US20040142906A1 - Conpositions and method to prevent and treat brain and spinal cord injuries - Google Patents

Conpositions and method to prevent and treat brain and spinal cord injuries Download PDF

Info

Publication number
US20040142906A1
US20040142906A1 US10/703,830 US70383003A US2004142906A1 US 20040142906 A1 US20040142906 A1 US 20040142906A1 US 70383003 A US70383003 A US 70383003A US 2004142906 A1 US2004142906 A1 US 2004142906A1
Authority
US
United States
Prior art keywords
osmotic agent
neuroprotective composition
central nervous
nervous system
system tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/703,830
Inventor
Yanming Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/703,830 priority Critical patent/US20040142906A1/en
Publication of US20040142906A1 publication Critical patent/US20040142906A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/737Sulfated polysaccharides, e.g. chondroitin sulfate, dermatan sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/60Fish, e.g. seahorses; Fish eggs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae

Abstract

The cerebrospinal fluid and intracranial pressure are two major reasons why central nervous system is so vulnerable to injuries. A composition and method for treating injured central nervous tissue, or preventing injury to central nervous system tissue is provided. The composition is comprised of a combination of colloidal osmotic agents and crystal osmotic agents. The method comprise of: a). Withdrawing cerebrospinal fluid from the subarachnoid spaces around the tissue to be treated or protected and b). Injecting the composition which is dissolved by patient's own cerebrospinal fluid into subarachnoid spaces. The treatment can be augmented with agents that suppress production of cerebrospinal fluid, or with other known neuroprotective agents.

Description

    RELATED APPLICATIONS
  • This application is a continuation in part of application Ser. No. 09/962,009, filed Sep. 24, 2001, the disclosure of which is incorporated by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention is related to prevention and treatment for brain and spinal cord injuries. In particular, the invention relates to osmotic agents and the methods of using osmotic agents to prevent and protect the brain and spinal cord injuries in patients. [0003]
  • 2. Background Information [0004]
  • Central nervous system (CNS) consisting of the brain and spinal cord is very vulnerable to injuries, such as hypoxia-ischemia, trauma, poisoning etc. Cerebral edema is a common pathway to all CNS injuries. Clinical prevention and treatment for CNS injuries induced edema includes intravenous administration of osmotic agent, diuretic, removal of cerebrospinal fluid, coticosterroids etc, however, the efficacy is temporary and limited. Current search for a neuroprotective treatment based on other molecular mechanisms has yielded a disappointing result including oxygen free radical scavengers, calcium channel blockers and glutamate receptor antagonists to monoclonal antibodies that attempt to curtail inflammatory cascades occurring in cerebral injuries etc. [0005]
  • The existence of the cerebrospinal fluid (CSF) is a unique feature of the CNS. In an adult human, the CSF volume ranges from about 52 to 160 ml (mean 140 ml), occupying 10 percent of the intra-cranial and intra-spinal volume. The choroid plexuses are the main sites of CSF formation. The average rate of CSF formation is about 21 to 22 ml/hr, or approximately 500 ml/day. The CSF as a whole is renewed four or five times daily. The CSF formation is related to intra-cranial pressure. When the intracranial pressure is below about 70 mm H[0006] 20, CSF is not absorbed, and production increases. To date, there is no definite evidence suggesting that the CSF is actively involved in the metabolism of the cells of the brain and spinal cord. The known primary function of CSF appears to be a mechanical one; it serves as a kind of water jacket for the spinal cord and brain, protecting them from potentially injurious blows to the spinal column and skull and acute changes in venous pressure. Therefore, the brain and spinal cord are merged in the CSF. The CSF also serves as a buoyancy so that the brain and spinal cord virtually float in a CSF jacket with weight being greatly reduced.
  • Although some researchers regard the CSF as lymphatic fluid of the CNS, the CSF is quite different from lymphatic fluid. First of all, in the peripheral tissues and organs, interstitial fluid and lymphatic fluid are separated, lymphatic fluid contain higher concentration of protein. Second, the interstitial fluid and lymphatic fluid pressure at capillary level is believed to be very low or even negative. However, although the CSF occupies the subarachnoid space, it has free access to neurons and surrounding glia cells through the Vichow-robin space which is also known as the perivascular spaces. Smaller blood vessels, which centripetally penetrate into the brain proper, are accompanied by an extension of the subarachnoid space that forms the Virchow-Robin space and is filled with the CSF. Importantly, the CSF is mainly composed of water and electrolytes. Although, the osmolality of the CSF is about 289 mOsm/L (almost equal to the plasma), but the colloidal pressure is very low because of the extremely low protein concentration. In addition, the intracranial pressure (ICP) is normally ranged between 80-180 mm H[0007] 2O.
  • It has been known that after cardiac arrest and global ischemia, the brain suffers a “no-reflow” phenomenon. In the 1960s, Ames produced global cerebral ischemia for 6 minutes in rabbits followed by carbon black ink infusion. Ames found that a large amount of the brain suffered from perfusion deficits. Similar to the “no-reflow” phenomenon, post-ischemic or post-traumatic “hypoperfusion” has also been documented after spinal cord and brain injuries. [0008]
  • We have proposed that these unique physiological and anatomic features of the CNS place the brain and spinal cord in a very delicate edema prone position and play an important role in the vulnerability of the brain and spinal cord. [0009]
  • Our hypothesis is: The CSF is readily available to provide endless source of water to bath the CNS tissue; when the brain or spinal cord is injured by an initiating insult such as ischemia or trauma, the CSF infiltrates brain or spinal cord tissue through the injured cell membrane (or water channels) and causes the rapid development of edema. While excessive water inside the cell body is toxic, swelling of the tissue makes the Virchow-Robin space smaller and may even cause it to collapse, thereby compressing the small blood vessels and resulting in a obstruction of the blood flow, such as a “hypoperfusion” or even “no-reflow” phenomenon, which prolongs the original ischemic duration, blocks collateral circulation and induces a feedback loop. These events result in irreversible cell death, tissue necrosis and liquefaction, finally neurological deficits and even brain death become clinical outcomes. Therefore dealing with cerebral edema is the key for preventing or treating CNS injuries. [0010]
  • The osmosis in a living creature is not fully understood, both crystal and colloidal osmotic pressure can suck water from the edematous tissue. For example, in clinic, while crystal osmotic agents such as glucose, mannitol or glycerin administration have strong and quick effect, colloidal osmotic agents such as albumin have slow but long lasting effect to dehydrate tissue. [0011]
  • In the formation of edema, the hydrostatic pressure is always the key contributor. It counteracts colloidal osmotic pressure and promotes edema according to Starling's equation. However, it has less influence on crystal osmotic pressure. Importantly, in addition to the low colloidal pressure of the CSF, the ICP which is the hydrostatic pressure of the CSF, is often elevated when brain and spinal cord are injured. [0012]
  • U.S. patent filed Sep. 24, 2001 from Yanming Wang discloses a composition and treatment method for brain and spinal cord injuries. [0013]
  • U.S. Pat. No. 6,500,809 to Frazer Glenn discloses a hyperoncotic artificial cerebrospinal fluid and method of treating neural tissue edema. Although the inventor increase the colloidal osmotic pressure in an artificial CSF fluid, it will be difficult to reduce the ICP with the method invented. They did not increase the crystal osmotic pressure of the artificial CSF which is also very important and effective to treat cerebral edema. In addition, there are many disadvantages regarding to this artificial CSF regarding its use, store, safety, high cost for patient etc. [0014]
  • A series of patents, U.S. Pat. Nos. 4,981,691, 4,758,431, 4,445,887, 4,445,500, and 4,393,863 to Osterholm disclose a fluorocarbon solution for treatment of hypoxic-ischemic neurological tissue. [0015]
  • SUMMARY OF THE INVENTION
  • Cerebral edema is a common pathway to all CNS injuries. All current clinical measures for prevention and treatment of CNS injuries induced edema only provide temporary and limited effect. Current search for a neuroprotective agent based on other molecular mechanisms has yielded a disappointing result. [0016]
  • Our hypothesis is: the two factors, i.e. the CSF and ICP, are the main reasons to cause the vulnerability of the CNS to injuries. The CSF, the very low colloidal osmotic pressure water solution, is readily available to provide endless source of water to bath the CNS tissue to cause the rapid development of edema when the brain or spinal cord is injured. The ICP promotes cerebral edema. While excessive water inside the cell body is toxic, swelling of the tissue makes the Virchow-Robin space smaller, thereby compressing the small blood vessels and resulting in blood perfusion deficit, such as “hypoperfusion” or even “no-reflow” phenomenon, which prolongs the original ischemic duration, blocks collateral circulation and induces a feedback loop. These cascade events result in irreversible cell death, tissue necrosis and liquefaction, finally neurological deficits and even brain death become clinical outcomes. Therefore removing the CSF and increasing the osmotic pressure of the remaining CSF will reduce the cerebral edema herein increasing the cerebral flow and protecting the brain and spinal cord tissue. [0017]
  • This invention provides compositions and method for protecting brain and spinal cord. Compositions according to this invention may be used to treat neurological disorders, such as stroke, hypoxia-ischemia, hemorrhage, trauma, multiple sclerosis, seizure, infection, or poisoning. The compositions are also useful during open-heart surgery, aortic surgery, neurosurgery, shock, or other procedures where blood flow to the CNS is interrupted. [0018]
  • I have found the formulations I have used are effective when it is dissolved in patient's own CSF and applied to the subarachnoid spaces after the cerebrospinal fluid has been removed completely or partially from the subarachnoid spaces. These methods are effective to treat injured CNS tissue or to protect it from continuing damage after injury. To treat or prevent the CNS injuries, the composition will be dissolved in certain amount of the patient's own CSF and injected into subarachnoid spaces increasing the osmotic pressure around the injured CNS tissue to adsorb water from the edematous tissue. Elimination of this cerebral edema prevents the onset of the “no-reflow” phenomenon or “hypoperfusion”, and protects the CNS tissue making it resistant to injuries, and lengthening the therapeutic window for all other therapies. [0019]
  • There are many advantages to the compositions and method I have discovered. [0020]
  • 1. the composition and method provides an effective and simple approach to prevent and protect brain and spinal cord injuries. [0021]
  • 2. it improves the efficacy of existing treatments for stroke, head trauma, and other invasive procedures. Administering an effective composition through subarachnoid spaces after removing the CSF according to this invention will increase the therapeutic window, the period of time in which any other treatment, including thrombolytic agents can be used. For example, tPA, the only FDA approved medication for stroke, is a thrombolytic agent targeted on dissolving the blood clots that led to the stroke. tPA is now only approved for use within 3 hours after onset of ischemia. When used in combination with the instant composition and method, the therapeutic window for all known treatments now used for supporting CNS tissue will be much longer. Another example is this invention if used before, during and after brain and spinal cord surgery, a quicker and better recovery result can be achieved. [0022]
  • 3. the composition is easy to make and is convenient to store and transport to anywhere. For example, it can be easily stored at room temperature for long time; the volume is small and can be easily transported to anywhere; Using patient's own CSF to dissolve it is simple and provides more chance for clinical physician to adjust the dosage according to patient condition. I have found that serum or plasma from the treated patient or normal people can also be served as the effective composition. Serum or plasma can be obtained by centrifuging blood from the patient being treated or normal people. This provides more choice for the patients under extreme condition where the composition is not accessible. [0023]
  • 4. this invention also can reduce the cost of the treatment. Since the CSF is completely or partially removed, major water supply to cause the cerebral edema is eliminated. Therefore, the dosage is greatly reduced and efficacy is greatly enhanced. In addition, this invention provides more choices to make the composition, many of them are less expensive. [0024]
  • 5. This invention, if combined with other known techniques such as controlled hypothermia, may significantly increase the length of time a patient can tolerate cerebral ischemia. A patient treated according to this invention may survive invasive procedures performed on any part of the CNS without casing much injury, including areas of the brain that have not been surgically accessible prior to this invention such as brain stem. Additionally, procedures that require interruption of the blood flow, such as heart surgery, repair of aortic aneurysm, or any other surgery where systemic blood circulation is interrupted can be performed with increased safety. [0025]
  • 6. The compositions and methods I have invented extend the therapeutic window for successfully resuscitating cardiac arrest from mere minutes to hours. In addition, this compositions and method are useful for screening neuroprotective agents developed based on other mechanisms. [0026]
  • DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT
  • As we have discussed in the background information, two factors make the CNS vulnerable to injuries, i.e. the CSF itself is a low colloidal osmotic pressure water solution, the ICP, the hydrostatic pressure of the CSF can deduct the force of colloidal osmotic pressure to promote edema. The CSF is readily available to provide endless source of water to bath the CNS tissue; when the brain or spinal cord is injured by an initiating insult such as ischemia or trauma, the CSF infiltrates brain or spinal cord tissue through the injured cell membrane (or water channels) and causes the rapid development of edema. While excessive water inside the cell body is toxic, swelling of the tissue makes the Virchow-Robin space smaller and may even cause it to collapse, thereby compressing the small blood vessels and resulting in a obstruction of the blood flow, such as a “hypoperfusion” or even “no-reflow” phenomenon, which prolongs the original ischemic duration, blocks collateral circulation and induces a feedback loop. This failure of circulation results in continuing damage to CNS tissue after the interruption of blood flow is reversed leading to irreversible damage and eventually cell death, tissue necrosis and liquefaction, finally neurological deficits and even brain death become clinical outcomes. [0027]
  • Therefore dehydrating the edematous cerebral tissue is the most important issue to prevent and treat the brain and spinal cord injuries. As we all know, intravenously infusion of osmotic agents only provide temporary and limited effect, the reasonable strategy should target the CSF and ICP, i.e. decreasing the ICP and increasing the osmotic pressure of the CSF. [0028]
  • U.S. Pat. No. 6,500,809 to Frazer Glenn discloses a hyperoncotic artificial cerebrospinal fluid and method of treating neural tissue edema. Although the inventor increase the colloidal osmotic pressure in an artificial CSF fluid, it will be difficult to reduce the ICP with the method invented. They did not increase the crystal osmotic pressure of the artificial CSF which is also very important, particularly when the treatment is delayed and quick treatment is needed. There are many disadvantages for this artificial CSF. First of all, putting albumin in an artificial CSF is not more advantageous than just dissolving the albumin in patient's own CSF. Although albumin is good for maintain colloidal osmotic pressure, it is expensive and may be risky for being infected by HIV, Hepatitis virus B etc if the albumin is from human. In addition, it is not convenient to store and transfer this hyperoncotic artificial cerebrospinal fluid because it requires large volume of it to circulate in the cranium; Manufacturing a hyperoncotic artificial cerebrospinal fluid and circulating it are complicated and will have to add additional cost to a patient without enhancing drug effects. Although as the inventor stated in claim [0029] 31, the hyperoncotic artificial cerebrospinal fluid can be ultrafiltered and recirculated, the procedure is complicated and it seems wasting albumin is inevitable. According to the claim 21, this hyperoncotic artificial cerebrospinal fluid has to be circulated at the rate of 1-100 ml/min, this may result in elevated ICP leading to deduct osmotic pressure generated by albumin based on Starling's equation.
  • I have invented a composition comprising osmotic agents and a method to prevent and treat brain and spinal cord injuries. [0030]
  • To treat or prevent the brain and spinal cord injuries, first, removing the CSF to reduce the ICP and cut off the major water supply to cerebral tissue, then using part of the removed CSF as a solvent to dissolve the invented composition, second, injecting the composition which is dissolved by patient's own CSF to the affected area of the CNS tissue. Since the CSF injected back is relatively small portion of the whole CSF removed, the ICP will not be increased. [0031]
  • For maximum CNS tissue protection, two small holes are drilled on the skull, the dura is punctured, and a cannula is placed in through the dura into the subarachnoid spaces on the surface of the brain. Additional cannulas may be inserted into the lateral cerebral ventricles, the lumbar theca, and the cisterna magna. The CSF can be removed from any or all of these locations to remove edematous fluid. Optionally, for the treatment or prevention of localize injuries such as spinal cord injury, stroke, one cannula or two cannulas may be placed through a puncture in the lumbar theca or cisterna magna or the to the direct affected area. [0032]
  • In the instant method, the CSF (usually 5-200 ml) is withdrawn from the cranium and lumbar theca depending on the location of the injuries. If whole CNS needs to be protected such as cardiac arrest or during the cardiac surgery, the CSF should be removed as completely as possible. But for a localized injury such as stroke, head trauma, or for prevention of a localized injury during neurosurgery or aortic surgery, beneficial effects can be achieved upon removal of a lesser volume of the CSF. Although mechanically withdrawing CSF alone is not sufficient enough to achieve the neuroprotective effect, it reduces the ICP and cut off the major water supply to the cerebral tissue. By removing the CSF, the ICP can be reduced even to 0 mm H[0033] 2O if necessary. Meanwhile, the CSF removed is saved for dissolving the composition described below and for injecting back. It is very difficult to completely remove all the CSF, the residual aqueous CSF after manual withdrawal can still cause edema and resultant “hypoperfusion” or “no-reflow” phenomenon, significantly decreasing the protective effect because it is a continued source of edematous fluid that can cause delayed or recurring injury. Therefore, our composition is needed.
  • The composition consists of both crystal and colloidal osmotic agents, it can be dry power form or liquid form. Although, many crystal osmotic agents can be chosen, such as glucose, mannitol, sorbitol, glycerin, sodium chloride, saccharose, saccharides, those used in clinic are preferred. Many colloidal osmotic agents can be chosen, such as polysaccharides, starch (amylose, amylopectin), proteins (the protein can be selected from any source, animal, vegetable, or microbial, without limitation, the protein can also be modified to increase the ability to absorb water), gelatin, agarose, dextran, etc. Amphipathic lipids, such as phosphoglycerides, sphingomyelins, glycolipids, cholesterol, cholesterol hemisuccinate, sphingolipids, cerebrosides and fatty acids can all be served as a colloidal osmotic agents. Proteins from soybean and wheat are found effective. Chicken egg white (providing many essential life nutrients, various proteins, fats vitamins and minerals for an chicken embryo) is a natural colloidal solution. Both liquid form and dry powder form of poultry egg white are found effective. Since ovomucoid is the major factor causing allergic reactions, chicken egg white without ovomucoid is preferred. Ovomucoid can be removed using ethanol precipitation. Soybean protein is also preferred due to its low cost. Cyclodextrins such as 2-hydroxypropyl-beta-cyclodextrin, methyl-beta-cyclodextrin etc. is amphipathic. They are also effective colloidal osmotic agents. Cyclodextrins in water solution can combine with oil and amphipathic lipids to form a colloidal osmotic solution which is also effective. (Cyclodextrins can make oil and amphipathic lipids soluble in water). Dextran, hydroxyethyl starch or modified fluid gelatin can all be used. Vascular expander used in clinic such as 10% dextra (MW 40,000), 6% dextra (MW 70,000) and 6% hydroxyethyl starch, 4% modified fluid gelatin (Gelofusine®) may be injected directly to the subarachnoid spaces or may add some crystal osmotic agents or diluted with small amount of the patent's own CSF before injection. Serum or plasma can be chosen and may also be modified by adding some crystal osmotic agents and or colloidal osmotic agents. Serium or plasma can be obtained by centrifuging blood from the patient being treated or normal people. Dry plasma may also be chosen. The milk, secreted from plasma, similar to serum or plasma, is a natural osmotic solution. This daily diet can also be chosen, either liquid form or dry power. It may also be modified by adding some crystal osmotic agents and or colloidal osmotic agents. [0034]
  • To make the composition, crystal osmotic agents and colloidal osmotic agents are mixed together. The crystal osmotic agents: colloidal osmotic agents should be from 0.01-50 g: 100 g. Optionally, the crystal osmotic agents and the colloidal osmotic agents may be kept in two separated containers and let the physician decide their proportion according to the patient's condition. It is preferred that the crystal osmotic agents can create osmolality of 20-70 mOsm/L. The pressure generated by colloidal osmotic agents is no limit but depending on the viscosity after being dissolved in the CSF. However, it is preferred that colloidal osmotic agents can create a pressure of 28 mm Hg. The composition can be manufactured and contained in different quantities in small mapules that is ready for being dissolved in 5 ml, 10 ml, 20 ml, 50 ml, 100 ml of the CSF. [0035]
  • To use the composition to prevent or to treat brain or spinal cord injuries, dissolving the composition in patient's own CSF, the clinical physician can decide the amount of the CSF being removed and dosage of the composition. Usually 5-160 ml of the patient's own CSF can be obtained as a solvent to dissolve the composition. For example, if a localized injury such as a spinal cord trauma, 5-20 ml of the patient's own CSF may be used. The CSF can be centrifuged and the supernatant can be used in case of blood in the CSF. Alternatively, simply using 5% glucose or 0.9% saline. The osmolality of the CSF after being dissolved with composition should be about, but not limited to, 309-459 mOsm/L, it is preferred that colloidal osmotic agents can create a pressure of 28 mm Hg. After shaking well, the CSF with composition is injected back to the subarachnoid space through one or more cannulas. The CSF loaded with high osmotic agents stay around the injured brain or spinal cord tissue for certain period that is long enough to suck the water from the edematous cerebral tissue. If necessary, the treatment procedure can be repeated. After patient is recovered, the composition can be removed by withdrawing the CSF again from the subarachnoid space. [0036]
  • Meanwhile, administering agent to suppress production of CSF can be advantageous. There are many known agents that inhibit production of CSF. All diuretics, include Furosemide (20-200 mg every 4-6 hours), and acetazolamide (0.25-2 g every 4-12 hours). Other agents known to suppress formation of CSF include: beta blocking agents such as isopranolol, and timolol maleate; and calcium channel blockers such as brinzolamide, dorzolamide, methazolamide, sezolamide, lantanoprost, and bis (carbonyl) amidothiadiazole sulfonamides; and carbonic acid anhydrase inhibitors such as triamterene, spironolactone, thiazides, and, Na and K-ATPase inhibitors. This CSF inhibiting agent can be administered intravenously, orally or by directly add to the invented composition injecting into subarachnoid space. [0037]
  • The compositions and methods herein can be advantageously combined with any of the agents used to treat stroke or other neurological deficiencies including: calcium channel blockers such as Nimodipine, and Flunarizine; calcium chelators, such as DP-b99; potassium channel blockers; Free radical scavengers—Antioxidants such as Ebselen, porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin, (MnTE-2-PyP (5+)), disodium 4-[(tert-butylimino) methyl] benzene-1,3-disulfonate N-oxide (NXY-059), N:-t-butyl-phenylnitrone or Tirilazad; GABA agonists including Clomethiazole; GABA receptor antagonists, glutamate antagonists, including AMPA antagonists such as GYKI 52466, NBQX, YM90K, YN872, ZK-200775 MPQX, Kainate antagonist SYM 2081, NMDA antagonists, including competitive NMDA antagonists such as CGS 19755 (Selfotel); NMDA channel blockers including Aptiganel (Cerestat), CP-101,606, Dextrorphan, destromethorphan, magnesium, metamine, MK-801, NPS 1506, and Remacemide; Glycine site antagonists including ACEA 1021, and GV 150026; polyamine site antagonists such as Eliprodil, and Ifenprodil; and adenosine receptor antagonists; Growth factors such as Fibroblast Growth Factor (bFGF), Glial cell line derived neurotrophic factor (GDNF), brain derived neurotrophic factor, insulin like growth factor, or neurotrophin; Leukocyte adhesion inhibitors such as Anti ICAM antibody (Enlimomab) and Hu23F2G; Nitric oxide inhibitors including Lubeluzole; opiod antagonists, such as Naloxone, Nalmefenem, Phosphatidylcholine precursor, Citicoline (CDP-coline); Serotonin agonists including Bay×3072; Sodium channel blockers such as Fosphenytoin, Lubeluzole, and 619C89; Potassium channel openers such as BMS-204352; anti-inflamatory agents; protein kinase inhibitors, and other agents whose mechanism of action is unknown or uncertain including: Piracetam and albumin. Other active agents, that provide energy to cells, such as ATP, co-enzyme A, co-enzyme Q, or cytochrome C may be added. Similarly, agents known to reduce cellular demand for energy, such as phenytoin, barbital, or lithium may be added to the composition. [0038]
  • The compositions and methods can be combined with and enhance the efficiency of thrombolytic agents such as: recombinant tissue plasminogen activator (rtpA), streptokinase, and tenecteplase in dissolving thrombosis in management of stroke or myocardial infarction.[0039]
  • EXAMPLE ONE Treatment of Spinal Cord Ischemia with Our Method and Compositions
  • The acute spinal cord ischemia was induced in twenty-eight rabbits. Group one: control (4 rabbits). Group two: incomplete removal of the CSF (6 rabbits). Group three: treatment with composition 1 (6 rabbits). Group Four: treatment with composition 2 (6 rabbits). Group Five: treatment with composition 3 (6 rabbits). [0040]
  • Isoflorane was given for anesthesia. A PE-90 tubing was surgically implanted in the cisterna magna, a PE-10 tubing was also implanted to the lumbar thecal sac in each rabbit. An abdominal incision was made and the aorta was isolated at the level of the renal artery. The aorta was cross-clamped by a clip just caudal to the left (lower) renal artery for one hour to produce spinal cord ischemic injury, then the clip was removed to resume blood supply. [0041]
  • For group one control, the CSF was not removed. [0042]
  • For group two, at 15 minutes after ischemia, the CSF was removed as completely as possible (usually 0.8-1.2 ml CSF could be withdrawn), then 0.1 ml CSF was immediately returned. To further ensure that the 0.1 ml of CSF returned to reach the lumber spinal cord uniformly, the rabbits on the plane operating board were kept in a slightly tilted position with head up (10 degrees), The ICP was maintained at 0-10 cm H[0043] 2O.
  • For group three, at 15 minutes after ischemia, the CSF was removed as completely as possible (usually 0.8-1.2 ml CSF could be withdrawn). After the CSF removal, 0.5 ml of the CSF was used to dissolve our composition 1 (40 mg bovine albumin powder, 0.45 mg glucose), then was injected back through the PE -10 tubing. The ICP was maintained at 0-70 cm H[0044] 2O during the ischemia.
  • For group four, at 15 minutes after ischemia, the CSF was removed as completely as possible (usually 0.8-1.2 ml CSF could be withdrawn). After the CSF removal, 0.5 ml of the CSF was used to dissolve our composition 2 (40 mg soybean protein powder, 0.45 mg glucose), then was injected back through the PE -10 tubing. The ICP was maintained at 0-70 cm H[0045] 2O during the ischemia.
  • For group five, at 15 minutes after ischemia, the CSF was removed as completely as possible (usually 0.8-1.2 ml CSF could be withdrawn). After the CSF removal, 0.5 ml of our composition 3 {0.45 mg glucose dissolved in 0.5 ml of 6% hetastrarch (used in clinic)} was injected through the PE -10 tubing to cisterna magna. The ICP was maintained at 0-70 cm H[0046] 2O during the ischemia.
  • At one week after ischemic injury, the rabbits were tested for behavioral deficit (grade 0: complete recovery; grade 1: able to stand, but unable to walk normally; grade 2: good movement of the hind limbs, but unable to stand; grade 3: spastic paraplegia with slight movement of the hind limbs; grade 4: spastic paraplegia with no movement to the hind limbs). [0047]
  • The result is summarized as following: At one week after ischemia, in group one and group two, all rabbits showed spastic paraplegia with no movement to the hind limbs (grade 4); In group three, four and five, no apparent deficit could be observed, all of rabbits walked and moved smoothly (grade 0). [0048]
  • Conclusion: a small amount of CSF is toxic enough to cause the spinal cord damage; incomplete removal of the CSF is not effective enough to treat spinal cord ischemia; the compositions we invented can provide protection to injured spinal cord. [0049]
  • EXAMPLE TWO Treatment for Brain Ischemia with Our Method and Compositions
  • The global cerebral ischemia was induced in twenty-two rabbits. Group one: control (4 rabbits). Group two: treatment with composition 1 (6 rabbits). Group three: treatment with composition 2 (6 rabbits). Group Four: treatment with composition 3 (6 rabbits). [0050]
  • Isoflorane was given for anesthesia. The trachea was incubated and connected to mechanical intermittent positive-pressure ventilation (tidal volume 30 ml, rate 50/min, O2 concentration 30%). A cannula was surgically positioned in the cisterna magna in each rabbit. A hole of 3 mm in diameter (4 mm lateral to midline and 3 mm posterior to the bregma) was drilled on each side of the skull, a cannula were positioned in the hole on each side through puncture. An arterial line was cannulated through femoral artery for monitoring blood pressure. A femoral vein was also cannulated for withdrawing and infusing blood. Four blood vessels (two common carotid arteries and two vertebrate arteries) were isolated and occluded for one hour with arterial clips to produce brain ischemia. In order to produce complete global ischemia, 60-120 ml of blood was withdrawn to lower the blood pressure simultaneously. The mean blood pressure was maintained between 30-40 mmHg. [0051]
  • In group one, at 10 minutes after the global ischemia, 0.8-1.2 ml of CSF was withdrawn from caunnulas in cisterna magna and holes of the skull, then 0.3-0.6 ml of CSF was returned through the these caunnulas. The intracranial pressure was maintained at 0-70 cm H[0052] 2O
  • In group two, at 10 minutes after the global ischemia, 0.8-1.2 ml of CSF was withdrawn from caunnulas in cisterna magna and holes of the skull. After the CSF removal, 0.8 ml of the CSF was used to dissolve our composition 1 (64 mg bovine albumin, is 0.72 mg glucose), then was injected back through the caunnulas. The ICP was maintained at 0-70 cm H[0053] 2O.
  • In group three, at 10 minutes after the global ischemia, 0.8-1.2 ml of CSF was withdrawn from caunnulas in cisterna magna and holes of the skull. After the CSF removal, 0.8 ml of the CSF was used to dissolve our composition 2 (64 mg soybean protein, 0.72 mg glucose), then was injected back through the caunnulas. The ICP was maintained at 0-70 cm H[0054] 2O.
  • In group four, at 10 minutes after the global ischemia, 0.8-1.2 ml of CSF was withdrawn from caunnulas in cisterna magna and holes of the skull. After the CSF removal, 0.8 ml of our composition 3 (0.8 ml crude homogenized chicken egg white) was injected through the caunnulas. The ICP was maintained at 0-70 cm H[0055] 2O.
  • At one hours of the global brain ischemia, the arterial clips were removed and then followed by blood infusion. Phenylephrine (10 mg in 100 ml saline) was given to increase and maintain mean blood pressure between 80-100 mmHg. At 24 hours after ischemic injury, the rabbits were tested for behavioral deficit by the following criteria: Maximum Score=400 (meaning brain death or death); Minimum Score=0 (meaning normal brain) [0056]
  • 1. Level of Consciousness [0057]
  • 0=complete awareness of auditory stimuli. [0058]
  • 30=clouded: apparently conscious but drowsy or intermittently irritable on clapping hands and pinching nailbeds of hindlegs. [0059]
  • 60=stupor: response with movements to pinching nailbed of hindlimb, open eyes, movements may be either purposeful or reflex. [0060]
  • 100=coma: no movement on painful stimulation (pinching nailbed of hindlimb; should be confirmed on forelimbs as well). [0061]
  • 2. Respiratory Pattern [0062]
  • 0=normal rate and rhythm. [0063]
  • 50=abnormal spontaneous breathing (e.g., periodic gasps, irregular rhythm) [0064]
  • 75=breathing, but not enough to maintain normal arterial blood gases. [0065]
  • 100=apnea: complete absence of spontaneous respiratory efforts [0066]
  • 3. Cranial Nerve Function [0067]
  • Pupil size: examine in room lighting and record diameters of pupil and iris (R/L) [0068]
  • 0=normal: 3-7 mm diameter [0069]
  • 10=abnormal: greater than 7 mm [0070]
  • 15=severely abnormal: greater than 10, pinpoint, or new anisocoria [0071]
  • Papillary response to light: use flashlight (R/L) [0072]
  • 0=normal [0073]
  • 10=sluggish [0074]
  • 15=absent [0075]
  • Eyelid reflex: [0076]
  • 0=normal [0077]
  • 10=sluggish [0078]
  • 15=absent [0079]
  • Corneal reflex: Test with moist cotton swab, observe for eyelid closure (R/L) [0080]
  • 0=normal [0081]
  • 10=sluggish [0082]
  • 15=absent [0083]
  • Swallow reflex: [0084]
  • 0=normal: [0085]
  • 10=absent [0086]
  • Auditory-palpebral (startle) reflex: clap hands loudly and observe for motor response [0087]
  • 0=normal [0088]
  • 10=no response [0089]
  • Gag reflex: stimulate posterior pharynx and observe contraction of the soft palate under direct vision [0090]
  • 0=normal [0091]
  • 10=absent [0092]
  • Carinal cough reflex: stimulate carina of trachea with suction catheter and observe cough [0093]
  • 0=normal [0094]
  • 10=absent [0095]
  • 4. Motor and Sensory Function [0096]
  • Muscle stretch reflex [0097]
  • 0=normal in all extremities [0098]
  • 10=increased or absent 1-3 extremities [0099]
  • 25=absent in all extremities [0100]
  • Motor response to painful stimulus: Pinch each limb, observe for withdrawal response. [0101]
  • 0=normal 4 [0102]
  • 10=no response [0103]
  • 25=coma (no test required) [0104]
  • Positioning: place rabbit in left lateral decubitus position and observe position assumed. [0105]
  • 0=normal [0106]
  • 10=mildly abnormal or intermittent running movements [0107]
  • 25=markedly abnormal: opistotonus, fixed flexion, total flaccidity, severe running movements [0108]
  • Muscle tone: Pick up each extremity and release; observe [0109]
  • 0=normal [0110]
  • 10=1 or 2 extremities stiff or flaccid [0111]
  • 25=3 or 4 extremities stiff or flaccid [0112]
  • The results are as follow: [0113]
  • In group one, the score is 400. All rabbits died once disconnected from the ventilator. [0114]
  • However groups treated with our compositions, group two, three and four,. average scores are all about 30-60 (level of consciousness 0-30; respiratory pattern 0; cranial nerve function 0; motor and sensory function 0-30). [0115]
  • While my above description contains many specifics, these should not be construed as limitations on the scope of the invention, but rather as illustrative examples. [0116]

Claims (51)

1. A method for protecting Central Nervous System tissue in need of such protection in mammal, comprising the steps of:
a) Withdrawing a volume of cerebrospinal fluid from the subarachnoid space,
b) Injecting a neuroprotective composition which is dissolved by certain amount of said cerebrospinal fluid into said subarachnoid space.
2. A method for protecting Central Nervous System tissue in need of such protection in mammal, comprising the steps of:
a). Withdrawing a volume of cerebrospinal fluid from the subarachnoid space,
b). Injecting a neuroprotective composition which is dissolved by certain amount of said cerebrospinal fluid into said subarachnoid space,
c). Administering an effective amount of agent selected from the group consisting of: calcium channel blockers, calcium chelators, potassium channel blockers, free radical scavengers, antioxidants, GABA agonists, GABA receptor antagonists, glutamate antagonists, NMDA antagonists, NMDA channel blockers, glycine site antagonists, polyamine site antagonists, adenosine receptor antagonists, growth factors, Glial cell line derived neurotrophic factor (GDNF), brain derived neurotrophic factor, insulin like growth factor, leukocyte adhesion inhibitors, nitric oxide inhibitors, opiod antagonists, Serotonin agonists, sodium channel blockers, potassium channel openers, anti-inflamatory agents, and protein kinase inhibitors to said mammal.
3. A method for protecting Central Nervous System tissue in need of such protection in mammal, comprising the steps of:
a). Withdrawing a volume of cerebrospinal fluid from the subarachnoid space,
b). Injecting a neuroprotective composition which is dissolved by certain amount of said cerebrospinal fluid into said subarachnoid space,
c). Administering a CSF production-suppressing agent.
4. A method for protecting Central Nervous System tissue according to the claims 1, 2 and 3 wherein said neuroprotective composition comprises a combination of one crystal osmotic agent and one colloidal osmotic agent.
5. A method for protecting Central Nervous System tissue according to the claims 1, 2 and 3 wherein said neuroprotective composition comprises essentially a combination of at least one crystal osmotic agent and at least one colloidal osmotic agent.
6. A method for protecting Central Nervous System tissue according to the claims 1, 2 and 3 wherein said neuroprotective composition comprises essentially consisting at least one crystal osmotic agent.
7. A method for protecting Central Nervous System tissue according to the claims 1, 2 and 3 wherein said neuroprotective composition comprises at least one colloidal osmotic agent.
8. A method for protecting Central Nervous System tissue according to the claims 1, 2 and 3 wherein said neuroprotective composition comprises at least one colloidal osmotic agent.
9. A method for protecting Central Nervous System tissue according to claim 4, 5 and 6 wherein said neuroprotective composition comprises the crystal osmotic agent is selected from the clinical known agents, such as glucose, glycerin, mannitol, sorbitol, sodium chloride etc.
10. A method for protecting Central Nervous System tissue according to claim 4, 5 and 6 wherein said neuroprotective composition comprises the crystal osmotic agent is glucose.
11. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in the neuroprotective composition is a vegetable protein.
12. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is selected from the group consisting of microbial proteins.
13. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is modified soybean protein.
14. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is chicken egg white.
15. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is the extract from chicken egg white.
16. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is chicken egg white without ovomucoid.
17. A method for protecting Central Nervous System tissue according to claim 4, 5, 7, 8, 14, 15 and 16 wherein the colloidal osmotic agent in said neuroprotective composition is dry chicken egg white
18. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is selected from the group consisting of animal proteins albumin, lipoprotein, globulin, fibrinogen and collagen.
19. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is selected from the group consisting of human proteins albumin, lipoprotein, globulin, fibrinogen and collagen.
20. A method for protecting Central Nervous System tissue according to claim 4, 5, 7, 8, 18 and 19 wherein the colloidal osmotic agent in said neuroprotective composition is dry powder albumin.
21. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is selected from the group of known colloidins consisting of daxtran, gelatin, polysaccharide, starch (amylose, amylopectin), gelatin, agarose, amphipathic lipids, such as phosphoglycerides, sphingomyelins, glycolipids, cholesterol, cholesterol hemisuccinate, sphingolipids, cerebrosides.
22. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is selected a blood plasma extender.
23. A method for protecting Central Nervous System tissue according to the claims 1, 2 and 3 wherein said neuroprotective composition is directly selected from any of the plasma extenders used clinically, such as 10% dextra (MW 40,000), 6% dextra (MW 70,000) and 6% hydroxyethyl starch, 4% modified fluid gelatin (Gelofusine®).
24. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is milk.
25. A method for protecting Central Nervous System tissue according to claim 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is dry milk powder.
26. A method for protecting Central Nervous System tissue according to claim 1, 2, 3, 4, 5, 7 and 8 wherein the colloidal osmotic agent in said neuroprotective composition is plasma.
27. A method for protecting Central Nervous System tissue according to claim 4, 5, 6, 7 and 8 wherein said neuroprotective composition further comprises a CSF production-suppressing agents.
28. A method for protecting Central Nervous System tissue according to claim 3 and 27 wherein said neuroprotective composition can be selected from any of the known diuretic such as furosemide, acetazolamide, mersalyl, thiaxides, spironolactone, triamterene.
29. A method for screening agents for neuroprotective effect comprising the steps of:
a). Withdrawing a volume of cerebrospinal fluid from the subarachnoid space of a living test subject,
b). Injecting a said neuroprotective composition which is dissolved by certain amount of said cerebrospinal fluid into said subarachnoid spaces, and
c). administering a proposed neuroprotective agent to said living test subject and determining the effectiveness of said neuroprotective agent.
30. A method for treating stroke in a mammal requiring such treatment comprising:
a). Withdrawing a volume of cerebrospinal fluid from the subarachnoid space,
b). Injecting a said neuroprotective composition which is dissolved by certain amount of said cerebrospinal fluid into said subarachnoid spaces, and
c). Administering a thrombolytic agent to said mammal in an amount effective to restore blood flow to central nervous system tissue.
31. A method according to claim 30 wherein said thrombolytic agent is recombinant tissue plasminogen activator (rt-PA).
32. A modified method for protecting Central Nervous System tissue according to claim 1, 2 and 3 wherein said neuroprotective composition is dissolved in 0.9% sodium chloride, in water and injected into said subarachnoid spaces.
33. A modified method for protecting Central Nervous System tissue according to claim 1, 2 and 3 wherein said neuroprotective composition is dissolved in 5% Glucose, in water and injected into said subarachnoid spaces.
34. A neuroprotective composition consisting a combination of one crystal osmotic agent and one colloidal osmotic agent.
35. A neuroprotective composition consisting essentially a combination of at least one crystal osmotic agent and at least one colloidal osmotic agent.
36. A neuroprotective composition according to claim 34, 35 wherein the crystal osmotic agent is selected from the clinical known agents, such as glucose, glycerin, mannitol, sorbitol, sodium chloride etc.
37. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is selected from any vegetable proteins, such as soybean protein.
38. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is selected from any microbial proteins.
39. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is modified soybean protein.
40. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is chicken egg white.
41. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is the extract from chicken egg white.
42. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is chicken egg white without ovomucoid.
43. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is dry chicken egg white.
44. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is selected from any animal proteins. Such as albumin, lipoprotein, globulin, fibrinogen, collagen.
45. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is selected from any human proteins, such as albumin, lipoprotein, globulin, fibrinogen, collagen.
46. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is dry powder albumin.
47. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is selected from any of the known colloidins, such as daxtran, gelatin, polysaccharide, starch (amylose, amylopectin), gelatin, agarose, amphipathic lipids, such as phosphoglycerides, sphingomyelins, glycolipids, cholesterol, cholesterol hemisuccinate, sphingolipids, cerebrosides.
48. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is directly selected from any of the plasma extenders used clinically, such as 10% dextra (MW 40,000), 6% dextra (MW 70,000) and 6% hydroxyethyl starch, 4% modified fluid gelatin (Gelofusine®).
49. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is milk.
50. A neuroprotective composition according to claim 34, 35 wherein the colloidal osmotic agent is plasma.
51. A neuroprotective composition according to claim 34, 35 further comprising a CSF production suppressing agent.
US10/703,830 2001-09-24 2003-11-07 Conpositions and method to prevent and treat brain and spinal cord injuries Abandoned US20040142906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/703,830 US20040142906A1 (en) 2001-09-24 2003-11-07 Conpositions and method to prevent and treat brain and spinal cord injuries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/962,009 US6683066B2 (en) 2001-09-24 2001-09-24 Composition and treatment method for brain and spinal cord injuries
US10/703,830 US20040142906A1 (en) 2001-09-24 2003-11-07 Conpositions and method to prevent and treat brain and spinal cord injuries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/962,009 Continuation US6683066B2 (en) 2001-09-24 2001-09-24 Composition and treatment method for brain and spinal cord injuries

Publications (1)

Publication Number Publication Date
US20040142906A1 true US20040142906A1 (en) 2004-07-22

Family

ID=25505317

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/962,009 Expired - Fee Related US6683066B2 (en) 2001-09-24 2001-09-24 Composition and treatment method for brain and spinal cord injuries
US10/703,320 Abandoned US20040142905A1 (en) 2001-09-24 2003-11-07 Compositions and treatment method for brain and spinal cord injuries
US10/703,830 Abandoned US20040142906A1 (en) 2001-09-24 2003-11-07 Conpositions and method to prevent and treat brain and spinal cord injuries
US10/744,114 Abandoned US20040138125A1 (en) 2001-09-24 2003-12-23 Composition and method to prevent and treat brain and spinal cord injuries

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/962,009 Expired - Fee Related US6683066B2 (en) 2001-09-24 2001-09-24 Composition and treatment method for brain and spinal cord injuries
US10/703,320 Abandoned US20040142905A1 (en) 2001-09-24 2003-11-07 Compositions and treatment method for brain and spinal cord injuries

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/744,114 Abandoned US20040138125A1 (en) 2001-09-24 2003-12-23 Composition and method to prevent and treat brain and spinal cord injuries

Country Status (3)

Country Link
US (4) US6683066B2 (en)
AU (1) AU2002335736A1 (en)
WO (1) WO2003026565A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034946A1 (en) * 2004-08-13 2006-02-16 Yanming Wang Irrigating solution for neurosurgical procedures
US20060057067A1 (en) * 2004-09-11 2006-03-16 Yanming Wang Lymph-like composition and method to prevent and treat central nervous system injuries
US20070275896A1 (en) * 2006-05-19 2007-11-29 Neuroprotection, Inc. Use of Polypeptides in Treating Tissue Injury
US20100305492A1 (en) * 2006-10-09 2010-12-02 Shivanand Lad Cerebrospinal Fluid Purification System
WO2011111070A2 (en) * 2010-03-09 2011-09-15 Bdr Pharmaceuticals International Pvt. Ltd. Novel injectable combination
WO2016077457A1 (en) * 2014-11-11 2016-05-19 Clara Foods Co. Methods and compositions for egg white protein production
US10632237B2 (en) 2006-10-09 2020-04-28 Minnetronix, Inc. Tangential flow filter system for the filtration of materials from biologic fluids
US10850235B2 (en) 2006-10-09 2020-12-01 Minnetronix, Inc. Method for filtering cerebrospinal fluid (CSF) including monitoring CSF flow
US10927360B1 (en) 2019-08-07 2021-02-23 Clara Foods Co. Compositions comprising digestive enzymes
US11147540B2 (en) 2015-07-01 2021-10-19 Minnetronix, Inc. Introducer sheath and puncture tool for the introduction and placement of a catheter in tissue
US11160299B2 (en) 2019-07-11 2021-11-02 Clara Foods Co. Protein compositions and consumable products thereof
US11577060B2 (en) 2015-12-04 2023-02-14 Minnetronix, Inc. Systems and methods for the conditioning of cerebrospinal fluid

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100570A2 (en) * 2002-05-23 2003-12-04 New England Medical Center Hospitals, Inc. Computer-assisted multi-dimensional patient selection
EP1513548A2 (en) * 2002-06-03 2005-03-16 UAB Research Foundation Method for reducing obstructive hydrocephalus
US7923032B2 (en) * 2002-11-26 2011-04-12 Seacoast Neuroscience, Inc. Buoyant polymer particles for delivery of therapeutic agents to the central nervous system
FR2886153B1 (en) * 2005-05-27 2009-04-10 Gemac Sa COMPOSITION FOR THE TREATMENT OF MULTIPLE SCLEROSIS
CA2616037A1 (en) * 2005-07-21 2007-02-01 The Cleveland Clinic Foundation Medical oscillating compliance devices and uses thereof
US7473684B2 (en) * 2005-09-16 2009-01-06 Selamine Limited Bisphosphonate formulation
WO2007139771A1 (en) * 2006-05-22 2007-12-06 The Johns Hopkins University Kv channels in neurodegeneration and neuroprotection
US20080045611A1 (en) * 2006-08-17 2008-02-21 Milan Radojicic Methods for the therapeutic use of a carbonic anhydrase inhibitor for reducing spinal cord edema
GB0624090D0 (en) * 2006-12-01 2007-01-10 Selamine Ltd Ramipril amine salts
GB0624084D0 (en) * 2006-12-01 2007-01-10 Selamine Ltd Ramipril amino acid salts
GB0624087D0 (en) * 2006-12-01 2007-01-10 Selamine Ltd Ramipril combination salt
US9386939B1 (en) 2007-05-10 2016-07-12 Fonar Corporation Magnetic resonance imaging of the spine to detect scoliosis
WO2009058353A1 (en) * 2007-11-02 2009-05-07 The Cleveland Clinic Foundation Device for increasing cerebral blood flow
US20090123373A1 (en) * 2007-11-05 2009-05-14 Yanming Wang Amyloid-imaging agents
EP2392342A1 (en) * 2010-06-04 2011-12-07 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Compositions for use in the treatment or diagnosis of prion diseases
US9649047B1 (en) * 2011-04-22 2017-05-16 Fonar Corporation Monitoring and treatment of multiple sclerosis
US9766310B1 (en) 2013-03-13 2017-09-19 Fonar Corporation Method and apparatus for magnetic resonance imaging of the cranio-cervical junction
RU2636616C1 (en) * 2017-01-17 2017-11-24 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Фарматрон" Combined drug for primary neuroprotection
CN106727769A (en) * 2017-03-01 2017-05-31 周博成 The application of one ball plane tree bark extract and preparation method and field of medicaments
WO2020041905A1 (en) * 2018-08-31 2020-03-05 The University Of British Columbia Methods for identifying compounds suitable for treatment of central nervous system trauma and uses of those compounds
CN114099721B (en) * 2021-11-30 2023-07-14 华兰生物工程重庆有限公司 Globulin pasteurization process using combined protectant

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117034A (en) 1978-02-28 1979-09-11 Nippon Shoji Kk Treating agent for consciousness and perception motion disorder
US4758431A (en) 1980-04-14 1988-07-19 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4830849A (en) 1980-04-14 1989-05-16 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4393863A (en) 1980-04-14 1983-07-19 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US5085630A (en) 1980-04-14 1992-02-04 Thomas Jefferson University Oxygenated fluorocarbon nutrient solution
US4445500A (en) 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4465850A (en) 1980-09-02 1984-08-14 Merck & Co., Inc. Treatment of brain injury due to gray matter edema with (indanyloxy) butanoic acids
US4445887A (en) 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
IT1176916B (en) * 1984-10-10 1987-08-18 Elvira Pistolesi PHARMACEUTICAL OR DIETETIC COMPOSITION WITH HIGH ANTI-THROMBOTIC AND ANTI-ARTERIOSCLEROTIC ACTIVITY
EP0269030B1 (en) 1986-11-20 1994-05-04 Mitsubishi Kasei Corporation Lipid-peroxide formation inhibiting composition and novel compounds useful therefor
WO1989006129A1 (en) 1987-12-29 1989-07-13 Dainippon Pharmaceutical Co., Ltd. Agent for treating ischemic brain trouble
JPH02102290A (en) * 1988-10-07 1990-04-13 Nippon Oil & Fats Co Ltd Solubilized tocopherol
US5395314A (en) 1990-10-10 1995-03-07 Life Resuscitation Technologies, Inc. Brain resuscitation and organ preservation device and method for performing the same
US5486530A (en) 1991-04-27 1996-01-23 Boehringer Mannheim Gmbh Use of torasemide for the treatment of brain oedemas
US5308832A (en) 1992-07-27 1994-05-03 Abbott Laboratories Nutritional product for persons having a neurological injury
US5879677A (en) 1992-12-09 1999-03-09 The Scripps Research Institute Method for inhibition of cerebral tissue factor mediated reperfusion damage
US5755237A (en) 1995-06-07 1998-05-26 Rodriguez; Victorio C. Therapeutic use of acetazolamide for the treatment of brain edema
US6123956A (en) 1997-07-10 2000-09-26 Keith Baker Methods for universally distributing therapeutic agents to the brain

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034946A1 (en) * 2004-08-13 2006-02-16 Yanming Wang Irrigating solution for neurosurgical procedures
US20060057067A1 (en) * 2004-09-11 2006-03-16 Yanming Wang Lymph-like composition and method to prevent and treat central nervous system injuries
US20060057065A1 (en) * 2004-09-11 2006-03-16 Yanming Wang Composition and method to prevent and treat brain and spinal cord injuries
US20070275896A1 (en) * 2006-05-19 2007-11-29 Neuroprotection, Inc. Use of Polypeptides in Treating Tissue Injury
US7759309B2 (en) 2006-05-19 2010-07-20 Yanming Wang Use of polypeptides in treating tissue injury
US20100305492A1 (en) * 2006-10-09 2010-12-02 Shivanand Lad Cerebrospinal Fluid Purification System
US10850235B2 (en) 2006-10-09 2020-12-01 Minnetronix, Inc. Method for filtering cerebrospinal fluid (CSF) including monitoring CSF flow
US11529452B2 (en) 2006-10-09 2022-12-20 Minnetronix, Inc. Tangential flow filter system for the filtration of materials from biologic fluids
US8435204B2 (en) 2006-10-09 2013-05-07 Neurofluidics, Inc. Cerebrospinal fluid purification system
US11065425B2 (en) 2006-10-09 2021-07-20 Neurofluidics, Inc. Cerebrospinal fluid purification system
US9895518B2 (en) 2006-10-09 2018-02-20 Neurofluidics, Inc. Cerebrospinal fluid purification system
US10398884B2 (en) 2006-10-09 2019-09-03 Neurofluidics, Inc. Cerebrospinal fluid purification system
US20200046954A1 (en) 2006-10-09 2020-02-13 Neurofluidics, Inc. Cerebrospinal fluid purification system
US10632237B2 (en) 2006-10-09 2020-04-28 Minnetronix, Inc. Tangential flow filter system for the filtration of materials from biologic fluids
WO2011111070A2 (en) * 2010-03-09 2011-09-15 Bdr Pharmaceuticals International Pvt. Ltd. Novel injectable combination
WO2011111070A3 (en) * 2010-03-09 2011-12-22 Bdr Pharmaceuticals International Pvt. Ltd. Novel injectable combination
WO2016077457A1 (en) * 2014-11-11 2016-05-19 Clara Foods Co. Methods and compositions for egg white protein production
US11279748B2 (en) 2014-11-11 2022-03-22 Clara Foods Co. Recombinant animal-free food compositions and methods of making them
US11518797B2 (en) 2014-11-11 2022-12-06 Clara Foods Co. Methods and compositions for egg white protein production
US11147540B2 (en) 2015-07-01 2021-10-19 Minnetronix, Inc. Introducer sheath and puncture tool for the introduction and placement of a catheter in tissue
US11577060B2 (en) 2015-12-04 2023-02-14 Minnetronix, Inc. Systems and methods for the conditioning of cerebrospinal fluid
US11160299B2 (en) 2019-07-11 2021-11-02 Clara Foods Co. Protein compositions and consumable products thereof
US11800887B2 (en) 2019-07-11 2023-10-31 Clara Foods Co. Protein compositions and consumable products thereof
US11974592B1 (en) 2019-07-11 2024-05-07 Clara Foods Co. Protein compositions and consumable products thereof
US10927360B1 (en) 2019-08-07 2021-02-23 Clara Foods Co. Compositions comprising digestive enzymes
US11142754B2 (en) 2019-08-07 2021-10-12 Clara Foods Co. Compositions comprising digestive enzymes
US11649445B2 (en) 2019-08-07 2023-05-16 Clara Foods Co. Compositions comprising digestive enzymes

Also Published As

Publication number Publication date
AU2002335736A1 (en) 2003-04-07
US20040138125A1 (en) 2004-07-15
US20030059476A1 (en) 2003-03-27
WO2003026565A3 (en) 2003-11-20
US20040142905A1 (en) 2004-07-22
WO2003026565A2 (en) 2003-04-03
US6683066B2 (en) 2004-01-27

Similar Documents

Publication Publication Date Title
US20040142906A1 (en) Conpositions and method to prevent and treat brain and spinal cord injuries
US5032608A (en) Method and substrate composition for treating atherosclerosis
US5700828A (en) Treatment or prevention of anoxic or ischemic brain injury with melatonin-containing compositions
RU2289424C2 (en) Using pharmaceutical composition comprising epidermal growth factor (egf) for prevention of diabetic limb amputation
Mallick et al. Disorders of the lymph circulation: their relevance to anaesthesia and intensive care
EP1703913B1 (en) Use of ribose in recovery from anaesthesia
US20060057067A1 (en) Lymph-like composition and method to prevent and treat central nervous system injuries
US7387798B2 (en) Method and composition for resuscitation
JPS61502821A (en) drug kit or drug composition
AU8033487A (en) Method and substrate composition for treating atherosclerosis
CN110123757B (en) Ethanol foam hardening agent for treating vascular abnormality and preparation method thereof
KR100287991B1 (en) Ophthalmic Argatroban Formulations
Tarter et al. A clinical study of the use of intravenous urea in glaucoma
WO2007072147A2 (en) Composition for diagnosing and treating circulatory system diseases
JPH08503968A (en) Composition containing growth factor and antimetabolite
JP2667441B2 (en) Vascular endothelial cell growth inhibitor
ES2260634T3 (en) USE OF AN L-ASCORBIC ACID SALT TO PREPARE A PHARMACEUTICAL COMPOSITION FOR OPTICAL TOPICAL USE ABLE TO IMPROVE THE L-ASCORBIC ACID LEVEL OF THE EYE.
EP0540747B1 (en) Medicine for intraocular operation
JP2005521681A (en) Method for treating ophthalmic diseases using urea and urea derivatives
JP2000083623A (en) Food
JP3530542B2 (en) Argatroban formulation for ophthalmology
RU2245141C1 (en) Method for correcting microcirculatory disorders in patients with thermal trauma
RU2219943C1 (en) Method for treatment of diabetic retinopathy
JPH08325143A (en) Medicine for curing damage of corneal parenchyma
JP2003048851A (en) Medicine for treating visual cell disorder or disease

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION