US20040247553A1 - Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same - Google Patents

Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same Download PDF

Info

Publication number
US20040247553A1
US20040247553A1 US10/885,608 US88560804A US2004247553A1 US 20040247553 A1 US20040247553 A1 US 20040247553A1 US 88560804 A US88560804 A US 88560804A US 2004247553 A1 US2004247553 A1 US 2004247553A1
Authority
US
United States
Prior art keywords
composition according
chosen
composition
monosaccharides
carbon chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/885,608
Inventor
David Cannell
Nghi Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOreal SA
Original Assignee
LOreal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOreal SA filed Critical LOreal SA
Priority to US10/885,608 priority Critical patent/US20040247553A1/en
Publication of US20040247553A1 publication Critical patent/US20040247553A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8135Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers, e.g. vinyl esters (polyvinylacetate)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8176Homopolymers of N-vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8194Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • the present invention relates to compositions, kits comprising these compositions, and methods for using these compositions for durable non-permanent shaping or for durable retention of a non-permanent shape of at least one keratinous fiber, including human keratinous fibers, by applying to the at least one keratinous fiber compositions which comprise at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain, and, in certain embodiments, at least one film forming agent different from the at least one compound, and heating the at least one keratinous fiber.
  • These compositions may both impart a durable non-permanent shape to the at least one keratinous fiber and durably retain a non-permanent shape of the at least one keratinous fiber.
  • non-permanent hairstyles that is, those styles obtained via non-permanent shaping of the hair.
  • non-permanent styles disappear when the hair is wetted, especially when the hair is washed with water and/or shampoo.
  • Methods for non-permanent shaping of keratinous fibers include, for example, brushing, teasing, braiding, the use of hair rollers, and heat styling, optionally with a commercially available styling product.
  • heat styling include blow drying, crimping and curling methods using elevated temperatures (such as, for example, setting hair in curlers and heating, and curling with a curling iron and/or hot rollers).
  • compositions and methods may provide for non-permanent shaping of keratinous fibers
  • many consumers desire a higher degree of styling than most commercially available products and methods employing these products provide.
  • many consumers desire compositions and methods that improve non-permanent curl formation.
  • compositions and methods for non-permanent shaping of keratinous fibers that result in a higher degree of styling, such as non-permanent curl formation.
  • compositions and methods for retaining a particular non-permanent shape or style of keratinous fibers such as hair.
  • a common way to retain a particular hairstyle is with the use of a hairspray, typically applied after styling the hair.
  • Other methods to retain a hairstyle or shape of keratinous fibers include the use of mousses, gels, and lotions.
  • the materials in these compositions are generally film forming agents, resins, gums, and/or adhesive polymers.
  • compositions and methods may provide for non-permanent shaping of keratinous fibers
  • many consumers desire compositions and methods for durable retention of a particular non-permanent shape or style of keratinous fibers such as hair, such as, for example, those that hold or maintain a shape of a keratinous fiber until the keratinous fiber is washed with water and/or shampoo.
  • many consumers desire compositions and methods that allow hair to retain a particular shape longer than untreated hair, even after washing or shampooing the hair.
  • compositions may provide temporary setting benefits
  • many consumers desire a higher level of retention or hold.
  • Good holding power is one attribute a consumer looks for in styling products for keratinous fibers. Specifically, curl retention under conditions of changing humidity, for example changes to a higher humidity, is sought after by the consumer. Further, good curl retention in damaged hair is important to the consumer since the hair fiber has been weakened and will be less likely to maintain the curl. Therefore, there is also a need for methods for durably retaining a shape of keratinous fibers even under conditions of high humidity, such as at atmospheric humidity above 40%.
  • sugars and sugar derivatives are one class of the countless number of compounds that have been added to hair care compositions.
  • Documented uses of sugars in hair care compositions include: the use of glucose to improve the tactile and elastic properties of natural hair (Hollenberg and Mueller, SOFW J. 121(2) (1995)); the use of glucose for hair damage prophylaxis and damaged hair repair (Hollenberg & Matzik, Seifen, Oele, Fette, Wachase 117(1) (1991)); the use of glucose in shampoos (J04266812, assigned to Lion Corp.); the use of trehalose for moisture retention (J06122614, assigned to Shiseido Co. Ltd.); a composition for the lanthionization of hair comprising a sugar (U.S.
  • the inventors have envisaged the application to at least one keratinous fiber of at least one composition comprising at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain.
  • compositions and methods using these compositions comprising applying to the at least one keratinous fiber at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain, and heating the at least one keratinous fiber are useful for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber.
  • the present invention in one aspect, provides a composition for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain, and at least one film forming agent different from the at least one compound, wherein the at least one compound and the at least one film forming agent are present in an amount effective to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber.
  • the composition is heat-activated.
  • the present invention is drawn to a method for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to the at least one keratinous fiber (i) at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain and (ii) at least one film forming agent different from the at least one compound; and heating the at least one keratinous fiber, wherein the at least one compound and at least one film forming agent are present in an amount effective to impart a durable non-permanent shape to the at least one at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, and further wherein the composition is applied prior to or during heating.
  • the present invention in another aspect, provides a composition for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain, wherein the at least one compound is present in an amount effective to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber.
  • the composition is heat-activated.
  • the present invention is drawn to a method for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to the at least one keratinous fiber at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain; and heating the at least one keratinous fiber, wherein the at least one compound is present in an amount effective to impart a durable non-permanent shape to the at least one at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, and further wherein the composition is applied prior to or during heating.
  • the present invention provides a kit for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compartment, wherein a first compartment comprises a first composition comprising at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain.
  • at least one compartment comprises at least one additional sugar, different from the at least one compound, and in another embodiment, at least one compartment comprises at least one film forming agent.
  • At least one means one or more and thus includes individual components as well as mixtures/combinations.
  • “Durable retention of a shape” as used herein means that, following at least six shampoos after treatment, treated hair still retains the ability to retain a particular shape after styling as compared to the ability of untreated hair to retain a particular shape after styling.
  • “Durable shaping,” as used herein, refers to holding or keeping a shape of a keratinous fiber until the keratinous fiber is washed with water and/or shampoo. Retention of a shape can be evaluated by measuring, and comparing, the ability to retain a curl under conditions of high relative humidity of the treated hair and of the untreated hair in terms of Curl Efficiency (for example, see Examples 1 and 2).
  • Heating refers to the use of elevated temperature (i.e., above 100° C.).
  • the heating in the inventive method may be provided by directly contacting the at least one keratinous fiber with a heat source, e.g., by heat styling of the at least one keratinous fiber.
  • heat styling by direct contact with the at least one keratinous fiber include flat ironing, and curling methods using elevated temperatures (such as, for example, setting hair in curlers and heating, and curling with a curling iron and/or hot rollers).
  • the heating in the inventive method may be provided by heating the at least one keratinous fiber with a heat source which may not directly contact the at least one keratinous fiber.
  • heat sources which may not directly contact the at least one keratinous fiber include blow dryers, hood dryers, heating caps and steamers.
  • a heat-activated composition refers to a composition which, for example, shapes the at least one keratinous fiber better than the same composition which is not heated during or after application of the composition.
  • Another example includes composition which retains a shape of at least one keratinous fiber better than the same composition which is not heated during or after application.
  • High humidity refers to atmospheric humidity above 40%.
  • Keratinous fibers as defined herein may be human keratinous fibers, and may be chosen from, for example, hair.
  • Non-permanent shaping of keratinous fibers refers to a method of setting keratinous fibers in a particular shape or style which does not comprise breaking and reforming disulfide bonds within a keratinous fiber.
  • Non-permanent shape of keratinous fibers refers a shape or style of keratinous fibers obtained without breaking and reforming disulfide bonds within a keratinous fiber.
  • Oleaccharides refers to compounds generally comprising from two to ten monosaccharide units, which may be identical or different, bonded together.
  • Polysaccharides as defined herein refers to compounds generally comprising greater than ten monosaccharide units, which may be identical or different, bonded together.
  • Polymers as defined herein comprise copolymers (including terpolymers) and homopolymers.
  • these compounds may impart to the at least one keratinous fiber an ability to retain a particular style even after shampooing the at least one keratinous fiber subsequent to treatment with a composition comprising at least one such compound. This is particularly true when the compounds are applied to the hair, and then the hair is heated.
  • the invention provides compositions for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising (i) at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain and, optionally, (ii) at least one film forming agent, wherein the at least one compound and, optionally, the at least one film forming agent are present in an amount effective either to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, depending on the embodiment.
  • the composition is heat-activated.
  • the composition both imparts a durable non-permanent shape to the at least one keratinous fiber and durably retains a non-permanent shape of the at least one keratinous fiber.
  • the composition may further comprise at least one additional sugar.
  • the present invention also provides methods for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to the at least one keratinous fiber a composition comprising (i) at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain and, optionally, (ii) at least one film forming agent; and heating the at least one keratinous fiber.
  • the composition may be applied prior to or during heating.
  • the at least one compound and, optionally, the at least one film forming agent are present in an amount effective either to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, depending on the embodiment.
  • the composition both imparts a durable non-permanent shape to the at least one keratinous fiber and durably retains a non-permanent shape of the at least one keratinous fiber.
  • the composition may further comprise at least one additional sugar.
  • the at least one compound may be used in conjunction with at least one film-forming agent, such as, for example, film forming polymers and resins.
  • the film forming polymers may be chosen from cationic polymers, anionic polymers and nonionic polymers.
  • Non-limiting examples of the at least one film forming agent are those listed at pages 1744 to 1747 of the CTFA International Cosmetic Ingredient Dictionary, 8 th edition (2000).
  • the at least one film forming agent may be chosen from water soluble compounds, oil soluble compounds and compounds soluble in organic solvents.
  • the at least one film forming agent may be present in an amount generally ranging from 0.01% to 30% of active material by weight relative to the total weight of the composition, such as from 0.1% to 10% of active material by weight.
  • the at least one film forming agent according to the present invention may be commercially available, and may come from suppliers in the form of a dilute solution. The amounts of the at least one film forming agent disclosed herein therefore reflect the weight percent of active material.
  • Non-limiting examples of the at least one film forming agent are those disclosed in WO 01/18096, the disclosure of which is incorporated herein by reference.
  • Other non-limiting examples of the at least one film forming agent include copolymers derived from (i) at least one vinyl monomer comprising at least one quaternary ammonium group and (ii) at least one additional monomer chosen from acrylamide, methacrylamide, alkyl acrylamides, dialkyl acrylamides, alkyl methacrylamides, dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, vinyl pyrrolidone, vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol, and ethylene glycol.
  • At least one film forming agent include:
  • N-octylacrylamide/methyl methacrylate/hydroxypropyl methacrylate/acrylic acid/tert-butylamino-ethyl methacrylate copolymers such as those sold by NATIONAL STARCH under the name “AMPHOMER LV-71”;
  • corn starch/polyvinylpyrrolidone copolymers such as Corn Starch Modified sold by National Starch and Chemicals under the name Amaize®;
  • vinylpyrrolidone/vinyl acetate copolymers such as those sold by BASF under the name “LUVISKOL VA 64 Powder”;
  • vinyl acetate/crotonic acid/vinyl neodecanoate terpolymers such as those sold by NATIONAL STARCH under the name “RESYN® 28-2930”;
  • acrylic acid/ethyl acrylate/N-tert-butylacrylamide terpolymers such as those sold by BASF under the name “ULTRA-HOLD 8”;
  • acrylic acid/acrylates/hydroxyacrylates/succinic acid copolymers such as Acrylates/C1-2 succinates hydroxyacrylates copolymer sold by ISP as ALLIANZ LT-120;
  • vinyl acetate/crotonic acid (90/10) copolymers such as those sold by BASF under the name “LUVISET CA 66”;
  • acrylic acid/methacrylic acid/acrylates/methacrylates copolymers such as Acrylates Copolymer sold by Amerchol Corp. (Edison, N.J., USA); and
  • vinylcaprolactam/vinylpyrrolidone/dimethylamino ethyl methacrylate copolymers such as those sold by GAF under the name “POLYMER ACP-1018”.
  • At least one film forming agent include:
  • copolymers derived from (i) 1-vinyl-2-pyrrolidone and (ii) 1-vinyl-3-methylimidazolium salt (CTFA designation: polyquaternium-16), which is commercially available from BASF Corporation under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370);
  • copolymers derived from (i) vinylpyrrolidone and (ii) quaternized imidazoline monomers (CTFA designation: polyquaternium-44), which is commercially available from BASF;
  • copolymers derived from (i) 1-vinyl-2-pyrrolidone and (ii) 1-vinyl-3-methylimidazolium salt (CTFA designation: polyquaternium-16), which is commercially available from BASF Corporation under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370);
  • CTFA designation polyquaternium-6
  • copolymers derived from (i) dimethyldiallylammonium chloride and (ii) sodium acrylate (CTFA designation: Polyquaternium-22);
  • terpolymers derived from (i) dimethyldiallylammonium chloride, (ii) acrylic amide and (iii) sodium acrylate (CTFA designation: Polyquaternium-39).
  • the at least one film forming agent include derivatives of polysaccharide polymers such as cationic cellulose derivatives, for example, cationic cellulose, which is available from Amerchol Corp. (Edison, N.J., USA) in their Polymer JRTM, LRTM and SRTM series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide (CTFA designation: polyquaternium-10); polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide (CTFA designation: polyquaternium-24), which is available from Amerchol Corp. (Edison, N.J., USA) under the tradename Polymer LM-200TM; and cationic starch and derivatives thereof, such as quaternary starch, which is available from Croda.
  • polysaccharide polymers such as cationic cellulose derivatives,
  • the at least one film forming agent is chosen from cationic polymers such as polyquaternium-16, polyquaternium-46, and polyquaternium-44.
  • the at least one film forming agent is chosen from nonionic polymers such as polymers derived from (1) corn starch and (2) polyvinylpyrrolidone; and copolymers derived from (1) vinyl acetate and (2) vinylpyrrolidone.
  • the at least one film forming agent is chosen from anionic polymers such as polymers derived from (1) vinyl acetate, (2) crotonic acid and (3) vinyl neodecanoate, polymers derived from (1) acrylic acid, (2) acrylates, (3) hydroxyacrylates and (4) succinic acid, and polymers derived from at least two monomers chosen from acrylic acid, methacrylic acid, esters of acrylic acid and esters of methacrylic acid.
  • anionic polymers such as polymers derived from (1) vinyl acetate, (2) crotonic acid and (3) vinyl neodecanoate, polymers derived from (1) acrylic acid, (2) acrylates, (3) hydroxyacrylates and (4) succinic acid, and polymers derived from at least two monomers chosen from acrylic acid, methacrylic acid, esters of acrylic acid and esters of methacrylic acid.
  • the at least one film forming agent chosen from anionic polymers can be neutralized in order to render the anionic polymers soluble.
  • the C 3 to C 5 monosaccharides according to the present invention may be chosen from any triose, tetrose and pentose. Further, the C 3 to C 5 monosaccharides can be chosen from the D-form, L-form and mixtures of any of the foregoing.
  • Non-limiting examples of C 3 to C 5 monosaccharides include aldopentoses (such as xylose, arabinose, lyxose, and ribose), ketopentoses (such as ribulose and xylulose), aldotetroses (such as erythrose and treose), ketotetroses (such as erythrulose), aldotrioses (such as glyceraldehyde) and ketotrioses (such as dihydroxyacetone).
  • the C 3 to C 5 monosaccharides may be chosen from C 3 to C 5 monosaccharides comprising aldehyde groups (aldoses), furanoses and other ring structures.
  • the C 3 to C 5 monosaccharides may be further substituted with at least one group different from the C 1 to C 22 carbon chain.
  • Derivatives of C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain may be used as the at least one compound of the present invention.
  • ammonias or primary amines may react with the aldehyde or ketone group of a sugar to form an imine derivative (i.e., a compound containing the functional group C ⁇ N).
  • imine compounds are sometimes also referred to as Schiff bases.
  • Other non-limiting examples of derivatives of C 3 to C 5 monosaccharides are hemiacetal derivatives of C 3 to C 5 monosaccharides, hemiketal derivatives of C 3 to C 5 monosaccharides and any oxidized derivatives of C 3 to C 5 monosaccharides.
  • C 3 to C 5 monosaccharides may also include, but are not limited to, oligosaccharides derived from C 3 to C 5 monosaccharides, such as xylobiose.
  • the at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain may be further substituted with at least one group different from the at least one C 1 to C 22 carbon chain.
  • the derivatives of C 3 to C 5 monosaccharides may be further substituted with at least one group different from the at least one C 1 to C 22 carbon chain.
  • the at least one C 1 to C 22 carbon chain may be chosen from linear, branched and cyclic C 1 to C 22 carbon chains, which are saturated or unsaturated.
  • the at least one C 1 to C 22 carbon chain may optionally be substituted.
  • the at least one C 1 to C 22 carbon chain is chosen from C 16 to C 18 carbon chains.
  • the at least one C 1 to C 22 carbon chain is chosen from C 16 carbon chains and C 18 carbon chains.
  • Non-limiting examples of C 16 carbon chains are linear hexadecyl chains, and non-limiting examples of C 18 carbon chains are linear octadecyl chains.
  • the C 3 to C 5 monosaccharides may be substituted with the at least one C 1 to C 22 carbon chain at any position on the sugar.
  • a C 3 to C 5 monosaccharide is substituted with at least one C 1 to C 22 carbon chain at the C1 position of the C 3 to C 5 monosaccharide.
  • a C 3 to C 5 monosaccharide is substituted with the at least one C 1 to C 22 carbon chain at at least one of the hydroxyl groups of the C 3 to C 5 monosaccharide.
  • substituted at at least one of the hydroxyl groups of a C 3 to C 5 monosaccharide means at least one of substitution on the hydroxyl group itself (i.e., formation of an ether linkage between the C 3 to C 5 monosaccharide and the C 1 to C 22 carbon chain) and substitution on the carbon atom to which the hydroxyl group is commonly bonded.
  • the C 3 to C 5 monosaccharides may be substituted with the at least one C 1 to C 22 carbon chain at a carbon atom bearing no hydroxyl groups (i.e., a CH 2 within the C 3 to C 5 monosaccharide or a carbon atom within the C 3 to C 5 monosaccharide bearing substituents other than a hydroxyl group).
  • the C 3 to C 5 monosaccharides may be further substituted with at least one substituent different from the at least one C 1 to C 22 carbon chain.
  • the at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain is present in the composition in an amount generally ranging from 0.01% to 10% by weight relative to the total weight of the composition, such as from 0.1% to 5% by weight.
  • compositions of the present invention as well as those of the inventive methods may further comprise at least one additional sugar which is different from the at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain.
  • the at least one additional sugar may, for example, aid in moisture retention.
  • the effectiveness of a sugar in aiding in moisture retention may be measured by monitoring a DSC peak at a temperature ranging from 75° C. to 200° C.
  • the at least one additional sugar may be chosen from any sugar, carbohydrate and carbohydrate moiety.
  • Non-limiting examples of the at least one additional sugar are monosaccharides, which include, but are not limited to, three to seven carbon sugars such as pentoses (for example, ribose, arabinose, xylose, lyxose, ribulose, and xylulose) and hexoses (for example, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, sorbose, psicose, fructose, and tagatose); oligosaccharides such as disaccharides (such as maltose, sucrose, cellobiose, trehalose and lactose); and polysaccharides such as starch, dextrins, cellulose and glycogen.
  • the at least one additional sugar of the invention are chosen from any aldoses and ketoses
  • the at least one additional sugar may be substituted or unsubstituted.
  • the at least one additional sugar may be substituted with at least one C 1 to C 22 carbon chain.
  • the at least one C 1 to C 22 carbon chain is chosen from linear, branched and cyclic C 1 to C 22 carbon chains, which are saturated or unsaturated.
  • the at least one C 1 to C 22 carbon chain may be chosen from C 16 to C 18 carbon chains (such as C 16 carbon chains and C 18 carbon chains).
  • C 16 carbon chains may be chosen from linear hexadecyl chains and C 18 carbon chains may be chosen from linear octadecyl chains.
  • the at least one additional sugar is substituted with at least one C 1 to C 22 carbon chain at the C1 position of the at least additional one sugar.
  • the at least one additional sugar is present in the composition in an amount generally ranging from 0.01% to 10% by weight relative to the total weight of the composition, such as from 0.1% to 5% by weight.
  • compositions of the present invention as well as those of the inventive methods may be in the form of a liquid, an oil, a paste, a stick, a dispersion, an emulsion, a lotion, a gel, or a cream. Further, these compositions may further comprise at least one suitable additive chosen from additives commonly used in compositions for keratinous fibers.
  • Non-limiting examples of the at least one suitable additive include anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, fragrances, penetrating agents, antioxidants, sequestering agents, opacifying agents, solubilizing agents, emollients, colorants, screening agents (such as sunscreens and UV filters), preserving agents, proteins, vitamins, silicones, polymers such as thickening polymers, plant oils, mineral oils, synthetic oils and any other additive conventionally used in compositions for the care and/or treatment of keratinous fibers.
  • compositions of the present invention and those used in the methods of the present invention may also be provided as one-part compositions comprising at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain and, optionally, at least one additional sugar, and further, optionally at least one film forming agent, or in the form of a multi-component treatment or kit.
  • the skilled artisan based on the stability of the composition and the application envisaged, will be able to determine how the composition and/or multicomponent compositions should be stored and mixed.
  • simple sugars such as C 3 to C 5 monosaccharides are known to be stable at pH levels ranging from 4 to 9. In compositions where the pH range is below or above these levels, the sugars would be stored separately and added to the composition only at the time of application.
  • the present invention also relates to a kit for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compartment, wherein a first compartment comprises a first composition comprising at least one compound chosen from C 3 to C 5 monosaccharides substituted with at least one C 1 to C 22 carbon chain.
  • the first composition further comprises at least one additional sugar, different from the at least one compound, while in another embodiment, the first composition further comprises at least one film forming agent.
  • the at least one compound suitable for the present invention is a mixture of pentoses substituted with at least one C 1 to C 22 carbon chain.
  • XYLIANCE brand modified pentoses is a blend of hexadecyl glycosides and octadecyl glycosides wherein the glycosides comprise D-xylosides, L-arabinosides, and D-glucosides.
  • XYLIANCE may be obtained from Soliance, Route de Bazancourt-51110 Pomacle, France.
  • L o represents the original length of fully extended hair
  • L t represents the length of the hair after 1 hour in the humidity chamber
  • L o represents the original length of fully extended hair
  • L t represents the length of the hair at time t in the humidity chamber
  • L i represents the initial length of the hair at time 0 in the humidity chamber (i.e., after styling with a curling iron for 30 seconds)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

Compositions, optionally heat-activated, methods and kits for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to keratinous fibers a composition comprising at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, and heating the keratinous fibers.

Description

  • The present invention relates to compositions, kits comprising these compositions, and methods for using these compositions for durable non-permanent shaping or for durable retention of a non-permanent shape of at least one keratinous fiber, including human keratinous fibers, by applying to the at least one keratinous fiber compositions which comprise at least one compound chosen from C[0001] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, and, in certain embodiments, at least one film forming agent different from the at least one compound, and heating the at least one keratinous fiber. These compositions may both impart a durable non-permanent shape to the at least one keratinous fiber and durably retain a non-permanent shape of the at least one keratinous fiber.
  • In today's market, many consumers prefer the flexibility of non-permanent hairstyles, that is, those styles obtained via non-permanent shaping of the hair. Typically, such non-permanent styles disappear when the hair is wetted, especially when the hair is washed with water and/or shampoo. Methods for non-permanent shaping of keratinous fibers include, for example, brushing, teasing, braiding, the use of hair rollers, and heat styling, optionally with a commercially available styling product. Non-limiting examples of heat styling include blow drying, crimping and curling methods using elevated temperatures (such as, for example, setting hair in curlers and heating, and curling with a curling iron and/or hot rollers). [0002]
  • While such compositions and methods may provide for non-permanent shaping of keratinous fibers, many consumers desire a higher degree of styling than most commercially available products and methods employing these products provide. For example, many consumers desire compositions and methods that improve non-permanent curl formation. There is a need, therefore, for compositions and methods for non-permanent shaping of keratinous fibers that result in a higher degree of styling, such as non-permanent curl formation. [0003]
  • Further, many people desire compositions and methods for retaining a particular non-permanent shape or style of keratinous fibers such as hair. A common way to retain a particular hairstyle is with the use of a hairspray, typically applied after styling the hair. Other methods to retain a hairstyle or shape of keratinous fibers include the use of mousses, gels, and lotions. The materials in these compositions are generally film forming agents, resins, gums, and/or adhesive polymers. [0004]
  • While such compositions and methods may provide for non-permanent shaping of keratinous fibers, many consumers desire compositions and methods for durable retention of a particular non-permanent shape or style of keratinous fibers such as hair, such as, for example, those that hold or maintain a shape of a keratinous fiber until the keratinous fiber is washed with water and/or shampoo. Further, many consumers desire compositions and methods that allow hair to retain a particular shape longer than untreated hair, even after washing or shampooing the hair. [0005]
  • Thus, while commercially available compositions may provide temporary setting benefits, many consumers desire a higher level of retention or hold. Good holding power is one attribute a consumer looks for in styling products for keratinous fibers. Specifically, curl retention under conditions of changing humidity, for example changes to a higher humidity, is sought after by the consumer. Further, good curl retention in damaged hair is important to the consumer since the hair fiber has been weakened and will be less likely to maintain the curl. Therefore, there is also a need for methods for durably retaining a shape of keratinous fibers even under conditions of high humidity, such as at atmospheric humidity above 40%. [0006]
  • Sugars and sugar derivatives are one class of the countless number of compounds that have been added to hair care compositions. Documented uses of sugars in hair care compositions include: the use of glucose to improve the tactile and elastic properties of natural hair (Hollenberg and Mueller, [0007] SOFW J. 121(2) (1995)); the use of glucose for hair damage prophylaxis and damaged hair repair (Hollenberg & Matzik, Seifen, Oele, Fette, Wachase 117(1) (1991)); the use of glucose in shampoos (J04266812, assigned to Lion Corp.); the use of trehalose for moisture retention (J06122614, assigned to Shiseido Co. Ltd.); a composition for the lanthionization of hair comprising a sugar (U.S. Pat. Nos. 5,348,737 and 5,641,477, assigned to Avlon Ind. Inc.); the incorporation of xylobiose into cosmetic compositions to provide enhanced moisture retention and reduce excessive roughness and dryness of the skin and hair (U.S. Pat. No. 5,660,838, assigned to Suntory Ltd.); a composition for the regeneration of hair split-ends that contains at least one mono- or di-saccharide (U.S. Pat. No. 4,900,545, assigned to Henkel); hair care compositions to improve hair strength, hold and volume that contain C5 to C6 carbohydrates such as glucose; the use of fucose in a hair treatment to prevent split ends (DE29709853, assigned to Goldwell GMBH); and the use of saccharides in a shampoo to improve combing properties and control hair damage (J09059134, assigned to Mikuchi Sangyo KK).
  • In essence, sugars have been applied to hair for countless reasons from moisturizing to enhancing hair growth (J10279439, assigned to Kureha Chem. Ind. Co. Ltd.). Clearly, however, not all sugars are the same and not all sugars impart the same properties when applied to a keratinous fiber. [0008]
  • The inventors have envisaged the application to at least one keratinous fiber of at least one composition comprising at least one compound chosen from C[0009] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain. In particular, the inventors have discovered that compositions and methods using these compositions comprising applying to the at least one keratinous fiber at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, and heating the at least one keratinous fiber are useful for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber.
  • Thus, to achieve at least one of these and other advantages, the present invention, in one aspect, provides a composition for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compound chosen from C[0010] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, and at least one film forming agent different from the at least one compound, wherein the at least one compound and the at least one film forming agent are present in an amount effective to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber. In one embodiment, the composition is heat-activated.
  • In another embodiment, the present invention is drawn to a method for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to the at least one keratinous fiber (i) at least one compound chosen from C[0011] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain and (ii) at least one film forming agent different from the at least one compound; and heating the at least one keratinous fiber, wherein the at least one compound and at least one film forming agent are present in an amount effective to impart a durable non-permanent shape to the at least one at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, and further wherein the composition is applied prior to or during heating.
  • The present invention, in another aspect, provides a composition for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compound chosen from C[0012] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, wherein the at least one compound is present in an amount effective to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber. In one embodiment, the composition is heat-activated.
  • In another embodiment, the present invention is drawn to a method for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to the at least one keratinous fiber at least one compound chosen from C[0013] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain; and heating the at least one keratinous fiber, wherein the at least one compound is present in an amount effective to impart a durable non-permanent shape to the at least one at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, and further wherein the composition is applied prior to or during heating.
  • In yet another embodiment, the present invention provides a kit for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compartment, wherein a first compartment comprises a first composition comprising at least one compound chosen from C[0014] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain. In one embodiment, at least one compartment comprises at least one additional sugar, different from the at least one compound, and in another embodiment, at least one compartment comprises at least one film forming agent.
  • Certain terms used herein are defined below: [0015]
  • “At least one” as used herein means one or more and thus includes individual components as well as mixtures/combinations. [0016]
  • “Durable retention of a shape” as used herein means that, following at least six shampoos after treatment, treated hair still retains the ability to retain a particular shape after styling as compared to the ability of untreated hair to retain a particular shape after styling. [0017]
  • “Durable shaping,” as used herein, refers to holding or keeping a shape of a keratinous fiber until the keratinous fiber is washed with water and/or shampoo. Retention of a shape can be evaluated by measuring, and comparing, the ability to retain a curl under conditions of high relative humidity of the treated hair and of the untreated hair in terms of Curl Efficiency (for example, see Examples 1 and 2). [0018]
  • “Heating” refers to the use of elevated temperature (i.e., above 100° C.). In one embodiment, the heating in the inventive method may be provided by directly contacting the at least one keratinous fiber with a heat source, e.g., by heat styling of the at least one keratinous fiber. Non-limiting examples of heat styling by direct contact with the at least one keratinous fiber include flat ironing, and curling methods using elevated temperatures (such as, for example, setting hair in curlers and heating, and curling with a curling iron and/or hot rollers). In another embodiment, the heating in the inventive method may be provided by heating the at least one keratinous fiber with a heat source which may not directly contact the at least one keratinous fiber. Non-limiting examples of heat sources which may not directly contact the at least one keratinous fiber include blow dryers, hood dryers, heating caps and steamers. [0019]
  • “A heat-activated” composition, as used herein, refers to a composition which, for example, shapes the at least one keratinous fiber better than the same composition which is not heated during or after application of the composition. Another example includes composition which retains a shape of at least one keratinous fiber better than the same composition which is not heated during or after application. [0020]
  • “High humidity” as defined herein refers to atmospheric humidity above 40%. [0021]
  • “Keratinous fibers” as defined herein may be human keratinous fibers, and may be chosen from, for example, hair. [0022]
  • “Non-permanent shaping” of keratinous fibers, as used herein, refers to a method of setting keratinous fibers in a particular shape or style which does not comprise breaking and reforming disulfide bonds within a keratinous fiber. [0023]
  • “Non-permanent shape” of keratinous fibers, as used herein, refers a shape or style of keratinous fibers obtained without breaking and reforming disulfide bonds within a keratinous fiber. [0024]
  • “Oligosaccharides” as defined herein refers to compounds generally comprising from two to ten monosaccharide units, which may be identical or different, bonded together. [0025]
  • “Polysaccharides” as defined herein refers to compounds generally comprising greater than ten monosaccharide units, which may be identical or different, bonded together. [0026]
  • “Polymers” as defined herein comprise copolymers (including terpolymers) and homopolymers. [0027]
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Reference will now be made in detail to exemplary embodiments of the present invention. [0028]
  • As described above, sugars have been used in hair care compositions and other treatments for their moisture retaining properties. However, it was unexpectedly discovered by the present inventors that, in addition to retaining moisture, a certain class of sugars imparted a durable non-permanent shape or durable retention of a non-permanent shape or style to at least one keratinous fiber. In particular with respect to hair, compounds chosen from C[0029] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain were found to impart good curl formation to the at least one keratinous fiber, and to prevent such curls from drooping, for example, due to humidity. Further, these compounds may impart to the at least one keratinous fiber an ability to retain a particular style even after shampooing the at least one keratinous fiber subsequent to treatment with a composition comprising at least one such compound. This is particularly true when the compounds are applied to the hair, and then the hair is heated.
  • Thus, the invention provides compositions for durable non-permanent shaping of at least one keratinous fiber or durable retention of a non-permanent shape of at least one keratinous fiber comprising (i) at least one compound chosen from C[0030] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain and, optionally, (ii) at least one film forming agent, wherein the at least one compound and, optionally, the at least one film forming agent are present in an amount effective either to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, depending on the embodiment. In one embodiment, the composition is heat-activated. In another embodiment, the composition both imparts a durable non-permanent shape to the at least one keratinous fiber and durably retains a non-permanent shape of the at least one keratinous fiber. The composition may further comprise at least one additional sugar.
  • The present invention also provides methods for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber comprising applying to the at least one keratinous fiber a composition comprising (i) at least one compound chosen from C[0031] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain and, optionally, (ii) at least one film forming agent; and heating the at least one keratinous fiber. The composition may be applied prior to or during heating. Further, the at least one compound and, optionally, the at least one film forming agent are present in an amount effective either to impart a durable non-permanent shape to the at least one keratinous fiber or to durably retain a non-permanent shape of the at least one keratinous fiber, depending on the embodiment. In one embodiment, the composition both imparts a durable non-permanent shape to the at least one keratinous fiber and durably retains a non-permanent shape of the at least one keratinous fiber. The composition may further comprise at least one additional sugar.
  • According to certain embodiments of the present invention, the at least one compound may be used in conjunction with at least one film-forming agent, such as, for example, film forming polymers and resins. For example, the film forming polymers may be chosen from cationic polymers, anionic polymers and nonionic polymers. Non-limiting examples of the at least one film forming agent are those listed at pages 1744 to 1747 of the CTFA International Cosmetic Ingredient Dictionary, 8[0032] th edition (2000). In one embodiment, the at least one film forming agent may be chosen from water soluble compounds, oil soluble compounds and compounds soluble in organic solvents. According to the present invention, the at least one film forming agent may be present in an amount generally ranging from 0.01% to 30% of active material by weight relative to the total weight of the composition, such as from 0.1% to 10% of active material by weight. One of ordinary skill in the art will recognize that the at least one film forming agent according to the present invention may be commercially available, and may come from suppliers in the form of a dilute solution. The amounts of the at least one film forming agent disclosed herein therefore reflect the weight percent of active material.
  • Non-limiting examples of the at least one film forming agent are those disclosed in WO 01/18096, the disclosure of which is incorporated herein by reference. Other non-limiting examples of the at least one film forming agent include copolymers derived from (i) at least one vinyl monomer comprising at least one quaternary ammonium group and (ii) at least one additional monomer chosen from acrylamide, methacrylamide, alkyl acrylamides, dialkyl acrylamides, alkyl methacrylamides, dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, vinyl pyrrolidone, vinyl esters, vinyl alcohol, maleic anhydride, propylene glycol, and ethylene glycol. [0033]
  • Further non-limiting examples of the at least one film forming agent include: [0034]
  • vinyl acetate/vinyl tert butylbenzoate/crotonic acid terpolymers such as those described in U.S. Pat. No. 4,282,203, the disclosure of which is incorporated herein by reference; [0035]
  • N-octylacrylamide/methyl methacrylate/hydroxypropyl methacrylate/acrylic acid/tert-butylamino-ethyl methacrylate copolymers such as those sold by NATIONAL STARCH under the name “AMPHOMER LV-71”; [0036]
  • corn starch/polyvinylpyrrolidone copolymers such as Corn Starch Modified sold by National Starch and Chemicals under the name Amaize®; [0037]
  • vinylpyrrolidone/vinyl acetate copolymers such as those sold by BASF under the name “LUVISKOL VA 64 Powder”; [0038]
  • vinyl acetate/crotonic acid/vinyl neodecanoate terpolymers such as those sold by NATIONAL STARCH under the name “RESYN® 28-2930”; [0039]
  • acrylic acid/ethyl acrylate/N-tert-butylacrylamide terpolymers such as those sold by BASF under the name “ULTRA-HOLD 8”; [0040]
  • acrylic acid/acrylates/hydroxyacrylates/succinic acid copolymers such as Acrylates/C1-2 succinates hydroxyacrylates copolymer sold by ISP as ALLIANZ LT-120; [0041]
  • vinyl acetate/crotonic acid (90/10) copolymers such as those sold by BASF under the name “LUVISET CA 66”; [0042]
  • acrylic acid/methacrylic acid/acrylates/methacrylates copolymers such as Acrylates Copolymer sold by Amerchol Corp. (Edison, N.J., USA); and [0043]
  • vinylcaprolactam/vinylpyrrolidone/dimethylamino ethyl methacrylate copolymers such as those sold by GAF under the name “POLYMER ACP-1018”. [0044]
  • Further non-limiting examples of the at least one film forming agent include: [0045]
  • copolymers derived from (i) 1-vinyl-2-pyrrolidone and (ii) 1-vinyl-3-methylimidazolium salt (CTFA designation: polyquaternium-16), which is commercially available from BASF Corporation under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370); [0046]
  • copolymers derived from reaction of (i) vinylcaprolactam and (ii) vinylpyrroldone with methylvinylimidazolium methosulfate, (CTFA designation: polyquaternium-46), which is commercially available from BASF; [0047]
  • copolymers derived from (i) vinylpyrrolidone and (ii) quaternized imidazoline monomers (CTFA designation: polyquaternium-44), which is commercially available from BASF; [0048]
  • copolymers derived from (i) 1-vinyl-2-pyrrolidone and (ii) 1-vinyl-3-methylimidazolium salt (CTFA designation: polyquaternium-16), which is commercially available from BASF Corporation under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370); [0049]
  • poly(vinylamine), optionally quaternized; [0050]
  • poly-4-vinyl pyridine, optionally quaternized; [0051]
  • poly(ethyleneimine), optionally quaternized; [0052]
  • dimethyldiallylammonium chloride homopolymer (CTFA designation: polyquaternium-6); [0053]
  • copolymers derived from (i) acrylamide and (ii) dimethyldiallylammonium chloride (CTFA designation: polyquaternium-7); [0054]
  • copolymers derived from (i) dimethyldiallylammonium chloride and (ii) sodium acrylate (CTFA designation: Polyquaternium-22); and [0055]
  • terpolymers derived from (i) dimethyldiallylammonium chloride, (ii) acrylic amide and (iii) sodium acrylate (CTFA designation: Polyquaternium-39). [0056]
  • Other non-limiting examples of the at least one film forming agent include derivatives of polysaccharide polymers such as cationic cellulose derivatives, for example, cationic cellulose, which is available from Amerchol Corp. (Edison, N.J., USA) in their Polymer JR™, LR™ and SR™ series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide (CTFA designation: polyquaternium-10); polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide (CTFA designation: polyquaternium-24), which is available from Amerchol Corp. (Edison, N.J., USA) under the tradename Polymer LM-200™; and cationic starch and derivatives thereof, such as quaternary starch, which is available from Croda. [0057]
  • In one embodiment, the at least one film forming agent is chosen from cationic polymers such as polyquaternium-16, polyquaternium-46, and polyquaternium-44. In another embodiment, the at least one film forming agent is chosen from nonionic polymers such as polymers derived from (1) corn starch and (2) polyvinylpyrrolidone; and copolymers derived from (1) vinyl acetate and (2) vinylpyrrolidone. In yet another embodiment, the at least one film forming agent is chosen from anionic polymers such as polymers derived from (1) vinyl acetate, (2) crotonic acid and (3) vinyl neodecanoate, polymers derived from (1) acrylic acid, (2) acrylates, (3) hydroxyacrylates and (4) succinic acid, and polymers derived from at least two monomers chosen from acrylic acid, methacrylic acid, esters of acrylic acid and esters of methacrylic acid. The at least one film forming agent chosen from anionic polymers can be neutralized in order to render the anionic polymers soluble. [0058]
  • The C[0059] 3 to C5 monosaccharides according to the present invention may be chosen from any triose, tetrose and pentose. Further, the C3 to C5 monosaccharides can be chosen from the D-form, L-form and mixtures of any of the foregoing. Non-limiting examples of C3 to C5 monosaccharides include aldopentoses (such as xylose, arabinose, lyxose, and ribose), ketopentoses (such as ribulose and xylulose), aldotetroses (such as erythrose and treose), ketotetroses (such as erythrulose), aldotrioses (such as glyceraldehyde) and ketotrioses (such as dihydroxyacetone). The C3 to C5 monosaccharides may be chosen from C3 to C5 monosaccharides comprising aldehyde groups (aldoses), furanoses and other ring structures. The C3 to C5 monosaccharides may be further substituted with at least one group different from the C1 to C22 carbon chain.
  • Derivatives of C[0060] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain may be used as the at least one compound of the present invention. For example, ammonias or primary amines may react with the aldehyde or ketone group of a sugar to form an imine derivative (i.e., a compound containing the functional group C═N). These imine compounds are sometimes also referred to as Schiff bases. Other non-limiting examples of derivatives of C3 to C5 monosaccharides are hemiacetal derivatives of C3 to C5 monosaccharides, hemiketal derivatives of C3 to C5 monosaccharides and any oxidized derivatives of C3 to C5 monosaccharides. These derivatives may be formed, for example, from the reaction of the aldehyde or ketone group of a sugar with an alcohol. Other exemplary derivatives of C3 to C5 monosaccharides may also include, but are not limited to, oligosaccharides derived from C3 to C5 monosaccharides, such as xylobiose. As previously mentioned, the at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain may be further substituted with at least one group different from the at least one C1 to C22 carbon chain. Thus, in one embodiment, the derivatives of C3 to C5 monosaccharides may be further substituted with at least one group different from the at least one C1 to C22 carbon chain.
  • According to the present invention, the at least one C[0061] 1 to C22 carbon chain may be chosen from linear, branched and cyclic C1 to C22 carbon chains, which are saturated or unsaturated. The at least one C1 to C22 carbon chain may optionally be substituted. In one embodiment, the at least one C1 to C22 carbon chain is chosen from C16 to C18 carbon chains. In another embodiment, the at least one C1 to C22 carbon chain is chosen from C16 carbon chains and C18 carbon chains. Non-limiting examples of C16 carbon chains are linear hexadecyl chains, and non-limiting examples of C18 carbon chains are linear octadecyl chains.
  • Further, the C[0062] 3 to C5 monosaccharides may be substituted with the at least one C1 to C22 carbon chain at any position on the sugar. For example, in one embodiment, a C3 to C5 monosaccharide is substituted with at least one C1 to C22 carbon chain at the C1 position of the C3 to C5 monosaccharide. In another embodiment, a C3 to C5 monosaccharide is substituted with the at least one C1 to C22 carbon chain at at least one of the hydroxyl groups of the C3 to C5 monosaccharide. As used herein, substituted at at least one of the hydroxyl groups of a C3 to C5 monosaccharide means at least one of substitution on the hydroxyl group itself (i.e., formation of an ether linkage between the C3 to C5 monosaccharide and the C1 to C22 carbon chain) and substitution on the carbon atom to which the hydroxyl group is commonly bonded. Further, the C3 to C5 monosaccharides may be substituted with the at least one C1 to C22 carbon chain at a carbon atom bearing no hydroxyl groups (i.e., a CH2 within the C3 to C5 monosaccharide or a carbon atom within the C3 to C5 monosaccharide bearing substituents other than a hydroxyl group). Further, the C3 to C5 monosaccharides may be further substituted with at least one substituent different from the at least one C1 to C22 carbon chain.
  • According to the present invention, the at least one compound chosen from C[0063] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain is present in the composition in an amount generally ranging from 0.01% to 10% by weight relative to the total weight of the composition, such as from 0.1% to 5% by weight.
  • The compositions of the present invention as well as those of the inventive methods may further comprise at least one additional sugar which is different from the at least one compound chosen from C[0064] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain. The at least one additional sugar may, for example, aid in moisture retention. The effectiveness of a sugar in aiding in moisture retention may be measured by monitoring a DSC peak at a temperature ranging from 75° C. to 200° C.
  • The at least one additional sugar may be chosen from any sugar, carbohydrate and carbohydrate moiety. Non-limiting examples of the at least one additional sugar are monosaccharides, which include, but are not limited to, three to seven carbon sugars such as pentoses (for example, ribose, arabinose, xylose, lyxose, ribulose, and xylulose) and hexoses (for example, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, sorbose, psicose, fructose, and tagatose); oligosaccharides such as disaccharides (such as maltose, sucrose, cellobiose, trehalose and lactose); and polysaccharides such as starch, dextrins, cellulose and glycogen. In one embodiment, the at least one additional sugar of the invention are chosen from any aldoses and ketoses. [0065]
  • Further, the at least one additional sugar may be substituted or unsubstituted. For example, the at least one additional sugar may be substituted with at least one C[0066] 1 to C22 carbon chain. In one embodiment, the at least one C1 to C22 carbon chain is chosen from linear, branched and cyclic C1 to C22 carbon chains, which are saturated or unsaturated. For example, the at least one C1 to C22 carbon chain may be chosen from C16 to C18 carbon chains (such as C16 carbon chains and C18 carbon chains). Further, for example, C16 carbon chains may be chosen from linear hexadecyl chains and C18 carbon chains may be chosen from linear octadecyl chains. In one embodiment, the at least one additional sugar is substituted with at least one C1 to C22 carbon chain at the C1 position of the at least additional one sugar.
  • According to the present invention, the at least one additional sugar is present in the composition in an amount generally ranging from 0.01% to 10% by weight relative to the total weight of the composition, such as from 0.1% to 5% by weight. [0067]
  • The compositions of the present invention as well as those of the inventive methods may be in the form of a liquid, an oil, a paste, a stick, a dispersion, an emulsion, a lotion, a gel, or a cream. Further, these compositions may further comprise at least one suitable additive chosen from additives commonly used in compositions for keratinous fibers. Non-limiting examples of the at least one suitable additive include anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, fragrances, penetrating agents, antioxidants, sequestering agents, opacifying agents, solubilizing agents, emollients, colorants, screening agents (such as sunscreens and UV filters), preserving agents, proteins, vitamins, silicones, polymers such as thickening polymers, plant oils, mineral oils, synthetic oils and any other additive conventionally used in compositions for the care and/or treatment of keratinous fibers. [0068]
  • Needless to say, a person skilled in the art will take care to select the at least one suitable additive such that the advantageous properties of the composition in accordance with the invention are not, or are not substantially, adversely affected by the addition(s) envisaged. [0069]
  • The compositions of the present invention and those used in the methods of the present invention may also be provided as one-part compositions comprising at least one compound chosen from C[0070] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain and, optionally, at least one additional sugar, and further, optionally at least one film forming agent, or in the form of a multi-component treatment or kit. The skilled artisan, based on the stability of the composition and the application envisaged, will be able to determine how the composition and/or multicomponent compositions should be stored and mixed. For example, simple sugars such as C3 to C5 monosaccharides are known to be stable at pH levels ranging from 4 to 9. In compositions where the pH range is below or above these levels, the sugars would be stored separately and added to the composition only at the time of application.
  • Thus, the present invention also relates to a kit for durable non-permanent shaping of at least one keratinous fiber or for durable retention of a non-permanent shape of at least one keratinous fiber comprising at least one compartment, wherein a first compartment comprises a first composition comprising at least one compound chosen from C[0071] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain. In one embodiment, the first composition further comprises at least one additional sugar, different from the at least one compound, while in another embodiment, the first composition further comprises at least one film forming agent.
  • According to one aspect of the invention, the at least one compound suitable for the present invention is a mixture of pentoses substituted with at least one C[0072] 1 to C22 carbon chain. XYLIANCE brand modified pentoses is a blend of hexadecyl glycosides and octadecyl glycosides wherein the glycosides comprise D-xylosides, L-arabinosides, and D-glucosides. XYLIANCE may be obtained from Soliance, Route de Bazancourt-51110 Pomacle, France.
  • Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches. [0073]
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. The following examples are intended to illustrate the invention without limiting the scope as a result. [0074]
  • EXAMPLES 1 AND 2
  • Unless otherwise noted, the following procedure was used in the following examples to determine the efficiency of C[0075] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain. Hair swatches (2 g., 6.5-7.5 in.) were treated with a solution of film former/XYLIANCE (0.5 g solution/g of hair) then blow dried. The hair swatches were then styled with a curling iron for 1 minute and the curly swatches were placed in a humidity chamber at 90% relative humidity for 1 hour.
  • The Curl Efficiency was calculated as:[0076]
  • Lt/Lo×100
  • Where: [0077]
  • L[0078] o represents the original length of fully extended hair
  • L[0079] t represents the length of the hair after 1 hour in the humidity chamber
  • A lower Curl Efficiency represents a better curl retention. [0080]
  • EXAMPLE 1 Curl Efficiency of XYLIANCE and Film Former
  • Hair was treated as described above with styling solutions that contain 3% of Octylacrylamide/Acrylates/Butylaminoethyl/Methacrylate Copolymer (AMPHOMER LV-71 from National Starch and Chemicals Co.), and varying amounts of XYLIANCE. The results are shown in Table 10. [0081]
    TABLE 1
    Curl Efficiency of Hair Treated with Amphomer LV-71
    and XYLIANCE
    Styling Solution Curl Efficiency
    3% Amphomer LV-71/0% XYLIANCE 76
    3% Amphomer LV-71/0.1% XYLIANCE 72
    3% Amphomer LV-71/0.5% XYLIANCE 61
    3% Amphomer LV-71/1% XYLIANCE 60
  • EXAMPLE 2 Effects of Xyliance and Neutralized Film Former
  • Hair was treated as described above with solutions of 0.5% XYLIANCE and 6% Amphomer LV-71 that had been neutralized with AMP at various degrees of neutralization. The results are shown in Table 11. [0082]
    TABLE 2
    Curl Efficiency of Hair Treated with 0.5% XYLIANCE and 6%
    Amphomer LV-71 with Various Degrees of Neutralization
    Degree of Neutralization Curl Efficiency
     0% Neutralization/0% XYLIANCE 84
     0% Neutralization/0.5% XYLIANCE 73
     40% Neutralization/0% XYLIANCE 67
     40% Neutralization/0.5% XYLIANCE 57
     80% Neutralization/0% XYLIANCE 63
     80% Neutralization/0.5% XYLIANCE 59
    100% Neutralization/0% XYLIANCE 59
    100% Neutralization/0.5% XYLIANCE 56
  • EXAMPLE 3
  • The following procedure was used to treat the hair and measure the Curl Droop: Hair swatches (2 g., 6.5-7.5 in.) were treated with an ethanol solution containing 6% Resyn® 28-2930 (neutralized to 85% with AMP) and 1% Xyliance (0.5 g solution/g of hair) then blow dried. The hair swatches were then heated with a flat iron for 1 minute and then shampooed with 10% sodium laureth sulfate (SLES). The treatment was repeated up to 6 times, as indicated. The treated hair swatches were shampooed 2, 4, and 6 times, then styled with a curling iron for 30 seconds and placed in a humidity chamber at 90% relative humidity to measure the Curl Droop. As the curl slowly relaxed in the humidity chamber, the length of the hair swatches was measured every minute (up to 15 minutes). [0083]
  • The Curl Droop was calculated as:[0084]
  • [(Lo−Lt)/(Lo−Li)]×100
  • Where: [0085]
  • L[0086] o represents the original length of fully extended hair
  • L[0087] t represents the length of the hair at time t in the humidity chamber
  • L[0088] i represents the initial length of the hair at time 0 in the humidity chamber (i.e., after styling with a curling iron for 30 seconds)
  • A higher Curl Droop represents a better curl retention. [0089]
    Solution
    Comprising 6% (active) Resyn ® 0 5 10 15
    28-2930 (85% neutralized) minutes minutes minutes minutes
    Without Xyliance, after treatment 100 94 86 75
    With Xyliance, after treatment 100 95 89 77
    Without Xyliance, after 2 100 91 83 71
    shampoos
    With glucosamine, after 2 100 93 86 72
    shampoos
    Without glucosamine, after 4 100 90 75 57
    shampoos
    With glucosamine, after 4 100 91 78 65
    shampoos
    Without glucosamine, after 6 100 59 45 27
    shampoos
    With glucosamine, after 6 100 88 75 57
    shampoos
  • The data showed that hair treated with at least one film forming agent (Resyn® 28-2930 (neutralized to 85% with AMP)), at least one compound chosen from C[0090] 3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain (Xyliance) and heat had a higher curl retention than hair treated with at least one film forming agent (Resyn® 28-2930 (neutralized to 85% with AMP)) and heat but without at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain even after 6 shampoos.

Claims (100)

1. A composition for durable non-permanent shaping or durable retention of a non-permanent shape of least one keratinous fiber comprising:
(a) at least one film forming agent; and
(b) at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain,
wherein said at least one film forming agent and said at least one compound are present in an amount effective to impart a durable non-permanent shape to said at least one keratinous fiber or to durably retain a non-permanent shape of said at least one keratinous fiber.
2. A composition according to claim 1, wherein said at least one film forming agent is chosen from film forming polymers and film forming resins.
3. A composition according to claim 2, wherein said film forming polymers are chosen from cationic polymers.
4. A composition according to claim 3, wherein said cationic polymers are chosen from polyquaternium-16, polyquaternium-46 and polyquaternium-44.
5. A composition according to claim 2, wherein said film forming polymers are chosen from nonionic polymers.
6. A composition according to claim 5, wherein said nonionic polymers are chosen from:
(i) polymers derived from (1) corn starch and (2) polyvinylpyrrolidone; and
(ii) copolymers derived from (1) vinyl acetate and (2) vinylpyrrolidone.
7. A composition according to claim 2, wherein said film forming polymers are chosen from anionic polymers.
8. A composition according to claim 7, wherein said anionic polymers are chosen from:
(i) polymers derived from (1) vinyl acetate, (2) crotonic acid and (3) vinyl neodecanoate;
(ii) polymers derived from (1) acrylic acid, (2) acrylates, (3) hydroxyacrylates and (4) succinic acid; and
(iii) polymers derived from at least two different monomers each chosen from acrylic acid, methacrylic acid, esters of acrylic acid, and esters of methacrylic acid.
9. A composition according to claim 2, wherein said anionic polymers are neutralized.
10. A composition according to claim 1, wherein said at least one film forming agent is present in said composition in an amount ranging from 0.01% to 30% by weight relative to the total weight of the composition.
11. A composition according to claim 10, wherein said at least one film forming agent is present in said composition in an amount ranging from 0.1% to 10% by weight relative to the total weight of the composition.
12. A composition according to claim 1, wherein said C3 to C5 monosaccharides are chosen from pentoses.
13. A composition according to claim 12, wherein said pentoses are chosen from aldopentoses and ketopentoses.
14. A composition according to claim 13, wherein said aldopentoses are chosen from xylose, arabinose, lyxose, and ribose.
15. A composition according to claim 13, wherein said ketopentoses are chosen from ribulose and xylulose.
16-23 (Cancelled)
24. A composition according to claim 1, wherein said C3 to C5 monosaccharides are chosen from furanoses and derivatives thereof.
25. A composition according to claim 1, wherein said C3 to C5 monosaccharides are chosen from derivatives of C3 to C5 monosaccharides.
26. A composition according to claim 25, wherein said derivatives of C3 to C5 monosaccharides are chosen from imine derivatives of C3 to C5 monosaccharides, hemiacetal derivatives of C3 to C5 monosaccharides, hemiketal derivatives of C3 to C5 monosaccharides, and oxidized derivatives of monosaccharides.
27. A composition according to claim 25, wherein said derivatives of C3 to C5 monosaccharides are chosen from oligosaccharides derived from C3 to C5 monosaccharides.
28. A composition according to claim 27, wherein said oligosaccharides derived from C3 to C5 monosaccharides are chosen from xylobiose.
29. A composition according to claim 25, wherein said derivatives of C3 to C5 monosaccharides are further substituted with at least one group different from said at least one C1 to C22 carbon chain.
30. A composition according to claim 1, wherein said at least one C1 to C22 carbon chain is chosen from linear, branched and cyclic C1 to C22 carbon chains, which are saturated or unsaturated.
31. A composition according to claim 1, wherein said at least one C1 to C22 carbon chain is substituted.
32. A composition according to claim 1, wherein said at least one C1 to C22 carbon chain is chosen from C16 to C18 carbon chains.
33. A composition according to claim 1, wherein said at least one C1 to C22 carbon chain is chosen from C16 carbon chains and C18 carbon chains.
34. A composition according to claim 33, wherein said C16 carbon chains are linear hexadecyl chains.
35. A composition according to claim 33, wherein said C18 carbon chains are linear octadecyl chains.
36. A composition according to claim 1, wherein said at least one compound is substituted with said at least one C1 to C22 carbon chain at the C1 position of said at least one compound.
37. A composition according to claim 1, wherein said at least one compound is substituted with said at least one C1 to C22 carbon chain at least one of the hydroxyl groups of said at least one compound.
38. A composition according to claim 1, wherein said at least one compound is present in said composition in an amount ranging from 0.01% to 10% by weight relative to the total weight of the composition.
39. A composition according to claim 38, wherein said at least one compound is present in said composition in an amount ranging from 0.1% to 5% by weight relative to the total weight of the composition.
40. A composition according to claim 1, wherein said composition further comprises at least one additional sugar different from said at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain.
41. A composition according to claim 40, wherein said at least one additional sugar is chosen from monosaccharides, oligosaccharides and polysaccharides.
42. A composition according to claim 41, wherein said monosaccharides are chosen from hexoses.
43. A composition according to claim 42, wherein said hexoses are chosen from allose, altrose, glucose, mannose, gulose, idose, galactose, talose, sorbose, psicose, fructose, and tagatose.
44. A composition according to claim 40, wherein said at least one additional sugar is substituted with at least one C1 to C22 carbon chain.
45. A composition according to claim 44, wherein said at least one C1 to C22 carbon chain is chosen from linear, branched and cyclic C1 to C22 carbon chains, which are saturated or unsaturated.
46. A composition according to claim 45, wherein said at least one C1 to C22 carbon chain is chosen from C16 to C18 carbon chains.
47. A composition according to claim 45, wherein said at least on C1 to C22 carbon chain is chosen from C16 carbon chains and C18 carbon chains.
48. A composition according to claim 47, wherein said C16 carbon chains are linear hexadecyl chains.
49. A composition according to claim 47, wherein said C18 carbon chains are linear octadecyl chains.
50. A composition according to claim 44, wherein said at least one additional sugar is substituted with said at least one C1 to C22 carbon chain at the C1 position of said at least one additional sugar.
51. A composition according to claim 40, wherein said at least one additional sugar is present in said composition in an amount ranging from 0.01% to 10% by weight relative to the total weight of the composition.
52. A composition according to claim 51, wherein said at least one additional sugar is present in said composition in an amount ranging from 0.1% to 5% by weight relative to the total weight of the composition.
53. A composition according to claim 1, wherein said composition is in the form of a liquid, oil, paste, stick, dispersion, emulsion, lotion, gel, or cream.
54. A composition according to claim 1, wherein said at least one keratinous fiber is hair.
55. A composition according to claim 1, further comprising at least one suitable additive chosen from anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, fragrances, penetrating agents, antioxidants, sequestering agents, opacifying agents, solubilizing agents, emollients, colorants, screening agents, preserving agents, proteins, vitamins, silicones, polymers such as thickening polymers, plant oils, mineral oils, and synthetic oils.
56. A composition according to claim 1, wherein said composition is heat-activated.
57-166 (Cancelled)
167. A composition for durable non-permanent shaping or durable retention of a non-permanent shape of least one keratinous fiber comprising at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, wherein said at least one compound is present in an amount effective to impart a durable non-permanent shape to said at least one keratinous fiber or to durably retain a non-permanent shape of said at least one keratinous fiber.
168. A composition according to claim 167, wherein said C3 to C5 monosaccharides are chosen from pentoses.
169. A composition according to claim 168, wherein said pentoses are chosen from aldopentoses and ketopentoses.
170. A composition according to claim 169, wherein said aldopentoses are chosen from xylose, arabinose, lyxose, and ribose.
171. A composition according to claim 169, wherein said ketopentoses are chosen from ribulose and xylulose.
172. A composition according to claim 167, wherein said C3 to C5 monosaccharides are chosen from tetroses.
173. A composition according to claim 172, wherein said tetroses are chosen from aldotetroses and ketotetroses.
174. A composition according to claim 173, wherein said aldotetroses are chosen from erythrose and treose.
175. A composition according to claim 173, wherein said tetroses are chosen from erythrulose.
176. A composition according to claim 167, wherein said C3 to C5 monosaccharides are chosen from trioses.
177. A composition according to claim 176, wherein said trioses are chosen from aldotrioses and ketotrioses.
178. A composition according to claim 177, wherein said trioses are chosen from glyceraldehyde.
179. A composition according to claim 177, wherein said trioses are chosen from dihydroxyacetone.
180. A composition according to claim 167, wherein said C3 to C5 monosaccharides are chosen from furanoses and derivatives thereof.
181. A composition according to claim 167, wherein said C3 to C5 monosaccharides are chosen from derivatives of C3 to C5 monosaccharides.
182. A composition according to claim 181, wherein said derivatives of C3 to C5 monosaccharides are chosen from imine derivatives of C3 to C5 monosaccharides, hemiacetal derivatives of C3 to C5 monosaccharides, hemiketal derivatives of C3 to C5 monosaccharides, and oxidized derivatives of C3 to C5 monosaccharides.
183. A composition according to claim 181, wherein said derivatives of C3 to C5 monosaccharides are chosen from oligosaccharides derived from C3 to C5 monosaccharides.
184. A composition according to claim 183, wherein said oligosaccharides derived from C3 to C5 monosaccharides are chosen from xylobiose.
185. A composition according to claim 181, wherein said derivatives of C3 to C5 monosaccharides are further substituted with at least one group different from said at least one C1 to C22 carbon chain.
186. A composition according to claim 167, wherein said at least one C1 to C22 carbon chain is chosen from linear, branched and cyclic C1 to C22 carbon chains, which are saturated or unsaturated.
187. A composition according to claim 167, wherein said at least one C1 to C22 carbon chain is substituted.
188. A composition according to claim 167, wherein said at least one C1 to C22 carbon chain is chosen from C16 to C18 carbon chains.
189. A composition according to claim 167, wherein said at least one C1 to C22 carbon chain is chosen from C16 carbon chains and C18 carbon chains.
190. A composition according to claim 189, wherein said C16 carbon chains are linear hexadecyl chains.
191. A composition according to claim 189, wherein said C18 carbon chains are linear octadecyl chains.
192. A composition according to claim 167, wherein said at least one compound is substituted with said at least one C1 to C22 carbon chain at the C1 position of said at least one compound.
193. A composition according to claim 167, wherein said at least one compound is substituted with said at least one C1 to C22 carbon chain at least one of the hydroxyl groups of said at least one compound.
194. A composition according to claim 167, wherein said at least one compound is present in said composition in an amount ranging from 0.01% to 10% by weight relative to the total weight of the composition.
195. A composition according to claim 194, wherein said at least one compound is present in said composition in an amount ranging from 0.1% to 5% by weight relative to the total weight of the composition.
196. A composition according to claim 167, wherein said composition further comprises at least one additional sugar different from said at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain.
197. A composition according to claim 196, wherein said at least one additional sugar is chosen from monosaccharides, oligosaccharides and polysaccharides.
198. A composition according to claim 197, wherein said monosaccharides are chosen from hexoses.
199. A composition according to claim 198, wherein said hexoses are chosen from allose, altrose, glucose, mannose, gulose, idose, galactose, talose, sorbose, psicose, fructose, and tagatose.
200. A composition according to claim 196, wherein said at least one additional sugar is substituted with at least one C1 to C22 carbon chain.
201. A composition according to claim 200, wherein said at least one C1 to C22 carbon chain is chosen from linear, branched and cyclic C1 to C22 carbon chains, which are saturated or unsaturated.
202. A composition according to claim 201, wherein said at least one C1 to C22 carbon chain is chosen from C16 to C18 carbon chains.
203. A composition according to claim 201, wherein said at least on C1 to C22 carbon chain is chosen from C16 carbon chains and C18 carbon chains.
204. A composition according to claim 203, wherein said C16 carbon chains are linear hexadecyl chains.
205. A composition according to claim 204, wherein said C18 carbon chains are linear octadecyl chains.
206. A composition according to claim 200, wherein said at least one additional sugar is substituted with said at least one C1 to C22 carbon chain at the C1 position of said at least one additional sugar.
207. A composition according to claim 196, wherein said at least one additional sugar is present in said composition in an amount ranging from 0.01% to 10% by weight relative to the total weight of the composition.
208. A composition according to claim 207, wherein said at least one additional sugar is present in said composition in an amount ranging from 0.1% to 5% by weight relative to the total weight of the composition.
209. A composition according to claim 167, wherein said composition is in the form of a liquid, oil, paste, stick, dispersion, emulsion, lotion, gel, or cream.
210. A composition according to claim 167, wherein said at least one keratinous fiber is hair.
211. A composition according to claim 167, further comprising at least one suitable additive chosen from anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, fragrances, penetrating agents, antioxidants, sequestering agents, opacifying agents, solubilizing agents, emollients, colorants, screening agents, preserving agents, proteins, vitamins, silicones, polymers such as thickening polymers, plant oils, mineral oils, and synthetic oils.
212. A composition according to claim 167, wherein said composition is heat-activated.
213. A kit for protecting at least one keratinous fiber from extrinsic damage or for repairing at least one keratinous fiber following extrinsic damage said kit comprising at least one compartment,
wherein said at least one compartment comprises a composition comprising at least one compound chosen from C3 to C5 monosaccharides substituted with at least one C1 to C22 carbon chain, and
wherein said at least one compound is present in an amount effective to impart a durable non-permanent shape to said at least one keratinous fiber or to durably retain a non-permanent shape of said at least one keratinous fiber.
214. A kit according to claim 213 wherein said composition further comprises at least one additional sugar, different from said at least one compound.
215. A kit according to claim 213, wherein said composition further comprises at least one film forming agent.
216. A kit according to claim 213, further comprising a second compartment comprising a composition comprising at least one film forming agent.
US10/885,608 2001-03-30 2004-07-08 Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same Abandoned US20040247553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/885,608 US20040247553A1 (en) 2001-03-30 2004-07-08 Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/820,856 US6800302B2 (en) 2001-03-30 2001-03-30 Heat activated durable styling compositions comprising C1 to C22 Substituted C3-C5 monosaccharides and methods for same
US10/885,608 US20040247553A1 (en) 2001-03-30 2004-07-08 Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/820,856 Continuation US6800302B2 (en) 2001-03-30 2001-03-30 Heat activated durable styling compositions comprising C1 to C22 Substituted C3-C5 monosaccharides and methods for same

Publications (1)

Publication Number Publication Date
US20040247553A1 true US20040247553A1 (en) 2004-12-09

Family

ID=25231896

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/820,856 Expired - Fee Related US6800302B2 (en) 2001-03-30 2001-03-30 Heat activated durable styling compositions comprising C1 to C22 Substituted C3-C5 monosaccharides and methods for same
US10/885,608 Abandoned US20040247553A1 (en) 2001-03-30 2004-07-08 Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/820,856 Expired - Fee Related US6800302B2 (en) 2001-03-30 2001-03-30 Heat activated durable styling compositions comprising C1 to C22 Substituted C3-C5 monosaccharides and methods for same

Country Status (1)

Country Link
US (2) US6800302B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119972B2 (en) 2009-10-01 2015-09-01 Akzo Nobel Chemicals International B.V. Compositions and method for thermal protection of hair
WO2018140085A1 (en) 2017-01-26 2018-08-02 Lubrizol Advanced Materials, Inc. Hair styling appliances and methods of operating same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201894B2 (en) * 2001-03-30 2007-04-10 L'oreal Compositions comprising at least one C1 to C22 substituted C3 to C5 monosaccharide, and their use for the protection title and/or repair of keratinous fibers
JP2003012465A (en) * 2001-06-26 2003-01-15 Kao Corp Hair cosmetic
US7622104B2 (en) * 2001-08-20 2009-11-24 L'oreal S.A. Methods for relaxing and re-waving hair comprising at least one reducing agent and at least one hydroxide compound
US20030165453A1 (en) * 2002-01-28 2003-09-04 Nguyen Nghi Van Methods for protecting keratinous fibers comprising applying compositions comprising at least one silicone and at least one film forming polymer
US20050048018A1 (en) * 2003-08-29 2005-03-03 Natasha Fadeeva Methods for preventing reversion of relaxed keratinous fibers and for relaxing keratinous fibers
FR2861291A1 (en) * 2003-10-24 2005-04-29 Oreal CAPILLARY COSMETIC COMPOSITION BASED ON FIXING POLYMERS AND COMPOUNDS LIKELY TO INFLATE UNDER THE ACTION OF HEAT.
WO2005115319A1 (en) * 2004-05-18 2005-12-08 Hans Schwarzkopf & Henkel Gmbh & Co. Kg Styling agent for smoothing irons
JP5514715B2 (en) * 2007-04-30 2014-06-04 ユニリーバー・ナームローゼ・ベンノートシヤープ Hair treatment method
US20090074697A1 (en) * 2007-09-18 2009-03-19 Henkel Ag & Co. Kgaa Use of monosaccharides and disaccharides as complete replacements for synthetic fixative and styling polymers in hair styling products
AU2009288048A1 (en) * 2008-09-03 2010-03-11 Alberto-Culver Company Hair styling method
EP2331060A2 (en) * 2008-09-03 2011-06-15 Alberto-Culver Company Hair styling method
NZ591249A (en) * 2008-09-03 2012-06-29 Alberto Culver Co Method for strengthening keratinous fibers
NZ591246A (en) * 2008-09-03 2012-03-30 Alberto Culver Co Hair styling method for curling or straightening with heating
EP2331063A2 (en) * 2008-09-03 2011-06-15 Alberto-Culver Company Hair styling method
US20140255478A1 (en) * 2011-10-03 2014-09-11 Akzo Nobel Chemicals International B.V. Hair styling compositions
FR3046074B1 (en) * 2015-12-23 2020-03-06 L'oreal PROCESS FOR THE TREATMENT OF HAIR USING AQUEOUS DISPERSIONS OF SPECIAL POLYMERS AND HEAT
US11800917B2 (en) 2018-08-30 2023-10-31 L'oreal Hair-treatment compositions and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971080A (en) * 1987-08-17 1990-11-20 Shiseido Co. Ltd. Permanent waving and hair conditioning composition
US5688930A (en) * 1994-08-30 1997-11-18 Agro Industrie Recherches Et Developpements Process for the preparation of surface active agents using wheat by-products and their applications
US6235298B1 (en) * 1999-10-22 2001-05-22 Unilever Home & Personal Care Usa Phase stable multiple emulsion compositions
US6486105B1 (en) * 2001-03-30 2002-11-26 L'oreal S.A. Heat activated durable conditioning compositions comprising C3 to C5 monosaccharides, and methods for using same
US6495147B1 (en) * 1997-11-07 2002-12-17 Lvmh Recherche Uses of D-xylose, the esters thereof and oligosaccharides containing xylose for improving the functionality of epidermal cells

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711841A1 (en) 1987-04-08 1988-10-27 Henkel Kgaa HAIR REGENERATING PREPARATIONS
JPH01213213A (en) 1988-02-22 1989-08-28 Kao Corp External preparation composition
JP2719166B2 (en) 1989-02-02 1998-02-25 鐘紡株式会社 Hair cosmetic composition
JPH0768115B2 (en) 1989-05-17 1995-07-26 花王株式会社 Cleaning composition
JPH03148211A (en) 1989-11-02 1991-06-25 Japan Happy:Kk Hair treating agent and use thereof
JP2681527B2 (en) 1990-02-15 1997-11-26 ジャパンファインケミカル株式会社 Topical for promoting cell activity
JP2965322B2 (en) 1990-05-31 1999-10-18 サントリー株式会社 External preparation for skin
EP0469232A1 (en) 1990-08-03 1992-02-05 Kabushiki Kaisha Japan Happy Materials for hair cosmetics and hair cosmetics
JPH04266812A (en) 1991-02-22 1992-09-22 Lion Corp Shampoo composition
JP3107850B2 (en) 1991-02-27 2000-11-13 日澱化學株式会社 Cosmetic base material
JPH0742211B2 (en) 1992-01-31 1995-05-10 忠 鄭 Aqueous skin and scalp / hair cosmetics
GB9202568D0 (en) 1992-02-07 1992-03-25 Unilever Plc Cosmetic composition
ES2090996T3 (en) 1992-05-18 1996-10-16 Henkel Kgaa SOFT MIXTURE OF SURFACTANTS.
JPH06122614A (en) 1992-05-28 1994-05-06 Shiseido Co Ltd Hair cosmetic
JP3205425B2 (en) 1993-04-02 2001-09-04 一丸ファルコス株式会社 Hair cosmetics
FR2704751B1 (en) 1993-05-07 1995-07-13 Oreal COMPOSITION BASED ON FRUCTOSE, GLUCOSE AND CEREAL GLOBULAR PROTEINS OR THEIR HYDROLYSATES, FOR REDUCING HAIR LOSS AND / OR PROMOTING HAIR GROWTH.
US5348737A (en) 1993-07-21 1994-09-20 Avlon Industries, Inc. Composition and process for decreasing hair fiber swelling
JPH07258041A (en) 1994-03-24 1995-10-09 Shiseido Co Ltd Hair cosmetic
DE4413434A1 (en) 1994-04-18 1995-10-19 Henkel Kgaa Hair and body care products
DE4440315A1 (en) 1994-11-11 1996-05-15 Henkel Kgaa Hair regenerating preparations
JPH08151313A (en) 1994-11-25 1996-06-11 Kanebo Ltd Cosmetic
US5641477A (en) 1994-11-28 1997-06-24 Avlon Industries, Inc. Reduction of hair damage during lanthionization with hair relaxers containing deswelling agents
JP3595592B2 (en) 1995-02-14 2004-12-02 ポーラ化成工業株式会社 Cosmetics
EP0750900B1 (en) 1995-06-29 1997-08-06 GOLDWELL GmbH Composition for hair treatment
JPH09124453A (en) 1995-11-02 1997-05-13 Japan Happy:Kk Dermal preparation for external use
JPH1017430A (en) 1996-07-01 1998-01-20 Pola Chem Ind Inc Irritation-preventing agent, and cosmetic containing the same for preventing irritation
US5756077A (en) 1996-09-13 1998-05-26 Avlon Industries, Inc. Hair protectant composition and process for preserving chemically processed hair during subsequent chemical processing
FR2755369B1 (en) 1996-11-04 1998-12-04 Oreal FOAMING COMPOSITION FOR CLEANING THE SKIN IN THE FORM OF A TRANSPARENT GEL
JPH10279439A (en) 1997-03-31 1998-10-20 Kureha Chem Ind Co Ltd Trichogenous agent
JPH10306017A (en) 1997-05-08 1998-11-17 Kao Corp Hair treatment composition
US6180715B1 (en) 1999-09-03 2001-01-30 The Dow Chemical Company Aqueous solution and dispersion of an acid salt of a polyetheramine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971080A (en) * 1987-08-17 1990-11-20 Shiseido Co. Ltd. Permanent waving and hair conditioning composition
US5688930A (en) * 1994-08-30 1997-11-18 Agro Industrie Recherches Et Developpements Process for the preparation of surface active agents using wheat by-products and their applications
US6495147B1 (en) * 1997-11-07 2002-12-17 Lvmh Recherche Uses of D-xylose, the esters thereof and oligosaccharides containing xylose for improving the functionality of epidermal cells
US6235298B1 (en) * 1999-10-22 2001-05-22 Unilever Home & Personal Care Usa Phase stable multiple emulsion compositions
US6486105B1 (en) * 2001-03-30 2002-11-26 L'oreal S.A. Heat activated durable conditioning compositions comprising C3 to C5 monosaccharides, and methods for using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119972B2 (en) 2009-10-01 2015-09-01 Akzo Nobel Chemicals International B.V. Compositions and method for thermal protection of hair
US9446266B2 (en) 2009-10-01 2016-09-20 Akzo Nobel Chemicals International B.V. Compositions and method for thermal protection of hair
WO2018140085A1 (en) 2017-01-26 2018-08-02 Lubrizol Advanced Materials, Inc. Hair styling appliances and methods of operating same

Also Published As

Publication number Publication date
US6800302B2 (en) 2004-10-05
US20020182163A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
US8697143B2 (en) Heat activated durable styling compositions comprising saccharide type compounds and film forming agents
US6486105B1 (en) Heat activated durable conditioning compositions comprising C3 to C5 monosaccharides, and methods for using same
US20040247553A1 (en) Heat activated durable styling compositions comprising C1 to C22 substituted C3-C5 monosaccharides and methods for same
JP2004525147A (en) Sugar-containing composition for heat-activated and persistent conditioning and method of using same
ES2337807T3 (en) METHOD FOR PERMANENT MOLDING OF THE HAIR USING A CELLULOSE CATIONIC DERIVATIVE.
AU2009288042B2 (en) Hair styling method
US20110192415A1 (en) Hair styling method
US5612024A (en) Cosmetic preparations for the hair
EP0577636B2 (en) Cosmetic preparations for the hair
US7459150B2 (en) Heat activated durable conditioning compositions comprising an aminated C5 to C7 saccharide unit and methods for using same
US20110180093A1 (en) Hair styling method
US20030021758A1 (en) Heat activated durable styling compositions comprising C3-C5 monosaccharides and methods for same
US20040166126A1 (en) Heat activated durable styling compositions comprising aminated C5 to C7 saccharide unit and methods for same
KR100906588B1 (en) Heat activated durable styling compositions comprising saccharide type compounds and film forming agents
US20020172650A1 (en) Heat activated durable conditioning compositions comprising C1 to C22 substituted C3 to C5 monosaccharides and methods for using same
CN101496776B (en) Hot-activating durable setting composition containing glucide compound and film-forming agent
KR20080089678A (en) Heat activated durable styling compositions comprising saccharide type compounds and film forming agents
DE102004056801A1 (en) Permanent hair shaping agent useful for carrying out reductive treatment in permanent hair shaping based on hair keratin-reducing compound, comprises cationic cellulose derivative
MX2007006201A (en) Method for the permanent shaping of hair using a cationic cellulose derivative

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION