US20040169546A1 - Distributed DC voltage generator for system on chip - Google Patents

Distributed DC voltage generator for system on chip Download PDF

Info

Publication number
US20040169546A1
US20040169546A1 US10/799,537 US79953704A US2004169546A1 US 20040169546 A1 US20040169546 A1 US 20040169546A1 US 79953704 A US79953704 A US 79953704A US 2004169546 A1 US2004169546 A1 US 2004169546A1
Authority
US
United States
Prior art keywords
voltage
voltage generator
local
control signal
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/799,537
Inventor
Li-Kong Wang
Louis Hsu
Fanchieh Yee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US10/799,537 priority Critical patent/US20040169546A1/en
Publication of US20040169546A1 publication Critical patent/US20040169546A1/en
Assigned to GLOBALFOUNDRIES U.S. 2 LLC reassignment GLOBALFOUNDRIES U.S. 2 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES U.S. 2 LLC, GLOBALFOUNDRIES U.S. INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof

Definitions

  • the present invention relates to integrated circuit design, and more specifically, to a DC voltage generator for a system on chip (SOC).
  • SOC system on chip
  • SOC System on Chip
  • various components such as volatile memory systems, non-volatile memory systems, data signal processing systems, mixed signal circuits and logic circuits are each formed into units and integrated on a single chip.
  • Digital systems using SOC design such as those used in handheld digital products, has replaced bulkier and higher power consuming digital systems built on a board in a package having several chips. As technology advances, integration of various units included in a SOC design becomes increasingly complicated.
  • the purpose of a DC voltage generator system on a semiconductor chip is to provide power regulation and power conversion, such as for converting a voltage provided by an external power supply, to a proper voltage level for performing an operation being executed by the chip.
  • One particular challenge of integrating the various units is the provision of proper voltage levels to the individual units by an on-chip DC voltage generator system, as the units on the chip have a broad range of functionality as well as voltage and power requirements.
  • an embedded DRAM (eDRAM) unit generally requires a high operating voltage relative to digital logic circuit units, while analog circuits of mixed signal units generally require an even higher operating voltage.
  • memory units generally require less power than digital logic circuit units, while analog circuits of mixed signal units typically require more power than the other units.
  • a typical DC voltage generator system includes a central DC voltage generator having a plurality of regulator systems, and a pump system (also referred to as charge pump) associated with each regulator system.
  • the DC voltage generator system further includes wiring for providing the voltages provided by the central DC voltage generator to the units of the chip.
  • the DC voltage generator system having a central DC voltage generator is cumbersome, and is susceptible to contributing to power supply noise and noise cross-contamination between neighboring units.
  • FIG. 1 shows an exemplary conventional regulator system 30 of an on-chip DC voltage generator system, which is described in U.S. Pat. No. 6,060,873, to Temullo, Jr. et al., which is incorporated herein by reference.
  • the regulator system 30 receives a boosted supply voltage V H , a supply voltage V DD , and a power-up control signal PU, and outputs a boost control signal BC, which is propagated to a charge pump (not shown).
  • the regulator system 30 is used to convert the externally supplied power to the voltage and current needed for the chip, while regulating the voltage with stability and noise reduction.
  • the regulator system 30 controls the charge pump for increasing or decreasing the voltage output by the charge pump accordingly.
  • the voltage output by the charge pump is provided to the various units of the chip.
  • a further disadvantage of the DC voltage generator system having a central DC voltage generator is that in order to provide enough current for full speed operation of the chip, in which one or more units operate in a high performance mode, the DC voltage generator system is usually designed to meet a highest power consumption condition.
  • the charge pumps of the central DC voltage generator are controlled to all provide the same current to the units on the chip, even when one or more of the units on the chip are operating in a low-performance mode, thus wasting power.
  • the conventional DC voltage generator system having a central DC voltage generator does not generally contribute to power conservation.
  • SOC design power conservation is implemented by using low power systems on chip (LP-SOC), which typically uses a low-power architecture.
  • LP-SOC low power systems on chip
  • all units on an LP-SOC chip work at full speed.
  • switching activity is decreased, in which data processing speed and data input/output slows down and some units are disabled, the chip clock slows down in order to save power.
  • the central DC voltage generator operates as usual by providing power to the units, regardless of whether the units are disabled or the chip clock output is changed, and power may be consumed without actually executing data.
  • clock gated local voltage generators for individually controlling each local voltage generator in accordance with a clock signal indicative of a low performance mode.
  • the present invention provides an SOC voltage generator system for supplying at least one voltage level to a plurality of units on a chip having an SOC design.
  • the voltage generator system includes a plurality of local DC voltage generators distributed throughout the chip, each local DC voltage generator independently supplying voltage to at least one unit of the plurality of unites, each local DC voltage generator including a regulator system outputting one pump control signal; and a pump system receiving the one pump control signal and outputting at least one voltage level in accordance with the one pump control signal.
  • the present invention provides a method for supplying voltage to a plurality of units on a chip having an SOC design, the method including the steps of distributing a plurality of local DC voltage generators throughout the chip; and supplying at least one voltage level to the plurality of units via the plurality of local DC voltage generators.
  • FIG. 1 is a block diagram of a prior art DC voltage generator system
  • FIG. 2 a block diagram of a chip having a system on chip design in accordance with the present invention
  • FIG. 3 is a block diagram of a SOC DC voltage generator system in accordance with the present invention.
  • FIG. 4 is a circuit diagram of a local DC voltage generator in accordance with the present invention.
  • the present invention provides a distributed DC voltage generator system having a plurality of distributed local DC voltage generators.
  • Each of the local DC voltage generators converts a voltage provided from an external power supply to an appropriate voltage level for an associated unit of a chip having a system on chip (SOC) design.
  • SOC system on chip
  • each local DC voltage is individually controlled in accordance with a power control signal and a clock control signal.
  • the distributed DC voltage generator system of the present invention provides for provision of a scalable voltage and power level to individual units of the chip, and individual switching on/off of voltage/power provision to individual units for conservation of power.
  • the present invention also provides a preferred method for distributing a scalable voltage and power level to individual units of the chip controlled by operating conditions of the chip to reduce power consumption, while decreasing power supply noise and noise cross-contamination between neighboring units.
  • an exemplary chip 200 having an SOC design (alternatively referred to as SOC chip or SOC) is shown.
  • the SOC chip 200 includes a variety of units including a mixed signal unit 202 , logic circuit units 204 , a flash memory unit 206 , SRAM units 208 , a data signal processor (DSP) unit 210 and a power control unit (PCU) 220 .
  • Each of the units, other than the power control unit, which receives power from the chip supply voltage, is individually provided with power and/or voltage from an associated local DC voltage generator 230 . There is no power connection between the units of the SOC chip 200 .
  • Each of the local DC voltage generators 230 is controlled through the PCU 220 .
  • the determination of a performance mode is in accordance with detected power need, such as detection of a chip activity level including switching level, input/output (I/O) level and processing level.
  • the PCU 220 determines whether the SOC chip 200 is operating in a high performance mode or in a low performance mode and decides which of the local DC voltage generators can be disabled. For example, if the PCU 220 determines that the SOC chip 200 is operating in the low performance mode, the PCU 220 generates a “low” PCS(x) to selected units or all of the units. If the PCU 220 determines that the SOC chip 200 is operating the high performance mode, the PCU 220 generates a “high” PCS(x) to all or some of the units. Thus, the amount of power provided to the units of the SOC chip 200 varies in accordance with the performance level of the SOC chip 200 .
  • the combination of PCS(1 ⁇ n) generated to all of the DC voltage generators varies in accordance with the performance mode recognized by the PCU 220 .
  • the amount of power provided to the units of the SOC chip 200 varies in up to N levels in accordance with the performance level of the SOC chip.
  • the distributed DC voltage generator system 300 for providing voltage and/or power to the units of the SOC chip 200 is shown.
  • the distributed DC voltage generator system 300 includes a plurality of local DC voltage generators 230 , the PCU 220 and a clock control unit (CLKCU) 310 .
  • the CLKCU 310 maybe an external clock control unit or a clock control macro located on the SOC chip 200 , which receives and processes an external clock signal, or generates and processes a clock signal.
  • CES combined clock enable signal
  • each CES(x) signal is preferably provided to the unit associated with the DC voltage generator 230 receiving the CES(x) signal.
  • the PCU 220 and the CLKCU 310 generate individual signals PCS(x) and CES(x) to each of the local DC voltage generators 230 for independently controlling the DC voltage generators 230 .
  • Each CES(x) and PCS(x) controls the on/off switch of the DC voltage generators 230 receiving the signal.
  • control signals PCS(x) and CES(x) may control different modes of operation of the local DC voltage generator 230 receiving the control signals CES(x) and/or PCS(x).
  • each local DC voltage generator 230 preferably includes a voltage pump system 320 for generating one or more operating voltages.
  • the voltage pump system provides the ability to provide a higher operating voltage level to a unit such as the mixed signal unit 202 , and different operating voltage levels (e.g., Vbb, Vneg and Vpp) for within a unit such as a unit having an embedded DRAM macro.
  • a local DC voltage generator 230 may provide voltage and/or power voltage level to one or more units.
  • the local DC voltage generator may include a pump system for providing one or more voltage levels.
  • FIG. 4 shows an exemplary local DC voltage generator 230 including AND gate GI, FET devices F 1 - 3 , Capacitor C 1 and regulator system 412 .
  • PCS(x) and CES(x) are received by G 1 which outputs control signal CS(x) for controlling FET F 3 , preferably an nFET, which switches the regulator system 412 on or off.
  • CS(x) switches FET F 3 “off” so that no DC current flows to the regulator system 412 .
  • both PCS(x) and CES(x) are “high”, CS(x) switches FET F 3 “on” and power supply voltage V H is provided to the regulator system 412 .
  • FET devices F 1 , F 2 which are preferably pFET devices, are cascade transistors functioning as a voltage divider, where the amount of voltage passing through the FET devices F 1 , F 2 is determined by the size of the FET devices F 1 , F 2 (in a way similar to relatively bulky resistors).
  • the FET devices F 1 and F 2 are different sizes.
  • Capacitor C 1 is a decoupling capacitor for reducing power supply noise due to wiring inductance along a supply line connecting the power supply to the regulator system 412 . Wiring inductance is further minimized by maintaining the supply line to be short.
  • the regulator system 412 may be a conventional regulator system such as the prior art regulator system 30 shown in FIG. 1.
  • the regulator system 412 of the local DC voltage generator 230 associated with each unit may be customized to provide the proper voltage level required by that unit.
  • a voltage V 1 indicative of the power supply voltage V H is provided to a voltage divider (not shown, similar to VD 11 of FIG. 1) of the regulator system, and is compared to a reference voltage for determining the value of the output control signal BC which controls a charge pump (not shown) for outputting the proper voltage level to the unit.
  • the voltage level output to the unit is selectable by selecting the reference voltage.
  • each local DC voltage generator 230 is selectable by selecting the reference voltage for the regulator system 412 of the local DC voltage generator 230 .
  • the charge pump may be a charge pump system capable of providing different operating voltage levels to one unit, such as Vbb, Vneg and Vpp.
  • the distributed DC voltage generator system 200 provides further advantages including power supply noise reduction due to locally supplied power, where the power may be supplied from the nearest supply pins.
  • noise cross-contamination between neighboring units is virtually eliminated as there is no power connection between the units due to independent connections between the units and the power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A system on a chip (SOC voltage generator) system is provided for supplying at least one voltage level to a plurality of units on a chip having an SOC design. The system includes a plurality of local DC voltage generators distributed throughout the chip, each local DC voltage generator independently supplying voltage to at least one unit of the plurality of units, each local DC voltage generator including a regulator system outputting one pump control signal; and a pump system receiving the one pump control signal and outputting at least one voltage level in accordance with the one pump control signal. Furthermore a method for supplying voltage to a plurality of units on a chip having an SOC design is provided. The method includes the steps of distributing a plurality of local DC voltage generators throughout the chip; and supplying at least one voltage level to the plurality of units via the plurality of local DC voltage generators.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a Continuation of U.S. patent application Ser. No. 10/118,753 filed Apr. 9, 2002.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to integrated circuit design, and more specifically, to a DC voltage generator for a system on chip (SOC). [0003]
  • 2. Discussion of the Related Art [0004]
  • When designing and producing digital products, it is an ongoing goal to minimize size, increase capabilities and minimize power consumption. For example, the market calls for smaller and more powerful handheld digital products such as cellular phones, pagers, global positioning systems (GPS's), personal digital assistants (PDAs), laptop computers and palm computers, while minimizing power consumption for extending battery life. To help accomplish this, System on Chip (SOC) design is implemented in which various components, such as volatile memory systems, non-volatile memory systems, data signal processing systems, mixed signal circuits and logic circuits are each formed into units and integrated on a single chip. Digital systems using SOC design, such as those used in handheld digital products, has replaced bulkier and higher power consuming digital systems built on a board in a package having several chips. As technology advances, integration of various units included in a SOC design becomes increasingly complicated. [0005]
  • The purpose of a DC voltage generator system on a semiconductor chip is to provide power regulation and power conversion, such as for converting a voltage provided by an external power supply, to a proper voltage level for performing an operation being executed by the chip. One particular challenge of integrating the various units is the provision of proper voltage levels to the individual units by an on-chip DC voltage generator system, as the units on the chip have a broad range of functionality as well as voltage and power requirements. For example, an embedded DRAM (eDRAM) unit generally requires a high operating voltage relative to digital logic circuit units, while analog circuits of mixed signal units generally require an even higher operating voltage. Regarding power requirements, memory units generally require less power than digital logic circuit units, while analog circuits of mixed signal units typically require more power than the other units. [0006]
  • A typical DC voltage generator system includes a central DC voltage generator having a plurality of regulator systems, and a pump system (also referred to as charge pump) associated with each regulator system. The DC voltage generator system further includes wiring for providing the voltages provided by the central DC voltage generator to the units of the chip. The DC voltage generator system having a central DC voltage generator is cumbersome, and is susceptible to contributing to power supply noise and noise cross-contamination between neighboring units. [0007]
  • FIG. 1 shows an exemplary [0008] conventional regulator system 30 of an on-chip DC voltage generator system, which is described in U.S. Pat. No. 6,060,873, to Temullo, Jr. et al., which is incorporated herein by reference. The regulator system 30 receives a boosted supply voltage VH, a supply voltage VDD, and a power-up control signal PU, and outputs a boost control signal BC, which is propagated to a charge pump (not shown). The regulator system 30 is used to convert the externally supplied power to the voltage and current needed for the chip, while regulating the voltage with stability and noise reduction. The regulator system 30 controls the charge pump for increasing or decreasing the voltage output by the charge pump accordingly. The voltage output by the charge pump is provided to the various units of the chip.
  • A further disadvantage of the DC voltage generator system having a central DC voltage generator is that in order to provide enough current for full speed operation of the chip, in which one or more units operate in a high performance mode, the DC voltage generator system is usually designed to meet a highest power consumption condition. The charge pumps of the central DC voltage generator are controlled to all provide the same current to the units on the chip, even when one or more of the units on the chip are operating in a low-performance mode, thus wasting power. [0009]
  • Furthermore, the conventional DC voltage generator system having a central DC voltage generator does not generally contribute to power conservation. For example, in SOC design power conservation is implemented by using low power systems on chip (LP-SOC), which typically uses a low-power architecture. When operating in high performance mode, all units on an LP-SOC chip work at full speed. When switching activity is decreased, in which data processing speed and data input/output slows down and some units are disabled, the chip clock slows down in order to save power. However, the central DC voltage generator operates as usual by providing power to the units, regardless of whether the units are disabled or the chip clock output is changed, and power may be consumed without actually executing data. [0010]
  • Accordingly, a need exists for a system and a method for an SOC DC voltage generator system having a network of small sized distributed local voltage generators providing scalable voltage and power levels to different units on the chip. A need further exists for a system and method for an SOC DC voltage generator system that is controlled to operate in accordance with variable performance. Finally, a need exists for clock gated local voltage generators for individually controlling each local voltage generator in accordance with a clock signal indicative of a low performance mode. [0011]
  • SUMMARY
  • It is an aspect of the present invention to provide a system and a method for an SOC DC voltage generator system having a network of distributed local voltage generators providing scalable voltage levels to different units on the chip. [0012]
  • It is a further aspect of the present invention to provide a system and method for an SOC DC voltage generator system that is controlled for operating in variable performance modes. [0013]
  • Finally, it is an aspect of the present invention to provide a system and method for clock gated local voltage generators for individually controlling each local voltage generator in accordance with a clock signal indicative of a low performance mode. [0014]
  • Accordingly, the present invention provides an SOC voltage generator system for supplying at least one voltage level to a plurality of units on a chip having an SOC design. The voltage generator system includes a plurality of local DC voltage generators distributed throughout the chip, each local DC voltage generator independently supplying voltage to at least one unit of the plurality of unites, each local DC voltage generator including a regulator system outputting one pump control signal; and a pump system receiving the one pump control signal and outputting at least one voltage level in accordance with the one pump control signal. [0015]
  • Furthermore, the present invention provides a method for supplying voltage to a plurality of units on a chip having an SOC design, the method including the steps of distributing a plurality of local DC voltage generators throughout the chip; and supplying at least one voltage level to the plurality of units via the plurality of local DC voltage generators. [0016]
  • BRIEF DESCRIPTION OF THE FIGURES
  • The above and other features of the present invention will become more apparent from the following detailed description of preferred embodiments, taken in conjunction with the accompanying drawings, in which: [0017]
  • FIG. 1 is a block diagram of a prior art DC voltage generator system; [0018]
  • FIG. 2 a block diagram of a chip having a system on chip design in accordance with the present invention; [0019]
  • FIG. 3 is a block diagram of a SOC DC voltage generator system in accordance with the present invention; and [0020]
  • FIG. 4 is a circuit diagram of a local DC voltage generator in accordance with the present invention.[0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a distributed DC voltage generator system having a plurality of distributed local DC voltage generators. Each of the local DC voltage generators converts a voltage provided from an external power supply to an appropriate voltage level for an associated unit of a chip having a system on chip (SOC) design. Furthermore, each local DC voltage is individually controlled in accordance with a power control signal and a clock control signal. Hence, the distributed DC voltage generator system of the present invention provides for provision of a scalable voltage and power level to individual units of the chip, and individual switching on/off of voltage/power provision to individual units for conservation of power. The present invention also provides a preferred method for distributing a scalable voltage and power level to individual units of the chip controlled by operating conditions of the chip to reduce power consumption, while decreasing power supply noise and noise cross-contamination between neighboring units. [0022]
  • With reference to FIG. 2, an [0023] exemplary chip 200 having an SOC design (alternatively referred to as SOC chip or SOC) is shown. The SOC chip 200 includes a variety of units including a mixed signal unit 202, logic circuit units 204, a flash memory unit 206, SRAM units 208, a data signal processor (DSP) unit 210 and a power control unit (PCU) 220. Each of the units, other than the power control unit, which receives power from the chip supply voltage, is individually provided with power and/or voltage from an associated local DC voltage generator 230. There is no power connection between the units of the SOC chip 200.
  • Each of the local [0024] DC voltage generators 230 is controlled through the PCU 220. The PCU 220 generates power control signals (PCS(x), where x=1−n for n units) for controlling the local DC voltage generator 230 in accordance with power saving mode instructions received from an external source, in accordance with a determination of performance mode made by a source within the SOC chip 200, or in accordance with a determination made by the PCU 220 or a combination thereof. The determination of a performance mode is in accordance with detected power need, such as detection of a chip activity level including switching level, input/output (I/O) level and processing level. The PCU 220 determines whether the SOC chip 200 is operating in a high performance mode or in a low performance mode and decides which of the local DC voltage generators can be disabled. For example, if the PCU 220 determines that the SOC chip 200 is operating in the low performance mode, the PCU 220 generates a “low” PCS(x) to selected units or all of the units. If the PCU 220 determines that the SOC chip 200 is operating the high performance mode, the PCU 220 generates a “high” PCS(x) to all or some of the units. Thus, the amount of power provided to the units of the SOC chip 200 varies in accordance with the performance level of the SOC chip 200.
  • In another embodiment, the [0025] PCU 220 is capable of recognizing N (where N>=2) performance modes in which the SOC chip 200 is capable of operating, and generates the PCS(x) to each local DC voltage generator 230 in accordance with the recognized performance mode. The combination of PCS(1−n) generated to all of the DC voltage generators varies in accordance with the performance mode recognized by the PCU 220. Thus, the amount of power provided to the units of the SOC chip 200 varies in up to N levels in accordance with the performance level of the SOC chip.
  • With reference to FIG. 3, a distributed DC [0026] voltage generator system 300 for providing voltage and/or power to the units of the SOC chip 200 is shown. The distributed DC voltage generator system 300 includes a plurality of local DC voltage generators 230, the PCU 220 and a clock control unit (CLKCU) 310. The CLKCU 310 maybe an external clock control unit or a clock control macro located on the SOC chip 200, which receives and processes an external clock signal, or generates and processes a clock signal. The CLKCU 310 generates a combined clock enable signal (CES) which is divided into individual signals CES(x), where x=1−n, corresponding to n DC voltage generators 230. Furthermore, each CES(x) signal is preferably provided to the unit associated with the DC voltage generator 230 receiving the CES(x) signal. The PCU 220 and the CLKCU 310 generate individual signals PCS(x) and CES(x) to each of the local DC voltage generators 230 for independently controlling the DC voltage generators 230. Each CES(x) and PCS(x) controls the on/off switch of the DC voltage generators 230 receiving the signal.
  • It is contemplated that control signals PCS(x) and CES(x), alone or in combination, may control different modes of operation of the local [0027] DC voltage generator 230 receiving the control signals CES(x) and/or PCS(x).
  • In order to provide the proper voltage level(s) to each unit, each local [0028] DC voltage generator 230 preferably includes a voltage pump system 320 for generating one or more operating voltages. The voltage pump system provides the ability to provide a higher operating voltage level to a unit such as the mixed signal unit 202, and different operating voltage levels (e.g., Vbb, Vneg and Vpp) for within a unit such as a unit having an embedded DRAM macro.
  • It is contemplated that a local [0029] DC voltage generator 230 may provide voltage and/or power voltage level to one or more units. The local DC voltage generator may include a pump system for providing one or more voltage levels.
  • FIG. 4 shows an exemplary local [0030] DC voltage generator 230 including AND gate GI, FET devices F1-3, Capacitor C1 and regulator system 412. PCS(x) and CES(x) are received by G1 which outputs control signal CS(x) for controlling FET F3, preferably an nFET, which switches the regulator system 412 on or off. When either of PCS(x) and CES(x) are “low”, CS(x) switches FET F3 “off” so that no DC current flows to the regulator system 412. When both PCS(x) and CES(x) are “high”, CS(x) switches FET F3 “on” and power supply voltage VH is provided to the regulator system 412. FET devices F1, F2, which are preferably pFET devices, are cascade transistors functioning as a voltage divider, where the amount of voltage passing through the FET devices F1, F2 is determined by the size of the FET devices F1, F2 (in a way similar to relatively bulky resistors). Preferably, the FET devices F1 and F2 are different sizes. Capacitor C1 is a decoupling capacitor for reducing power supply noise due to wiring inductance along a supply line connecting the power supply to the regulator system 412. Wiring inductance is further minimized by maintaining the supply line to be short.
  • The [0031] regulator system 412 may be a conventional regulator system such as the prior art regulator system 30 shown in FIG. 1. The regulator system 412 of the local DC voltage generator 230 associated with each unit may be customized to provide the proper voltage level required by that unit. A voltage V1 indicative of the power supply voltage VH is provided to a voltage divider (not shown, similar to VD 11 of FIG. 1) of the regulator system, and is compared to a reference voltage for determining the value of the output control signal BC which controls a charge pump (not shown) for outputting the proper voltage level to the unit. The voltage level output to the unit is selectable by selecting the reference voltage. Thus, the voltage level output by each local DC voltage generator 230 is selectable by selecting the reference voltage for the regulator system 412 of the local DC voltage generator 230. As mentioned above, the charge pump may be a charge pump system capable of providing different operating voltage levels to one unit, such as Vbb, Vneg and Vpp.
  • When either the PCS(x) and CES(x) signal are “low” and CS(x) is “low”, current does not flow to the voltage divider of the [0032] regulator system 412 and thus to the regulator system 412, and therefore current flow in the local Dc voltage generator 230.
  • The distributed DC [0033] voltage generator system 200 provides further advantages including power supply noise reduction due to locally supplied power, where the power may be supplied from the nearest supply pins. In addition, noise cross-contamination between neighboring units is virtually eliminated as there is no power connection between the units due to independent connections between the units and the power source.
  • What has been described herein is merely illustrative of the application of the principles of the present invention. For example, the systems described above and implemented as the best mode for operating the present invention are for illustration purposes only. For instance, other design configurations may be used which provide similar operation as the system described herein. In other words, other arrangements and methods may be implemented by those skilled in the art and are contemplated to be within the scope of the appended claims. [0034]

Claims (21)

In the claims:
1. A system on chip (SOC) DC voltage generator system for supplying at least one voltage level to a plurality of subsystems on a chip having an SOC design, each of the subsystems having a plurality of units, the DC voltage generator system comprising:
a plurality of local DC voltage generators distributed throughout the chip, each local DC voltage generator independently supplying voltage to at least one unit of the plurality of subsystems, each local DC voltage generator including:
at least one regulator system incorporated in a section of the local DC voltage generator, a power control unit and a clock control unit, wherein each regulator system receiving a clock control signal from said power control and clock control units and outputting one pump control signal from the section of the local DC voltage generator, the pump control signal being based on the clock control signal; and
a pump system receiving the one pump control signal and outputting at least one voltage level in accordance with the one pump control signal.
2. The SOC DC voltage generator system according to claim 1, wherein each local DC voltage generator is located proximate to a unit of the plurality of units.
3. The SOC DC voltage generator system according to claim 1, wherein each local DC voltage generator supplies the voltage level to one unit of the plurality of units.
4. The SOC DC voltage generator system according to claim 1, wherein a voltage level of the voltage supplied is selectable.
5. The SOC DC voltage generator system according to claim 1, wherein each local DC voltage generator is independently controlled by a respective control signal.
6. The SOC DC voltage generator system according to claim 5, wherein each respective control signal is generated by a power control unit in accordance with a power level mode at which the chip is operating.
7. The SOC DC voltage generator system according to claim 6, wherein the power control unit receives instructions from an external source for determining the power level mode.
8. The SOC DC voltage generator system according to claim 5, wherein each respective control signal is generated by a clock control unit.
9. The SOC DC voltage generator system according to claim 5, wherein each respective control signal is generated in accordance with an activity level of the chip.
10. The SOC DC voltage generator system according to claim 9, wherein the activity level is one of a switching activity level and an I/O activity level.
11. The SOC DC voltage generator system according to claim 8, wherein the respective control signal controlling one of the local DC voltage generators is provided to the unit associated with the local DC voltage generator.
12. The voltage generator system according to claim 5, wherein each respective control signal controls current flow in the local DC voltage generator.
13. A method for supplying voltage to a plurality of subsystems on a chip having an SOC design, each of the subsystems having a plurality of units, the method comprising the steps of:
distributing a plurality of local DC voltage generators throughout the chip;
supplying a clock control signal to each of the local DC voltage generators;
generating, in a section of each local DC voltage generator, a pump control signal;
receiving, with a pump system of each local DC voltage generator, the pump control signal;
generating, using the pump system, a DC voltage based on the pump control signal; and
supplying the generated DC voltage to the plurality of units of said plurality of subsystems.
14. The method of claim 13, further comprising the step of independently controlling each local DC voltage generator of the plurality of DC voltage generators.
15. The method of claim 13, further comprising the step of independently selecting a voltage level to be supplied by each local DC voltage generator.
16. The method of claim 14, wherein the step of independently controlling includes controlling each local DC voltage generator in accordance with a power mode of the chip.
17. The method of claim 17, wherein the step of independently controlling includes controlling each local DC voltage generator in accordance with a clock control signal.
18. The method of claim 17, wherein the clock control signal is further provided to selected units of the plurality of units.
19. The method of claim 14, wherein the step of independently controlling includes controlling each local DC voltage generator in accordance with an activity level of the chip.
20. The method of claim 19, wherein activity level is one of a switching level and an I/O level of the chip.
21. The method of claim 1, wherein the pump control signal is based on the clock control signal to accommodate different system operating modes selected from one of high performance mode and low-power mode.
US10/799,537 2002-04-09 2004-03-12 Distributed DC voltage generator for system on chip Abandoned US20040169546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/799,537 US20040169546A1 (en) 2002-04-09 2004-03-12 Distributed DC voltage generator for system on chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/118,753 US6803805B2 (en) 2002-04-09 2002-04-09 Distributed DC voltage generator for system on chip
US10/799,537 US20040169546A1 (en) 2002-04-09 2004-03-12 Distributed DC voltage generator for system on chip

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/118,753 Continuation US6803805B2 (en) 2002-04-09 2002-04-09 Distributed DC voltage generator for system on chip

Publications (1)

Publication Number Publication Date
US20040169546A1 true US20040169546A1 (en) 2004-09-02

Family

ID=28674487

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/118,753 Expired - Fee Related US6803805B2 (en) 2002-04-09 2002-04-09 Distributed DC voltage generator for system on chip
US10/799,537 Abandoned US20040169546A1 (en) 2002-04-09 2004-03-12 Distributed DC voltage generator for system on chip

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/118,753 Expired - Fee Related US6803805B2 (en) 2002-04-09 2002-04-09 Distributed DC voltage generator for system on chip

Country Status (1)

Country Link
US (2) US6803805B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0324292D0 (en) * 2003-10-17 2003-11-19 Huggins Mark Embedded power supplies particularly for large scale integrated circuits
US7786697B2 (en) * 2004-11-12 2010-08-31 Mediatek Inc. Battery charger system
TW200703853A (en) * 2005-03-17 2007-01-16 Int Rectifier Corp POL system architecture with analog bus
US7482792B2 (en) * 2005-06-14 2009-01-27 Intel Corporation IC with fully integrated DC-to-DC power converter
US7598630B2 (en) * 2005-07-29 2009-10-06 Intel Corporation IC with on-die power-gating circuit
FR2897199A1 (en) * 2006-02-03 2007-08-10 St Microelectronics Sa Peak current consumption managing device for e.g. system on chip, has transistors mounted in parallel with circuit-breaker controlled by control units which generate control signal whose slew-rate is controlled by units
US7949887B2 (en) 2006-11-01 2011-05-24 Intel Corporation Independent power control of processing cores
US8397090B2 (en) * 2006-12-08 2013-03-12 Intel Corporation Operating integrated circuit logic blocks at independent voltages with single voltage supply

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337284A (en) * 1993-01-11 1994-08-09 United Memories, Inc. High voltage generator having a self-timed clock circuit and charge pump, and a method therefor
US5430859A (en) * 1991-07-26 1995-07-04 Sundisk Corporation Solid state memory system including plural memory chips and a serialized bus
US5621685A (en) * 1994-10-17 1997-04-15 Sandisk Corporation Programmable power generation circuit for flash EEPROM memory systems
US5796285A (en) * 1994-04-21 1998-08-18 Sgs-Thompson Microelectronics S.A. Voltage-limiting circuit with hysteresis comparator
US5883814A (en) * 1997-03-13 1999-03-16 International Business Machines Corporation System-on-chip layout compilation
US6016072A (en) * 1998-03-23 2000-01-18 Vanguard International Semiconductor Corporation Regulator system for an on-chip supply voltage generator
US6060873A (en) * 1999-03-12 2000-05-09 Vanguard International Semiconductor Corporation On-chip-generated supply voltage regulator with power-up mode
US6249473B1 (en) * 2000-02-21 2001-06-19 Vanguard International Semiconductor Corporation Power down system for regulated internal voltage supply in DRAM
US6434044B1 (en) * 2001-02-16 2002-08-13 Sandisk Corporation Method and system for generation and distribution of supply voltages in memory systems
US6459646B1 (en) * 2000-12-21 2002-10-01 Triscend Corporation Bank-based configuration and reconfiguration for programmable logic in a system on a chip
US6577535B2 (en) * 2001-02-16 2003-06-10 Sandisk Corporation Method and system for distributed power generation in multi-chip memory systems
US6732304B1 (en) * 2000-09-21 2004-05-04 Inapac Technology, Inc. Chip testing within a multi-chip semiconductor package

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255224A (en) * 1991-12-18 1993-10-19 International Business Machines Corporation Boosted drive system for master/local word line memory architecture
US5596532A (en) * 1995-10-18 1997-01-21 Sandisk Corporation Flash EEPROM self-adaptive voltage generation circuit operative within a continuous voltage source range
US5654859A (en) * 1995-11-14 1997-08-05 The Boeing Company Fault tolerant power distribution system
US5841703A (en) * 1996-12-31 1998-11-24 Intel Corporation Method and apparatus for removal of VT drop in the output diode of charge pumps
US6005812A (en) * 1998-02-27 1999-12-21 Micron Technology, Inc. Device and method for supplying current to a semiconductor memory to support a boosted voltage within the memory during testing

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430859A (en) * 1991-07-26 1995-07-04 Sundisk Corporation Solid state memory system including plural memory chips and a serialized bus
US5337284A (en) * 1993-01-11 1994-08-09 United Memories, Inc. High voltage generator having a self-timed clock circuit and charge pump, and a method therefor
US5796285A (en) * 1994-04-21 1998-08-18 Sgs-Thompson Microelectronics S.A. Voltage-limiting circuit with hysteresis comparator
US5621685A (en) * 1994-10-17 1997-04-15 Sandisk Corporation Programmable power generation circuit for flash EEPROM memory systems
US5883814A (en) * 1997-03-13 1999-03-16 International Business Machines Corporation System-on-chip layout compilation
US6016072A (en) * 1998-03-23 2000-01-18 Vanguard International Semiconductor Corporation Regulator system for an on-chip supply voltage generator
US6060873A (en) * 1999-03-12 2000-05-09 Vanguard International Semiconductor Corporation On-chip-generated supply voltage regulator with power-up mode
US6249473B1 (en) * 2000-02-21 2001-06-19 Vanguard International Semiconductor Corporation Power down system for regulated internal voltage supply in DRAM
US6732304B1 (en) * 2000-09-21 2004-05-04 Inapac Technology, Inc. Chip testing within a multi-chip semiconductor package
US6459646B1 (en) * 2000-12-21 2002-10-01 Triscend Corporation Bank-based configuration and reconfiguration for programmable logic in a system on a chip
US6434044B1 (en) * 2001-02-16 2002-08-13 Sandisk Corporation Method and system for generation and distribution of supply voltages in memory systems
US6577535B2 (en) * 2001-02-16 2003-06-10 Sandisk Corporation Method and system for distributed power generation in multi-chip memory systems

Also Published As

Publication number Publication date
US6803805B2 (en) 2004-10-12
US20030189460A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
US6693412B2 (en) Power savings in a voltage supply controlled according to a work capability operating mode of an integrated circuit
JP4685531B2 (en) STEP-DOWN SWITCHING REGULATOR, ITS CONTROL CIRCUIT, AND ELECTRONIC DEVICE USING THE SAME
US8866341B2 (en) Voltage regulator
US20070018620A1 (en) Power supply apparatus and its method
US20170185096A1 (en) Apparatus for Power Regulator with Multiple Inputs and Associated Methods
US10114399B2 (en) Distributed power delivery scheme for on-die voltage scaling
US20030030326A1 (en) Distributed power and supply architecture
US20070136617A1 (en) Semiconductor integrated circuit
US7046074B2 (en) Internal voltage generator
JP2004032875A (en) Electronic equipment
US20080106327A1 (en) Closed-Loop Control for Performance Tuning
JP2001211640A (en) Electronic device, semiconductor integrated circuit, and information processing system
US5987615A (en) Programmable load transient compensator for reducing the transient response time to a load capable of operating at multiple power consumption levels
JP2001236131A (en) Dc-dc conversion circuit, power source selection circuit and equipment device
US20060170403A1 (en) Voltage regulator with reduced power consumption in standby operating mode
US8680895B2 (en) Controlling power chain with same controller in either of two different applications
US7224207B2 (en) Charge pump system with smooth voltage output
US7405545B2 (en) Voltage-regulator and power supply having current sharing circuit
US20100318823A1 (en) Computer and control method thereof
US6806692B2 (en) Voltage down converter
US6232830B1 (en) Circuit for the regulation of an output voltage of a charge pump device
US7126798B2 (en) On die voltage regulator
US6803805B2 (en) Distributed DC voltage generator for system on chip
US8046088B2 (en) Dependent power supplying apparatus and electronic instrument
US7487370B2 (en) Semiconductor device and system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910