective view of the composite stud
  • FIG. 2 is a perspective of embodied invention in two walls of construction
  • FIG. 3 is a perspective view of the lower portion of the composite stud as joined to the floor joist and the plate supported by the foundation.
  • FIG. 4 is a perspective view of the upper end of the composite stud as joined to the second floor joist. The mid section of the composite stud is not shown in a number of these figures so that one can view the primary aspects of the construction.
  • FIG. 5 is a perspective view of the composite stud where it joins the roof rafter
    10 Composite stud
    10a and 10c Outer elements of composite stud
     10b Inner element of composite stud
    12 Foundation
    13 Foundation plate
    14 1st floor joist
    15 2nd floor joist
    16 Ceiling joist
    17 Upper floor composite stud
    18 Roof rafter composite stud
    19 Roof rafters
  • DETAILED DESCRIPTION OF THE INVENTION
  • The essence of this invention is the physical joining of the supports for the horizontal and vertical planes of wooden frame construction. The primary instrument used to affect this joining is the composite stud 10 as shown in FIG. 1 which is engineered to straddle upper and lower floor joists as well as ceiling rafters.
  • The composite stud is composed of three pieces of varying sized 10 a and 10 c lumber which are fastened to one another with the inner piece 10 b—shorter then either 10 a or 10 c. As seen in FIG. 2, the length of 10 b is determined by design factors and placement within the structure. If the composite 10 is used to provide for the first floor of the structure with the lower portion of 10 a or 10 c would reach the plate 13 which is attached to the foundation 12. The upper portion of the composite stud 10 will occupy a sufficient portion of the upper floor joist 12 as to provide for fastening.
  • Upper floor composite stud 17 will be fastened to the upper floor joist 15 as well as the ceiling joist 16. Roof rafters 19 are supported by and fastened to roof composite studs 18.
  • In all cases the middle portion 10 b is to provide support for the compression forces obtained by the positioning of the joist 14 between elements 10 a and 10 c of the composite stud 10. The middle portion 10 b will vary depending on framing of doors or windows.
  • As further shown in FIG. 2 with the use of the composite stud the construction framing follows conventional construction techniques with sheathing providing for coverage of the horizontal and vertical planes the outermost joist 14 a provides support for the placement of the composite stud 10 which then will form the exterior wall of the structure.
  • FIG. 3 shows the detail of the foundation 12 and plate 13. The composite stud 10 as fastened to the joist 14.
  • FIG. 4 shows the detail of the second floor joist 15 as secured and fastened by the composite stud 10.
  • FIG. 5 shows the ceiling joist 16 the upper floor composite stud 17 all of which is integrated with and fastened to the roof rafter 19. Depending on design requirement, the roof rafter may extend beyond the composite stud to provide for an eave.
  • While the above detailed description of the preferred embodiment of the claimed invention it should be noted that modification, variation, and alteration of the present invention might be achieved without deviating from the scope and fair meaning of the claimed invention.

Claims (4)

1. A composite stud which provides for direct connection on both sides of a joist as well as providing direct support for the weight of the joist.
2. A means of indexing the height of the upper joist to obtain a predictable leveling of the upper joist to provide a uniform plane on which to lay a substrata which provides for lateral support of the building structure.
3. A means of integrating the basic vertical and horizontal elements of a frame construction which gives a rigidity to the entire structure including joists, studs, and rafters.
4. A means of construction and joining the various elements without the need for complex cutting of elements or continued measurement of those portions of construction which form the whole of the construction.
US10/664,773 2003-09-17 2003-09-17 Integrated framing system Abandoned US20050055966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/664,773 US20050055966A1 (en) 2003-09-17 2003-09-17 Integrated framing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/664,773 US20050055966A1 (en) 2003-09-17 2003-09-17 Integrated framing system

Publications (1)

Publication Number Publication Date
US20050055966A1 true US20050055966A1 (en) 2005-03-17

Family

ID=34274634

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/664,773 Abandoned US20050055966A1 (en) 2003-09-17 2003-09-17 Integrated framing system

Country Status (1)

Country Link
US (1) US20050055966A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110154746A1 (en) * 2009-12-29 2011-06-30 Huber Engineered Woods Llc Apparatus for connecting framing components of a builiding to a foundation
US8793950B2 (en) 2009-12-29 2014-08-05 Huber Engineered Woods, Llc Apparatus for connecting framing components of a building to a foundation
CN105189884A (en) * 2013-03-12 2015-12-23 Sas德宏米诺 Modular building system
US20180313053A1 (en) * 2017-04-27 2018-11-01 Simpson Strong-Tie Company Inc. Portal Frame with Lap Joint for Moment Resistance
EP3412841A1 (en) * 2017-06-08 2018-12-12 Knapp GmbH Component for constructing floors
US10927540B2 (en) * 2017-04-28 2021-02-23 Leapfactory S.R.L. Construction system for structural frameworks of buildings
US11021866B2 (en) * 2018-05-30 2021-06-01 Iida Sangyo Co., Ltd. Building and construction method for same
USD925775S1 (en) * 2020-09-13 2021-07-20 Thomsa G. Frein Framing assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1421299A (en) * 1920-04-08 1922-06-27 Frank A Palen Building construction
US4677806A (en) * 1986-04-04 1987-07-07 The United States Of America As Represented By The Secretary Of Agriculture Wooden building system with flange interlock and beams for use in the system
US4823519A (en) * 1986-11-12 1989-04-25 Four Seasons Solar Products Corp. Interlocking joint for a lean-to structure, or the like and related method
US5295754A (en) * 1992-04-17 1994-03-22 Kato Sangyo Kabushiki Kaisha Framework structure for wooden building and framework member
US5403110A (en) * 1993-02-03 1995-04-04 Sammann; Charles C. Square T clamp assembly for elongate members
US5410854A (en) * 1993-11-09 1995-05-02 Kimmell; Bruce A. Connector brackets
US5524397A (en) * 1995-03-27 1996-06-11 Byers; Gary L. Framing system for wood frame buildings
US5937591A (en) * 1995-09-15 1999-08-17 Handy Home Products, Inc. Building constructions
US6134859A (en) * 1996-03-01 2000-10-24 University Of Central Florida Metal and wood composite framing members for residential and light commercial construction
US6209282B1 (en) * 1998-12-17 2001-04-03 Claudex Lafrance Framing studs for the construction of building structures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1421299A (en) * 1920-04-08 1922-06-27 Frank A Palen Building construction
US4677806A (en) * 1986-04-04 1987-07-07 The United States Of America As Represented By The Secretary Of Agriculture Wooden building system with flange interlock and beams for use in the system
US4823519A (en) * 1986-11-12 1989-04-25 Four Seasons Solar Products Corp. Interlocking joint for a lean-to structure, or the like and related method
US5295754A (en) * 1992-04-17 1994-03-22 Kato Sangyo Kabushiki Kaisha Framework structure for wooden building and framework member
US5403110A (en) * 1993-02-03 1995-04-04 Sammann; Charles C. Square T clamp assembly for elongate members
US5410854A (en) * 1993-11-09 1995-05-02 Kimmell; Bruce A. Connector brackets
US5524397A (en) * 1995-03-27 1996-06-11 Byers; Gary L. Framing system for wood frame buildings
US5937591A (en) * 1995-09-15 1999-08-17 Handy Home Products, Inc. Building constructions
US6134859A (en) * 1996-03-01 2000-10-24 University Of Central Florida Metal and wood composite framing members for residential and light commercial construction
US6209282B1 (en) * 1998-12-17 2001-04-03 Claudex Lafrance Framing studs for the construction of building structures

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110154746A1 (en) * 2009-12-29 2011-06-30 Huber Engineered Woods Llc Apparatus for connecting framing components of a builiding to a foundation
US8793950B2 (en) 2009-12-29 2014-08-05 Huber Engineered Woods, Llc Apparatus for connecting framing components of a building to a foundation
CN105189884A (en) * 2013-03-12 2015-12-23 Sas德宏米诺 Modular building system
EP2971389A1 (en) * 2013-03-12 2016-01-20 SAS Dhomino Modular building system
EP2971389B1 (en) * 2013-03-12 2023-03-01 SAS Dhomino Modular building system
US20180313053A1 (en) * 2017-04-27 2018-11-01 Simpson Strong-Tie Company Inc. Portal Frame with Lap Joint for Moment Resistance
US11155977B2 (en) * 2017-04-27 2021-10-26 Simpson Strong-Tie Company, Inc. Portal frame with lap joint for moment resistance
US10927540B2 (en) * 2017-04-28 2021-02-23 Leapfactory S.R.L. Construction system for structural frameworks of buildings
EP3412841A1 (en) * 2017-06-08 2018-12-12 Knapp GmbH Component for constructing floors
US11021866B2 (en) * 2018-05-30 2021-06-01 Iida Sangyo Co., Ltd. Building and construction method for same
USD925775S1 (en) * 2020-09-13 2021-07-20 Thomsa G. Frein Framing assembly

Similar Documents

Publication Publication Date Title
RU2483170C2 (en) Wall design using bearing wall panel for wooden building and method of its manufacturing
US6240695B1 (en) Frame wall reinforcement
US4674253A (en) Insulated construction panel and method
US4561230A (en) Truss assembly and truss hanger and connector hanger for use with trusses
US7797907B2 (en) Lateral force resisting system
US6694699B2 (en) Post-frame building
US4437273A (en) Truss construction
US20050055966A1 (en) Integrated framing system
US4435929A (en) Modified A-frame structure
US8065840B2 (en) Modular building construction system and method of constructing
JP2020007827A (en) Wooden unit type building structure and its assembly method
JP4270380B2 (en) Seismic reinforcement structure and method for wooden frame houses
US20110067346A1 (en) Prefabritcated framing member support system and methods for installing a prefabricated framing member support system in a construction application
JP4648154B2 (en) Extension method of building and extension building
EP0110849A1 (en) Surface-forming panel
US20050279051A1 (en) Structural wall framework
WO2022029989A1 (en) Building and method for constructing building
WO2022029990A1 (en) Building
GB2041060A (en) Rafters; roof structures
US4304074A (en) Prefabricated roof truss assembly for structurally joined modular buildings with laterally offset ridge lines
JP3500318B2 (en) Wooden house and its feather pattern construction method
JPS584968Y2 (en) beam material
JP2828857B2 (en) Auxiliary surface joint structure of wooden prefabricated building
CA1194673A (en) Truss assembly and truss hanger and connector hanger for use with trusses
KR100490486B1 (en) Panelized Wood Construction Method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION