US20050039551A1 - Tamper evident connector for an engine radiator - Google Patents

Tamper evident connector for an engine radiator Download PDF

Info

Publication number
US20050039551A1
US20050039551A1 US10/898,842 US89884204A US2005039551A1 US 20050039551 A1 US20050039551 A1 US 20050039551A1 US 89884204 A US89884204 A US 89884204A US 2005039551 A1 US2005039551 A1 US 2005039551A1
Authority
US
United States
Prior art keywords
sensor case
sensor
attachment member
projection
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/898,842
Inventor
Eric Shute
Kevin Damian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONROL DEVICES D/B/A FIRST TECHNOLOGY Inc
Control Devices LLC
Original Assignee
CONROL DEVICES D/B/A FIRST TECHNOLOGY Inc
Control Devices LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONROL DEVICES D/B/A FIRST TECHNOLOGY Inc, Control Devices LLC filed Critical CONROL DEVICES D/B/A FIRST TECHNOLOGY Inc
Priority to US10/898,842 priority Critical patent/US20050039551A1/en
Assigned to CONROL DEVICES D/B/A FIRST TECHNOLOGY INC. reassignment CONROL DEVICES D/B/A FIRST TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAMIAN, KEVIN, SHUTE, ERIC
Assigned to CONTROL DEVICES D/B/A/ FIRST TECHNOLOGY INC. reassignment CONTROL DEVICES D/B/A/ FIRST TECHNOLOGY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAMIAN, KEVIN, SHUTE, ERIC
Publication of US20050039551A1 publication Critical patent/US20050039551A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • F28F9/002Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details

Definitions

  • the present invention relates to electrical and mechanical connectors which provide evidence of tampering, and in particular to electrical and mechanical connectors for automobile engine heat exchangers.
  • radiator assemblies for motor vehicles are known to include a coating of a catalytic material for converting environmentally harmful substances in ambient air during the utilization of the motor vehicle.
  • the purpose of this catalytic coating is to improve the environment by cleaning ambient air as the vehicle is driven.
  • Such a coated radiator assembly is likely to have the same mounting provisions as similar uncoated radiator assemblies which do not convert the environmentally-harmful substances in ambient air. Because a coated radiator can cost more than an uncoated one, vehicles built with uncoated radiators could be sold in some jurisdictions. Further, uncoated radiators will certainly be made available for aftermarket installation as spare parts in such jurisdictions.
  • the present includes both methods and apparatus for providing evidence of tampering to a sensor assembly.
  • One embodiment of the present invention concerns a method for attaching a sensor to a body such that subsequent removal of the sensor from the body provides evidence, either mechanical and/or electrical, that the sensor has been removed.
  • a sensor assembly which is attached to opposite sides of a body. Assembly of the sensor onto the body establishes a path of electrical continuity which is broken if the sensor is removed from the body.
  • a sensor case and sensor attachment clip are coupled together through a passageway of a body.
  • the sensor case and attachment clip are coupled in such a way that removal of the sensor case from the attachment clip causes damage to the case or the clip.
  • FIG. 1 is a schematic representation of a system according to one embodiment of the present invention.
  • FIG. 2 a is a top plan view of a sensor assembly according to one embodiment of the present invention.
  • FIG. 2 b is a side elevational view of the sensor assembly of FIG. 2 a.
  • FIG. 2 c is an end elevational view of the sensor assembly of FIG. 2 a.
  • FIG. 2 d is a perspective view of the sensor assembly of FIG. 2 a.
  • FIG. 3 is a sectional view of the sensor assembly of FIG. 2 a as taken along line 3 - 3 of FIG. 2 a.
  • FIG. 4 is an exploded, perspective view of the sensor assembly of FIG. 2 a.
  • FIG. 5 is a perspective view of the sensor assembly of FIG. 2 a with the case body removed.
  • FIG. 6 is an exploded view of the sensor assembly of FIG. 2 a positioned to be inserted into a portion of a heat exchanger.
  • FIG. 7 is a perspective view of the sensor assembly of FIG. 6 assembled onto a portion of a heat exchanger.
  • FIG. 8 is a perspective view of the sensor assembly of FIG. 6 assembled onto a portion of a heat exchanger.
  • FIG. 9 is a side elevational view of a sensor assembly according to another embodiment of the present invention.
  • FIG. 10 is a bottom plan view of a portion of the sensor assembly of FIG. 9 .
  • FIG. 11 is a cross sectional view of the apparatus of FIG. 10 as taken along line 11 - 11 of FIG. 10
  • FIG. 12 is a perspective view of the apparatus of FIG. 10 .
  • FIG. 13 is a perspective view of the sensor assembly of FIG. 9 assembled onto a portion of a heat exchanger.
  • FIG. 14 is an end perspective view of a portion of the apparatus of FIG. 9 .
  • FIG. 15 is an end plan view of the apparatus of FIG. 14 .
  • the present invention relates to a sensor assembly that is attached to an object such that any attempt to remove the sensor from the object is not only difficult but results in the production of evidence of the attempted removal.
  • the sensor assembly is provided in two separate parts that are attached together in a manner that also attaches the two parts to the object. The two parts are coupled together by a projection received in a “one-way” locking manner. The projection cannot be pulled out of the receptacle without permanent deformation to one or both parts of the sensor.
  • the two parts are coupled together in a manner that simultaneously attaches the two parts to the object.
  • a circuit path is created.
  • the circuit path can be monitored to determine whether or not the path is continuous. If the two parts of the sensor are separated from one another, electrical continuity is lost.
  • a sensor is provided in two separate parts.
  • the separate parts are attached to each other simultaneously with their attachment to an object.
  • the two parts are mechanically coupled together with a locking mechanism.
  • Neither of the two separate parts are provided with any feature which allows external access to the locking mechanism. Therefore, any attempt to remove the attached sensor would require drilling of access holes or the like in order to reach the locking mechanism.
  • the senor is provided in two separate parts which are mounted to opposing sides of an automotive radiator.
  • the automotive radiator has one or more external surfaces which have been coated with a catalyst that promotes a chemical reaction in ambient ozone to produce oxygen. Operation of a vehicle with such a radiator cleans any ambient air by removing some of the ozone.
  • a vehicle is qualified under federal law to be claimed within a pollution credit. However, the law also requires some manner of ensuring that the pollution-removing device has not been tampered with. Further discussion of catalyst-coated heat exchangers can be found in U.S. Pat. No. 6,695,473, issued Feb. 24, 2004; U.S. Pat. No. 6,506,605, issued Jan. 14, 2003; and U.S. Pat. No.
  • a preferred embodiment of the present invention provides both mechanical and electrical evidence of any potential tampering with the vehicle system. For example, if someone attempted to install a non-coated radiator into the vehicle such a non-complying radiator would not be provided with an embodiment of the tamper-evident sensor and the installer of the radiator would be aware of the non-compliance based on the lack of the sensor. In addition, an electronic controller of the vehicle would recognize that the tamper-evident sensor has not been installed, and would set an appropriate output flag. Further, it would be difficult to attach a sensor removed from a coated radiator to the non-coated radiator. The attachment would be difficult because removal of the sensor results in physical deformation of the sensor and/or breakage of the electrical circuit formed by installation of the sensor.
  • FIG. 1 is a schematic representation of a system 20 according to one embodiment of the present invention.
  • System 20 includes an internal combustion engine 22 which is cooled by a heat exchanger 24 , such as an automotive radiator.
  • System 20 further includes a sensor assembly 30 preferably attached to heat exchanger 24 in a manner that makes removal of the sensor difficult. Further, the attachment of sensor assembly 30 is preferably accomplished in a manner whereby removal of sensor assembly 30 leaves mechanical evidence and/or electronic evidence of tampering.
  • sensor assembly 30 is in electrical communication with a signal processor 26 that acquires one or more signals from sensor assembly 30 , and preferably provides indication if sensor assembly 30 is removed from heat exchanger 24 .
  • signal processor 26 is a digital computer that performs other functions for engine 22 , which can include control functions.
  • sensor assembly 30 is attached to an automotive radiator, the present invention is not so limited. In other embodiments of the present invention, the sensor assembly can be attached to an automotive air conditioner heat exchanger, an automotive oil heat exchanger, an industrial-use heat exchanger, a residential air conditioner heat exchanger, or the like. In yet other embodiments, sensor assembly 30 is attached to any object having a passageway in which it is desirable to know whether or not the sensor has been removed from that object. As another example, the sensor assembly could be a sensor integrated into a home security system and attached to a wall.
  • sensor assembly 30 includes a sensor case 32 with one or more lead wires 34 extending from it and taking one or more signals to signal processor 26 , and an attachment member clip assembly 50 .
  • Attachment member clip assembly 50 includes one or more projections 54 which are received within one or more receptacles 56 of sensor case 32 .
  • Sensor assembly 30 further includes a circuit board 40 . 1 contained within sensor case 32 .
  • sensor case 32 includes a circuit board or first sensor 40 . 1 mounted within a sensor case body 36 and sensor case cover 37 .
  • a sensor case cover 37 mates with case body 36 and supports circuit board 40 . 1 securely therein.
  • case cover 37 is ultrasonically bonded to case body 36 .
  • Case cover 37 defines the entryways to a plurality of receptacles 56 . 1 , 56 . 2 , 56 . 3 , and 56 . 4 , which are adapted and configured to receive a corresponding projection 54 . 1 , 54 . 2 , 54 . 3 , 54 . 4 , respectively.
  • An electrical connector 38 provides signals from circuit board 40 .
  • sensor case 32 also includes a second sensor 40 . 2 , such as a thermistor. The signal from thermistor 40 . 2 is carried through circuit board 40 . 1 and lead wires 34 to signal processor 26 .
  • circuit board clips 42 . 1 and 42 . 2 attach circuit board 40 . 1 within sensor case 32 , and are coupled both mechanically and electrically to circuit board 40 . 1 by a plurality of contacts 64 . 1 , 64 . 2 , 64 . 3 , and 64 . 4 .
  • circuit board clips 42 are electrically conductive and in electrical communication with circuit board 40 . 1 , although the present invention contemplates embodiments in which the circuit board clips are non-conductive and a continuity circuit is established to the projections 54 by a plurality of lead wires from circuit board 40 . 1 .
  • Each circuit board clip 42 includes a plurality of projection retaining springs 60 . 11 , 60 . 12 , 60 . 21 , 60 . 22 , 60 . 31 , 60 . 32 , 60 . 41 , and 60 . 42 .
  • Each of these projection-retaining springs 60 is of a cantilever spring-type. Retaining springs 60 are biased outwardly toward the exterior of sensor case 32 .
  • Each projection 54 includes a spring clip 58 located near the free end of the projection.
  • Projection spring clips 58 are offset inwardly toward the interior of sensor case 32 .
  • complete insertion of a projection 54 within the corresponding receptacle 56 results in an inward compression of a pair of corresponding cantilever springs 60 , which snap outwardly into place in contact with a ledge near the free end of a projection spring clip 58 .
  • projection 54 . 3 is shown completely inserted within receptacle 56 . 3 .
  • Retaining springs 60 . 31 and 60 . 32 are in compression with a side surface of projection 54 . 3 .
  • projecting ledges near the ends of retaining springs 60 . 31 and 60 . 32 are in contact with the ledge 59 . 3 of projection 54 . 3 . Insertion of a projection within a receptacle results in sliding of a projection spring clip 58 over the corresponding projection retaining springs 60 , with one or both spring clip 58 and retaining springs 60 snapping back into place upon complete insertion of the projection, with the protruding ledges of the projection retaining springs 60 being locked into an interference with the opposing ledges 59 of the corresponding projection 54 .
  • Attachment member clip assembly 50 includes an attachment member body 52 with a shape adapted and configured for interfacing with a contact surface of the heat exchanger or other object. As best seen in FIG. 3 , in one embodiment attachment member body 52 is generally planar to match the planar surface of an automatic heat exchange. The plurality of projections 54 extends from body 52 . In one embodiment, projections 54 are fabricated from a material which is a good conductor of heat, such as aluminum. Attachment member body 52 also includes a resilient pad 80 . 2 such as a PORON® pad, or a silicone rubber pad, bonded to the interior surface of body 52 . Case cover 37 preferably also includes a resilient pad 80 . 1 , such as a PORON® pad or a silicone rubber pad, bonded to one surface of case body 37 .
  • a resilient pad 80 . 1 such as a PORON® pad or a silicone rubber pad
  • resilient pads 80 . 1 and 80 . 2 have been shown and described, the present invention further contemplates any material or mechanism which provides a compressible surface to one or both of the opposing surfaces of sensor case 32 and attachment member clip assembly 50 .
  • the resilient pads 80 . 1 and 80 . 2 are compressed. Because of their resiliency, these pads attempt to force apart attachment member assembly 50 from sensor case 32 .
  • the resilient pads, or other compressible surfaces urge apart sensor case 32 and attachment lever clip 50 so as to produce a state of tension in one or more projections 54 .
  • attachment clip 50 includes four projections 54 . 1 , 54 . 2 , 54 . 3 , and 54 . 4 , each of which is received within a corresponding receptacle 56 . 1 , 56 . 2 , 56 . 3 , and 56 . 4 , respectively, when sensor assembly 30 is mounted to an object.
  • the insertion and locking of the projections into the receptacles establishes a predetermined distance 48 between the opposing surfaces 33 of the sensor case and 53 of the attachment member.
  • the present invention contemplates other arrangements.
  • an arrangement of projections 54 has been shown and described in a rectangular array, the present invention contemplates other arrangements including, for example, a triangular arrangement of three projections.
  • the present invention contemplates those embodiments in which the attachment member clip assembly includes both a projection and a receptacle, and the sensor case also includes a projection and a receptacle. In this embodiment, the receptacle of the attachment member would receive the projection of the sensor case, and the receptacle of the sensor case would receive the projection of the attachment member.
  • circuit board clip contacts 64 . 1 , 64 . 2 , 64 . 3 , and 64 . 4 are mechanically connected to circuit board 40 . 1 , and further are in electrical communication with circuit board 40 . 1 . Further, these board clip contacts 64 are in electrical communication with pairs of retaining springs 60 .
  • board clip contact 64 . 1 and 64 . 2 are in electrical communication with retaining springs 60 . 11 and 60 . 12 , and 60 . 21 and 60 . 22 , respectively.
  • board clip contact 64 . 3 is in electrical communication with retaining springs 60 . 31 and 60 . 32 ;
  • board clip contact 64 . 4 is in electrical communication with retaining springs 60 . 41 and 60 . 42 .
  • pairs of retaining springs 60 are in electrical communication with the electrically conductive projections 54 .
  • retaining springs 60 . 11 and 60 . 12 are in electrical communication with projection 54 . 1 .
  • each of the other three projections are in electrical communication with a corresponding pair of retaining springs.
  • attachment member body 52 and projections 54 are preferably electrically conductive.
  • projections 54 . 1 and 54 . 2 located on one side of clip assembly 50 are in joint electrical communication with body 52 .
  • projections 54 . 3 and 54 . 4 are in joint electrical communication with body 52 . Therefore, pathways of electrical continuity are established from circuit board 40 . 1 into contacts 64 . 1 and 64 . 2 , through circuit board clip 42 . 1 , through the retaining springs 60 to the corresponding first pair of projections 54 . 1 and 54 . 2 . Continuity from these projections through attachment member body 52 is established to the projections 54 . 3 and 54 .
  • sensor assembly 30 includes a pathway of electrical continuity from one side of circuit board 40 . 1 , through the attachment member clip assembly 50 to the other side of circuit board 40 . 1 .
  • the presence of electrical continuity in the circuit can be monitored through lead wires 34 by signal processor 26 .
  • signal processor 26 By monitoring this continuity circuit, it is possible for signal processor 26 to indicate if attachment member clip assembly 50 has been removed from sensor case 32 . If this happens, such as the case where a user removes sensor assembly 30 from heat exchanger 24 , signal processor 26 detects and indicates the loss of continuity. Therefore, the continuity circuit established by the assembly of sensor case 32 and attachment member clip assembly 50 is a means for providing evidence of tampering.
  • the present invention contemplates other methods as well. For example, by the use of four circuit board clips instead of two circuit board clips, two separate paths of continuity could be established among the four projections. Further, the present invention contemplates those embodiments having a single projection, in which continuity could be established by an electrical lead passing along one side of the single projection, through the corresponding attachment member body and along another side of the single projection.
  • sensor assembly 30 includes another, separate means for providing evidence of tampering by way of temperature measurement device 40 . 2 .
  • Device 40 . 2 provides indication of temperature of heat exchanger 24 . This temperature signal can be interpreted by signal processor 26 to indicate whether or not sensor assembly 30 is connected to heat exchanger 24
  • FIGS. 6, 7 , and 8 depict attachment of sensor assembly 30 to a heat exchanger 24 .
  • Heat exchanger 24 includes a plurality of hollow core passages 70 which contain a cooling medium.
  • a plurality of heat exchanger cooling fins 72 are in contact with cores 70 and provide passageways 73 through which ambient air flows to remove heat conducted into the fins.
  • the width 78 of the passageways is shown on FIG. 7 and is roughly equivalent to the width of cores 70 .
  • projections 54 and receptacles 56 are adapted and configured such that there is a predetermined length 48 from the surface of resilient pad 80 . 1 to the surface of resilient pad 80 . 2 .
  • This predetermined distance 48 is preferably less than width 78 .
  • This difference between length 48 and width 78 is accommodated by compression of resilient pads 80 . 1 and 80 . 2 on an installed sensor 30 .
  • projections 54 of attachment member clip assembly are each inserted through a corresponding passageway 73 established by cooling fins 72 .
  • projection 54 . 1 is inserted through a passageway 73 . 1 ;
  • projection 54 . 2 is inserted through a passageway 73 . 2 ;
  • projection 54 . 3 is inserted into a passageway 73 . 3 ;
  • projection 54 . 4 is inserted through a passageway 73 . 4 .
  • These projections 54 of attachment member clip assembly 50 are pushed through the corresponding passageway 73 from a side 76 of heat exchanger 24 . This insertion continues until resilient pad 80 . 2 is in contact with heat exchanger side 76 .
  • the projections 54 of attachment member clip assembly 50 have a length 55 which is preferably greater than width 78 of the passageway between cores 70 . Because of this difference between length 55 and width 78 , the ends of projections 54 protrude through the other side 74 of heat exchanger 24 .
  • the receptacles 56 of sensor case 32 are brought into alignment with the corresponding protruding projections 54 .
  • the reception of projections 54 within the corresponding receptacle 56 guides sensor case 32 into the proper position on the opposite side 74 of heat exchanger 24 .
  • compression is applied to clip assembly 50 and sensor case 32 until the projection spring clips 58 snap into place with the corresponding projection retaining springs 60 (as previously seen in FIG. 5 ).
  • the compression of clip assembly 50 and sensor case 32 results in compression of resilient pads 80 . 1 and 80 . 2 an installed state of tension in projections 54 , and a corresponding snug fit of sensor assembly 30 onto heat exchanger 24 .
  • the projection spring clip 58 located near the free end of the corresponding projection 54 is displaced inwardly toward the interior of sensor case 32 . It can be appreciated that any external inward pushing on a spring clip 58 , such as by a user with a tool, does not free the corresponding ledge of projection 58 from engagement with the corresponding ledges on the pair of retaining springs 60 . Therefore, it is difficult to disassemble clip assembly 50 from sensor case 32 , since spring clips 58 must instead be pulled outward to disengage the projection from the receptacle. Further, sensor case body 36 (which has been removed from FIG. 5 for clarity) preferably does not include any apertures through which a user could insert a tool or any other external features that could be used in an attempt to disengage the projections from the receptacles and remove sensor 30 from its assembled state on heat exchanger 34 .
  • FIGS. 9-12 depict a sensor assembly 130 according to another embodiment of the present invention.
  • the use of a one-hundred prefix (1XX) with an element number (XX) indicates a feature of the embodiment that is the same as the non-prefixed element number (XX), except for those changes shown or described.
  • a sensor assembly 130 is attached to a heat exchanger 24 in a vehicular system 120 .
  • sensor 130 is attached to a heat exchanger such that removal of sensor assembly 130 from the heat exchanger leaves mechanical evidence and/or electronic evidence of the removal.
  • sensor assembly 130 is in electrical communication with a signal processor 126 and provides an indication if sensor 130 is removed from heat exchanger 24 .
  • Sensor assembly 130 includes a sensor case 132 with one or more lead wires 134 extending from a side of the sensor case. Assembly 130 also includes an attachment member clip assembly 150 which preferably includes one or more projections 154 . Projections 154 are adapted and configured to be received within one or more receptacles 156 of sensor case 132 . Sensor assembly 130 further includes a circuit board 140 . 1 contained within sensor case 132 .
  • circuit board 140 . 1 includes a first sensor for detecting electrical continuity, and a second sensor, such as a thermistor.
  • the continuity path includes one or more lead wires 134 , one or more projections 154 , and one or more internal circuit board clips 142 .
  • the operation of the circuit board clips, receptacles, and projections of sensor assembly 130 are the same as that for sensor 30 .
  • Sensor assembly 130 includes a plurality of lead wires 134 that extend laterally from a side of sensor case 132 , as best seen in FIGS. 10 and 11 .
  • Sensor case body 36 preferably does not include a plurality of sensor cooling fins. It has been found in some embodiments that there can be excessive cooling of the attachment clip and projections, such that the temperature sensed by the temperature measurement device is too low and/or too slow acting. Removal of the cooling fins can improve the response of the temperature sensor.
  • One embodiment of the present invention was tested with an attachment clip similar to attachment clip 50 .
  • sensor assembly 30 was oriented such that attachment member body 52 was directed toward the front of the vehicle, such that there was direct impingement of cooling flow onto the front face of attachment member body 52 .
  • This temperature difference may be caused by an improvement in heat rejection caused by assembly 50 .
  • Attachment clip member assembly 150 includes an air dam and thermal insulator 180 . 3 which is mounted to the surface of attachment member body 152 that is opposite to the surface which resilient pad 180 . 2 is mounted, as best seen in FIGS. 9 and 13 .
  • air dam 180 . 3 projects a frontal area toward the cooling air passing over heat exchanger core 70 that is greater than the frontal area of attachment member body 152 , and in some embodiments greater than the projected frontal area of sensor case 132 .
  • Air dam 180 . 3 impedes air flow which would otherwise cool sensor assembly 130 and therefore improves heat transfer from the heat exchanger into clip 150 and into sensor case 132 .
  • air dam 130 is fabricated from a resilient material such as silicone rubber or PORON® material.
  • air dam 180 . 3 is fabricated from a material with low thermal conductivity in order to impede the transfer of heat from the cooling flow to clip 150 .
  • the present invention contemplates those embodiments in which pad 180 . 3 is an air dam and not a thermal insulator, as well as those embodiments in which pad 180 . 3 provides only reduced alteration of the impinging air flow, but provides thermal insulation.
  • FIGS. 14 and 15 show perspective and end views, respectively, of attachment clip member assembly 150 .
  • FIG. 15 is a scaled drawing according to one embodiment of the present invention.
  • dimension A is about 1.00 inches
  • dimension B is about 0.75 inches.
  • air dam 180 . 3 is a foam pad of closed cellular silicone material, such as BISCO HT-805(5) or equivalent material.
  • resilient pad 180 . 2 is fabricated from closed silicone material, such as BISCO HT-805(5) or equivalent.
  • the projections 154 . 1 , 154 . 2 , 154 . 3 , and 154 . 4 are fabricated from a material such as 3003 H14 aluminum. Although specific dimensions and materials have been shown and described, it is understood that the present invention is not so limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Apparatus and methods for providing assurance and evidence that the correct part has been installed. In one embodiment, the present invention relates to two housings that are attached to each other on opposite sides of a heat exchanger. When connected together, the apparatus completes the continuity in an electrical circuit path. In another embodiment, the present invention includes a method for attaching a sensor to a heat exchanger, such that the sensor cannot be removed from the heat exchanger without permanent deformation of a portion of the sensor. In yet another embodiment, the present invention relates to two housings, one having a projection and the other having a receptacle, which are mated together from opposite sides of a exchanger cooling fin.

Description

  • The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/489,713, filed Jul. 24, 2003, incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to electrical and mechanical connectors which provide evidence of tampering, and in particular to electrical and mechanical connectors for automobile engine heat exchangers.
  • BACKGROUND OF THE INVENTION
  • In the motor vehicle field, it is known that interchangeable parts are often used, wherein different variants of a component may have the same mounting provisions. While this of course has advantages in terms of cost efficiency, it can also raise an issue. Specifically, where one variant of a part performs a function not shared by the original components, installing the incorrect part may have adverse consequences on one or more functions of the vehicle.
  • This can be an issue in the case of vehicle components which play a role in improving air quality. For example, some radiator assemblies for motor vehicles, are known to include a coating of a catalytic material for converting environmentally harmful substances in ambient air during the utilization of the motor vehicle. The purpose of this catalytic coating is to improve the environment by cleaning ambient air as the vehicle is driven. Such a coated radiator assembly is likely to have the same mounting provisions as similar uncoated radiator assemblies which do not convert the environmentally-harmful substances in ambient air. Because a coated radiator can cost more than an uncoated one, vehicles built with uncoated radiators could be sold in some jurisdictions. Further, uncoated radiators will certainly be made available for aftermarket installation as spare parts in such jurisdictions.
  • Where a particular market requires an air-cleaning radiator or gives emission “credits” for such a radiator, that market is also likely to require that evidence and/or assurance be provided that the proper, coated radiator, as opposed to an uncoated radiator without the air-cleaning function, is installed on the vehicle. The present invention does this in a novel and unobvious way.
  • SUMMARY OF THE INVENTION
  • The present includes both methods and apparatus for providing evidence of tampering to a sensor assembly.
  • One embodiment of the present invention concerns a method for attaching a sensor to a body such that subsequent removal of the sensor from the body provides evidence, either mechanical and/or electrical, that the sensor has been removed.
  • In another embodiment of the present invention, there is a sensor assembly which is attached to opposite sides of a body. Assembly of the sensor onto the body establishes a path of electrical continuity which is broken if the sensor is removed from the body.
  • In another embodiment of the present invention a sensor case and sensor attachment clip are coupled together through a passageway of a body. The sensor case and attachment clip are coupled in such a way that removal of the sensor case from the attachment clip causes damage to the case or the clip.
  • These and other aspects, embodiments, and features of the present invention will be apparent from the description of the preferred embodiment, the drawings and the claims to follow.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of a system according to one embodiment of the present invention.
  • FIG. 2 a is a top plan view of a sensor assembly according to one embodiment of the present invention.
  • FIG. 2 b is a side elevational view of the sensor assembly of FIG. 2 a.
  • FIG. 2 c is an end elevational view of the sensor assembly of FIG. 2 a.
  • FIG. 2 d is a perspective view of the sensor assembly of FIG. 2 a.
  • FIG. 3 is a sectional view of the sensor assembly of FIG. 2 a as taken along line 3-3 of FIG. 2 a.
  • FIG. 4 is an exploded, perspective view of the sensor assembly of FIG. 2 a.
  • FIG. 5 is a perspective view of the sensor assembly of FIG. 2 a with the case body removed.
  • FIG. 6 is an exploded view of the sensor assembly of FIG. 2 a positioned to be inserted into a portion of a heat exchanger.
  • FIG. 7 is a perspective view of the sensor assembly of FIG. 6 assembled onto a portion of a heat exchanger.
  • FIG. 8 is a perspective view of the sensor assembly of FIG. 6 assembled onto a portion of a heat exchanger.
  • FIG. 9 is a side elevational view of a sensor assembly according to another embodiment of the present invention.
  • FIG. 10 is a bottom plan view of a portion of the sensor assembly of FIG. 9.
  • FIG. 11 is a cross sectional view of the apparatus of FIG. 10 as taken along line 11-11 of FIG. 10
  • FIG. 12 is a perspective view of the apparatus of FIG. 10.
  • FIG. 13 is a perspective view of the sensor assembly of FIG. 9 assembled onto a portion of a heat exchanger.
  • FIG. 14 is an end perspective view of a portion of the apparatus of FIG. 9.
  • FIG. 15 is an end plan view of the apparatus of FIG. 14.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
  • The present invention relates to a sensor assembly that is attached to an object such that any attempt to remove the sensor from the object is not only difficult but results in the production of evidence of the attempted removal. In one embodiment, the sensor assembly is provided in two separate parts that are attached together in a manner that also attaches the two parts to the object. The two parts are coupled together by a projection received in a “one-way” locking manner. The projection cannot be pulled out of the receptacle without permanent deformation to one or both parts of the sensor.
  • In yet another embodiment of the present invention, the two parts are coupled together in a manner that simultaneously attaches the two parts to the object. When the two parts are coupled together a circuit path is created. The circuit path can be monitored to determine whether or not the path is continuous. If the two parts of the sensor are separated from one another, electrical continuity is lost.
  • In yet another embodiment of the present invention, a sensor is provided in two separate parts. The separate parts are attached to each other simultaneously with their attachment to an object. The two parts are mechanically coupled together with a locking mechanism. Neither of the two separate parts are provided with any feature which allows external access to the locking mechanism. Therefore, any attempt to remove the attached sensor would require drilling of access holes or the like in order to reach the locking mechanism.
  • In a preferred embodiment, the sensor is provided in two separate parts which are mounted to opposing sides of an automotive radiator. The automotive radiator has one or more external surfaces which have been coated with a catalyst that promotes a chemical reaction in ambient ozone to produce oxygen. Operation of a vehicle with such a radiator cleans any ambient air by removing some of the ozone. Such a vehicle is qualified under federal law to be claimed within a pollution credit. However, the law also requires some manner of ensuring that the pollution-removing device has not been tampered with. Further discussion of catalyst-coated heat exchangers can be found in U.S. Pat. No. 6,695,473, issued Feb. 24, 2004; U.S. Pat. No. 6,506,605, issued Jan. 14, 2003; and U.S. Pat. No. 6,681,619, issued Jan. 27, 2004; all of which are incorporated herein by reference. A preferred embodiment of the present invention provides both mechanical and electrical evidence of any potential tampering with the vehicle system. For example, if someone attempted to install a non-coated radiator into the vehicle such a non-complying radiator would not be provided with an embodiment of the tamper-evident sensor and the installer of the radiator would be aware of the non-compliance based on the lack of the sensor. In addition, an electronic controller of the vehicle would recognize that the tamper-evident sensor has not been installed, and would set an appropriate output flag. Further, it would be difficult to attach a sensor removed from a coated radiator to the non-coated radiator. The attachment would be difficult because removal of the sensor results in physical deformation of the sensor and/or breakage of the electrical circuit formed by installation of the sensor.
  • FIG. 1 is a schematic representation of a system 20 according to one embodiment of the present invention. System 20 includes an internal combustion engine 22 which is cooled by a heat exchanger 24, such as an automotive radiator. System 20 further includes a sensor assembly 30 preferably attached to heat exchanger 24 in a manner that makes removal of the sensor difficult. Further, the attachment of sensor assembly 30 is preferably accomplished in a manner whereby removal of sensor assembly 30 leaves mechanical evidence and/or electronic evidence of tampering. In one embodiment, sensor assembly 30 is in electrical communication with a signal processor 26 that acquires one or more signals from sensor assembly 30, and preferably provides indication if sensor assembly 30 is removed from heat exchanger 24. In one embodiment, signal processor 26 is a digital computer that performs other functions for engine 22, which can include control functions.
  • Although in one embodiment sensor assembly 30 is attached to an automotive radiator, the present invention is not so limited. In other embodiments of the present invention, the sensor assembly can be attached to an automotive air conditioner heat exchanger, an automotive oil heat exchanger, an industrial-use heat exchanger, a residential air conditioner heat exchanger, or the like. In yet other embodiments, sensor assembly 30 is attached to any object having a passageway in which it is desirable to know whether or not the sensor has been removed from that object. As another example, the sensor assembly could be a sensor integrated into a home security system and attached to a wall.
  • Referring to FIGS. 2-5, sensor assembly 30 includes a sensor case 32 with one or more lead wires 34 extending from it and taking one or more signals to signal processor 26, and an attachment member clip assembly 50. Attachment member clip assembly 50 includes one or more projections 54 which are received within one or more receptacles 56 of sensor case 32. Sensor assembly 30 further includes a circuit board 40.1 contained within sensor case 32.
  • Referring to FIGS. 3-5, sensor case 32 includes a circuit board or first sensor 40.1 mounted within a sensor case body 36 and sensor case cover 37. Referring to FIG. 3, a sensor case cover 37 mates with case body 36 and supports circuit board 40.1 securely therein. Preferably, case cover 37 is ultrasonically bonded to case body 36. Case cover 37 defines the entryways to a plurality of receptacles 56.1, 56.2, 56.3, and 56.4, which are adapted and configured to receive a corresponding projection 54.1, 54.2, 54.3, 54.4, respectively. An electrical connector 38 provides signals from circuit board 40.1 to lead wires 34. Electrical connector 38 may be of any type, including direct connection of lead wires 34 to circuit board 40.1, or connection of lead wires 34 to circuit board 40.1 by a pair of mating male and female connectors. A plurality of sensor cooling fins 44 are integrally molded into case body 36. In one embodiment, sensor case 32 also includes a second sensor 40.2, such as a thermistor. The signal from thermistor 40.2 is carried through circuit board 40.1 and lead wires 34 to signal processor 26.
  • As best seen in FIGS. 4 and 5, right and left circuit board clips 42.1 and 42.2, respectively, attach circuit board 40.1 within sensor case 32, and are coupled both mechanically and electrically to circuit board 40.1 by a plurality of contacts 64.1, 64.2, 64.3, and 64.4. Preferably, circuit board clips 42 are electrically conductive and in electrical communication with circuit board 40.1, although the present invention contemplates embodiments in which the circuit board clips are non-conductive and a continuity circuit is established to the projections 54 by a plurality of lead wires from circuit board 40.1.
  • Each circuit board clip 42 includes a plurality of projection retaining springs 60.11, 60.12, 60.21, 60.22, 60.31, 60.32, 60.41, and 60.42. Each of these projection-retaining springs 60 is of a cantilever spring-type. Retaining springs 60 are biased outwardly toward the exterior of sensor case 32.
  • Each projection 54 includes a spring clip 58 located near the free end of the projection. Projection spring clips 58 are offset inwardly toward the interior of sensor case 32. As best seen in FIG. 5, complete insertion of a projection 54 within the corresponding receptacle 56 results in an inward compression of a pair of corresponding cantilever springs 60, which snap outwardly into place in contact with a ledge near the free end of a projection spring clip 58. For an example, and still referring to FIG. 5, projection 54.3 is shown completely inserted within receptacle 56.3. Retaining springs 60.31 and 60.32 are in compression with a side surface of projection 54.3. Further, projecting ledges near the ends of retaining springs 60.31 and 60.32 are in contact with the ledge 59.3 of projection 54.3. Insertion of a projection within a receptacle results in sliding of a projection spring clip 58 over the corresponding projection retaining springs 60, with one or both spring clip 58 and retaining springs 60 snapping back into place upon complete insertion of the projection, with the protruding ledges of the projection retaining springs 60 being locked into an interference with the opposing ledges 59 of the corresponding projection 54.
  • Attachment member clip assembly 50 includes an attachment member body 52 with a shape adapted and configured for interfacing with a contact surface of the heat exchanger or other object. As best seen in FIG. 3, in one embodiment attachment member body 52 is generally planar to match the planar surface of an automatic heat exchange. The plurality of projections 54 extends from body 52. In one embodiment, projections 54 are fabricated from a material which is a good conductor of heat, such as aluminum. Attachment member body 52 also includes a resilient pad 80.2 such as a PORON® pad, or a silicone rubber pad, bonded to the interior surface of body 52. Case cover 37 preferably also includes a resilient pad 80.1, such as a PORON® pad or a silicone rubber pad, bonded to one surface of case body 37.
  • Although the use of resilient pads 80.1 and 80.2 have been shown and described, the present invention further contemplates any material or mechanism which provides a compressible surface to one or both of the opposing surfaces of sensor case 32 and attachment member clip assembly 50. When the projections 54 of the attachment member clip assembly 50 are fully inserted and locked into place within corresponding receptacles 56, the resilient pads 80.1 and 80.2 are compressed. Because of their resiliency, these pads attempt to force apart attachment member assembly 50 from sensor case 32. The resilient pads, or other compressible surfaces, urge apart sensor case 32 and attachment lever clip 50 so as to produce a state of tension in one or more projections 54.
  • In one embodiment, attachment clip 50 includes four projections 54.1, 54.2, 54.3, and 54.4, each of which is received within a corresponding receptacle 56.1, 56.2, 56.3, and 56.4, respectively, when sensor assembly 30 is mounted to an object. As best seen in FIGS. 2 b and 2 d, the insertion and locking of the projections into the receptacles establishes a predetermined distance 48 between the opposing surfaces 33 of the sensor case and 53 of the attachment member.
  • Although an attachment member clip assembly 50 having four projections has been shown and described, the present invention contemplates other arrangements. For example, in one embodiment of the present invention there is a single projection which extends from the attachment member clip assembly to the sensor case. Further, although an arrangement of projections 54 has been shown and described in a rectangular array, the present invention contemplates other arrangements including, for example, a triangular arrangement of three projections. As another example, the present invention contemplates those embodiments in which the attachment member clip assembly includes both a projection and a receptacle, and the sensor case also includes a projection and a receptacle. In this embodiment, the receptacle of the attachment member would receive the projection of the sensor case, and the receptacle of the sensor case would receive the projection of the attachment member.
  • As best seen in FIG. 5, circuit board clip contacts 64.1, 64.2, 64.3, and 64.4 are mechanically connected to circuit board 40.1, and further are in electrical communication with circuit board 40.1. Further, these board clip contacts 64 are in electrical communication with pairs of retaining springs 60. For example, board clip contact 64.1 and 64.2 are in electrical communication with retaining springs 60.11 and 60.12, and 60.21 and 60.22, respectively. Likewise, board clip contact 64.3 is in electrical communication with retaining springs 60.31 and 60.32; board clip contact 64.4 is in electrical communication with retaining springs 60.41 and 60.42. Further, pairs of retaining springs 60 are in electrical communication with the electrically conductive projections 54. As one example, retaining springs 60.11 and 60.12 are in electrical communication with projection 54.1. Likewise, each of the other three projections are in electrical communication with a corresponding pair of retaining springs.
  • Referring to FIG. 6, attachment member body 52 and projections 54 are preferably electrically conductive. In one embodiment, projections 54.1 and 54.2 located on one side of clip assembly 50 are in joint electrical communication with body 52. Further, projections 54.3 and 54.4 are in joint electrical communication with body 52. Therefore, pathways of electrical continuity are established from circuit board 40.1 into contacts 64.1 and 64.2, through circuit board clip 42.1, through the retaining springs 60 to the corresponding first pair of projections 54.1 and 54.2. Continuity from these projections through attachment member body 52 is established to the projections 54.3 and 54.2, likewise through the corresponding retaining springs 60 into circuit board clip 42.2, into contacts 64.3 and 64.4, and back to circuit board 40.1. Therefore, sensor assembly 30 includes a pathway of electrical continuity from one side of circuit board 40.1, through the attachment member clip assembly 50 to the other side of circuit board 40.1.
  • The presence of electrical continuity in the circuit can be monitored through lead wires 34 by signal processor 26. By monitoring this continuity circuit, it is possible for signal processor 26 to indicate if attachment member clip assembly 50 has been removed from sensor case 32. If this happens, such as the case where a user removes sensor assembly 30 from heat exchanger 24, signal processor 26 detects and indicates the loss of continuity. Therefore, the continuity circuit established by the assembly of sensor case 32 and attachment member clip assembly 50 is a means for providing evidence of tampering.
  • Although what has been shown and described is a use of a continuity circuit as means for providing evidence of tampering, the present invention contemplates other methods as well. For example, by the use of four circuit board clips instead of two circuit board clips, two separate paths of continuity could be established among the four projections. Further, the present invention contemplates those embodiments having a single projection, in which continuity could be established by an electrical lead passing along one side of the single projection, through the corresponding attachment member body and along another side of the single projection.
  • In addition, sensor assembly 30 includes another, separate means for providing evidence of tampering by way of temperature measurement device 40.2. Device 40.2 provides indication of temperature of heat exchanger 24. This temperature signal can be interpreted by signal processor 26 to indicate whether or not sensor assembly 30 is connected to heat exchanger 24
  • FIGS. 6, 7, and 8 depict attachment of sensor assembly 30 to a heat exchanger 24. Heat exchanger 24 includes a plurality of hollow core passages 70 which contain a cooling medium. A plurality of heat exchanger cooling fins 72 are in contact with cores 70 and provide passageways 73 through which ambient air flows to remove heat conducted into the fins. The width 78 of the passageways is shown on FIG. 7 and is roughly equivalent to the width of cores 70. Referring to FIG. 2 b, projections 54 and receptacles 56 are adapted and configured such that there is a predetermined length 48 from the surface of resilient pad 80.1 to the surface of resilient pad 80.2. This predetermined distance 48 is preferably less than width 78. This difference between length 48 and width 78 is accommodated by compression of resilient pads 80.1 and 80.2 on an installed sensor 30.
  • Referring again to FIGS. 6, 7, and 8, projections 54 of attachment member clip assembly are each inserted through a corresponding passageway 73 established by cooling fins 72. For example, projection 54.1 is inserted through a passageway 73.1; projection 54.2 is inserted through a passageway 73.2; projection 54.3 is inserted into a passageway 73.3; and projection 54.4 is inserted through a passageway 73.4. These projections 54 of attachment member clip assembly 50 are pushed through the corresponding passageway 73 from a side 76 of heat exchanger 24. This insertion continues until resilient pad 80.2 is in contact with heat exchanger side 76. The projections 54 of attachment member clip assembly 50 have a length 55 which is preferably greater than width 78 of the passageway between cores 70. Because of this difference between length 55 and width 78, the ends of projections 54 protrude through the other side 74 of heat exchanger 24.
  • Following insertion of clip assembly 50 into heat exchanger 24, the receptacles 56 of sensor case 32 are brought into alignment with the corresponding protruding projections 54. The reception of projections 54 within the corresponding receptacle 56 guides sensor case 32 into the proper position on the opposite side 74 of heat exchanger 24. When all projections are inserted into the corresponding receptacles, compression is applied to clip assembly 50 and sensor case 32 until the projection spring clips 58 snap into place with the corresponding projection retaining springs 60 (as previously seen in FIG. 5). The compression of clip assembly 50 and sensor case 32 results in compression of resilient pads 80.1 and 80.2 an installed state of tension in projections 54, and a corresponding snug fit of sensor assembly 30 onto heat exchanger 24.
  • As best seen in FIGS. 4 and 5, the projection spring clip 58 located near the free end of the corresponding projection 54 is displaced inwardly toward the interior of sensor case 32. It can be appreciated that any external inward pushing on a spring clip 58, such as by a user with a tool, does not free the corresponding ledge of projection 58 from engagement with the corresponding ledges on the pair of retaining springs 60. Therefore, it is difficult to disassemble clip assembly 50 from sensor case 32, since spring clips 58 must instead be pulled outward to disengage the projection from the receptacle. Further, sensor case body 36 (which has been removed from FIG. 5 for clarity) preferably does not include any apertures through which a user could insert a tool or any other external features that could be used in an attempt to disengage the projections from the receptacles and remove sensor 30 from its assembled state on heat exchanger 34.
  • FIGS. 9-12 depict a sensor assembly 130 according to another embodiment of the present invention. The use of a one-hundred prefix (1XX) with an element number (XX) indicates a feature of the embodiment that is the same as the non-prefixed element number (XX), except for those changes shown or described.
  • In another embodiment of the present invention, a sensor assembly 130 is attached to a heat exchanger 24 in a vehicular system 120. Preferably, sensor 130 is attached to a heat exchanger such that removal of sensor assembly 130 from the heat exchanger leaves mechanical evidence and/or electronic evidence of the removal. In yet another embodiment, sensor assembly 130 is in electrical communication with a signal processor 126 and provides an indication if sensor 130 is removed from heat exchanger 24.
  • Sensor assembly 130 includes a sensor case 132 with one or more lead wires 134 extending from a side of the sensor case. Assembly 130 also includes an attachment member clip assembly 150 which preferably includes one or more projections 154. Projections 154 are adapted and configured to be received within one or more receptacles 156 of sensor case 132. Sensor assembly 130 further includes a circuit board 140.1 contained within sensor case 132.
  • The internal construction and sensor operation of sensor assembly 130 is generally the same as that of sensor assembly 30. In one embodiment, circuit board 140.1 includes a first sensor for detecting electrical continuity, and a second sensor, such as a thermistor. In one embodiment, the continuity path includes one or more lead wires 134, one or more projections 154, and one or more internal circuit board clips 142. The operation of the circuit board clips, receptacles, and projections of sensor assembly 130 are the same as that for sensor 30.
  • There are several external differences between sensor assembly 130 and sensor assembly 30. Sensor assembly 130 includes a plurality of lead wires 134 that extend laterally from a side of sensor case 132, as best seen in FIGS. 10 and 11. Sensor case body 36 preferably does not include a plurality of sensor cooling fins. It has been found in some embodiments that there can be excessive cooling of the attachment clip and projections, such that the temperature sensed by the temperature measurement device is too low and/or too slow acting. Removal of the cooling fins can improve the response of the temperature sensor.
  • One embodiment of the present invention was tested with an attachment clip similar to attachment clip 50. In that application, sensor assembly 30 was oriented such that attachment member body 52 was directed toward the front of the vehicle, such that there was direct impingement of cooling flow onto the front face of attachment member body 52. It was found that at some vehicle speeds, there could be a difference of 20-30 degrees C. between the radiator and a temperature measured by sensor 46. This temperature difference may be caused by an improvement in heat rejection caused by assembly 50. For those applications in which this temperature drop is not desirable, it is possible to add an air dam and/or thermally insulating material onto the front of body 52. For those applications in which it is desired to have a further lessening of the temperature difference, it is possible to extend the edges of resilient pad 53 beyond the edges of body 52 so as to block incoming air from the projections 54.
  • In some embodiments, still further improvement of the response of an internal temperature sensor is desirable. Attachment clip member assembly 150 includes an air dam and thermal insulator 180.3 which is mounted to the surface of attachment member body 152 that is opposite to the surface which resilient pad 180.2 is mounted, as best seen in FIGS. 9 and 13. In one embodiment, air dam 180.3 projects a frontal area toward the cooling air passing over heat exchanger core 70 that is greater than the frontal area of attachment member body 152, and in some embodiments greater than the projected frontal area of sensor case 132. Air dam 180.3 impedes air flow which would otherwise cool sensor assembly 130 and therefore improves heat transfer from the heat exchanger into clip 150 and into sensor case 132. In one embodiment, air dam 130 is fabricated from a resilient material such as silicone rubber or PORON® material. In some embodiments, air dam 180.3 is fabricated from a material with low thermal conductivity in order to impede the transfer of heat from the cooling flow to clip 150. However, the present invention contemplates those embodiments in which pad 180.3 is an air dam and not a thermal insulator, as well as those embodiments in which pad 180.3 provides only reduced alteration of the impinging air flow, but provides thermal insulation.
  • FIGS. 14 and 15 show perspective and end views, respectively, of attachment clip member assembly 150. FIG. 15 is a scaled drawing according to one embodiment of the present invention. In that embodiment, dimension A is about 1.00 inches, and dimension B is about 0.75 inches. In that embodiment, air dam 180.3 is a foam pad of closed cellular silicone material, such as BISCO HT-805(5) or equivalent material. Further, resilient pad 180.2 is fabricated from closed silicone material, such as BISCO HT-805(5) or equivalent. The projections 154.1, 154.2, 154.3, and 154.4 are fabricated from a material such as 3003 H14 aluminum. Although specific dimensions and materials have been shown and described, it is understood that the present invention is not so limited.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (43)

1. An apparatus for mounting a sensor on a heat exchanger having cooling fins, comprising:
an attachment member having at least one of a projection adapted and configured for insertion between cooling fins or a receptacle adapted and configured for receiving therein said projection;
a sensor case having the other of the projection adapted and configured for insertion between cooling fins or the receptacle adapted and configured for receiving therein said projection; and
a sensor placed within said first sensor case;
wherein said attachment member is placed on one side of the heat exchanger, said sensor case is placed opposite of said first sensor case on the other side of the heat exchanger, and said projection is received within said receptacle to mount said sensor to the heat exchanger.
2. The apparatus of claim 1 wherein said projection has a length that is greater than the width of the heat exchanger.
3. The apparatus of claim 1 wherein said attachment member includes at least two, spaced-apart projections.
4. The apparatus of claim 3 wherein said attachment member includes at least four, spaced-apart projections and said sensor case includes at least four receptacles.
5. The apparatus of claim 1 wherein said receptacle and said projection are adapted and configured to permit sliding insertion of said projection in said receptacle and discourage removal of said projection from said receptacle.
6. The apparatus of claim 1 wherein said projection and said receptacle are adapted and configured to lock together in interference when said projection is inserted into said receptacle.
7. The apparatus of claim 6 wherein there are no means provided for externally unlocking said projection from said receptacle.
8. The apparatus of claim 1 wherein said projection includes a spring which couples with said receptacle to prevent removal of said projection from said receptacle without damaging at least one of said projection or said receptacle.
9. The apparatus of claim 1 wherein said receptacle includes a spring which couples with said projection to prevent removal of said projection from said receptacle without damaging at least one of said projection or said receptacle.
10. The apparatus of claim 1 wherein said projection includes a free end and a first interfering ledge proximate the free end and extending away from said projection, said sensor case includes a second interfering ledge, and said first interfering ledge and said second interfering ledge are in contact with each other to prevent removal of said projection from said receptacle.
11. The apparatus of claim 1 wherein said projection is electrically conductive.
12. The apparatus of claim 1 wherein said sensor provides a signal corresponding to continuity in an electrical path which includes said attachment member.
13. The apparatus of claim 1 wherein said sensor is a circuit board mounted within said sensor case, said circuit board includes a first electrical contact and a second electrical contact, and said circuit board provides a signal corresponding to electrical continuity in a circuit path from the first electrical contact to the second electrical contact and including said attachment member.
14. The apparatus of claim 1 which further includes means for providing evidence of tampering if said sensor is removed from the heat exchanger.
15. The apparatus of claim 14 wherein said means for providing evidence is a permanent deformation of one of said attachment member or said sensor case.
16. The apparatus of claim 14 wherein said means for providing evidence is a change in electrical continuity sensed by said sensor.
17. The apparatus of claim 1 which further comprises means for urging said attachment member away from said sensor case when said sensor is mounted to the heat exchanger.
18. The apparatus of claim 17 wherein said urging means is a resilient pad attached to one of said attachment case or said sensor case.
19. The apparatus of claim 17 wherein said urging means is a compressible surface attached to one of said attachment case or said sensor case.
20. The apparatus of claim 1 wherein said sensor case includes a first resilient surface, said first resilient surface being in contact with a first side of said cooling fins when said projection is received within said receptacle.
21. The apparatus of claim 20 which further comprises a resilient pad attached to said sensor case, said first resilient surface being a surface of said first resilient pad.
22. The apparatus of claim 20 which further comprises a second resilient pad attached to said attachment member and second resilient pad having a said second resilient surface being in contact with a second opposite side of said cooling fins when said projection is received within said receptacle.
23. The apparatus of claim 21 wherein there is a predetermined distance between the first resilient surface and the second resilient surface and the distance is less than the width of the cooling fins.
24. The apparatus of claim 1 wherein said attachment member and said sensor case project a first frontal area blocking the flow of air through the heat exchanger, and which further comprises an air dam attached to one of said sensor case or said attachment member, said air dam projected a second frontal area blocking the flow of air through the heat exchanger, the second frontal area being greater than the first frontal area.
25. The apparatus of claim 1 wherein one of said attachment member or said sensor case is exposed to cooling flow of the heat exchanger, and which further comprises a thermally insulative member mounted to the one of said attachment member or said sensor case to impede the cooling flow thereto.
26. A method for sensing a heat exchanger, comprising:
providing a heat exchanger with cooling fins, a sensor case having an electrical connector, and an attachment member;
inserting a portion of one of the sensor case or the attachment member through the cooling fins on a first side of the radiator;
placing the other of the sensor case or the attachment member on a second side of the radiator opposite of the first side;
coupling the portion of the sensor case to the attachment member; and.
creating a path of electrical continuity from a first contact in the sensor case through the attachment member to a second contact in the sensor case by said coupling.
27. The method of claim 26 wherein said coupling results in a tamper evident coupling.
28. The method of claim 26 wherein said coupling results in a permanent locking of the sensor case to the attachment member.
29. The method of claim 26 which further comprises providing mechanical evidence of tampering if the sensor case is detached from the attachment member.
30. The method of claim 26 which further comprises providing electrical evidence of tampering if the sensor case is detached from the attachment member.
31. The method of claim 26 which further comprises urging apart the sensor case from the attachment member after said coupling.
32. A method for sensing a heat exchanger, comprising:
providing a sensor case, an attachment clip, and a sensor mounted in the sensor case;
providing a heat exchanger with a passageway, a sensor case having an electrical connector, and an attachment member;
inserting a portion of the sensor case or the attachment clip through the passageway from a first side of the heat exchanger;
placing the other of the sensor case or the attachment clip on a second opposing side of the heat exchanger;
coupling the portion of the sensor case to the attachment clip; and
preventing the uncoupling of the sensor case to the attachment clip without damaging the sensor case or the attachment clip.
33. The method of claim 32 which further comprises urging apart the sensor case from the attachment member after said coupling and placing in tension the portion of the sensor case or the attachment clip.
34. The method of claim 32 wherein said coupling places a surface of the sensor case in contact with the object.
35. The method of claim 32 wherein said coupling results in a tamper evident coupling.
36. The method of claim 32 which further comprises creating a path of electrical continuity from a first contact in the sensor case through the attachment clip to a second contact in the sensor case by said coupling.
37. The method of claim 32 which further comprises providing an electrical signal from the sensor corresponding to said coupling
38. A method for mounting a sensor to heat exchanger, comprising:
providing a heat exchanger with cooling fins cooled by a cooling fluid, a sensor case, and an attachment member;
inserting a portion of one of the sensor case or the attachment member through the cooling fins on a first side of the radiator;
placing the other of the sensor case or the attachment member on a second side of the radiator opposite of the first side;
coupling the sensor case to the attachment member; and.
blocking the flow of cooling fluid over at least one of the sensor case or the attachment member.
39. The method of claim 38 wherein said coupling results in a tamper evident coupling.
40. The method of claim 38 which further comprises urging apart the sensor case from the attachment member after said coupling.
41. A method for mounting a sensor to heat exchanger, comprising:
providing a heat exchanger with cooling fins cooled by a cooling fluid, a sensor case, and an attachment member;
inserting a portion of one of the sensor case or the attachment member through the cooling fins on a first side of the radiator;
placing the other of the sensor case or the attachment member on a second side of the radiator opposite of the first side;
coupling the sensor case to the attachment member; and.
thermally insulating at least one of the sensor case or the attachment member from the cooling fluid.
42. The method of claim 41 wherein said coupling results in a tamper evident coupling.
43. The method of claim 41 which further comprises urging apart the sensor case from the attachment member after said coupling.
US10/898,842 2003-07-24 2004-07-26 Tamper evident connector for an engine radiator Abandoned US20050039551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/898,842 US20050039551A1 (en) 2003-07-24 2004-07-26 Tamper evident connector for an engine radiator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48971303P 2003-07-24 2003-07-24
US10/898,842 US20050039551A1 (en) 2003-07-24 2004-07-26 Tamper evident connector for an engine radiator

Publications (1)

Publication Number Publication Date
US20050039551A1 true US20050039551A1 (en) 2005-02-24

Family

ID=34197900

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/898,842 Abandoned US20050039551A1 (en) 2003-07-24 2004-07-26 Tamper evident connector for an engine radiator

Country Status (1)

Country Link
US (1) US20050039551A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058179A1 (en) * 2001-11-02 2005-03-17 Phipps Jack M. Temperature sensor with enhanced ambient air temperature detection
US20050077026A1 (en) * 2003-08-30 2005-04-14 Michael-Rainer Busch Catalytic motor vehicle radiator
US20060288968A1 (en) * 2005-06-27 2006-12-28 Control Devices, Inc. Tamper evident connector for an engine radiator
US20070171662A1 (en) * 2006-01-23 2007-07-26 Koito Manufacturing Co., Ltd. Light source module
US20090151449A1 (en) * 2007-12-18 2009-06-18 Chung Chin Huang Sensor device structure

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1529145A (en) * 1922-02-20 1925-03-10 Grover C Seymour Receptacle closure
US1596773A (en) * 1925-04-18 1926-08-17 Chester A Spotz Closure for paste tubes and the like
US3178944A (en) * 1962-06-01 1965-04-20 Jack C Templeton Air pressure gage for railroad train lines
US3534352A (en) * 1967-06-23 1970-10-13 Stewart Warner Corp Coolant sensing apparatus
US3694804A (en) * 1969-06-11 1972-09-26 Thomas Electronics Ltd Coolant level detector for engine cooling system
US4095176A (en) * 1976-10-06 1978-06-13 S.A Texaco Belgium N.V. Method and apparatus for evaluating corrosion protection
US4110740A (en) * 1976-02-09 1978-08-29 Nippon Soken, Inc. Liquid level detecting apparatus
US4135186A (en) * 1977-02-23 1979-01-16 Hitachi, Ltd. Liquid level detecting apparatus
US4147596A (en) * 1977-12-30 1979-04-03 Texas Instruments Incorporated Method and apparatus for monitoring the effectiveness of corrosion inhibition of coolant fluid
US4177934A (en) * 1975-10-04 1979-12-11 Mauser Kommandit-Gesellschaft Container and lid
US4301440A (en) * 1978-12-05 1981-11-17 Nissan Motor Co., Ltd. Level detecting device
US4662232A (en) * 1985-09-26 1987-05-05 Texas Instruments Incorporated Coolant condition sensor apparatus
US4826379A (en) * 1988-02-16 1989-05-02 Connectron, Inc. Push nuts and push-nut fasteners
US4911594A (en) * 1989-06-21 1990-03-27 Trw Inc. Push-nut type fastener
US5051671A (en) * 1990-10-01 1991-09-24 Hired Hand Manufacturing, Inc. Proximity sensor and control
US5257648A (en) * 1991-03-29 1993-11-02 American Brass & Aluminum Foundry Company, Inc. Pressure testing of tubular fitting installed to a ported wall
US5299447A (en) * 1992-07-13 1994-04-05 Ford Motor Company Air flow manifold system for providing two different mass air flow rates to a mass air flow sensor production calibration station
US5720556A (en) * 1995-02-02 1998-02-24 Keystone Thermometrics Corporation Temperature sensor probe
US5833422A (en) * 1996-07-29 1998-11-10 Topy Fasteners, Ltd. Push nut
US5897281A (en) * 1996-07-22 1999-04-27 Topy Fasteners, Ltd. Push nut and method for producing the same
US5918292A (en) * 1997-07-31 1999-06-29 Smith; William L. Right angle sensor
US6128967A (en) * 1999-04-20 2000-10-10 Seh America, Inc. Level transmitter connector
US6463818B1 (en) * 2000-04-04 2002-10-15 International Truck Intellectual Property Company, L.L.C. High retention force anti-lock brake sensor clip
US6497158B1 (en) * 1999-05-12 2002-12-24 Siemens Vdo Automotive Inc. Push on sensor attachment arrangement
US6506605B1 (en) * 2000-05-26 2003-01-14 Engelhard Corporation System for sensing catalyst coating loss and efficiency

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1529145A (en) * 1922-02-20 1925-03-10 Grover C Seymour Receptacle closure
US1596773A (en) * 1925-04-18 1926-08-17 Chester A Spotz Closure for paste tubes and the like
US3178944A (en) * 1962-06-01 1965-04-20 Jack C Templeton Air pressure gage for railroad train lines
US3534352A (en) * 1967-06-23 1970-10-13 Stewart Warner Corp Coolant sensing apparatus
US3694804A (en) * 1969-06-11 1972-09-26 Thomas Electronics Ltd Coolant level detector for engine cooling system
US4177934A (en) * 1975-10-04 1979-12-11 Mauser Kommandit-Gesellschaft Container and lid
US4110740A (en) * 1976-02-09 1978-08-29 Nippon Soken, Inc. Liquid level detecting apparatus
US4095176A (en) * 1976-10-06 1978-06-13 S.A Texaco Belgium N.V. Method and apparatus for evaluating corrosion protection
US4135186A (en) * 1977-02-23 1979-01-16 Hitachi, Ltd. Liquid level detecting apparatus
US4147596A (en) * 1977-12-30 1979-04-03 Texas Instruments Incorporated Method and apparatus for monitoring the effectiveness of corrosion inhibition of coolant fluid
US4301440A (en) * 1978-12-05 1981-11-17 Nissan Motor Co., Ltd. Level detecting device
US4662232A (en) * 1985-09-26 1987-05-05 Texas Instruments Incorporated Coolant condition sensor apparatus
US4826379A (en) * 1988-02-16 1989-05-02 Connectron, Inc. Push nuts and push-nut fasteners
US4911594A (en) * 1989-06-21 1990-03-27 Trw Inc. Push-nut type fastener
US5051671A (en) * 1990-10-01 1991-09-24 Hired Hand Manufacturing, Inc. Proximity sensor and control
US5257648A (en) * 1991-03-29 1993-11-02 American Brass & Aluminum Foundry Company, Inc. Pressure testing of tubular fitting installed to a ported wall
US5299447A (en) * 1992-07-13 1994-04-05 Ford Motor Company Air flow manifold system for providing two different mass air flow rates to a mass air flow sensor production calibration station
US5720556A (en) * 1995-02-02 1998-02-24 Keystone Thermometrics Corporation Temperature sensor probe
US5897281A (en) * 1996-07-22 1999-04-27 Topy Fasteners, Ltd. Push nut and method for producing the same
US5833422A (en) * 1996-07-29 1998-11-10 Topy Fasteners, Ltd. Push nut
US5918292A (en) * 1997-07-31 1999-06-29 Smith; William L. Right angle sensor
US6298739B1 (en) * 1997-07-31 2001-10-09 William L. Smith Right angle sensor
US6128967A (en) * 1999-04-20 2000-10-10 Seh America, Inc. Level transmitter connector
US6497158B1 (en) * 1999-05-12 2002-12-24 Siemens Vdo Automotive Inc. Push on sensor attachment arrangement
US6463818B1 (en) * 2000-04-04 2002-10-15 International Truck Intellectual Property Company, L.L.C. High retention force anti-lock brake sensor clip
US6506605B1 (en) * 2000-05-26 2003-01-14 Engelhard Corporation System for sensing catalyst coating loss and efficiency

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058179A1 (en) * 2001-11-02 2005-03-17 Phipps Jack M. Temperature sensor with enhanced ambient air temperature detection
US7001069B2 (en) * 2001-11-02 2006-02-21 Phipps Jack M Temperature sensor with enhanced ambient air temperature detection
US20050077026A1 (en) * 2003-08-30 2005-04-14 Michael-Rainer Busch Catalytic motor vehicle radiator
US20060288968A1 (en) * 2005-06-27 2006-12-28 Control Devices, Inc. Tamper evident connector for an engine radiator
US20070171662A1 (en) * 2006-01-23 2007-07-26 Koito Manufacturing Co., Ltd. Light source module
US7535727B2 (en) * 2006-01-23 2009-05-19 Koito Manufacturing Co., Ltd. Light source module
US20090151449A1 (en) * 2007-12-18 2009-06-18 Chung Chin Huang Sensor device structure

Similar Documents

Publication Publication Date Title
US11069992B2 (en) Connector part comprising a circuit board
JP6770104B2 (en) Electrical connection device using thermal coupling to a printed circuit board with a temperature sensor
JP6488393B2 (en) connector
CA2158706C (en) Improved battery holder for a printed circuit board
US20040264113A1 (en) Smart junction box for automobile
US20060288968A1 (en) Tamper evident connector for an engine radiator
US6922326B2 (en) Accumulating element module
JP4832263B2 (en) Electrical junction box
JP4046033B2 (en) Half-fitting detection structure for bus bars in electrical junction boxes for automobiles
JP5037235B2 (en) Electrical junction box
KR101119480B1 (en) Device for thermal coupling
US20220181732A1 (en) Battery cell macromodule housing, contacting device for a battery cell macromodule housing, housing cover for a contacting device for a battery cell macromodule housing and a battery cell macromodule
US20050039551A1 (en) Tamper evident connector for an engine radiator
WO2020259173A1 (en) Battery module and device
JPH0737272Y2 (en) Attachment mounting structure
JP2004342408A (en) Connector for sheet-shape conductive path
KR20050018831A (en) Heater for vehicles using Positive Temperature Coefficient thermistor heating elements
US20080117591A1 (en) Electric connection box
CN210074317U (en) Plug-in connector with circuit board
US20040077214A1 (en) Electrical connection bulkhead header
JP2004177346A (en) Gas sensor
CN214754333U (en) Novel connector
CN220324250U (en) Novel structure of thermistor universal module
CN219416482U (en) Temperature detection module and temperature acquisition device
CN218849936U (en) Signal connector prevent condensation structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONROL DEVICES D/B/A FIRST TECHNOLOGY INC., MAINE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHUTE, ERIC;DAMIAN, KEVIN;REEL/FRAME:015280/0173

Effective date: 20040824

AS Assignment

Owner name: CONTROL DEVICES D/B/A/ FIRST TECHNOLOGY INC., MAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHUTE, ERIC;DAMIAN, KEVIN;REEL/FRAME:015669/0820

Effective date: 20040824

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION